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sites of hydrogen-bonded hydroxyls.13 Formate formation caused 
surface carbonates to disappear and did not displace the isolated 
hydroxyls, suggesting that the formate species was adsorbed on 
a zinc site on the nonpolar ZnO plane. The formation of adsorbed 
formaldehyde and methoxy groups caused the isolated hydroxyls 
to disappear, indicating that these species were adsorbed on zinc 
sites on the polar ZnO plane. Formaldehyde was produced during 
methanol decomposition on a polar ZnO surface but not on any 
other surface.Is The type I hydroxyl a t  3524 cm-I apparently 
exists on an energetic surface or defect site. Because both formic 
acid and methanol adsorption produced this hydroxyl species, it 
can be proposed that stepped surfaces between polar and nonpolar 
planes are the sites for this type of hydroxyl group. 

Conclusions 
The adsorption of methanol, formaldehyde, and formic acid 

on binary Cu/ZnO and ternary Cu/ZnO/Cr,O, catalysts provided 
an improved understanding of the nature of reaction intermediates 
in methanol synthesis. Infrared spectra of formate and methoxy 

species on these catalysts were very similar to formate and methoxy 
species on pure zinc oxide. The behavior of surface hydroxyl 
groups indicated how the adsorbate interacted with the catalyst 
surface. Thus it was possible to establish that the bidentate 
formate species was adsorbed on the nonpolar ZnO surface, 
whereas the adsorbed formaldehyde and methoxy species were 
adsorbed on the same sites on polar ZnO surfaces. The methanol 
synthesis reaction is structure sensitive because the intermediates 
occur on different crystal planes. This study indicates that the 
adsorbed formaldehyde species would be unstable a t  methanol 
synthesis conditions, Le., temperatures above 200 OC. On the basis 
of microscopic reversibility of chemical reactions, the hydrogen 
from the surface hydroxyls a t  3524 cm-' would hydrogenate 
methoxy groups to form methanol. 
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The rotational predissociation and intramolecular energy transfer rates of model atom-diatom complexes are determined 
via classical trajectory methods. For those systems whose quantum mechanical lifetimes have also been computed, the 
ensemble-averaged classical decay rates are in surprisingly good agreement. Underlying details of the energy transfer mechanism 
are examined with coordinate-momentum pair distribution density and autocorrelation function techniques. The pair distribution 
densities are useful for gaining insight into where the collection of trajectories tend to accumulate. The correlation functions 
allow one to observe, for ensembles of trajectories, energy transfers which occur at regular frequencies. These two probes 
of the intramolecular energy transfer process provided considerable information about the model van der Waals species treated 
here. They allowed us to identify when, in a typical trajectory's path, energy transfer takes place. However, they also indicated 
the presence of other energy transfer events whose nature we do not yet comprehend. 

I. Introduction 
The rates of rotational predissociation of several model triatomic 

van der Waals complexes were previously studied quantum me- 
chanically' in our laboratory using the complex coordinate rotation 
method (CR),2 With the scientific community's growing interest 
in using classical mechanics to study molecular-level dynamical 
processes, we were interested in results obtained using classical 
trajectory calculations on these same model systems. We studied 
three model systems. One of the systems (system I) provides a 
model for the Ar-H2 complex which has a weakly anisotropic 
atom-diatom potential energy. The second system is slightly more 
anisotropic and is chosen to approximately represent the reduced 
mass and well depth of Xe-H2 but with an unrealistically large 
anisotropy. The third system is an even more strongly anisotropic 
system and is not intended to accurately represent any particular 
noble gas-homonuclear diatom complex. Its reduced mass and 
well depth were chosen to yield several bound vibrational states 
for the adatom, so that energy transfer rates could be examined 
as both the initial vibrational and rotational energies were varied. 

These three systems span a wide range of anisotropies and well 
depths. They all involve small atom-diatom relative reduced 

(1)  Z .  Basic and J. Simons, Int. J .  Quantum Chem. Symp., 14,467 (1980). 
( 2 )  Proceedings of the 1977 Sanibel Workshop on Complex Scaling, Inr. 

J .  Quantum Chem., 14, 343-542 (1978). 

masses with large diatom rotational constants, which means that 
quantum effects would be expected to be quite important. In our 
opinion, it is precisely in such situations that comparisons between 
quantum and classical mechanical results are most interesting. 
In other words, it is most intriguing to examine systems where 
classical dynamics might be expected to fail; such cases provide 
the best data for critically evaluating the connection between 
quantum and classical mechanics. 

In the present study, we determined the predissociation lifetimes 
of several internal (vibration-rotation) states of the model atom- 
diatom van der Waals (vdW) complexes by monitoring ensembles 
of trajectories whose initial conditions are selected to replicate 
internal quantum states of the complex. By graphing the number 
of trajectories remaining undissociated as a function of time we 
extract the decay-kinetics information. In an attempt to better 
characterize the time scale over which energy is transferred be- 
tween modes, we further analyzed the energy transfer process by 
using coordinate-momentum pair distributions, by monitoring 
selected individual trajectories, and by calculating correlation 
functions of relevant dynamical variables. These probes of the 
system dynamics constitute much of what is novel about the 
present work. 

We emphasize that our interest here lies not in performing 
accurate calculations on realistic vdW molecules. The calculations 
we are carrying out should be viewed as model studies on arti- 
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TABLE I: Parameters of vdW Complexes 
~~ 

system I syHtem 11 system 111 
I 

0 
Figure 1. Geometry of the diatomic molecule and adatom. R is the bond 
length of the diatom, r is the distance between the adatom and the center 
of mass of the diatom, and 6' is the angle between the 7 and R vectors. 

ficially chosen model systems which are qualitatively representative 
of vdW molecules. The value of such studies lies in the new 
knowledge and insight they can provide about trends in quan- 
tum-classical correspondence or in energy transfer rates as various 
molecular parameters are adjusted. 

The classical trajectories used in this work involve motion on 
model atom-rigid homonuclear diatom potential energy surfaces. 
The angle dependence of the vdW potential is written as a two- 
term expansion in Legendre polynomials, containing only the even 
terms Po and P2 since the diatomic molecules being considered 
are homonuclear. The two-term expansion implies that these 
model van der Waals systems involve weakly to moderately an- 
isotropic potentials. Hence, our potentials are two-term sums 
consisting of a spherical part Vo(r) which is independent of ori- 
entation and an anisotropic part P2(cos e)V2(r) which is dependent 
on the orientation of the diatomic molecule. The adatomdiatom 
separation r and internal angle e are displayed in Figure 1. 

Our classical trajectories begin with the adatom of the complex 
in a particular (approximate) vibrational state u and with the 
diatomic molecule in a particular (approximate) excited rotational 
state J .  The total angular momentum JT of the complex is con- 
strained to be zero (in order to generate results to compare to our 
earlier quantal results' which involved only JT = 0), so the diatom's 
angular momentum is offset by the orbiting motion of the adatom. 
The rate of energy transfer from the diatom's rotation to the 
adatom's motion results in the metastability of such states of the 
complex. Since the adatomdiatom potential is dominated by its 
spherical term ( V@o), the coupling of the vibrational and rotational 
modes is rather weak and the energy transfer is slow. It is also 
the weak to moderate anisotropy of V(r,O) which allows us to 
approximately label the initially prepared metastable state by the 
vibrational and rotational quantum numbers, u and J.  Upon 
creation of the system in such a state, there is enough total energy 
for the complex to dissociate, but some of it is trapped in the 
nondissociative rotational motion of the molecule. The energy 
is transferred from the rotational mode into the adatom's vibra- 
tional mode due to the anisotropic term (V2(r)P2(cos e)) of the 
potential, which couples the two degrees of freedom, and disso- 
ciation eventually occurs. We were interested in the rates of decay 
of various initial (u,J) states and the branching ratios for pro- 
duction of the diatom in various final rotational states. We also 
wanted to gain a clearer physical picture of the energy transfer 
process which gives rise to the dissociation of these complexes. 

We proceed now to discuss, in section 11, the specific atom- 
diatom potentials employed; our computational methods are 
treated in section 111. Then, in section IV, we analyze our results 
and discuss the mechanism of energy transfer which seems to be 
operative. Section V contains our concluding remarks. 

11. Specification of the Atom-Diatom Potentials 
The model van der Waals complexes treated here consist of 

a homonuclear diatomic molecule and an adatom. As shown in 
Figure 1, the potential energy is a function of three variables: R,  
r, and 8. R is the bond length of the diatom, r is the distance 
between the atom and the cenier of mass of the diatom, and 8 
is the angle between the r' and R vectors. We are restricting our 
attention, as was done in the earlier quantum study,' to situations 
in which the complex's total angular momentum vanishes (JT = 
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Figure 2. The potential energy diagram for the vdW complex of system 
111 containing the spherical part Vo(r) (-) and the anisotropic part V2(r) 
(--). The four bound states (---) are also shown and occur at energies 
of -272, -1 16, -34, and -4 cm-I. 

0). Hence, the internal angular motion can be thought of as the 
rotation of the diatom within the triatomic complex, which is 
balanced by the tumbling or orbiting of the adatom relative to 
the diatom. Furthermore, the diatomic's bond length (R)  is held 
constant in this model study of rotational predissociation. Hence, 
the functional form of the potential V(r,O) is a sum of two terms: 
a spherical part, Vo(r), and an anisotropic part, V2(r)P2(cos e) 

(1) 

where P2(cos e) is the second Legendre polynomial. For systems 
I1 and 111, V,(r) and V2(r) are given in the Lennard-Jones form 

v(r,e) = ~ , ( r )  + v,(~)P,(cos e)  

and for system I, which is chosen to represent Ar-H2, Vo(r) and 
V2(r) are of the form 

Vo,z(r) = (27/4)c[b0,2(U/r)'~ - ao,z(./r)*] 

which is similar to the Lennard-Jones but whose 12,8 power law 
mimics the experimental data3 better than the 12,6 power law does. 
V(rJ)  is designed to be even in cos 0 because the diatom is ho- 
monuclear. The Vo potentials of the three model systems can 
support one, two, and four bound states, respectively. The nu- 
merical values of the parameters defining V(r,e) for all three 
systems are given in Table I and Vo and V2, for the most strongly 
anisotropic system 111, are shown pictorially in Figure 2. 

The restrictions to zero total angular momentum and fixed 
diatom bond length were made primarily to permit direct com- 
parison with the results of the earlier quantum study where these 
restrictions greatly reduced the computational difficulty of the 
project. The constant-R restriction is physically reasonable be- 
cause, at the total energies considered here, excitation of the 
diatom's vibrational motion is not probable if the diatom has a 
vibrational spacing greater than 1200 cm-'. The JT = 0 restriction 

(3) From an analysis of the infrared spectrum measured by McKellar and 
Welsh (J. Chem. Phys., 55, 595 (1971)) a potential was obtained by Dunker 
and Gordon (J. Chem. Phys., 68,700 (1978)) to which Beswick and Requena 
fit a Morse potential (J. Chem. Phys., 72, 3018 (1980)). BaCX (2. BaCiE, 
Ph.D. Thesis, University of Utah, 1981) found that the 12,8 power law fit the 
Morse potential better than the 12.6 power law. 
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is not made on any physical grounds; certainly at  experimentally 
relevant temperatures, many values of JT are Boltzmann populated. 
JT = 0, which is imposed only to permit comparison with the 
quantum results, means that the adatom is tumbling relative to 
the center of mass of the diatom. Tumbling quantum numbers 
( I )  of 2 or 4 correspond to centrifugal potential energies h21(1 + 
1)/2pr2 of approximately 16.71(1 + 1) prZ cm-I with p, the 

interfragment separation where Vo(r) is substantial, this contri- 
bution to the interfragment effective radial potential ranges from 
0.2 to 8.5 cm-I for I = 2, 4 for systems I, 11, and 111. 

111. Computational Methods Used 
A.  Initial Coordinates and Momenta. To simulate the behavior 

of each of the metastable internal energy levels of the vdW 
complex, lo4 classical trajectories were run. Each of these internal 
states are labeled by an adatom vibrational quantum number u 
and a diatom rotational quantum number J which, because JT 
= 0, equals the adatom's tumbling quantum number I .  The fact 
that the spherical part (Yo) of the potential V(r,O) dominates the 
anisotropic part (V,) (see Figure 2 )  for all three systems, allows 
the quantum numbers u and J to be used to approximately specify 
initial conditions. It also suggests that it is reasonable to use 
solutions to the separate diatom rotational and adatom vibrational 
(with V(r)  = Vo(r))  Schrodinger equations as the approximate 
radial and angular eigenstates corresponding to various (v,J) levels. 
Hence, in selecting initial coordinates and momenta for use in 
the classical trajectories, only the dominant term, Vo, was used 
in determining the radial distributions. As described previously, 
the h21(1 + 1)/2p$ term contributes at most 8.5 cm-' to the initial 
potential; therefore, the radial-coordinate distributions were 
calculated with eigenfunctions of only the Vo term. The angular 
motion of the diatom relative to the atom is approximated as that 
of a free rigid rotor and hence the angular-coordinate distributions 
are described by the usual spherical harmonics. The squares of 
these rotational and vibrational wave functions were then used 
to generate weighting factors for choosing classical-trajectory initial 
coordinates. The values of r considered in choosing the initial 
coordinates ranged from approximately 4 to 14 bohrs; outside of 
these ranges, the radial probability was essentially zero. The angles 
0 were allowed to range from 0 to 90'; since the diatomic molecule 
is homonuclear, 0 and 180' - 0 have identical probabilities. The 
magnitudes of the initial momenta, Po and P,, were determined 
by knowing the classical kinetic energy of the system in each of 
the two approximately separable degrees of freedom at any given 
point (r,0). The directions (signs) of the momenta were determined 
randomly. 

It should be stressed that although the tumbling centrifugal 
potential is small (C8.5 cm-' for J = 2, 4) and is neglected in 
choosing the initial coordinates and momenta, this contribution 
to the complex's total energy is fully and properly incorporated 
into our classical trajectory calculations of the time evolution of 
the system. 

B. Integration of Classical Trajectories. For any approximate 
u,J energy level, lo4 (0, r, Pg, P,) initial values were obtained as 
outlined above. The classical equations of motion were integrated 
by using a sixth-order Gears hybrid predictor-rrector numerical 
integration method4 with a time step of 2 X s. This time 
step was arrived at  by insisting that our trajectories regenerate 
the same classical path when run in reverse. By examining the 
range of the potential surfaces, we determined that once r reached 
20 bohrs for systems I1 and 111, the complex was irreversibly 
dissociated if the total energy was above the dissociation limit and 
the radial momentum was greater than zero. Therefore, the 
conditions r > 20 bohr and P, > 0 were used as our definition 
of when dissociation had occurred for systems I1 and 111. For 
system I (the model for the Ar-H2 complex), our definition of 
when dissociation had occurred was r > 13 bohr and P, > 0. 

Subsequent to dissociation, the final rotational state Jf of the 
diatomic molecule was monitored. Since classical mechanics need 
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(4) C. W. Gear, SIAM J .  Num. Anal., 213, 69 (1965). 
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not yield rotational energies which are quantized, the fraction of 
trajectories in each Jf state had to be decided by histogramming 
the continuous values of J inferred from the rotational energies 
of the fragment diatom to the nearest integer. It was thus possible 
to determine what fraction of the dissociated trajectories left the 
diatomic molecule in any specific rotational level, Jp By moni- 
toring lo4 classical trajectories for each (u,J), the fraction of 
trajectories that did not dissociate before time t was determined. 
Graphs were constructed of these fractions as functions of time 
for each initial (u,J) level and each value of Jf. These decay graphs 
were then used to evaluate the lifetime (7) of the state (u,J,Jf) 
being studied. These data are given and discussed in section IV. 

The classical trajectory simulations described above follow 
rather traditional lines in that they monitor the final outcome (Jf,7) 

of a collection of trajectories whose initial conditions are chosen 
to replicate a specified (approximate) quantum state. In at- 
tempting to understand the physical origins of observed final-state 
distributions and decay rates of the various systems considered 
here, it became necessary to develop tools which allow us to focus 
on the dynamical behavior of the trajectories as they are evolving. 
This could, of course, be accomplished by visually monitoring the 
time development of each of the lo4 trajectories for each v,J state. 
In our opinion, this approach is, a t  best, very inefficient. What 
is needed are methods which allow one to acquire averaged data 
about the evolution of many trajectories so that the typical behavior 
can be separated from the exceptional. 

In an attempt to create such trajectory monitoring devices, we 
followed two distinct paths. First, we decided to construct dy- 
namically evolving density distribution graphs over pairs of co- 
ordinates or momenta for the ensemble of trajectories charac- 
terizhg each state. For example, to construct the r,P, pair dis- 
tribution graph we monitor the evolution of - lo3 trajectories (for 
each v,J) and we stop the trajectory at  regularly (and finely) 
spaced intervals. At each halting of the trajectory, we tabulate 
r and P, and place a dot on the r,P, graph where each of the 
trajectories existed in r,Pr space. By monitoring the density of 
dots in r,P, space as time evolves, we hoped to find regions of this 
r,Pr subspace which were stable in the sense that they often 
contained high dot densities. 

Our second approach involved looking at  the development of 
ensembleaveraged correlation functions involving variables which, 
if mode-mode coupling were absent (i.e., V2 = 0), would identically 
vanish. In particular, we chose to study the correlation function 
of the rate of change of the rotor's angular momentum. Our hope 
was to find periodic structures in the correlation function (or peaks 
in its Fourier transform) which we could assign to mode-mode 
energy transfer rates. To limit the amount of data generated to 
an amount which illustrates the essential features of our two probes 
of intermode dynamics, we focus most of our attention on the J 
= 2 states of each system. Let us now turn to a more detailed 
description of how our pair distribution densities and correlation 
functions were constructed. 

C. Coordinate-Momentum Pair Distribution Studies. To study 
in further detail the rate and mechanism of energy transfer be- 
tween the two active modes of the model vdW systems, we decided 
to tabulate and plot various pair distributions of the coordinates 
and momenta as the trajectories proceeded. Here we focus our 
attention on system 111 since the data in section IV shows this 
system has an unusually slowly dissociating state (u=3,J=2) on 
which this method for probing dynamical evolution offers the most 
promise. Therefore, to illustrate the use of the pair distribution 
method, we feel it is adequate to consider this case alone. 

We decided to carry out our study as a function of evolving 
diatomic rotation angle 0 rather than as a function of time, be- 
cause, as we discovered in our correlation function study (which 
is described later), the intermode energy transfer seems to occur 
more regularly in 0 space than in time space. We ran, for each 
initial state (u,J),  1000 classical trajectories with the same type 
of distribution of initial conditions and definition of final conditions 
as were used in the correlation function study described later. 

At 0 intervals of 2nr (n = 0,  1, 2, ...), we stopped each trajectory 
and tabulated the coordinates and momenta (r,O,P,,PB) at that 
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point. At dissociation, the final rotational state Jf  of the diatomic 
molecule was determined and pair distribution graphs for each 
2~ interval were plotted for each value of J f .  Plots were con- 
structed of P, vs. r, P, vs. Po, 0 vs. Po, 8 vs. r, and Po vs. r a t  0 = 
2n7r. We examined these graphs involving all of the 1000 tra- 
jectories characterizing each (u,J) state and looked for patterns 
or correlations among the different variables. In particular, we 
were looking for patterns which either remained stationary or 
appeared and disappeared at  regular intervals (in B space). 

D. Correlation Function Studies. To examine other aspects 
of the energy transfer process, we also calculated the autocorre- 
lation function5 involving the derivative of the rotor’s angular 
momentum with respect to 0. dPo/dO, which is evaluated 
throughout any trajectory propagation as (dPo/dt)(dt/dO), was 
chosen as a variable to examine because it would be zero if no 
energy transfer were present. When dPo/dt is positive, energy 
is flowing into the diatom from the adatom. This occurs when 
dPo/dO is positive and dt/dO is positive or when dPo/dO is negative 
and dt/dO is negative. When dPo/dO is positive and dt ld8 is 
negative or when dPo/dO is negative and dt/dO is positive, dPo/dt 
is negative and energy is leaving the rotor. By examining the 
autocorrelation between the starting value of dPo/dO and dPo/d8 
later in the trajectory, we gain information about the rate of decay 
in the energy transfer process and we determine the range of 
rotational periods over which dP,/dB varies. The rate of decay 
of the (dPo/dO (0 = 0) dPo/dB(O)) correlation function contains 
information both about the rate of dissociation of the vdW complex 
(since at  dissociation dPo/dO -. 0) and about loss of phase or 
coherence information. That is, dPo/dB can, as the trajectory 
dynamics proceeds, become uncorrelated with its initial value 
simply via coupling with the adatom’s vibrational motion. 

Our decision to consider the autocorrelation of dPo/dO requires 
further explanation. At first we examined the time-space auto- 
correlation of dPo/dt, but found that neither it nor its Fourier 
frequency transform contained clear structures. We decided to 
consider dPo/dB because we speculated that intermode energy 
transfer might occur more regularly in B space than in time space. 
As the results described in section IV demonstrate, our “guess” 
was correct. The autocorrelation function in B space shows 
well-defined structures some of which we have been able to exploit 
in our attempt to understand how the intermode energy transfer 
occurs (classically). There are, however, some structures in these 
correlation functions which we have not yet been able to assign 
to dynamical events. 

For any initial (u,J) level, 1000 classical trajectories were run 
with initial conditions determined as outlined in section 111. To 
construct each of the &space correlation functions, the trajectory 
results were digitized by using a 0 step size of 0.8 rad, and a total 
of 1024 steps were employed. The number of B steps and therefore 
step size was dictated by the fact that the fast Fourier transform 
routine which we used to frequency analyze the B correlation 
function required the number of steps to be a power of two. We 
constructed graphs of the intensity of the autocorrelation function 
vs. B as well as of the power spectra obtained by taking the Fourier 
transforms of the correlation functions. The details of how our 
correlation functions were computed are given in Appendix A and 
the results are contained in section IV. 

Before closing this section on methodology, it should be pointed 
out that the pair distribution density is designed to uncover 
cause-and-effect relationships between pairs of dynamical variables 
and to detect regions of coordinate or momentum space where 
trajectories tend to accumulate. The correlation function method 
is designed to detect dynamical events which repeatedly occur a t  
regular intervals in 8 space. 

IV. Results 
A. Predissociation Rates. 1 .  Lifetimes. In Table 11, we have 

listed the classical decay lifetimes and final Jf branching ratios 

(5) A. Papulis, ‘Probability, Random Variables, and Stochastic Proceses”, 
McGraw-Hill, New York, 1965. 
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TABLE 11: Decay Kinetics and Relevant Time Scales 

System 111: Initial J = 2 (Rotational Period = 0.091 ps); Rotor 
Enernv. 366 cm-’ 

~~ 

energy vibrnl T ,  ps, of traj giving 

periods) cm-’ J = 2 J = 1 J = 0 J = 2 J = 1 J = 0 
levels (vibrnl energy, % traj in Jf Ji 

u = 3 (4.8 PS) -4 56 44 0 2.7 2.2 
u = 2 (1.0 ps) -34 52 48 0 1.6 0.81 
v = 1 (0.41 PS) -116 30 70 0 1.8 1.4 
U =  0 (0.21 PS) -272 0 60 40 2.7 3.1 

Enernv. 1220 cm-’ 
System 111: Initial J = 4 (Rotational Period = 0.027 ps); Rotor 

7, ps, of traj 
giving Ji % traj in Jf 

(vibrnl periods) J = 4 J = 3 J = 4 J = 3 
energy levels 

u = 3 (4.8 ps) 100 0 2.7 

u = 1 (0.41 ps) 100 0 3.6 
u = 0 (0.21 ps)“ 32 68 

System 11: Initial J = 2 (Rotational Period = 0.092 ps); Rotor 

u = 2 (1.0 ps) 100 0 2.2 

Energy, 363 cm-l 
energy levels vibrnl 

(vibrnl energy, % traj in Jf 7, ps, traj giving J f  
periods) cm-l J = 2 J = 1 J = 0 J = 2 J = 1 J = 0 

u = 1 (4.6 -4 100 14 
PS) 

PSI 

u = O  (0.95 -31 100 21 

Classical and Coordinate Rotation Lifetimes 
system I system I1 system I11 

classical, - classical, 21 ps classical, 3.1 ps 
CR, 300 ps CR, 21 ps CR, 2.0 ps 

“Only 6% of the total number of molecules dissociated within the 
duration of our classical trajectories; hence on accurate estimate of the 
lifetime is impossible. 

of various states (u,J) of systems I1 and 111. The lifetime (7) is 
defined as the time necessary for the limited population of lo4 
trajectories to decrease by e-’. These classical lifetimes were 
determined by fitting the decay kinetics resulting from our tra- 
jectories to an exponential decay profile ( N / N o  = e-(1-fo)/7) having 
an induction time, to (see, for example, Figure 3). We found that 
for systems I1 and 111, our results for all of the (u,J) states fit 
such a single exponential functional form. The induction time 
(to) is needed in our fitting procedure because our definition of 
dissociation (r  > 20 bohr and P, > 0 for systems I1 and 111) is 
not fulfilled until a trajectory is well outside the range of the V(r,B) 
potential and it simply takes a finite amount of time (to) for any 
trajectory to reach r > 20 bohr. 

System I, the model for the Ar-H2 complex, did not dissociate 
(by our definition) even within the maximum duration (2 X 
s) permitted in our trajectories. Trajectories of system I tended 
to move out to the region where r > 13 bohr, but their radial 
momenta (P,) became smaller and smaller so that they could not 
fulfill our definition of dissociation within our specified maximum 
time period. We believe that such trajectories were on their way 
to dissociation and would eventually have dissociated, but not 
within our maximum time period. For this reason alone, deter- 
mining the rate of decay or lifetime of model system I is extremely 
difficult if one insists on  doing so by monitoring the dissociation 
of individual classical trajectories. Recall that system I is the least 
anisotropic and hence is likely to have the smallest mode-mode 
energy transfer rates. As a result, trajectories tend to acquire very 
little radial (r,P,) energy in excess of the complex’s dissociation 
energy. This makes their asymptotic rate of decay very slow and, 
hence, difficult for us to monitor using classical trajectory methods. 
As noted in Table 11, the quantal coordinate rotation lifetime of 
this system (in u=O,J=2) is 300 ps, only 1.5 times the maximum 
duration of our classical trajectories. One would therefore have 
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viewpoint, the rate of energy transfer should be related to the 
strength of the coupling integral ($JuIV2PzI$J@). Here $Ju is the 
initial rotation-vibration wave function discussed in section IIIA 
and $ J ,  is the final rotational wave function multiplied by a 
dissociative continuum function of r having asymptotic momentum 
p .  The presence of the Pz(cos 0) angular dependence can couple 
Jf and J pairs which differ by no more than two units of angular 
momentum. Of course, for homonuclear molecules, only even J 
and Jf can occur. This means that for J = 2, 4 Jf can be only 
0, 2, 4. Energy considerations require Jf to be less than J since 
energy must flow from the rotor into the adatom’s motion. The 
vibrational contribution to the above coupling integral involves 
integration over r of a product of three factors: the Vz(r) (e.g., 
Figure 2), the bound vibrational wave function $,(r) for state v, 
and a continuum function $Jr) .  For this radial integral to be 
nonvanishing it is necessary that $u(r) and $Jr) have similar local 
deBroglie wavelengths (A) or kinetic energy. If a large amount 
of energy is transferred from the rotor to the adatom, $p will have 
a considerably shorter local h than will $u, thereby causing the 
coupling integral to be small. Combining these two observations, 
we see that there is a competition between the angular contri- 
butions to the coupling integral which favor J = 2 - Jf = 0 or 
J = 4 - Jf = 2,O transitions and the radial contributions which 
favor the least change in local kinetic energy. Although these 
observations are made from the point of view of quantum me- 
chanics, we feel that they also rationalize our observed data of 
Table 11. In our classical mechanical world, conservation of 
momentum along the r coordinate plays the role of $p and $u 
having similar local deBroglie wavelengths. The amount by which 
the wavelengths of $p and $” (or the corresponding r momenta) 
can differ is determined by the magnitude of V2(r) .  

3. Branching Ratios. The branching ratios for the production 
of various final rotational states Jf shown in Table I1 display a 
tendency for the complex to transfer little excess energy to the 
relative translational motion; most of the excess energy is preserved 
in rotation of the diatom. For example, even for the most strongly 
anisotropic system 111, in (v=2,J=2), the 366 - 34 = 332 cm-’ 
of excess energy would, if retained in the diatom’s rotation, 
correspond to a maximum expected (classical) Jf value of Jf(Jf 
+ 1) 61 = 332 or Jf = 1.89. The observed distribution of 52% 
Jf = 2 and 48% Jf = 1 corresponds to an average Jf of 1.52. The 
difference between the maximum Jf = 1.89 and the observed Jf 
= 1.52 represents the amount of energy which has gone into 
relative translational motion. For system I11 in (v=3,J=2) the 
corresponding maximum Jf is 1.99 and the observed average Jf 
is 1.56. In this case somewhat more energy has been deposited 
into relative translation. As discussed above, the tendency to 
deposit little excess kinetic energy into the adatom’s motion can 
be rationalized in terms of the quantum mechanical coupling 
integral involving $p, fiU, and Vz(r). Transfer of little excess kinetic 
energy to the adatom results in similar local deBroglie wavelengths 
for $p and gU. 

4 .  Comparison with Quantum Lifetimes. BaCiE et a1.l studied 
these same three model systems in the lowest-energy dissociating 
state (u=O,J=2) using the quantal coordinate rotation (CR) 
method. Comparing (see Table 11) our classical-decay lifetimes 
in the (u=O,J=2) state for each system with the corresponding 
C R  lifetimes, we find that the decay times compare quite well. 
For system 111, the two lifetimes differ by a factor of 1.6; in system 
11, the comparison is even better. Of course, we could not compare 
the lifetimes for system I since we were unable to obtain a classical 
lifetime for this system for reasons explained above. 

In summary, our classical trajectory simulations yield lifetimes 
which agree unexpectedly well with the quantum results in those 
few cases (systems I1 and 111, u=O,J=2) where data permits 
comparison. System 1’s long lifetime makes classical trajectory 
simulation difficult and thus suggests that more clever definitions 
of dissociation be developed. Although the trends in the observed 
classical decay lifetimes of systems I1 and I11 in various initial 
(v,J) states and for various final Jf states are not surprising, we 
felt that further study of the physical nature of the mode-mode 
energy transfer process was important. Therefore, we undertook 
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Figure 3. Typical graphs of the single exponential fit of our classical 
trajectories for systems 111 and 11, respectively. 

expected a measurable fraction of the lo4 classical trajectories 
to have dissociated within our numerical experiment. This ob- 
servation further supports our belief that many of our trajectories 
actually were uon their way” to dissociation. It is thus our very 
strict definition of dissociation which causes difficulty when at- 
tempting to extract the decay lifetime of this very long lived system. 

2. Dependence of Lifetime on v,J. From our trajectory cal- 
culations on systems I1 and 111, we found the lifetimes to depend 
on the initial atom-diatom vibrational state and the initial diatomic 
rotational state (u,J) as well as the final diatomic rotational state 
(.If), but in a manner which does not simply depend on the amount 
of total energy. For example, in system 111 the complex initially 
in J = 4 does not dissociate faster than the complex in the same 
vibrational state but initially in J = 2, even though the complex 
has much more total energy with J = 4 than with J = 2. It was 
also observed (see Table 11) that system 111 in the vibrational state 
u = 3 with the rotor initially in J = 2 or J = 4 has a long lifetime, 
even though for u = 3, a transfer of only 4 cm-l to the vibrational 
mode could result in dissociation. Comparing, again in system 
111, the lifetimes belonging to different vibrational states all of 
which have J = 2 initially, we observe no general trend except 
that the lifetimes of states v = 1 and u = 2 are comparatively 
shorter than those of u = 0 or u = 3 (more than 1.5 times as short). 
This pattern is not seen in the decay rates of states of system 11, 
where, as we go to higher energy vibrational states, the lifetimes 
monotonically decrease. Moreover, the rates of decay of all states 
in system 111 are faster than those of system 11. This is not 
surprising since system 111 is considerably more anisotropic and 
hence more mode coupled. 

These findings are not unexpected since it is well-known that 
energy content is not the only factor governing mode-mode energy 
transfer; the momenta or relative phases of the two modes are 
at least as important to consider. From a quantum mechanical 
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Figure 4. A series of graphs of P, vs. radius from the coordinate-momentum pair distribution study for the (u=3,J=2)  state of system 111. 

the pair distribution and correlation function studies described 
earlier. The results of our efforts along these lines are contained 
in the following two subsections. 

B. Coordinate-Momentum Pair Distribution Densities. 1 .  
Observation of Interesting Structures. As previously described, 
our discussion of the pair distribution study focuses on the state 
(u=3J=2) of system 111, since it was in this state that the observed 
patterns were most pronounced. Hence it is for this one state that 
we illustrate the usefulness of the pair distribution density data. 

Approximately 1000 classical trajectories were run with their 
initial conditions selected as described earlier. These trajectories 
were used to construct various pair distribution density graphs 
as described in section IIIC. After viewing all of the resulting 
data, there seemed to us to be four interesting features arising 
in the pair distribution graphs of P, vs. r (see Figure 4) and P, 

vs. Po (see Figure 5 ) .  Let us first examine both the (r,P,) and 
( P 2 o )  series of graphs and point out the interesting characteristics. 
Then we can proceed to attempt to explain those characteristics 
in terms of the dynamical behavior of the two coupled modes. 

First, let us look at  the series of graphs for P, vs. r. Initially 
(Figure 4a), this pair distribution density has a shape which is 
entirely determined by the procedure we use to select initial 
conditions. It consists of two smooth curves (a top line and a 
bottom line) which are joined in a "hook". As time (or 0) evolves, 
the density of points constituting the top line monotonically de- 
creases while the density of points forming the bottom line and 
the "hook" remain essentially constant (Figure 4b). At approx- 
imately 0 = 227~ (Figure 4c), the top line is still decomposed and 
the hook has been elongated to 13 C r < 16 bohr and -0.01 < 
P, < 0.6 Moreover, a t  0 = 22r ,  the bottom line (7 C r C 13 bohr 
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Figure 5. A series of graphs of P, vs. Po from the coordinate-momentum pair distribution study for the ( u = 3 , J = 2 , J p l )  state of system 111 

and -0.06 < Pr < -0.01) partially decomposes. This bottom line 
reappears gradually over another interval of 227r (see Figure 4d) 
at which time the hook 8 has essentially become part of the bottom 
line, and the top line is still absent. As seen in Figure 4e, after 
another interval of 22r (8 = 66?r), the bottom line has again 
disappeared and the hook' is slowly disappearing. Hence, there 
seems to be a pattern of stability and then instability of the bottom 
line occurring at  an interval of 22r.* The points on this bottom 

line consist of inward moving trajectories (P, < 0) having r > u 
bohr. 

Now let us describe the second series of graphs which involve 
P, vs. Pe (Figure 5 ) .  Initially (Figure Sa), this pair distribution 
involves a single vertical line which again is not surprising based 
upon our choice of initial conditions. Almost immediately, a t  8 
= 27 (Figure Sb), an arc of points begins to form at  smaller Po 
values and at higher P, values. The points in this arc arise because 
energy has been transferred from the angular mode into the radial 
mode. This arc persists throughout the rest of the graphs without 

(6)  P, is in units of hartrees X atomic mass or 4.6 X lo2 (cm-I 

(7) This hook is also present when the molecule is in the state (u=2,J=2),  
x atomic mass units)lA. 

but it does not exist for very long (-87r) for this state. 
(8) This pattern also occurs for the state (u=2,J=2),  but at a faster rate 

than for the state (u=3,J=2).  
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diminishing in intensity until most of the trajectories have dis- 
sociated. At 8 = 22a (Figure 5c), the arc is still present, but the 
bottom of the vertical line (-0.06 < P, < -0.01) has disappeared. 
This disappearance occurs at the same 8 value as when the bottom 
line in the P, vs. r graph (Figure 4) disappeared. After another 
interval of 2 2 ~ ,  at 8 = 44a (Figure 5d), the bottom of the vertical 
line has reappeared, analogous to the reappearance of the bottom 
line in the graph of P, vs. r.  Again, after an interval of 22a, at 
8 = 6 6 ~  (Figure 5e), the bottom of the vertical line has once more 
disappeared. Analogous to the behavior of the bottom line in the 
P, vs. r graph, there exists a pattern of oscillating stability and 
instability in the bottom of the vertical line in the P, vs. Pe data 
which also occurs at an interval of 22a? Also in the P, vs. Pe series 
of graphs, there is an arc structure which is present throughout 
the traject~ries.~ This structure involves Pe between 0.035 and 
0.0451° and P, between 0.04 and 0.06 for the final rotational state 
Jf  = 1; while for the final rotational state Jf = 2, Pe has a range 
0.045-0.055 with P, being between 0.01 and 0.04. 

2. Probing Interesting Structures with Selected Trajectories. 
To examine the behavior of those trajectories which existed in 
each of the above-mentioned structures (Le., the lines, hook, and 
arc) we ran, for each structure, approximately ten single trajec- 
tories having initial conditions placing the trajectory within the 
structure. Based upon analyzing the ten trajectories lying within 
the hook in the graphs P, vs. r, it seems that such trajectories are 
on their way to dissociation but have not yet transferred enough 
energy from the angular mode into the radial mode to dissociate; 
as a result the adatom eventually comes back in and hits the 
repulsive wall in order to exchange more energy. The adatom 
then goes out to the outer edge of the potential once more. If 
enough energy has been transferred, the molecule dissociates; 
otherwise, the adatom again comes back in toward the inner wall 
where energy is once again transferred. This cycle seems to 
continue until enough energy has been transferred for dissociation 
to occur. 

The pattern of stability and instability shown in the movement 
of the bottom line in the graphs P, vs. r and the movement of the 
bottom of the vertical line in the graphs P, vs. Pe was examined 
in a similar fashion. From the 20 single trajectories mimicking 
these conditions, there seems to be two connections: the disap- 
pearance of both lines occurs when the adatom is at the outer edge 
of the potential, whereas the appearance of both lines occurs when 
the adatom is very near the repulsive wall. These relationships 
make sense since, when the adatom is at the outer part of the 
potential, the radius increases and the radial momentum decreases, 
which implies that the bottom line (corresponding to a large 
magnitude of the radial momentum) should disappear. Similarly, 
when the molecule approaches the wall, there is an increase in 
the magnitude of the radial momentum, as a result of which the 
bottom lines should be present. 

The last structure examined via individual trajectory methods 
is the arc formed in the graphs of P, vs. Po. Based upon the ten 
single trajectories with initial conditions appropriate to this 
structure, it seems that the arc consists of trajectories which have 
gained P, at the expense of Pe and are on their way to dissociation. 
The arc persists because, as molecules dissociate, others come in 
to the same regions of P, - Po space to replace those that were 
lost. 

It should be noted that the pair distribution graphs, whose use 
is illustrated above, are designed to detect regions of coordinate 
and momentum space in which the ensemble of trajectories build 
up as revealed through high dot densities. As revealed by ex- 
amining the behavior of individual trajectories, the high dot 
densities observed are not due to each trajectory spending long 
times in the region of coordinate-momentum space being probed; 
rather they are due to many trajectories from among the ensemble 

(9) This occurs for the state (u=2,J=2) at the same ranges of P, and Pe 
as for the state (u=3,J=2) but, for the state (u=2,J=2), the arc appears and 
disappears in a 0 interval between 4 - 8 ~ .  

(10) Pe = h(J(J + 1))'12. In our program, Pe has units of hartrees X our 
atomic time units (1 atomic time unit = 1.03 X s) or 4.5 X erg 
S. 
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Figure 6. Typical graphs of the autocorrelation function ( (dPB/dO) 
(0=0), dPe/dO(0)) for systems I, 11, and 111, respectively. 

being in the probed region of space at  any time. 
C. Correlation Functions. 1 .  General Features. The calcu- 

lation of the 8-space correlation functions discussed in section IIID 
involved averages over - 1 O3 trajectories whose initial condition 
distributions were discussed earlier. dPe/d8 was chosen to correlate 
against itself because it is nonzero only when energy transfer is 
taking place (i.e., Pe would be constant for a freely rotating 
diatom). In computing these correlation functions, we chose to 
work in 8 space rather than in the time domain because we were 
interested in seeing if certain regions of coordinate space were 
important in the energy transfer dynamics. Figure 6 shows graphs 
of the autocorrelation function vs. 8 which are typical for the states 
in systems I, 11, and 111,' respectively. Comparing the correlation 

(1 1) The state (u=3,Jf=1) for system I11 does not have the same form as 
the other states for system 111. 
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the final rotational state of the complex. We can, by assuming 
a rotational period which remains constant throughout the decay 
process, convert the number of rotations into approximate decay 
times (in picoseconds). These times, which are also listed in Table 
111, seem to agree with the classical-trajectory predissociation 
lifetimes, but not to high precision and not equally well in all cases. 
In particular, the state (u=2,J=2,Jf= 1) shows a large deviation 
between these approximate correlation-function decay times and 
the classical-trajectory decay times. However, it must be kept 
in mind that the times inferred from the &space decay rates of 
our correlation functions are only rough estimates since they 
involve the (very approximate) assumption of constant rotational 
velocity throughout the decay. To further check on the connection 
between the envelope decay time and the classical dissociation 
time of the complex, we correlated the time derivative of Po (Po) 
with itself to determine decay rates in the time domain instead 
of in 6’ space. We found that the decay lifetimes in the time 
domain agree more closely with the classical predissociation 
lifetimes than do the decay lifetimes in 0 space. Hence, the 
envelope decay in the correlation function likely arises from the 
dissociation of the complex which then produces a free rotor for 
which Po is constant. For systems I and 11, the envelope decay 
is not seen in our correlation functions probably because the decay 
lifetimes for these two systems (in all internal states) are 10-100 
times those for system I11 and our correlation functions do no! 
extend to such large 0 values. 

We also constructed graphs of the Fourier ”frequency” 
transforms of each of the above autocorrelation functions. From 
these graphs, we observed peaks in the “frequency” (l/O) space 
which correspond to the modulations observed in the 0-space 
correlation graphs. The above correlation-function-based results 
have thus revealed dynamical features that occur a t  regular in- 
tervals in 0 space. This information has proven useful in com- 
plementing the insights gained from the pair distribution density 
and individual trajectory studies. 

V. Concluding Remarks 
From our classical trajectory calculations on the rotational 

predissociation rates of three model vdW systems, we found that 
the decay kinetics of all the states of systems I1 and I11 fit a single 
exponential functional form. Comparing the classical lifetimes 
of the (u=O,J=2) states of systems I1 and I11 t o  those obtained 
by quantal coordinate rotation methods, we found surprisingly 
good agreement. The lifetimes differ by no more than a factor 
of 1.6. System I, the model for the Ar-H2 complex, did not 
dissociate by our definition, even though we believe that many 
of the trajectories were “on their way” to dissociation. It seems 
that the difficulty with system 1’s decay kinetics arises from our 
definition of dissociation when applied to very long-lived systems; 
our classical trajectories simply cannot be followed long enough 
to allow our definition to be useful. For system 111, we were also 
able to extract from our &space correlation functions approximate 
decay times (from the envelope decay of the correlation functions) 
which seem to agree with the classical predissociation lifetimes. 

Aside from wanting to determine decay times of the systems 
by using classical trajectories, we were also interested in probing 
the mechanism of the energy transfer process. To study this, we 
decided to  monitor the trajectories by using two different devices: 
the pair distribution density method and the correlation function 
method. 

As stated previously, the pair distribution density method shows 
cause and effect relationships between pairs of dynamical variables 
and detects regions of coordinate or momentum space where 
trajectories from the ensemble tend to accumulate. From exam- 
ining the structures found in the pair distribution study, it seems 
that the energy exchange process involves the adatom first moving 
to the outer part of the potential; if there is not enough energy 
in the radial motion to cause the molecule to dissociate, the adatom 
eventually retums to the inner part of the adatom-liatom potential 
where energy can be transferred. If enough energy is then 
transferred to the adatom’s radial mode, the adatom will move 
away from the diatom and the molecule will dissociate. If not 

TABLE III: Comparison of Kinetic Lifetimes ( T )  and 
Correlation-Function Decay Times (ic) for System 111 ( J  = 2) 

no. of rotn (03/27r) 
for Jf T, in J f ,  ps i in Jf, ps 

u J = 2  J = l  J = O  J = 2  J = l J = O  J = 2  J = l J = O  
3 17 2.1 2.1 2.2 
2 13 16 1.7 2.1 1.6 .81 
1 15 10 2.0 1.3 1.8 1.4 
0 19 35 2.4 3.2 2.7 3.1 

functions of the three systems, it can be seen that the graphs for 
systems I (Figure 6a) and I11 (Figure 6c) are reasonably similar 
while that for system I1 (Figure 6b) seems to be quite different. 

The autocorrelation function shown in Figure 6b, which is 
typical for all of the states in system 11, consists of a series of 
separated pulses or bands and, within each band, a set of peaks 
occurring every T radian. The bands are separated by 21 rad for 
the state (u=O,J=2) shown in Figure 6b and by 256 rad for 
(u=l,J=2). The width of each band is 31 rad for (u=O,J=2) and 
44 rad for (u=l,J=2). 

For both systems I (Figure 6a) and I11 (Figure 6c), there are 
peaks occurring approximately every a and a slower modulation 
which has a period of about 125 rad. The autocorrelation functions 
for system I11 also contain a set of extra intense peaks which occur 
with a period of approximately 12 rad as well as a slow decay of 
the envelope function. The latter two features are not present 
in the autocorrelation graph for system I.12 All of the states for 
system I11 were found to have correlation functions whose en- 
velopes fit a single exponential decay profile in 0 space. From 
these fits, approximate correlation decay ”lifetimes” (in radians) 
were determined and have been listed in Table I11 along with the 
classical lifetimes (in picoseconds) which were discussed earlier 
in this section.I3 

The fact that the correlation functions of all states of all three 
systems display strong features a t  0 = na (n = 1, 2, ...) indicated 
an energy transfer process which occurs every half rotation of the 
diatom. This does not imply that each trajectory involves giving 
and taking of energy by the rotor every half rotation; the corre- 
lation functions display the behavior of the entire ensemble of 
trajectories. As discussed in section IVB, each trajectory seems 
to display energy transfer only when the adatom closely approaches 
the rotor. Hence the appearance of alternating positive and 
negative contributions to the dPo/dB correlation function at  integral 
multiples of a can only be properly interpreted in terms of the 
collection of trajectories which constitute the ensemble. Simply 
put, a t  each multiple of a, some fraction of the trajectories are 
spatially arranged to permit efficient energy transfer; that is, some 
of the adatoms are close to their partner diatoms. 

The other structures displayed by the above correlation functions 
indicate that other factors are modulating the energy transfer rates 
at frequencies which correspond to those of the extra intense spikes 
or slow modulation feature pointed out earlier. Thus far, we hzve 
been unable to correlate these features with any natural frequencies 
(e.g., the rotor period or adatom vibrational period or their dif- 
ference or any reasonable estimate of a Rabi frequency) of the 
two coupled degrees of freedom. We thus feel that the correlation 
function studies have given us valuable insight which, when 
combined with the pair distribution and individual trajectory data, 
allow us to present a clear picture of the operative energy transfer 
mechanism. However, they have also provided us with data 
suggestive of more detail in the energy transfer process which we 
have not been able to interpret. 

2.  Envelope Decay Times. The decay lifetimes of the corre- 
lation functions f i r  system 111 are seen (Table 111) to vary from 
10 to 35 rotations depending on the initial vibrational state and 

(12) The absence of an exponential decay in system I is likely due to the 
fact that the molecule is not dissociating within the maximum time period of 
our trajectories as was discussed in section HID. 

(13) The state (u=3,J=2,Jpl) for system I11 shows no simple exponential 
decay form; therefore, an approximate decay lifetime could not be determined. 
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enough energy is transferred to the radial mode, the adatom again 
moves back to the diatom where it can undergo energy transfer 
once more. As seen by monitoring the single trajectories, there 
is not a gradual transfer of energy throughout the adatom4iatom 
relative motion. Rather, the energy transfer occurs in bursts 
everytime the adatom closely approaches the diatom. At such 
close encounters, energy can be transferred either from the radial 
to the angular mode or from the angular to the radial mode. 

The second method we used in probing the energy transfer 
dynamics involved correlation functions which are designed to 
detect dynamical events which repeatedly occur a t  regular in- 
tervals. From these correlation studies, we observed some in- 
teresting structures when the correlation functions were examined 
in 6 space instead of in time space. While we could not explain 
all of the structures observed in the resulting correlation functions 
or their Fourier transforms, we did observe that energy did not 
transfer gradually. The peaks occurring in the correlation graphs 
every x rad indicate that, at every x ,  some diatom is transferring 
energy to or from its corresponding adatom. That is, for any one 
vdW molecule, the energy transfer does not occur every x but at 
every A, some molecule’s diatom among our ensemble is ex- 
changing energy with its partner adatom. 

The two methods for examining the mechanism of the energy 
transfer process provided insight into when energy transfer takes 
place. However, the correlation functions revealed that, in the 
energy transfer process, other events also occur which we do not 
yet understand. 
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Appendix A 

of the correlation functions defined as 
In this section we describe some of the details of our calculation 

In order to maximize our efficiency in calculating correlation 
functions, we used each classical trajectory several times in the 
averaging process. This was done by arbitrarily choosing several 
points along the trajectory to define the initial conditions 6 = 0. 
The first 40 points of each trajectory were considered to be 40 
different initial conditions in calculating the correlation function. 
(In some cases, the trajectory did not last even 40 6 steps, in which 
case fewer than 40 initial conditions were used.) Each of these 
40 initial conditions was weighted by a factor W,, corresponding 
to the factor determined by the quantum mechanical wave 
functions for rotation and vibration as described in the text. We 
integrated Hamilton’s equations in steps of constant 6 (0.8 rad) 
and considered each trajectory to formally have a length of 40 
+ 21° steps in 6 space. In practice, most trajectories dissociated 
before reaching 1064 6 steps and hence, for efficiency, were not 
integrated to the end. If a trajectory dissociated before 1064 steps, 
it was assumed that dPe/d6 was zero for all points after that. The 
correlation function was then calculated in discrete form as follows: 

where Nl is either the number of 6 points prior to the dissociation 
of the Ith trajectory or 40 whichever is smaller: 

N, = min (40,nJ 
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An accurate abinitio potential surface of the ground-state He-H2 interaction has been computed. Computations were performed 
with large optimized basis sets (up to 105 functions) using the SCF-(PNOCI-CEPA2) method. The study covers the range 
of R = 2.0 a. to R = 15.0 a. for the He-H2 separation and r = 1.449 a. for the H-H separation using molecular orientations 
of 6 = Oo, 45O, and 90°. Additional computations at r = 1.28 and 1.618 a. for R = 3.0, 5.0, 6.5, and 8.0 a. at the above 
orientations were carried out to investigate the contribution of H, zero point vibrational energy change to the potential surface. 
Comments are made about the origin of “damping” of the van der Waals expansion in this interaction. 

Introduction 
Although the He-H2 system presents us with the simplest 

example of a closed-shell anisotropic interaction, considerable 
computational effort is required to accurately represent the various 
contributions to the potential energy surface within the presently 
available ab-initio formalisms. The most accurate and compre- 
hensive method available to determine such van der Waals in- 
teractions is to prcwxj with a supermolecule calculation including 
the effects of electron correlation and to take the difference of 
total energies. One of the major difficulties with this type of 
calculation is that the various components of the interaction (i.e., 
the SCF energy and the intra- and intermolecular Correlation 
energies) are dominated by different characteristics of the elec- 
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tronic structure and are thus dependent on different aspects of 
the orbital basis set expansion chosen to represent the final 
electronic wavefunction. This means that a large basis set is 
required to accurately represent these components and the in- 
teraction between them. 

It is still prohibitively expensive to compute the entire potential 
surface with a complete treatment of electron correlation effects 
and a single large basis set that will give the desired accuracy in 
all regions of the interaction, so reasonable approximations need 
to be invoked which minimize the loss of accuracy over the various 
regions of the interaction. 

In the repulsive region of the interaction, for R < -5.0 ao, a 
reasonable approximation to the interaction can be obtained from 
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