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In this model, reaction 3 is faster than reaction 4, if atomic sulfur 
accumulates. Atomic sulfur has not been found in colloidal or 
powder suspension systems containing a sacrificial electron donor, 
so that there seems to be a direct involvement of the host Nafion. 
Finally, since the S/Cd ratio for the irradiated cubic CdS sample 
approaches that for CdS powder after a short period of Ar+ 
bombardment, the atomic sulfur layer appears to be, a t  most, a 
few monolayers thick. 

As indicated in Table 11, the surface of the cubic CdS film 
soaked in Na2S solution without irradiation is covered with excess 
S2- ion of Na2S. Surface sulfate species is also present. The data 
indicate that the S2- ion of Na2S or H2S is strongly adsorbed on 
the CdS-Nafion surface and is oxidized to sulfate (Figures 4 and 
6) without irradiation. 

5. Conclusions 

conclusions: 

is small. 

On the basis of the results reported here, we draw the following 

(1) The concentration of surface cation exchange sites in Nafion 
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(2) The small CdS particles a t  the surface of the hexagonal 
CdS films are subject to dissolution in boiling water, whereas the 
large CdS particles a t  the surface of the cubic CdS fdms are stable 
in boiling water. 

(3) After extensive washing, the surface of films containing 
cubic CdS remains dominated by sulfide ions of CdS, whereas 
the surface of films containing the hexagonal form are altered, 
leaving surface sulfate associated with the Nafion and Cd2+ as- 
sociated with cation exchange sites. 

(4) Adsorbed sulfide ions on Nafion and CdS-Nafion are 
oxidized to sulfate ions at  300 K in the presence of oxygen. 

(5) The gray-blue deposit formed on cubic CdS-Nafion surfaces 
under irradiation is identified as atomic sulfur. 
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Algorithms for finding local minima, maxima, and saddle points on surfaces, starting from an arbitrary point, are presented. 
These algorithms are based on making a local approximation to the surface in the form of a rational function constructed 
from the local first and second derivatives of the surface. All parameters of these algorithms required for stepping across 
the surface are determined in nonarbitrary ways. The convergence of these procedures to the desired stationary point is 
shown to be quadratic. Applications for stationary-point searches on two model surfaces are also given for illustrative purposes. 

Introduction 
Finding stationary points (minima, maxima, and saddle points) 

on energy surfaces is important in chemical physics because they 
correspond to equilibrium geometries and transition states and 
because the classical equations of motion connecting such points 
can be used to describe the reaction dynamics. For a surface 
E ( x  l r . . . , ~ n )  depending on independent variables (xi) ,  a stationary 
point is characterized by aE/dxi  = 0, that is, by vanishing slopes 
for all variables. In addition, a minimum corresponds to a point 
having positive curvatures d2Ejax)  > 0, for all variables and a 
maximum has aZE/8x; < 0. For a saddle point of order p, there 
exist p variables relative to which the curvature is negative; it is 
positive relative to the remaining ( n  - p) variables. In molecular 
quantum chemistry the a b  initio determination of first and second 
derivatives of the energy with respect to geometric variables, 
though laborious, is within reach.' An algorithm that system- 
atically and efficiently locates stationary points starting from an 
arbitrary point and using local first- and second-derivative in- 
formation is given in this paper. 

There exists extensive literature in numerical analysis regarding 
the search for extrema on multidimensional surfaces. References 
2-6 describe techniques for minima and saddle point searches. 

The highlights of the algorithm presented here are that all op- 
timization parameters are calculated in an ab initio manner and 
the procedure is quadratically convergent with the stability 
characteristics of a saddle-point search being the same as those 
of a local-minimum search. 

General Discussion 

allows one to explore the neighborhood of a point xo 
For a surface of n independent variables, the Taylor expansion 

(1) 

Here the step vector x = (x , ,  ..., x,) gives the displacement away 
from x,, the gradient vector g and hessian matrix H contain 
elements of first and second derivatives of E with respect to the 
(x i )  calculated at  x,. The Newton-Raphson (NR) procedure 
allows one to step toward a stationary point of E ,  near x, by 
approximating the expansion of eq 1 in the neighborhood of x, 
quadratically 

(2) 

H x + g = O  ( 3 )  

E ( x )  = Eo + g+x + Yzx+Hx + ... 

c = E ( x )  -EO = g+X + !L~x+Hx 

and imposing the stationary requirement &/axi  = 0, giving 

(1) Banerjee, A.; Jensen, J.; Simons, J.; Shepard, R. Chem. Phys. 1984, T~ facilitate the of the NR algorithm and those developed 

to new displacement variables in which the Hessian matrix is 
(3) Simons, J.; Jmgensen, P.; Taylor, H.; Ozment, J. J .  Phys. Chem. 1983, 

(4) Cerjan, C. J.; Miller, W. H. J .  Chem. Phys. 1981, 75, 2800. (6) Lootsma, F. A., Ed. "Numerical Methods for Non-linear 
(5) Bell, S.; Crighton, J. C. J .  Chem. Phys. 1984, 80, 2464. 

87, 203. J~rrgensen, P.; Simons, J. J .  G e m .  Phys. 1983, 79, 334. 

1980 and references therein. 
(2) Fletcher, R. "Practical Methods of Optimization"; Wiley: New York, in paper, without any l m  of generality, it is useful to tranSforln 

87, 2745. 

Optimization"; Academic Press: New York, 1972. 
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diagonalized (by a unitary matrix U ) :  

Such variables are called the local principal modes or axes. In 
this representation the N R  step along each principal axis is, from 
eq 3 

xi = -gi/hi i = 1, ..., n ( 5 )  

The stationary points, in this representation, have gi = 0 for all 
i ,  and Hessian eigenvalues ordered according to 0 I hl I h2 ... 
I h, for a minimum, hl I h2 ... I h, I 0 for a maximum, and 
h,  I ... I h, I 0 I h,+l ... I h, for a saddle point of order p. 

The above straightforward N R  procedure, in the neighborhood 
of a minimum (h i  > 0) takes a step in the direction opposite to 
the gradient along each mode, that is, it steps toward the minimum. 
Similarly, it steps along the gradient toward the maximum. 
Generally, the N R  algorithm steps toward the nearest stationary 
point on the surface by following opposite (hi > 0) and along (hi 
< 0) the various gradient directions. 

However, it is often the case that, having located a stationary 
point, one desires to step away from its neighborhood in search 
of another stationary point perhaps with different character. There 
is a particular modification of the above N R  stepping algorithm, 
which forms an essential basis for this paper, which can be used 
to guide the NR-like steps away from a nearby stationary point 
in search of other critical points. It gives the step lengths along 
each of the local modes as 

xi = -gj/(hj - X) (6) 
where X is an appropriately chosen shift parameter. Depending 
upon the value of A, the sign of each (hi - A) will be positive or 
negative, and hence the direction of the step xi  will be opposite 
or toward the direction of the gradient. In the following discussion 
we further explore this concept by examining which functional 
forms of E produce a stepping algorithm of the form in eq 6. The 
early work of Cerjan and Miller resulted in this type of step 
formula, but their prescription for choosing the parameter X 
differed from that proposed here. In this paper, we therefore focus 
on how X can be chosen in some optimal sense, and whether more 
than one such X variable can be of additional use. 

The Rational Function Optimization (RFO) Approaches 
Following methods used for the optimization of the parameters 

of the electronic wave function for ground or excited we 
can rewrite the local representation of the surface of eq 2 in a 
form which utilizes the same local derivative data as contained 
in the Taylor expansion but which is of the rational function type: 

(7) 
g+x +- '/zx+Hx 

- 
1 + x+sx E = E ( x )  -E,, = 

where the elements of the symmetric S matrix are to be specified 
as described below. This form can be interpreted as a [2/2] PadE 
approximant to e. Taking the first and second derivatives of this 
function a t  Q, one sees that (atlaxi), = g, and (d2e/axi = 
Hi,, which are identical with those obtained in eq 2. This results 
because the denominator of eq 7 expanded as (1 + x+Sx)-' 
contributes to E only through third and higher orders in x. In 
contrast to eq 2, t and its gradients possess finite x - f- as- 
ymptotes, which are determined by the Hessian elements and the 
scaling matrix S .  

The stationary condition requirement d t /dx i  = 0 applied to the 
model surface of eq 7 then yields an eigenvalue equation of di- 
mension (n  + 1): 

(7) Banerjee, A.; Grein, F. Inr. J .  Quantum Chem. 1976, 10, 123. 
(8) Shepard, R.; Shavitt, I.; Simons, J.  J.  Chem. Phys. 1982, 76, 543. 
(9) Uwdin, P. 0. In "Proceedings of an Advanced Seminar on Perturba- 

tion Theory and Its Applications in Quantum Mechanics, Oct 1965, Madison, 
WI"; Wilcox, C. H., Ed.; Wiley: New York, 1966. 

The Journal of Physical Chemistry, Vol. 89, No. 1, 1985 53 

where the eigenvalue X = 2e gives twice the change in e accom- 
panying the step along x, which is determined from an interme- 
diately normalized eigenvector (i.e., an eigenvector having the value 
unity as its last entry) of this equation. 

To analyze further and interpret the eigensolutions of this RFO 
algorithm and to motivate a specific choice for the scaling matrix 
S, let us rewrite eq 8 in a partitioned form as the following two 
equations: 

(H - XS)x + g = 0 (9a) 

g+x = X (9b) 

The matrix S clearly has units since x+Sx must be dimensionless. 
In principle, many choices could be made for the S matrix given 
information about the shape of the energy surface near the 
boundary region where the quadratic approximation g+x + 
x+Hx fails to be reasonable. In our opinion, there are only two 
reasonable choices to make for S given the limited data which 
we assume to be available in developing this surface walking 
algorithm; one could choose to scale all Cartesian directions 
uniformly S = d Z o r  to make a more direction-specific scaling 
by examining the behavior of the algorithm along the eigenmodes 
of the Hessian matrix (see below). The uniform-scaling choice 
allows eq 8 to be rewritten as 

in which the eigenvalue X remains 2e, but the eigenvector contains 
not the x steplength components but scaled components x/a; the 
gradient or force elements are also scaled to ag and the Hessian 
is scaled to aZH.  This same scaled eigenvalue problem (eq 9c) 
could, alternatively, have been obtained by formulating the local 
energy surface approximation (eq 7)  in terms of dimensionless 
coordinates y = x/a. 

An alternative, and slightly more general, choice of S c a n  be 
made by examining eq 9a and 9b within the basis which diago- 
nalizes the Hessian matrix. If S is taken to be a diagonal matrix 
in this basis with diagonal elements a;', then eq 8 reads 

2 E  c-' : i' a,,-' ; ::: (10) 
- 

0 1  

In our opinion, the simple eigenvalue structure of eq 9c is to 
be preferred over eq 10, especially since one simply does not usually 
have enough information available to permit the n potentially 
different scale parameters [ai) to be chosen. Therefore, we shall 
restrict our attention for the duration of this paper to examining 
the performance of eq 8,9a,  and 9b, to which even eq 10 reduces 
if all of the (ai) are chosen to be identical (Le., if ai = a for all 
i ) .  In summary then, we assume that all of the Cartesian (Le., 
length) coordinates !xi)  have been scaled by a common amount 
a (i.e., x - x/a) and the gradient and Hessian elements calculated 
in terms of these scaled coordinates. Hence, in the following 
equations the scale parameter is absent, having been absorbed into 
the definition of the dimensionless coordinates (Le., S is taken to 
be the unit matrix). 

Returning now to an analysis of the implications of using eq 
9 to carry out surface walks, let us move to the representation 
in which the Hessian H i s  diagonal. In this representation, the 
step lengths along each mode are 

( 1  1) xi = gj/(X - hi) 
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which is indeed of the form introduced in eq 6 .  Most importantly, 
now we have a prescription for choosing the so-called Hessian 
eigenvalue shift parameter; X = 2t is to be calculated as an ei- 
genvalue of the RFO matrix of eq 8 with S now equal to the 
identity matrix I since we are dealing with scaled coordinates. 
Equation 11, when substituted into eq 7 and eq 9b, gives an 
expression for the change in the function t and an equation which 
can be used to evaluate A: 
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= 1 / Z  Cg;(X - hj/2) / (X - hi)2 

Cg:/(A - hi) = X 

(12) 

(13) 

I 

I 

where z = (1 + Cixi2) is always a positive quantity. Considering 
eq 1 1, 12, and 13 as parametric forms in A, one observes that the 
function E(x) is predicted to go up or down (t positive or negative) 
along the ith mode depending on whether (A - hi/2)  is positive 
or negative. The sign of (A - hi) from eq 11 will determine whether 
the step along the ith mode is toward or opposite the gradient. 
The parameter values X for which the left-hand side (lhs) and 
right-hand side (rhs) of eq 13 are equal correspond to the ei- 
genvalues of eq 8. 

To appreciate the behavior of the solutions, it is instructive to 
plot the two sides of eq 13 as functions of X, as is shown in Figure 
la. The vertical asymptotes correspond to the eigenvalues of the 
Hessian h, ,  h2, ..., h,. The lhs tends to +- (or --) as X approaches 
an eigenvalue hi from the right (or left). For large positive 
(negative) values of A, the lhs is positive (negative) and tends to 
zero. The lhs thus has n + 1 branches. The rhs, on the other 
hand, is a straight line through the origin with unit slope. The 
p in ts  of intersection, n + 1 of them, correspond to the eigenvalues 
of eq 8. It is clear from Figure la  that eigenvalues of eq 8 bracket 
the eigenvalues of the Hessian, X i  I hi I Xi+l. This result is known 
as a separation or bracketing t h e ~ r e m . ~  

At convergence to a minimum-energy point, all gi = 0, which 
gives xi  = 0. The corresponding lowest eigenvalue X of the RFO 
matrix is also zero and the other n eigenvalues are those of the 
Hessian at  the minimum point. For a saddle point of order p,  
the zero eigenvalue separates the p negative and ( n  - p )  positive 
eigenvalue of the Hessian. In particular, near a local minimum, 
the corresponding lowest eigenvalue A, is negative until at con- 
vergence, it is equal to zero. 

Even though the above analysis is presented in the diagonal- 
Hessian representation, application of the method does not require 
that H be diagonal. One simply constructs the RFO matrix of 
eq 8 at  xo, calculates the appropriate eigenvector (e.g., corre- 
sponding to the lowest eigenvalue for a minimum search), and 
then obtains the new starting point as x, = x, + x. This process 
is continued until convergence is obtained. This RFO procedure 
can be shown to converge q~adratically.~J’ This may be confirmed 
by writing the derivative of the energy near the stationary point 
as 

aE/ax = g + HX + o ( x ~ )  (14) 

where O(x) = O(g) < 1. Therefore writing the RFO eq 9 as x 
= - W g  + O(Xx), and using X = g+x, O(X) = O(x2) one has 
aE/dx = O(x2) + 0(x3). The gradient, and therefore the energy 
change in each iteration, decreases as the square of the value in 
the previous iteration and hence the algorithm is quadratically 
convergent in the neighborhood of a solution. Furthermore, scaling 
of the eigenvector by a factor a used to calculate mode dis- 
placements preserves quadratic convergence provided that (1 - 
a )  = O(x2). Note that the intermediate normalization in eq 8 
corresponds to a = (1 + X+X)-*/~. 

Search for Local Minimum. Let us further analyze the be- 
havior of the above algorithm during the stepwise search for a 
local minimum. The specific cases depicted in Figure 1, b-d, 
correspond to locations xo on the surface whose local structure 
(characterized via the signs of the hessian eigenvalues) may or 
may not be consistent with that of the region of the desired 
stationary point. Figure 1 b shows the case when one eigenvalue 
of the Hessian is positive and the other negative, which would be 

l b  

I C  

I I y ’  

I d  

Figure 1. Schematic plots of the left- and right-hand sides of eq 13 as 
a function of A. l a  shows all of the roots and lb, IC, and Id correspond 
to a minimum search. 

the case if the starting point x, were near a saddle point. As 
discussed earlier, X, is always negative so that the function value 
t always decreases. In addition, since in this case (XI - h, /2)  and 
(X, - h2/2) are both negative, components of the change in t along 
each of the principal modes also decrease (including the mode 
with negative curvature). This is, of course, what one desires in 
searching for a local minimum. Figure IC shows a case when two 
Hessian eigenvalues are negative (near a maximum) and Figure 
Id depicts a case when the structure of the Hessian is consistent 
with a minimum. For all of these situations the above analysis 
holds; the function E and all its components are always lowered 
when X = XI is used, thereby assuring minimization of the t 
function. Search for a local maximum follows analogous lines. 
Here, the largest eigenvalue, (for which the function value 
always increases), is chosen to define x. 

Search for  Saddle Points. The RFO algorithm introduced in 
the last section can also be used for saddle-point searches. For 
example, to find a first-order saddle point, one would choose the 
second eigenvalue X2 and its eigenvector to determine the changes 
in the t function and the step length and direction x. However, 
let us first examine slight modifications in the algorithm, which 
are aimed at  attempting to increase its stability for saddle-point 
searches. Levenberg and Marquardt have shown’O that, for 
stepconstrained extrema searching algorithms, only one parameter 
X is required for the calculation of the optimum steps. For a 
saddle-point search of p-th order, the above RFO algorithm of 
course gives only one X (namely, A,+]). However, because of the 
bracketing property, the fact that h, 5 A,+, 5 h,,, (see Figure 
la) suggests a possible separation of the problem into p principal 

(10) Davies, M.;  Whitting, I. J. ref 6 ,  p 191 
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modes to be maximized and (n - p )  principal modes to be min- 
imized. Such a thought raises the question of whether it is it 
possible to find two curvature shift parameters, A, and A,, one 
for modes relative to which the e function is to be maximized and 
the other for which it is minimized. Such an approach can be 
developed by solving separately two partitioned problems: 
maximization of t along a chosen set of p-principal modes and 
then minimization along the remaining n - p principal modes. 

This division into two separate optimization problems can be 
accomplished by constructing a unitary matrix U = [ul, ..., up, 
u l ,  ..., u,], where a set of normalized linearly independent column 
vectors vi have been constructed to be orthogonal to the uk, which 
are eigenfunctions of the Hessian, H uk = A&. Then U+HU has 
the desired block diagonal form in which the elements of the 
diagonal blocks are uk+Hu! = and v?Hvj, and the elements 
of the off-diagonal block vanish v,+Huk = X@i+uk = 0. Thus in 
this new basis the p and n - p dimensional eigenspaces of H are 
noninteracting. With the desired separation achieved, the par- 
titioned RFO (P-RFO) algorithm yields the following two analogs 
of eq 8: 

when expressed in the (uk,v,] basis. Here A, and X, are the highest 
and lowest eigenvalues of eq 15 and 16, respectively, is always 
positive, and A, is always negative and both approach zero near 
convergence. 

For the application the above P-RFO algorithm to a search for 
a saddle point of order p, one must decide which of the p-principal 
modes to be maximized. For p = 1 this means that one must 
decide which local mode along which to maximize e. This is not 
an easy question to answer. To appreciate the difficulty, imagine 
a walk from a region where the structure of the Hessian is not 
consistent with the desired saddle point. If the Hessian eigenvalues 
are smoothly varying functions along the step, the lowest p-ei- 
genvalues of Hwould need to undergo the least change to evolve 
into a Hessian of the correct structure. Hence, the principal modes 
corresponding to the p smallest eigenvalues of H should be chosen 
for maximization and the n - p remaining modes for minimization 
to search for a closest (in curvature change) saddle point. This 
assumption is consistent with the RFO algorithm based on the 
bracketing theorem (shown pictorially in Figure la )  where the 
(p  + 1)th eigenvalue of the RFO matrix always falls between the 
pth and (p  + 1)th eigenvalues of H(arranged in ascending order). 
Unfortunately, however, it is not always true that choosing the 
p lowest modes to be maximized will result in success. In general, 
it may be necessary to explore all possible choices of p modes out 
of n total degrees of freedom for maximization to locate the desired 
saddle point. 

The above P-RFO algorithm is based on extremization of two 
new functions using the R F O  algorithm. Therefore it is quite 
stable and also converges quadratically. Unlike the original RFO 
algorithm, its application requires transformation to a basis in 
which the Hessian is a t  least block diagonal. 

Comparison of the RFO and P-RFO Algorithms. Let us now 
analyze the comparative step-by-step behavior of the two algor- 
ithms (RFO, P-RFO) which have been proposed for use in 
searches for saddle points. For simplicity, in a-c of Figure 2 are 
shown representatives for the cases with p = 1. Figure 2a shows 
the behavior of the two algorithms when the structure of H i s  
consistent with the desired first-order ( p  = 1) saddle point; H has 
one positive and one negative eigenvalue. The RFO algorithm 
produces a second root A, which is positive (it can also be negative), 
because the starting point ~0 was below the desired saddle point 
hence the function value must increase. As a result, (A, - h,/2) 
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Figure 2. Schematic plots of the left- and right-hand sides of eq 13 as 
a function of X for RFO and P-RFO algorithms corresponding to a search 
for a saddle point of first order. 

is positive while (A, - h2/2) is negative, so the component of the 
e function along one-mode increases, while it decreases along the 
second mode, as desired. However, it is conceivable that (A, - 
h2/2) could have also been positive. In contrast, the P-RFO 
produces (Ap - hJ2) that is always positive and (A, - h2/2) that 
is always negative. Figure 2b contrasts the performances of the 
RFO algorithm and its variant a t  a point which is not in the 
neighborhood of the desired saddle point (w  = 1). Here, both 
eigenvalues of H a r e  positive (e.g., at a point x, near a minimum 
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with the desired saddle point above xg). The RFO algorithm gives 
A2 and (A, - h,/2) always positive while (A, - h2/2) can be negative 
(usual case) or positive. Thus the total function and its component 
along the first mode always increase. Pictorially, the R F O  al- 
gorithm for such cases may step down toward (usual case) or away 
from the “valley floor” along the second mode while always going 
up the valley along the first mode in a manner which assures that 
the total function always increases. In contrast (and by con- 
struction), the P-RFO algorithm has (A, - h1/2) and (A, - h2/2) 
always positive and negative, respectively. That is, it always steps 
down toward the valley floor along the second mode while going 
up the valley along the first mode. However, it does not assure 
that the cumulative effect will result in an increase of the t function 
value. Figure 2c shows a similar case when both eigenvalues of 
Hare  negative (near a maximum), where the same analysis applies 
and the usual step directions are up toward a ridge top along the 
I-mode while going down the ridge in the 2-mode in search for 
a saddle point. 

Let us now examine the relative magnitudes of the step lengths 
x, along each of the principal directions. 

Overstepping. So far we have assumed that, starting from a 
point xo (and based on local approximations to the true surface 
of the type in eq 7) ,  the properties of the new point x I  (gradient 
and Hessian) predicted by the stepping algorithms are consistent 
with those of the true surface within some tolerance. Overstepping 
into a region where the Hessian structure is not that which 
characterizes the desired stationary point is entirely possible. 
Unfortunately, an a priori determination of a ”trust” region beyond 
which the approximate surface poorly represents the true surface 
requires a knowledge of higher derivatives (e.g., of third and higher 
order for the quadratic approximation used here). An inappro- 
priate ad hoc determination of such a “trust” region could result 
in a significant increase of computational effort or possible di- 
vergence. 

We describe here a dynamic step reduction procedure to deal 
with the overstepping problem. This procedure is an extension 
of Fletcher’s algorithms and is employed in the numerical examples 
treated in the next section. For a given step x, the size of the 
relative er_ror incurred by the model function E ( x l  ovef the trFe 
function E(x) is 6(x) = IAE - AEI/II\EI where AE = E(x) - E, 
is the difference in the true function for the step given by x. A 
“trust region” can be defined by those steps x f?r which the relative 
error is less than a specified amount 6(x) I 6, where 6 is a pre- 
determined constant fraction. A step x that fails to satisfy this 
criterion is judged to be too long and its length must be reduced. 

The requisite reduction in step length can be obtained by 
performing a one-dimensional line search along xI = xo + t u ,  
where u = x/lxl is a unit vector lying along the step x and the 
parameter t (0 I t I 1x1) defines the line. The scalar values of 
the gradient and Hessian along this line at  xo ar_e g = g’u, h = 
u+Hu. Then the values o f t  which satisfy 6 ( t )  I 6 can be shown 
to be those that obey 
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lation of the Hessian matrix elements are tedious and laborius, 
primarily because of the large number of integral derivatives which 
contribute to them. It is therefore important to explore the 
performance of the above RFO schemes in which approximate 
(and presumably easier to evaluate) Hessian matrix elements are 
used. The methods proposed in the literature for the evaluation 
of approximate or updated Hessians are based upon finite-dif- 
ference approximations based upon the following equation 

where M is (an estimate-of) the largest absolute value which the 
third derivative of the E function assumes along the line 0 I 
I 1x1. We ca_n estimate M using a Taylor expansion about t = 
0: M 6)AE - AEl/lx13. The solution of eq 17 can be 
straightforwardly obtained for particular values of g, h, and M 
calculated at  the point xo. The application of this procedure is 
straightforward since it is performed on a one-dimensional c_urve 
which requires only evaluation of the value of the function E(x) 
at the new point x. We have made use of this step-reduction 
algorithm for all of the nu-merical applications reported in this 
paper. The choice for the 6 parameter 6 = 0.3 was found, after 
a little experimentation, to provide reasonable and seemingly 
reliable line searches when employed in this algorithm. 

Using Approximate Hessians. So far we have developed and 
analyzed the expected performance of two RFO schemes assuming 
that the elements of the gradient g and Hessian H a r e  available. 
A very important application of these methods arises in potential 
energy surfaces of molecules. In such cases, the ab initio calcu- 

involving gradient elements from two successive steps X, and xKfl. 
We have used the so called Powell update procedure” because 

it preserves the symmetric character of although it does 
not force to have the same eigenvalue structure as HE This 
means that the Hessian is free to evolve an eigenvalue structure 
which changes during the energy surface walk, which is clearly 
an essential feature of any acceptable update method. The Powell 
update expression is given as follows 

where 

This process of recursive updating requires an initial Hessian Ho. 
We have formed H o  by carrying out a finite-difference gradient 
calculation on a grid of points near the starting point Xo. The 
applications presented here demonstrate that one can locate desired 
stationary points using RFO schemes with updated Hessian. We 
find that, due to the approximate nature of the Hessian, a step 
restrictive procedure (such as one presented earlier) should be used 
along with the updated Hessian to mainly avoid an occasional large 
misleading step. 

Applications 
We have tested the RFO algorithms on model surfaces. We 

have used the step modification algorithm, described earlier, 
throughout in search of the various stationary points on surfaces 
presented here. The first application involves searches for both 
a minimum and a saddle point on the following model potential 
surface: 

E ( x ~ , x ~ )  = (a - ~ x ~ ) x ~ ~ ~ - ~ I ~  + ( C / ~ ) X ~ ~  (21) 

with a = b = c = 1. Since the surface (see Figure 3) has relatively 
similar shapes in both directions, we chose to scale the x and y 
axes both by the same amount in the dimensionless units of this 
model surface. This same surface was examined earlier by Cerjan 
and Miller4 (CM) and by Simons et aL3 Its minimum is located 
at  (0,O) and two identical saddle points occur at (f1,O). For 
minimum searches, both algorithms reduce to the RFO case where 
we expect the algorithm to tend to minimize along each principal 
mode. Figure 3 shows the locus of the RFO steps starting from 
near the saddle point and following the “valley” along the x axis 
to the minimum. The RFO path follows the valley hugging the 
valley floor. Figure 3 also shows the “walks” of the RFO and 
P-RFO algorithms for the saddle-point search starting near the 
minimum utilizing both analytical and updated Hessians. The 
analytical-Hessian P-RFO walk hugs the valley floor more closely 
than does the corresponding RFO walk. Starting from near the 
minimum at  (O,O), the soft mode (corresponding to the lowest 
eigenvalue of the Hessian) produces steps along t h e y  axis. At 
the fourth step, in the region near (0.01,0.7), both eigenvalues 
of the Hessian are nearly equal and are positive. This situation 
induces a P-RFO step with nearly equal x and y components, due 
to the independent (partitioned) calculation of each component. 
As a result, this P-RFO step cuts quite perpendicular to the 
potential contour lines as a valley-walk should do. In contrast, 
the RFO step gives a larger component along the x direction which 

( 1 1 )  Powell, M .  J. D. Math.  Prog. 1971, I ,  26. 
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Figure 3. Walks on the CM potential surface: (1-4) correspond to walks 
toward a saddle point ( 0 , f l )  starting near the minimum at (0,O); ( 1 )  
R F O  (2) P-RFO; (3) RFO with updated Hessian; (4) P-RFO with 
updated Hessian; (5) RFO walk to the minimum. 

results in a step less perpendicular to the contours and hence 
further from the valley floor. For the next four steps, the soft 
mode lies very much along the x direction, and both the RFO and 
P-RFO methods perform rather well. In the region near (1.0,0.8) 
the soft mode makes a nearly right angle turn as do the steps of 
both the R F O  and P-RFO methods. 

The updated-Hessian paths start out following the soft mode 
up they axis but do not take the turn to proceed along the x axis 
in the region near (0.01,0.7). This is due to the insufficiently 
accurate (updated) Hessian’s inability to describe the change in 
the nature of the local soft mode. However, after a few additional 
steps, the updated-Hessian walk has gained enough data to turn 
around completely and follow the appropriate ( x )  valley to the 
saddle point. 

The second surface used for testing the RFO walks is the Adams 
potentialI2 

V(x,y) = 2x2(4 - x )  + y2(4 + y )  - xy(6 - 17e-r*/4) 

which has a minimum a t  (O,O), a maximum at  (3.8239,-4.4096), 
and two saddle points of first order a t  (2.4104,0.4419) and 
(4.1985,-2.2793). This surface is also dimensionless so the choice 
a = 1 is again appropriate. Figure 4 shows all of our walks to 
various stationary points; the four walks to each of the two saddle 
points (starting near the minimum) correspond to the paths of 
the R F O  and P-RFO algorithms using analytical and updated 
Hessians. One walk each to the maximum and to the minimum 
are also depicted in which the analytical Hessian was employed. 
The updated-Hessian walks for these latter two cases (not shown) 
are almost indistinguishable from the analytical-Hessian walks. 
In viewing the various saddle-point walks, we note that the valleys 
leading to each saddle are curved channels; this is very much in 
contrast to the CM surface. All of the walks to the saddle points 
start out following the soft-mode valley at  an angle of approxi- 

(12) Adams, N., unpublished results. 
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Figure 4. Walks on the Adams potential surface: (1-4) correspond to 
walks toward saddle points starting near the minimum at (0,O); (1)  RFO; 
(2) P-RFO; (3) RFO with updated Hessian; (4) P-RFO with updated 
Hessian; (5) RFO walk to the minimum, ( 6 )  RFO walk toward the 
maximum. 

mately 45O, then turn along with the soft-mode valley to the 
appropriate saddle point. The P-RFO walks again follow the valley 
bottoms closer than do the corresponding RFO walks, as expected. 
Unlike their performance on the CM surface, the updated-Hessian 
walks follow paths very close to the analytical Hessian paths. 

Conclusions 
From the above comparative analysis of the two RFO algor- 

ithms presented here, we believe the P-RFO algorithm to be most 
efficient. It performs extremizations with respect to two sets of 
variables and calculates separately two independent A, and A, 
parameters for the minimization and maximization modes, re- 
spectively. The original RFO algorithm is among the simplest 
to apply and, unlike its P-RFO variant, it does not require a basis 
transformation to enable partitioning of the variables for max- 
imization and minimization. Both of the RFO algorithms are also 
well suited for locating stationary points of large dimensional 
surfaces (for example, for larger biologically important molecules) 
since only the low eigensolutions of the RFO matrices need be 
calculated. We have previously used a method similar to the 
P-RFO algorithm for the optimization of MCSCF wave func- 
tions’,* for which one always needs to minimize the energy in the 
orbital variable (for any electronic state) as a result of which there 
exists a natural partitioning into two classes of variables (orbital 
and configuration). 
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