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Based on the invariance under translations and rotations of quantum chemical one- and two-electron integrals. a method for
obtaining a complete set of independent relations among integral derivatives of arbitrary order is presented. Explicit formulas
for the dependent integral derivatives are derived in terms of the remaining (independent) ones. The formulas are derived in a
manner which imposes no restrictions on the nuclear positions. The special case of collinear nuclear centers is also examined.

1. Introduction

The direct computation of analytical derivatives of the electronic energy with respect to nuclear
coordinates has proven to be a powerful tool because it yields an immediate sense of the local topography
of the energy surface. A large number of integral derivatives need to be calculated in order to implement a
calculation of derivatives of the energy surface. For example, consider the derivatives of four-center
two-electron integrals in a calculation involving n primitive atomic basis functions. One can easily show
that for each of the n* integrals there are 12 first integral derivatives. 78 unique second integral derivatives.
and 364 unique third mlegrdl derivatives. In the N-center case there are (**,,¥ ') Mth-order integral
derivatives for each of the n* integrals.

The use of translational and rotational symmetry has proven to be a valuable tool in calculating
derivatives of the energy surface by reducing the number of integral derivatives that need to be explicitly
calculated [1-11]. The goal of this paper is to extend the formalism of earlier papers [10.11] to integral
derivatives of arbitrary order.

The present work provides a detailed analysis of invariance properties of integral derivatives. We
provide a method for treating the redundancy of invariance conditions. Translational and rotational
invariance conditions are geometry dependent in the sense that poorly chosen conditions impose geometri-
cal constraints on the molecule. We present a systematic method to choose the conditions in a manner
which imposes no restrictions on the allowable geometries of the nuclear positions.

For an integral over N non-collinear centers we will show that there exists, for a given order M.
(*Y4M-1) total integral derivatives and (" ~°y;" ") independent integral derivatives which must be
explicitly calculated. Thus there are [(* Y ") — (1" 7% ")) independent invariance relations. For the
collinear case we will show that there are [(“*"") (*Y25 M) independent relations. We will
demonstrate that there exists a set of 3N — 6 (3N = 5 for the collinear case) coordinates whose derivatives
must be explicitly calculated. Knowing this set of integral derivatives, all remaining integral derivatives can
be calculated using the translational and rotational invariance conditions.

In section 2 we use translation and rotation operators to derive the essential invariance relations
involving integral derivatives of arbitrary order. In section 3 we derive a method for finding the
independent integral derivatives and for explicitly calculating the remaining (dependent) integral deriva-
li\I'es using symmetry relations. In section 4 we examine the independence and completeness of our working
relations,
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2. Theoretical development
An integral / depends upon the gaussian basis functions appearing in /. Each of the gaussians is
centered at one of the nuclear positions P, (K=1, N: N<4)
=1{Gl(P1~’|)~Gz(P:-’:) ---- G.\-(P_\'-"\-)}‘ (1)

Each cartesian gaussian function is parameterized in terms of the center P, and the internal coordinate r,
as

Gi( Py, 1) = A(X = Py )" (Y= P )" (Z— Py.)"exp( - &), (2)
where A is the normalization constant and the vector R is the lab fixed coordinate with components X, Y,
Z. giving the location of the electron relative to the origin

R=F.%r.; K=1,N. (3)

An operator T that involves a translation of all points in space by a vector £ = (1, 7, 1.) can be written
as

T=exp(—1-W,). (4)

where v, =(3d/9X, d/0Y, 3/0Z) defines the gradient operator at all points R in space. An operator R
that generates a rotation by the angle ¢ = (¢,, ¢,, ¢.) about an axis along the direction ¢ through the lab
fixed origin can be expressed as

R(¢)=exp(-¢-L), (5)
where
L=RX,. (6)

For two-electron integrals, which depend on two electronic coordinates R and R’, the v, operator will be
implicitly assumed to operate on both variables (i.e.. it is Vg + V). Also from the form of the gaussian
function it is seen that

3G, (Py, 1 )/0X = —3G, (Py. r) /3Py, = 3G, (Py, ry)/3x,. (7)

The rotation operator R is defined in terms of lab fixed coordinates. To generate rotations of both the
center and orientation of a gaussian function we must allow L to operate both on P, and r,. For example,
the action of the L. component on a gaussian is

LGy (P, r)=(X3/3Y - Y3/dX)Gy(Py. r)
= [ (Px3/3Py, — Px,3 /3Py, ) +(xx8/3yx — yx8/3xx )| Gk (Pyc. 1)
E(“L:X+I:K)Gh’(PA"r&’)' (8)

Thus L. can be written as the sum of an operator L_,. which acts only on nuclear coordinates P, and an
operator /., which acts only on the internal coordinate r;..
Since an integral is unchanged when all of its coordinates are translated or rotated, we can write

HG, G b= UG G o)) (9)
and

G, G, ) =H RLG,, i} (10)
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Egs. (9) and (10) also hold when [/ is replaced by a first derivative al/9P, or a second derivative
31 /3PPy, or a derivative of any order; that is, all integral derivatives are also translationally and

rotationally invarlant‘ ot
Substituting the translation operator 7 into eq. (9). the right-hand side can then be expanded in a power

series in t. The terms of each order in ¢ are separately set to zero yielding the relations

Tl = Z I =0, (11a)
K =1

-
Flle L loane. 5 (11b)
KK, o
N
ThE= 3 e ks =0 e =X 2, (11c)
K K.K, =

where the short-hand notation

Ko, = 01/0P, b ihoni™ 81 /3P 8P ... celc.

LTI

has been introduced.
For integral derivatives of a given order M. there are M ways to generate relations from egs. (11):

N

T'HI-I\:((:... LYY = z l.‘s,ul:\':n:... LYL Y] W 0‘ (12}
K, =1
N
T"_I!K.u\... Aoy o Z [.\'|¢||K:r!:...}(uf\., = 0‘ {13‘1)
A K
N
T' "“[_,—_ E i.\’,tulk‘u-...o\'.,tl.,=0‘ [l3h}
KKy Ky e

It is easy to see that the relations of eq. (12) can be used to generate all of the relations in egs. (13). Thus. in
the analysis of translational invariance that follows. we look only at eq. (12).

The analysis of the rotational invariance is similar to that of translation. The rotation operator R is
substituted into eq. (10), and the right-hand side of eq. (10) expanded in powers of ¢. It is straightforward
to show that, for integral derivatives of a given order M, the relations

=i . (14)

th
R ].K_-a_....h'un., “n"_ Q»\ s ke KN a,*

can be used to generate all of the rotational invariance relations for an M th-order integral derivative. Here.
Ok.,a... x,a, Tepresents the first-order change in the tensor quantity /, . ., due to the change in
coordinate system. Egs. (12) and (14) are generalizations of earlier results [IO 11]

Eq. (8) is substituted into eq. (14) to yield

N N
Z Lm.\']l.k:f::....&'“a‘,: ): *"‘.,A'l"x:n:.,. i Q;‘f,rl Koo W Rt
K =1 K, =1

a, ay,...au=xy, 2; Ki, Kyo...Ky=1N: aBio,=xyz, yzx. zxy, (15a)
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where
Qﬁla‘.\':n:xm_‘...K"u,, T 6‘1,"3]&':[3‘.- Koo N e Bﬁ,n:]k':i‘i,ﬂ wny... Ko,
+5ﬂ.u.l.\':n_-h'_,ﬂ',... N, a, g Sﬂ,n.f.\':n:ﬁ'_‘n.,.. L ol

s E IS R SR Sﬂln"f&':n:f\',n‘... Ko, (15b)

The operator L, ;. has been pulled outside of the integral I, , & ., Since the Py, which L s involves,
are not integration variables. In addition. the notation /_ x Ix .. &, hasbeen introduced to denote that |
the /, . ~operator is applied to the vector r in the gaussian G, appearing in I . s ... Thatis,
Lak 5 ar... K o, TEPTESENLS T iy KonHa s On) ‘ .
Substituting the definitions of L, x and /, s into eq. (15) we obtain

N
KZ 1 ( PK,;?.IK,-*-....K“ﬂ., 5 PK,n,IK,ﬁ... ,\'.,n‘,) i Iﬂ,n,:\':n:... Y L
o B0y =xyz, yax, =xyi KoKl K=Y N; o, 00 Gpyy =X, ¥, 2;
() o (K> o (Kan ) (16a)
where
N
!ﬂ,n,.\':..:._. T A Z !an,]}{:n:... Kana % Qﬁ,o,.\':n:_.. K,a,° (16b)

K =1

The I, . operator transforms a gaussian into two gaussians in the same shell as the original gaussian.
Using /., as an example, we see that

l.xGx(neon,, n)= (-"A'.a/aJ’x, —Ix9/09xx, )Gy (n . n.. n.)
=" [(ZH‘_ +1)/(2n, - 1)11".26.«.(”\ +1,n,-1,n.)
—-n‘.[(Zn_‘_ +1)/(2n, - 1}] g EGKI(H‘_\ =l A A e (17)

Thus we see that the right-hand side of eq. (16) is a linear combination of (M — 1)th derivatives of
integrals. Specific cases (M =1, 2, 3) of egs. (16) appeared in earlier papers [10,11].

3. Implementation

In this section we look more closely at the relations in eqgs. (12) and (16). These relations are nor
independent. We wish to choose an independent subset of these relations. We also wish for this subset to be
complete in the sense that all translational and rotational invariance conditions can be generated from it.

As a first step we note that for an integral with N’ degree of freedom, there are N’ first integral
derivatives, N(N’+1)/2 unique second integral derivatives, and N'(N’+ 1} N’ + 2)/3! unique third
integral derivatives. For Mth order there are (.}’ ') integral derivatives where we have used the notation
for the binominal coefficient. Thus for an integral over N non-collinear centers we will show that there
exists, for a given order M, (*V*J~") total integral derivatives and (**~§/*"') independent integral
derivatives which must be explicitly calculated. Thus we have [(***~')—(*¥"%;*~")] independent
relations in egs. (12) and (16). For the collinear case we will show that there are [(*¥ ) ~") = (*¥ =5, ¥ )]
independent relations.
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Our goal is to demonstrate that there exists a set of 3N — 6 (3N — 5 for the collinear case) coordinates
such that all integral derivatives with respect to these coordinates must be explicitly calculated. We denote
these coordinates as independent coordinates. Knowing this set of (*¥=4;*~") [(**~3/Y"") for the
collinear case] integral derivatives, all remaining integral derivatives can be calculated using the transla-
tional and rotational invariance conditions which are the subjects of this paper. The remaining six (five for
the collinear case) coordinates we denote as dependent coordinates.

In the following we examine the non-collinear case. We present our working equations in a very detailed
form in order to make them easy to implement. We assign the atomic centers some arbitrary numbers from
1 to N requiring only that centers 1, 2 and 3 be non-collinear.

Using eq. (12), it is easy to show that 1x can be chosen as a dependent coordinate. That is, all integral
derivatives with respect to 1x can be calculated from the invariance conditions

N
!1.\-;\"«:.,..\'.,«\,: = Z IKI\'K:H_‘_K\(!_,...K.,n“'
K, =2
(Kzaz)?(K_an)?.--?(K‘Uar‘;); Kzaz. K_;a_\,...,KMEXIU#EIX. (]82!)
N
Il.\'l-\xlﬂj--‘xu“u= i z !|.\a\-:l'K]ﬂ_....Kun"‘
K.=2
(Kza;) 2 (Kyay) 2 ... 2 (Kyay); K. Kyay, #1x, (18b)
N
oo™ 2 Il..-:.-_..x.,..-' (18¢c)
K=

There are (*Y};Y %) integrals that can be evaluated on the left-hand side of egs. (18). This is easy to see
since the first index of every integral is 1x. Therefore we are permuting M — 1 indices through 3N degrees

of freedom.
Likewise 1y and 1z can be chosen as dependent coordinates; as a result of which we can write equations

analogous to egs. (18):

N
11_:'.\':":...&'“::.,= = Z !A',I'th_-....k'.,a"‘
K =2
n)> (K ) s . p(Kyay ) K., Kya,#1x, 1y, (19a)
N
!I_\'l_\'K.nl...K.,n_‘,= = Z Il_r}(:r.\'.a....K\,a\,‘
K,=2
(KRH")Q(K.’R_‘)? W ?(K.\;a..\;): K]a"..”.K_ua_""»élx. l_t'. (Igb)
N
‘(I_|'I_r.,.|r= = Z Il_\'ir....\'.,r' (19¢)
Ky=2
N
1]:1\':«;.\'_‘.1_....I\",a_uz o Z IKl:KEu_‘...K,,u‘,‘
K =2

AK0: )3 (Ka )z oo UKo ) Kalssoo Kgoaghlx 1y, 12, (20a)



50 J.0. Jensen et al. / Integral derivatives of arbitrary order

N
11:1:;.',.._....)".,",, T Z fl:h'::!\'_,u_‘,..Kun\,‘
Ky=2
(R . sl muli Kayon Kyay,#1x, 1y, 12, (20b)
N
fl:l:...l:: T z Jr'I:I:....K.,:‘ (20C}
Ky=2

In egs. (19) we are permuting M — 1 indices through 3N — 1 degrees of freedom therefore there are only
(V)11 ¥=2y conditions. Likewise, egs. (20) with 3N — 2 degrees of freedom have (**7;7*/~?) conditions,

Using the identity

(=)= (- )

for an arbitrary W, it is straighforward to show that the total number of conditions in egs. (18)-(20) is
[N = (Y37 as expected. Egs. (18)-(20) are generalizations of earlier results [10.11].

The next step is to substitute egs. (18)-(20) into the rotational invariance relations of eq. (16). This
allows all reference to atom 1 to be removed from the rotational conditions. The result is

i

e e e

N

Z [‘PKI.I'[‘IIA.}'YIK:‘U--- LRYLRY: = PK1'r'1!K|ﬂ|K.‘“:--- Ku"u] = !ﬂIYI'K:nz"'AI\J“\J.

K,=2
Biy = vz zn; Ky Ko, Kop=2. N8 a s o Qy =X,y 2, |
(K:a:);(K;aq);”-;(K"ﬂ'u). (22)

where P, 8, = Px g, — P, gives the position of atom K, relative to atom 1. Eq. (22) for the specific cases

M =1, 2, 3 appeared in earlier work [10.11].

Since atom 1 and atom 2 do not have the same center by assumption, P, , i‘:_‘.. or P,. has to be |
non-zero. For ease of notation the rest of this paper will be concerned with the special case of P;, # 0. The |

other cases can be recovered by cyclic permutation of all x, y, and :.
We now show that 2x can be chosen as a dependent coordinate. Solving eq. (22) for integral derivatives
involving 2x, we obtain

1 =
i:.\i\'zn:... Koy, 5 P_ {1:\'K:u3 oo K ggtnyg & P:.\'!:‘:J\':ag coo Kypr gy
N
T z (P)\’,:I.‘\'p\'l\':n:...A’.,a.,_ PK[.\'IK,:K:a:...A‘“a\,) *
Ky=3
(K:a:);(K1a1)2“.(KMaw). Kzaz, K_-;ﬂ_«‘,...,KMa_w#lx, I}" ]Z.ZX. (233)

1 5
]2.\2\1\‘\“‘.,.4\'“&" T P !:.\Z.x!('_\n_....)\‘"n“ + PZ.\'I.'!JJ:K_‘&,...K.,a“
2:

N
7 z (PK;:II.\'K;l'K;n_\.,.K\_.n.,_PK:.\ !z.u\';:.,.x‘,.y.,)]v
K,=3 {
(Kiay)> ... 2 (Kyay,); Kia,....Kya,#1x,1p, 12, 2x, (23b) -
1 N k
ll.\'E.\'Z.r..,E.r = P ;:.\'2.\'2.&...2.: + PZ.\' !2.\'21',..2.' g Z ( PK.,: IZ.\'!.\'... Kyyx i PA’.,.\' !.‘.‘.\'2.\'... K.,.‘) & (23C)
2: Ky=3 i
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In egs. (23) we are permuting M — 1 indices through 3N —3 degrees of freedom. Therefore we have

(*¥371M=2) relations. Similarly for the 2y coordinate we have

1
Il."KZ“!---K_u"U = j’) “I."-'K:":---K\J"\!
o

+ P.‘._\' Illx‘a‘ o Kyay
N
5 E (Pl\',:!h'L\'K:n:... Kyng PA‘,_I-]A',:A':u:... x.,...,) ’
K, =3
(K )5t K0, )e ... lKung); o K. .. Kgo, % ix, 1y, 1z, 2%, 2%, (24a)
1 5
12_1'2]'-'4'.«_....K\,au % E = I_\':J_a'K’.rx‘..‘K"n‘, a5 PZ I'IZ_I'::K;(I_;... K ypoyy
N i
i Z (PK_‘_'IE_I KovKqay. Kyay, 2T PK:1'12.1'1\'::&_"'1.,. K.,u\,] ¥
K.=13
iR s lh o) a(Kpa,)y: K, ... Kydgywix, 1y, 1z, 2x. 2y, (24b)
1 i -
)(1..1\.‘:1. g, W T -'Il..‘a..'v‘.'v].__1‘.+P‘»..1-\1.‘-, P Z ('PI\ _[1‘.1‘.1‘. & I'_Pf\ ‘.)’1..‘»! A _J =
alelbel. ..o PZ_- L L - e e e Kunj gl s A, L e i o =

(24c¢)

with (*¥ 314 ~2) relations. In earlier work [10,11] we showed that. in the first, second. and third derivative
cases, if 1x, 1y, 1z, 2x, and 2y are chosen as dependent coordinates then 2z cannot be chosen as a
dependent coordinate. We therefore look for another dependent coordinate on atom 3.

As a first step we take linear combinations of eq. (22) to form

N
Z C&".\-_u-‘rK,:K:n: K gy Z CJ\ 1' KNovh-a. K .,n., z C K,: \ Kivhsos o A yoy,
K, =3 K, =3 K, =3
Tz P’*I\IA a0y Ky, -+ PZ l"(:.\.\':u:....k'.,n., S P: \!l':K:a:...K“uu‘ {25)

where we have introduced the notation
Ckpy=PapPy,, — Py, Py g By=xy, yz, =x. (26)
Note that eq. (25) contains no reference to atom 1 or atom 2 in the summation.

If C;,.=C,., = G;,, =0, it is easy to show that centers 1, 2, and 3 are collinear contrary to assumption.
If G;,. # 0, we can solve eq. (25) for integral derivatives involving the coordinate 3x:

1
!_1_\1\'_.(( L"a" C‘ Z C i L ST RTINS
¥e K, =4
N
5 Z Cxl.\-_.-!x,:x,n_. R Z CA, AR K as L K gay
Ky=3 K, =3
+P3:l.\'_l'k':a:... Ay + P)._rf:\.\:n:...l\'uﬂ" + P:l f_l:.\".ﬂ:...Kuuu by

(K)o (K)o nlKyay), Koy, Koo Ko, #1x, 1y, 4222, 27, 3%, - {27%a)
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AP ——

i

1 N N
!3.\3n...K.,=C iy Z Cﬂ':_l'll.‘.\n":\)\‘\ﬂ’) R E C.K wy 'hh SR Ky
Az K.=4 K.=3
N
z CK,.‘\ !3\'5'31'.&'_-..‘»,... Koypivyy + Pl.‘f\_r."\!\'-.n\...h'“a.,
K.=13
+P:_l'!:.\'l\K\n.....‘{ua., o+ P"\!I Ak KNyay |
(K )2 (K)z ... 2 (Kyay): Kias...., Kubp®is Ly 12 2%, 2y, 2%, (27b) |
N
;3.\3\'....‘\ C Z C Koz 1\‘\ o S E CK.,\)!}\F\...K‘,:
A Ky=4 Ay=3
..\.‘
Z Cﬁ'.,:.\I.‘\,‘.\...K‘,_r+P::i.\:.‘\.‘\....‘\+P:_l'i:\.?\.‘\....‘.\+P2.\fr:3\3\...3.\ 2 (2?C} :

Ky=3

Likewise if C;., # 0 we can solve for integral derivatives involving 3y, and if G, , # 0 we can solve for
integral derivatives involving 3:z. Egs. (27) contain (** 7}, ~?) relations.

Thus, assuming P,.# 0 and C,,. # 0, the procedure for using translational and rotational invariance for
the non-collinear case is to explicitly evaluate all integral derivatives involving the coordinates B P
Pi. P, (K=4, N; a=x, y, z) and then use egs. (18)-(20). (23), (24), and (27) to solve for the remaining
integral derivatives. Using eq. (21) it is straightforward to show that there are [(*¥*,}/ 1) — (3N-8+Y-1)]
relations in eqs. (18)-(20), (23), (24) and (27) as expected. For the collinear case egs. (27) involve division
by zero and therefore are not valid. Thus for the collinear case one uses the [(*Y )/~ ") — (V=34 1))
M h-order relations given in eqs. (18)-(20) and (23). (24). The results of egs. (23), (24) and (2?) are an
improvement over our earlier work [10,11] where the results of rotational invariance were left as a system of
linear equations to be solved. We, in fact, have a complete implementation of computer code for rotational
and translational invariance of first integral derivatives.

Use of the rotational conditions of eqgs. (23), (24) and (27) for Mth-order integral derivatives requires
knowing (M — 1)th-order integral derivatives. This. in fact, poses no difficulty. Using third energy
derivatives as an example [12,13], calculation of the third derivatives of the energy requires knowing first.
second, and third integral derivatives. Thus one can calculate the integral and the first, second, and third
integrals derivatives with respect to the independent coordinates. Knowing the values of the integral and the
independent first integral derivatives one can calculate, using translational and rotational invariance, the
dependent first integral derivatives. One can then calculate the dependent second integral derivatives

followed by the dependent third integral derivatives.

4. Discussion

In this section we will examine the independence and completeness of the relations in egs. (18)-(20),
(23), (24) and (27). For example, it should be noted that there are fewer conditions in egs. (23), (24) and
(27) than in eq. (22). The question arises as to whether the excess relations in eq. (22) yield additional
information.

If we denote a relation in eq. (22) by Ep | 4 . Kyay... Koya,, fOT the given values of B, v,, X,, a,, etc., we
note that the 2(*¥ 337} =%) + (3N 4*M=3) relations from eq. (22) that were nor used in constructing egs.
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(22)‘ (24)‘ and (27) are of the form El'iz-fx_iﬂ.‘---K_.,u,,’ E.r_rlx.&'_;n_.... Koy and E.r_|'2_l'K_.u_\,..K,,« ik The relation
E,.3\Ka,... Kya, Was not used since eqs. (24) were restricted never to contain an integral derivative with
respect to 2x. I‘,ikewi.se, E_,_‘.z_rx_‘?‘_._ Ky 'and E 3.k a,..Kya, Were not used since egs. (27) were restricted
never to contain an integral derivative with respect to 2x or 2y. A straightforward calculation shows that

ZPN—3+M—3)+PN—4+M—3}%3N—3+M~1}{3N—6+M—1)

M-2 M-2 M M
_a[IN-3+M-2
(P -3eh-1).

Thus, there are no other relations in eq. (22) that were not used in constructing egs. (23), (24) and (27).
There exist certain relations among the relations (RARs) of eq. (22):

N
z [ PK:H E,BYK)_‘{K_.G_\. o Kypayy + PK;ﬂ E}fﬂ&';?&'_‘ﬂ_‘ oo Ky
K,=2

_P.k’_‘y{Eﬂﬂ\':oK_m_:.,. e E«,o.‘.':,ex\u,__. K‘,a‘_.)] =0,
Byo=xyz, yzx, zxy;, K,, K,.....Ky=2, N; a,, a,,..., Qy=Xx,y, 2;
(Kia;) > (Kuay) = ... = (Kyay). (29)

These RARs are generalizations of RARs that were discovered in earlier papers [10,11] for the second and
third derivative cases. Eq. (29) can be verified by substitution of the left- or right-hand side of eq. (22) for
the given values of B, v. o, K,, K. a;, etc.

If we set Byo = yzx in eq. (29) we can solve for all of the relations of the form £, x .. &, If Weset
Byo = zxy we can solve for E_‘_,_z_,,\.‘"ﬂ___A-“““. If we set Byo = xyz we can solve for Bl i Kms PIIS
last step required the knowledge of the E,., x .. &, a,- Also solving for the relations in each of the above
steps required only division by Pz__ which we have already assumed to be non-zero. Thus the excess
relations in eq. (22) give no additional information.

Likewise, it would appear at first glance that there are more relations in eq. (12) than there are in egs.
(18)-(20). However, the conditions in eq. (12) are not unique. A given condition may be repeated several
times. It can be shown, in fact, that the number of unique relations in eq. (12) is equal to the number of
relations in egs. (18)-(20).

We now wish to show the independence of our working relations in egs. (18)-(20). (23). (24) and (27).
We first note the relation in eq. (18c) is independent of all other working relations since it is the only
relation that contains /,,,, ,,. We can then work in reverse order through egs. (18) finding each relation
to be independent of all the others since it contains an integral derivative on the right-hand side that is not
in the relations above it in egs. (18) or in egs. (19), (20) and (23), (24) or (27). What we have achieved is a
kind of symbolic echelon form. Likewise, we can work in reverse order through egs. (19) followed by egs.
(20), (23), (24) and (27). Thus we can conclude that our working relations are independent.

3. Conclusion

In this paper we have given useful working relations which allow one to evaluate certain integral
derivatives in terms of others. The working relations for the non-collinear case are embodied in egs.
(18)-(20), (23), (24) and (27).

For ease of notation geometrical constraints were introduced into the derivation of egs. (23). (24) and
(27), but, in fact, these constraints can be satisfied for arbitrary nuclear geometry by appropriate renaming
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of coordinate axes. For an N-center integral there are [(*"3)~ ") —(*N~¢2"~1)] Mth-order relations in
eqs. (18)-(20), (23), (24) and (27).

For the collinear case egs. (27) involve division by zero and therefore are not valid. Thus for the
collinear case one uses the [(*¥ 4 ~1)— (** %'~ )] Mth-order’relations given in egs. (18)—(20) and (23),
(24).
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