
Chemical Physics 102 (1986) 45-54
North-Holland, Amsterdam

45

TRANSLATIONAL AND ROTATIONAL SYMMETRIES
IN INTEGRAL DERIVATIVES OF ARBITRARY ORDER
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Based on the invariance under translations and rotations of quantum chemical one- and two-electron integrals. a method for

obtaining a complete set.of independent relations among integral derivatives of arbitrary order is presented. Explicit formulas
for the dependent integral derivatives are derived in terms of the remaining (independent) ones. The formulas are derived in a
manner which imposes no restrictions on the nuclear positions. The special case of collinear nuclear centers is also examined.

1. Introduction

The direct computation of analytical derivatives of the electronic energy with respect to nuclear
coordinates has proven to be a powerful tool because it yields an immediate sense of the local topography
of the energy surface. A large number of integral derivatives need to be calculated in order to implement a
ca\cuIation of derivatives of the energy surface. For example. consider the derivatives of four-center
two-electron integraIs in a calculation involving n primitive atomic basis functions. One can easily show
that for each of the n4 integraIs there are 12 firstintegral derivatives, 78 unique second integraI derivatives.
and 364 unique third integral derivatives. In the N-center case there are (-'S~\/-I) Mth-order integraI
derivatives for each of the n4 integrals.

The use of translationaland rotational symmetry has proven to be a valuable tool in calculating
derivatives of the energy surface by reducing the number of integral derivatives that need to be explicitly
calculated [l-11]. The goal of this paper is to extend the formalism of earlier papers [l0,11] to integral
derivatives of arbitrary order.

The present work provides a detailed analysis of im'ariance properties of integral derivatives. We
provide a method for treating the redundancy of invariance conditions. Translational and rotational
invariance conditions are geometry dependent in the sense that poorly chosen conditions impose geometri-
cal constraints on the molecule. We present a systematic method to choose the conditions in a manner
which imposes no restrictions on the allowable geometries of the nuclear positions.

For an integral over N non-collinear centers we will show that there exists, for a given order M,
(3N ~",;f- I) total integral derivatives and (3\ - 6~ .\/.. I) independent integral derivatives which must be
explicitly calculated. Thus there are [es,~\/-I) - (-" -\~\f -I)] independent invariance relations. For the
collinear case we will show that there are [(-"+\i\/ - I) - es - 5,\~.\/- I)] independent relations. We will
demonstrate that there exists a set oC 3N - 6 (3N - 5 for the collinear case) coordinates whose derivatives

must be explicitly calculated. Knowing this set of integral derivatives, all remaining integral derivatives can
be calculated using the translational and rotational invariance conditions.

In section 2 we use translation and rotation operators to derive the essential invariance relations
involving integral derivatives of arbitrary order. In section 3 we derive a method for finding the
independent integral derivatives and for explicitly calculating the remaining (dependent) integral deriva-
tives using symmetry relations. In section 4 we examine the independence and completeness of our working
relations.
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2. Theoretical development

An integraf I depends upon the gaussian basis functions appearing in I. Each of the gaussians is
centered at one of the nuclear positions Pd K = l, N: N ~ 4)

1=/{G1(P., T.), G2(P2,T2),...,Gl...(P" T,.)}. (1)

Each cartesian gaussian function is parameterized in terms of the center P" and the internal coordinate T".

as

GA (P", TA) = A( X - PA, )"'( Y - PA i)'" (Z - P"J"'exp( -gri), (2)

where A i's the normalization constant and the vector R is the lab fixed coordinate with components X, Y,
Z, giving the location of the electron relative to the origin

R = PA, + T"; K= l, N. (3)

An operator t that involves a translation of all points in space by a vector 1= (f" '" ':) can be written
as

t= exp(-1' VR), (4)

where VR = (a/ax, a/aY, a/az) defines the gradient operator at all points R in space. An operator k
that generates a rotation by the angle 4» = (4)>x.cl>y'9:> about an axis along the direction 4» through the lab
fixed origin can be expressed as

k (ci» = exp( - 4»'L), (5)

where

L=RXVR. (6)

For two-electron integrals, which depend on twa electronic coordinates R and R', the VR operator will be
implicitly assumed to operate on both variabies (i.e.. it is VR + VR')' Also from the form of the gaussian
function it is seen that

aG" (P"., T,,)/ax= -aGA(PA, TK)/aPA.,=aG,,(PA, T".)/axA. (7)

The rotation operator k is defined in terms of lab fixed coordinates. To generate rotations of bot h the
center and orientation of a gaussian function we must allow L to operate both on PK and TK'For example,
the action of the L=component on a gaussian is

L:GK(PK, TK)= (Xa/ay - ya/aX)GA (PA" TA)

= [- (PK,a/aPK...- PKI.a/aPK,)+ (XKa/aYK- YKa/aXK)JGK(PK, TK)

=(-L:K+'=K)GK(PK, TK)' (8)

Thus L=can be written as the sum of an operator L:K which acts only on nuclear coordinates PK and an
operator '=Kwhich acts only on the internal coordinate TK'

Since an integral is unchanged when all of its coordinates are translated or rotated, we can write

I{G., G2,...} =/{t(G1, G2,...)} (9)

and

I {GI' G2,... } = I {k (G I' G2,...)} . (10)
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Eqs. (9) and (10) also hold when I is replaced by a
a2I/aPK,apK, or a derivative of any order; that is, all
rotationally invariant.

Substituting the translation operator tinto eq. (9). the right-hand side can then be expanded in a power
series in t. The terms of each order in t are separately set to zero yielding the relations

N
T(I)I= '\' I. =0I... A,a, .

K,=1

first derivative 3I laPA or a second derivative
integral derivatives are also translationally and

(I la)

N

T (211= '\' L /(" = O.I... ~ ,a, ,a,
K,K,

N

T (3)I - '\' I /(. = O.- I... K"'I K""""
K,K,K,

(I lb)

al. a2. aJ =x. Y. z. (Ilc)

where the short-hand notation

1/("" = al/aP/(,a" I , . = aCI/ ap oPA""~",, A"" A:,,:' etc.

has been introduced.
For integral derivatives of a given order M. there are M ways to generate relations from eqs. (11):

N

T(I)I. . = '\' I.. . =0A"". .A""" I... A"'IA",> .A""" .
K,=1

( 12)

N

T(C'/. . = '\' I.. . = OA"". .A""" I... A"'IA",: A""" .
I\,K,

( 13a)

N

T (.H' / - '\' I.. . =0.- I... A""A"". A"""
I\,K,...I\"

( l3b)

It is easy to see that the relations of eq. (12) can be used to generate all of the relations in eqs. (13). Thus. in
the analysis of translational invariance that follows. we look only at eq. (12).

The analysis of the rotational invariance is similar to that of translation. The rotation operator R is
substituted into eq. (10). and the right-hand side of eq. (10) expanded in powers of cp.lt is straightforward
to show that. for integral derivatives of a given order M. the relations

R(lI/. .' = LI. . = - Q " .

A"". ./(.""" A",:. .A""" A""A"" .A,,".,'
( 14)

can be used to generate all of the rotational invariance relations for an Mth-order integral derivative. Here.

((.K""...A'"",,represents the first-order change in the tensor quantity IA:,,> A"",, due to the change in
coordinate system. Eqs.(12) and (14) are generalizations of earlier results [10.11J.

Eq. (8) is substituted into eq. (14) to yield
N N

'\' L ,. I,. ,. = '\' , ,I, , + QI' ,. ,. ,.
I... "'~I ~"". . ~ ,,"./ I... ",~, ~:""" ~"",, "n,~",,~,"" . ~"""

K,=1 1\,=1

al. a2'" .,aM=x, y. z; K2. KJ... ..K\/ = L N; al/311J1= xyz. yzx. zxy. (15a)
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where

QIJ o' o' o' = 8 lo, /J o' o' - 8/J lo,. o' o'",",n:nln"",.. n"",, ",nl 1'01"" n,"".. n "n" I"": 1'0:",1'0"".., n"",,

+ 8"",/ A':":I\,p"..I\"n,, - 8p",/1\ :",1\"".., A:"",,+ ,..

+ 8 lo, o' o' /J - 8/J lo' o' o'.",n" n:nln"n"..n,,"1 I""" n,",n,n,.., n,,", (15b)

The operator L",A:, has been pulled outside of the integral lA::"l'" 1.""'" since the PA", which Ln,l\, involves,
are not integration variabies. In addition, the notation 1",A:,IA':"1" A:"n" has been introduced to denote that
the 1",A:" operator is applied to the vector r in the gaussian GK, appearing in lKlnl..,K"n'l' That is, lo
1",K,IA:"".., A:""" represents lA:",:, ,A:"""(I,,,A',GK,).

Substituting the definitions of L",I\, and In,K, into eq. (15) we obtain

ad lIG] = xyz. yzx. zxy; K2. K, KI/= 1. N;

( K2a2) ~ ( K,a, ) ~ ... ~ ( KIl alt).

a2' a, a,\(=x. y, z;

~
t
~.

!
f

(16a ) ~

N" (P, l, , - Po' lo' /J o' )= l/J o' o' .i A,P, A"",..I\"n'l n,", nl1'"..n'/n" ",",nln:-..n""'1
",=1

where

N

l/J o' o' =" I o' lo' o' + Q /J o' o'.
","ln,n:,..n'/n" i ",n,n,nl..,n'/n" ","In,n:,..n"n"

",=1
(I6b) ,

The In,K, operator transforms a gaussianinto two gaussians in the same shell as the original gaussian.
Using I:KI as an example. we see that

1:A:,G1\,(n" n.., n J = (x A',a/aYI\,- )'A,a/aX I\,)G K,(n" n", nJ

[ ]
] .,

= ni (2n" + 1)/(2n,- 1) I-GK,(n, + 1, ni, -1. nJ
'

[ ]
1/2

-n, (2n,,+1)/(2n,,-1) GI\,(n,-l. n,,+l. n,). (17)

Thus we see that the right-hand side of eq. (16)is a linear combination of (M - 1)th derivatives of
integrals.Specificcases (M = 1, 2. 3) of eqs. (16) appeared in earlier papers [10,11].

3. Implementation

In this section we look more closely at the relations in eqs. (12) and (16). These relations are not
independent. We wish to choose an independent subset of these re1ations. We also wish for this subset to be
complete in the sense that a1l translational and rotational invariance conditions can be generated from it.

As a first step we note that for an integral with N' degreeof freedom, there are N' first integral :
derivatives. NI(NI + 1)/2 unique second integral derivatives. and NI(NI + l)(NI + 2)/3! unique third
integral derivatives. For Mth order there are ("'+;1/\1-1)integral derivatives where we have used the notation '
for the binominal coefficient. Thus for an integral over N non-collinear centers we will show that there
exists,for a givenorder M, eN +,:- 1) total integralderivativesand eN - ~tM-]) independent integral
derivatives which must be explicitly ca\culated. Thus we have [eN+':-I) - eN-t" M-I)] independent
re1ations in eqs. (12) and (16). For the colIinear case we will show lhat there are [eN+,:- J) - eN-~ M-I)J
independent re1ations.
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Dur goal is to demonstrate that there exists a set of 3N - 6' (3N - 5 for the eolIinear ease) eoordinates
sueh that aU integral derivatives with respeet to these eoordinates must be explieitly ealculatedo We denote
these eoordinates as independent eoordinateso Knowing this set of eN - ~ M- l) [eN - ~r\/- I) for the
colIinear ease] integral derivatives, aU remaining integral derivatives ean be ealculated using the transla-
tional and rotational invariance eonditions which are the subjects of this paper. The remaining six (five for
the eolIinear ease) eoordinates we denote as dependent eoordinateso

In the foUowingwe examine the non-eoUinear easeoWe present our working equations in a very detailed
form in order to make them easy to implemento We assign the atomie eenters some arbitrary numbers from
1 to N requiring onIy that eenters 1, 2 and 3 be non-eoUinear.

Using eq. (12), it is easy to show that Ix ean be ehosen as a dependent coordinate. That is, alI integral
derivatives with respeet to Ix ean be ealculated from the invarianee eon<;litions

N

I K K = - " lo. ,o' o' K 'Ix ""l'" M"'M ~ """'1"1"-,"-".. """,
K,=2

(K2a2)~(K)a.1)~ "0 ~(KMaM); K2a2' K.1a),o..,KMaM * Ix, (18a)
N

I K o' = - " 11 ,. o' o'lxix """""""", ~ ""'lx",""..""",,'
K,=2

(K)a.1)~(K4a4)~ "0 ~(KMaM); K)a),. oo, KHa,t * Ix, (18b)

N

I I ' I " I ' = - " I I ' I ' o' ,o
",..." ~ """"'",'

K,,=2

(18e)

There are eN:'~(1-2) integrals that can be evaluated on the left-hand side of eqs. (18). This is easy to see
sinee the first index of every integral is Ixo Therefore we are permuting M - 1 indices through 3N degrees
of freedomo

,Likewise Iy and Iz can be ehosen as dependent coordinates; as a result of whieh we can write equations
anaIogous to eqs. (18):

N

I I K o' = - " lo, o' o' .y ,",""'"",, ~ ",.1"'1"1""""'"
K,=2 "

""', ....

(K2a2)~ (K"a,I)~'" ~ (K"ta"t); Kzaz.o...KMa,\/* Ix, Iy. (19a)
N

I I I o' o' = - " I I o' o' o'y Y","".."","" ~ ""1"","'-"""""'"
K,-2

(K.1a.1)~ (K4a4) ~ ... ~ (K,\/a",); K.1a) K,\/aM* Ix. Iy. (19b)

N

11.1'1.1'..,1.1'=- L 111'1.1""1.:"",

K,,=2
(19c)

N

11 o' o' o' = - " lo' o' '":"1"1",""'" ""etM ~ "':"1"""""'"
K1=2

(K2aZ) ~ (K)a) ~ ... ~ (KMa,\/); Kzaz,..., K Ma,,/ * Ix, Iy, 1z. (20a)
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N

I I I A
.

A. = - '\' II A. A. A.:: ,n,... "n" '--: ,: ,n,... "n,,'
K,=2

(K1a.1)~... ~(KA1aM); KJaJ KMall=l=Ix.Iy.Iz. (20b)

N

l = - '\' I I I A. .I: 1: ... 1: '--: :.. I/:
K ,/=2

(20c)

In eqs. (19) we are permuting M-I indices through 3N - 1 degrees of freedom therefore there are onJy
e\-A~~:1-2) conditions. Likewise, eqs. (20) with 3N - 2 degrees of freedom have eN-Ai:tl-2) conditions.
Using the identity

(: = n = (:) - (W;; 1 ), (21)

for an arbitrary W, it is straighforward to show that the total number of conditions in eqs. (18)-(20) is
[e\~lill-1) - e\-i~~II-I)] as expected. Eqs. (18)-(20) are generalizations of earlier results [10.11].

The next step is to substitute eqs. (18)-(20) into the rotational invariance relations of eq. (16). This
allows all reference to atom 1 to be removed from the rotational conditions. The result is

N

L (PI\,{i,!I\,y,A.,n,...A'I/n" - PA"y,!A',rI,I\,o,...I\I/n,,) = 1/I,y,A',o,. .A'"n,,'
A, =2

f3jYI =xy,)'Z, zx; K2' K1 KII=2, N;

( K 1a1) ~ ( K1a:J ~ ... ~ ( Kil all ).

a l' aJ"'" a .11= x, y, z;

(22)

where PA fJ = P A'

f i - PI {i gives the position of atom KI relative to atom 1. Eq. (22) for the specific casesI , I I ,

M = 1, 2. 3 appeared in earlier work [10,11].
Since atom 1 and atom 2 do not have the same center by assumption, Ph, P2" or P1: has to be

non-zero. For ease of notation the rest of this paper will be concerned with the special case of P2z=1=O.The
other cases can be recovered by cyc1icpermutation of all x, y, and z.

We now show that 2x can be chosen as a dependent coordinate. Solving eq. (22) for integral derivatives
involving 2x, we obtain

1

[

-
lo .' ". = -::- l . . '. + Po lo' .

.,A,o,...A"o" P1: :\A""...A,/o,/ .,. .:A""...A"",/

N

]
- P. l.. '. -p. l.. '. ,L ( A,: /(,xA,o,...A"o\/ A,x /(,:A"". .A"o\J

K,=3

(K2a2)~ (KJaJ)~ ...(KMaM); K1a2' KJaJ,...,KMaM=I= Ix, Iy, Iz, 2x,

1

[

-
100. . . = -::- l . . . + Po 100' ,

..\.\A"".../(\/o.\l P2: :.\2.\K"".../(.\(0" ..1' .'\':/(,"',""/(.\(""

- ~ (PK,:12xK,xK,o,... K"o" - PK,.\12xK,:... K.I/o.\()
]

,
K,=3

(KJaJ) ~... ~ (KMaM); KJa3,...,KMaM =1=Ix, Iy, Iz, 2x,

(23a)

(23b)

1

[

.
L
N

(
- -

)]
lo, .=-::- lo .. .+Pl.. 0- P.l o.-P.lo.. .'

..\2.\-.\ ...2.\ P ..12.\2.\ ...2.\ 2.\ 2.\2.\ ...2. K". 2.1'..\ ... /(".\ /( \/.\ ..\2.\... K".
2: K,,=3

(23c)
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In eqso (2J) we are permuting M - l' indices through JN --J degrees of freedom.
eN Al~fi - 2) relations. Similarly for the 2y coordinate we have

1

[

-
I. =-:- -I.. o +P,I,.. .

2..Koo.o...K"o..., P2: .I.Koo.o.../(-"o." -.I _oAoo.o...A"o.."

N

]

- Po I.. . -p. I.. . ,L ( /(,: A,)'Aoo.o...A"o.." A,I' A,:Aoo.o...A\1o.,,)
K,=3

(K2Q2) ~ (KJQ3) ~ .. o ~ (K,wQ,w); K2Q2' K3Q3'" o,K,wQ,w >F Ix, Iy, Iz, 2x, 2y,

1

[

-
I.. =-:--1'0" +P,./,.,.. .
2.12.1K,o."...K"o.-" P2: '02.1K,o."...A"a" -, -.I-_A"" A."o.,,

N

]

- p. I .. . - P. I, .. . ,L ( Ao: 2,'A,yA""-,,... 11.""-,, A,,' --"11.0:11.,n,... A ./n.J
K2=3

Therefore we have

(24a)

(K3Q3) ~ (K4Q4) ~ .. o ~ (KJlQ.~/); K3Q3 ,K.\rQ,~/>FIx, Iy, Iz, 2x, 2y, (24b)

[

V

]
12)'2.1'21 2,'=; -/,':2..2,'2)'...2..+P2../2Y21 2:- t (PA"1:/2)'21'2 A"",-P"'/1.12"2 A"I:)'

2: K'/=3

(24c )

witheN -,l-~~,~f- 2) relations. In earlierwork [10,11]we showedthat, in the first, second,and third derivative
cases, if Ix, Iy, Iz, 2x, and 2y are chosen as dependent coordinates then 2z cannot be chosen as a
dependent coordinate. We therefore look for another dependent coordinate on atom Jo

As a first step we take linear combinations of eqo(22) to form
N N N

"C li.' l A'
A

.
A. +" CA' I II.' A

.
A. +" CA. l A' .. ..i... ,.'"" ,: ,",... """ i... ,I': ," ,",... '1"'1 i... ,:.1' ,1'",n,...",,"'1

K,=3 K,-3 K,=3

= P2 ./ "I'A' ~ A.
ct + P2I .1-,' A

'

t A. ~ + P" I , t A.
t ,. '. ,..,... 'I 'I . -- 'c,.. ""'1 - -" ,c ,... "C 'I (25)

where we have introduced the notation

CK,py = P2pPA',y - P2yPK,P' py = xy, y=, =x. (26)

Note that eq. (25) contains no reference to atom I or atom 2 in the summation.
If Ch: = C3:x= Ch.. = O,it is easy to show that centers 1. 2. and Jare collinear contrary to assumption.

If CJy:*-O, we can solve eq. (25) for integral derivatives involving the coordinate Jx:

1

(

N

I.. =- - C l .
hA""...A""" C L 1.,1': 1.,,1."'" .A'/n'l

3)': K, =4

N N

- "C A. l A'

A
.

A. -" Cli.' III.
'

A
.

A
.

i... ,x)' ,: ,n,... '1"-'1 i... I:" ,y ,",... '/nll
K,=3 K,=3

+P,./ ",'A'

a A
.

n + P,1.1. ,.
11.

'

a A
.

a + P,,/ ... 11.
'

t A
. .,

)
,-- '. "..." II -. o. 2 2'" II 'I -'. o " ,... II II

(K2Q2)~(K3Q3)~"o ~(KMQM); K2Q2' K3Q3"'" KMQM>F Ix. Iy. lz. 2x, 2y, Jx. (27a)
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1

(

N N

J . =- - C. J... . - C. . J .. .
"Jx...A" C

.
L A,I': J'A",A",-,...A""-,,L A",' JxA,:A",-,...A""-,,

Jr: K,~4 K,=J

N

- ~ C,J"., ,. +P, J.." ,.i- Al:, ."A,.IA",-,.. A"li" .:".'A,lI,. . A"°,,
K,=3

+P2IJ:xJ'A',n,. .A. "li " + P2,J,:J'A',n,. .A."n,,),

(KJaJ);;' (K4a4);;' ... ;;. (K,l/a.14); KJaJ , KIlalf*' 1x, 1y, 1z, 2x, 2y, 3x, (27b)

1

(

N S

J,.,." 1.,= C - L CA'",,: Jl.,J,. . A../x - L CA,/.n J.,.J,. . A.,,:
J,': K I/ ~ 4 A.,,~ 3

N

)
- L CA",:,J',JI. .A.,/r+P2:J,.-.l\.'", .J,+P2r(,J'.lx...J., + P2,J":.1,J., , .J.' .

K,/=.1
(27c)

Likewiseif C,:, *' O we can solve for integral derivatives involving3y, and if C" r *' O we can solve for
integral derivativesinvolving3z. Egs. (27)contain e' -,i.:-jlt- 2) relations. '

Thus, assuming P2:*' Oand Ck *' O, the procedure for using translational and rotational invariance for
the non-collinear case is to explicitly evaluate all integral derivatives involving the coordinates P2:, P",
PJ:, PAn (K = 4, N; a = x, y, Z) and then use egs. (18)-(20), (23), (24), and (27) to solve for the remaining
integral derivatives. Using eg. (21) it is straightforward to show that there are [(JV+J/- 1)- eN -,It;+11-I)J
relations in egs. (18)-(20), (23), (24) and (27) as expected. For the collinear case egs. (27) involve division
by zero and therefore are not valid. Thus for the collinear case one uses the [e\'\.~I-I) - eN-~+ II-I)J
Mth-order relations given in egs. (18)-(20) and (23), (24). The results of egs. (23), (24) and (27) are an
improvement over our earlier work [10,11] where the results of rotational invariance were left as a system of
linear eguations to be solved. We, in fact, have a complete implementation of computer code for rotational
and translational invariance of first integral derivatives.

Use of the rotational conditions of egs. (23), (24) and (27) for Mth-order integral derivatives reguires
knowing (M -1)th-order integral derivatives. This. in fact, poses no difficulty. Using third energy
derivatives as an example [12,13], calculation of thethird derivatives of the energy reguires knowing first,
second, and third integral derivatives. Thus one can calculate the integral and the first, second, and third
integrals derivatives with respect to the independent coordinates. Knowing the values of the integral and the
independent first integral derivatives one can calculate, using translational and rotational invariance, the
dependent first integraJ derivatives. One can then calculate the dependent second integraJ derivatives
folIowed by the dependent third integral derivatives.

4. Discussion

In this section we will examine the independence and compJeteness of the reJations in egs. (18)-(20),
(23), (24) and (27). For exampJe, it shou]d be noted that there are fewer conditions in egs. (23), (24) and
(27) than in eg. (22). The guestion arises as to whether the excess re]ations in eg. (22) yield additional
information.

If we denote a relation in eg. (22) by EPI'IIK,o,K,o,...K<tOMfor the given values of 131'y], K2, a2' etc., we
note that the 2eNAJ~2M-J)+eN-J~r-.1) relatiorisfrom eg. (22) that werenot used in constructing egs.
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(22), (24), and (27) are of the form E..:2xK,a"... K"aM' E,y2xK,a.l'" KMa",'and Ex..2yK,".,... K"a,,' The relation
E..:2xK.la.1'"K.,a.., was not used since eqs. (24) were restricted never to contain an integral derivative with
respect to 2x. Likewise, E'Y2xK,a"", K,.,a" and E,y2yK.la",.. K"a", were not usedsince eqs. (27) were restricted
never to contain an integral derivative with respect to 2x or 2y. A straightforward calculation shows that

2( 3N -~ ~ ~ - 3) + (3N -~ ~ ~ - 3) + (3N - 3; M - 1 )- (3N - 6; M - 1)

=3eN-~~~-2). (28)

Thus, there are no other relations in eq. (22) that were not used in constructing eqs. (23), (24) and (27).
There exist certain relations among the relations (RARs) of eq. (22):

N

L [PK,oEpYK~YK1a.l...K"a", + PK,pEYOK,YK.la.l...K"a"
K~-2

- Pv (E" K ,. " + E """ ,. )]= O
",y ,..y ,o".la.l""'.""-." Y""""".la.l...""a" . '

Pyo=xyz, yzx, zxy; ~J' K4 ,KM=2, N;

(KJaJ)~ (K4a4)~'" ~ (K,\,a,\,).

aJ, a4,...,aM=x, y, z;

(29)

These RARs are generalizations of RARs that were discovered in earlier papers [10,11] for the second and
third derivative cases. Eq. (29) can be verified by substitution of the left- or right-hand side of eq. (22) for
the givenvaluesof p, y, o, K2' KJ' aJ' etc.

If we set pyo = yzx in eq. (29) we can solve for al! of the relations of the form E..:2xK.a..., A'"o.,' If we set

Pro =zxy we can solve for EH2xK.la/I,..K"o,,'If we set pyo = xyz we can solve for E""Z"A'.a...,""a,,' This
last step required the knowledge o! the E..:2xA'.a"..A'"a.,' Also solving for the relations in each of the above
steps required only division by P2: which we have already assumed to be non-zero. Thus the excess
relations in eq. (22) give no additional information.

Likewise, it would appear at first glance that there are more relations in eq. (12) than there are in eqs.
(18)-(20). However, the conditions in eq. (12) are not unique. A given condition may be repeated several
times. It can be shown, infact, that the number of unique relations in eq. (12) is equal to the number of
relations in eqs. (18)-(20),

We now wish to show the independence of our working relations 'in eqs. (18)-(20), (23). (24) and (27).
We first note the relation in eq. (18c) is independent of al! other working relations since it is the only
relation that contains Ilxl.\'...h' We can then work in reverse order through eqs. (18) finding each relation
to be independent of al! the others since it contains an integral derivative on the right-hand side that is not
in the relations above it in eqs. (18) or in eqs. (19), (20) and (23), (24) or (27). What we have achieved is a
kind oCsymbolic echelon form. Likewise, we can work in reverse order through eqs. (19) folIowed by eqs.
(20), (23), (24) and (27). Thus we can conelude that our working relations are independent.

S. Conclusion

In this paper we have given useful working relations which allow one to evaluate certain integral
derivatives in terms of others. The working relations for the non-collinear case are embodiedin eqs.
(18)-(20), (23), (24) and (27).

For ease of notation geometrical constraints were introduced into the derivation oCeqs. (23), (24) and
(27), but, in fact, these constraints can be satisfied for arbitrary nuelear geometry by appropriate renaming
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of coordinate axes. For an N-center integral there are [(~N~:f-l)-eN-6~M-I)] Mth-order relations in
-eqs. (18)-(20), (23), (24) and (27).

For the collinear case eqs. (27) involve division by zero and therefore are not valid. Thus for the
collinear case one uses the [eN~:I-I) - e"'.5+Ap-I)] Mth-order'relations given in eqs. (18)-(20) and (23),
(24).
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