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Based upon the invariance under translations and rotations of quantum chemical one- and two-
electron integrals, a method for obtaining a complete set of independent relations among integral
derivatives is presented. Due to the unitary form of the operators corresponding to finite
translations and rotations, this analysis is generally applicable to all orders of integral derivatives.
It is shown that the number of dependent integral derivatives is equal to the number of such
independent relations. These dependent integral derivatives can thus be straightforwardly
determined in terms of the remaining derivatives which must be explicitly calculated. For
example, out of a total of 21, 45, and 78 second-derivative integrals for the two-, three-, and four-
center cases, respectively, only 1, 6, and 21 such integral derivatives need be explicitly calculated.
The set of such independent and dependent integral derivatives can be chosen in a manner which
imposes no restrictions on the allowable geometries of the nuclear positions. The special case of

colinear nuclear centers is also separately analyzed.

I. INTRODUCTION

The direct computation of analytical derivatives of the
electronic energy with respect to nuclear coordinates has
proven to be a powerful tool because it yields an immediate
sense of the local topography of the energy surface. The ap-
plications of such derivative methods to finding stationary
points on energy surfaces and to following the course of
chemical reactions have provided very useful new chemical
information.

The evaluation of derivatives of the molecular elec-
tronic energy involves calculation of derivatives of one- and
two-electron integrals with respect to the nuclear coordi-
nates of the basis functions occurring in the integrals. For
example, the first derivative (gradient) of the multiconfigura-
tional self-consistent field (MCSCF) energy can be written as
follows':

E(l) = z z Cyr Cvs {(drs)Vhy,v - ErsVS;w}

uv rs

1
+ _2— z Z Cp.rcvs CApCaq <drqu >V( ,uv|/10') (1)

pvAo rspq
Here C,,, is the coefficient relating the rth molecular orbital
to the uth atomic basis function. V4,,, VS, , and V( uv|io)
are derivatives of the atomic-basis one- and two-electron in-
tegrals with respect to nuclear coordinates. The (d,,) and
(d,,,) are symmetrized one- and two-particle density ma-
trix elements for the MCSCF wave function.

Since a large number of integral derivatives need to be
calculated in order to implement any such energy-derivative
expressions, efficient computation of these derivatives is
very important. To appreciate the scope of the problem, con-
sider the first and second derivatives of four-center two-elec-
tron integrals arising in a calculation involving » primitive
(Gaussian) atomic basis functions. Since the only nonzero
derivatives result when such an integral is differentiated with
respect to the x, y, or z coordinates of the four nuclear centers
occurring in the integral, there are only 12 X #n* first deriva-
tive integrals. Considering symmetries of the form 42/
3 Py, APy =F1/3 P, pd Py,, where Py, is the ath (x, y,
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orz) coordinate of the X th atomic center, one can easily show
that there are only 78 X n* second derivative integrals. In the
N-center integral case (N = 2,3,4) one has 3N first deriva-
tives and 3N (3N + 1)/2 second derivatives of each of the n*
integrals.

The purpose of this paper is to show that, due to the fact
that integrals and integral derivatives remain invariant un-
der translation and rotation of all of the centers appearing in
the integral, there exist certain relations among the integral
derivatives and that these relations can be exploited for sav-
ings in computational effort. The essential fact is that not all
of the integral derivatives are independent. For example,
among the total of 21 second derivatives of any two-center
integral, it can be shown that only one is independent. The
other 20 integrals can be found from the symmetry relations.
Thus the practical importance of this work is contained in
the relations which we provide for evaluating many integral
derivatives in terms of a few independent ones.

Translational invariance properties relating the first-
order integral derivatives using infinitesimal translation op-
erators have been dealt with by Komornicki ef al.2 and Du-
puis et al® Translational invariance of second- and
higher-order derivatives has also been examined.** Kahn,’
using infinitesimal rotations of the nuclear coordinates, has
obtained relationships among the first derivative integrals.
Vincent et al.*® obtained relationships among integral de-
rivatives by differentiating Kahn’s results which are based
on infinitesimal operators. Page ez al.'® have derived rela-
tionships by defining arbitrary external coordinates along
which the gradient is zero. The present work provides a com-
plete analysis of the invariance properties for first and sec-
ond integral derivatives. We provide a method for treating
the redundancy of invariance conditions. Such a treatment is
absent from earlier work. Furthermore the method devel-
oped here is generally applicable for the construction of in-
variance conditions and redundancy analysis of integral de-
rivatives of any order. Rotational invariance conditions are
geometry dependent in the sense that poorly chosen condi-
tions impose many geometrical constraints on the molecule.
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We present a systematic method to choose the conditions in
a manner which imposes no restriction on the allowable geo-
metries of the nuclear positions.

In Sec. II we derive representations of the rotation and
translation operators appropriate for generating expressions
for the derivatives of the integrals. These operators are then
used to derive the essential invariance relations involving the
first and second integral derivatives. In Sec. III we provide
systematic methods for finding the independent integral de-
rivatives and for calculating explicitly the remaining {depen-
dent) integral derivatives using symmetry relations.

Il. THEORETICAL DEVELOPMENT

An integral I depends upon the Gaussian basis func-
tions and operators of the Hamiltonian appearing in I. Each
Gaussian is centered at one of the nuclear positions Py
(K'=1, N; N<4),

I= I{Gl(Pl’rl):GZ(PZ,rZ)’--"GN(PN!IN)}’ (2)

where the Cartesian Gaussian function parametrized in
terms of the center Py is given as

Gy (Py,rx) = A (Emen, n )X — Pe, )Y — Py, )”

X(Z — Py, ) exp( — £rk). (3a)
Each such Gy is an explicit function of the electron-center
relative position vector labeled r . This vector gives the loca-
tion of the electron, whose absolute lab-fixed position is de-
noted R, relative to the center Py.: rp, = R — P. Here R has
Cartesian components (X,Y,Z ) and the normalization con-
stant 4 is

3/4 )
AlEnn,n,) = (—2—) (4 )2t 0y 1] 12

T
X [(2n, — M) =3[ (20, — U] 2 (3b)

Functions belonging to the same shell have identical expo-
nent £ values and equivalent (1, + n, + n,) sums.

A one-electron integral / involves integration (over d R)
of products of at most two Gaussian functions. A two-elec-
tron integral involves integrations (over 4 R and d R’) of pro-
ducts of up to four Gaussians. The operator A appearingin /
would commonly either be independent of the { Py } or de-
pendent in a way which is symmetric under any rotation or
translation (e.g., as in the Coulomb interaction — 3, Z|R

— Py, . .

The action of the translation T or rotation R operators
on a Gaussian function is to translate or rotate every point R
in space about an axis passing through the lab fixed origin.
That is, we consider operations (translations and rotations)
which displace the Gaussians as if they were rigid bodies
whose shapes are described by the charge density of the
Gaussian functions. Then any quantum chemical integral /
should remain unchanged when all of its Gaussians are dis-

- placed in the same manner. We denote these invariances for
translations and rotations, respectively, as

I{T(6,,G,,..)} = I{G,,G,,..} (4)
and
I{R (G,,Gy-.)} = I{G1,G,,..}. (5)

A. Representation of operators

An operator T that induces a translation of all points in
space by a vector t = (1,,Z,,£,) can be written as

T=exp{ ~tV,}, (6)
where V = (d /9X,d /3Y,3 /3Z ) defines the gradient oper-
ator at all points R in space. For two-electron integrals,
which depend on two such electronic coordinates R and R’,
the V. operator will be implicitly assumed to operate on
both variables (i.e., it is V, + V.). Since the Gaussians in
Eq. (4) are written in terms of their centers Py and internal
coordinate r,, and since we are looking for relationships
among derivatives of integrals relative to nuclear coordi-
nates, we rewrite the operator V in terms of the coordinates
P, and ry using the relationship

R=Py +rg, K=1,.N, (7
which yields
a a
5} Gg(Pgorg) = — P, G (Pg,ry)
J
= £ Gk (Pgorg) (8a)
Xk

Using this identity it follows that

I{V.G}= ( - K}i VPK)I{GK}. (8b)

~
Thus the translation operator T can be cast in a representa-
tion such that

1{TG,} = exp[t- i V,,K]I {G.}. 9)

The derivative with respect to P has been pulled outside the
integral since it is not an integration variable. Thus the ac-
tion of the translation operator 7 on any one- or two-elec-
tron integral 7 can be written as involving translation of each
of the Gaussian centers with their orientations (r, coordi-
nates) unchanged.

We now follow the same procedure to form a rotation
operator which generates rotation described by the angle
¢ = (4,.,9,,4.) about an axis along the direction ¢ through
the lab-fixed origin. This operator we write as

R () = exp{ — ¢-L}, (10a)
where
L=RXV, (10b)

and we again think of L operating on both R and R’ in the
case where I is a two-electron integral. To generate rotations
of both the center and orientation of a Gaussian function we
must allow L to operate both on P and r . For example, the
action of the L, component on a Gaussian is

a d

L,Gx(Pry) = (XE? - Y;?;) G (Peory)

d a
={ —(Pyy —— — Pgy ——
[ ("" Pry T aPKx)

a a
+ (xK dyx G Oxx )] GK(PKJK]

={—L.x +Lx}Gx(Px.xg). (11a)

J. Chem. Phys., Vol. 82, No. 10, 15 May 1985

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4568

Thus the action of the total L, operator on a Gaussian can be
written as the sum of the contributions of the operators L,
which act solely on the nuclear coordinates P, and opera-
tors /,, which change the orientation (internal coordinate
rx ) of the Gaussian keeping fixed the nuclear coordinate P
The action of the ath component of the total L operator on
an integral is

I{L,GePrre)} = 5 T{(— Lux + L)Gx(Prory)}

a = Xx,y,z. (11b)
Thus the rotation operator can be represented as
s N
Ry =emlo S (L —10), (12
K=1

and the effect of a rotation operator R () about an axis
through the lab fixed coordinate origin can be thought of as
the rotation by ¢ of each Gaussian center about the same axis
followed by rotation of each of the Gaussian shapes about a
parallel axis through their centers.

Different components of the L (or 1) operators belong-
ing to the same centers do not commute:

[LigsLyx] = — L (13a)
and

[IxK’lyK] = '_lzK' (l3b)
Also the operators Ly and 1, do not commute, since from
Eq. (8a) it is seen that derivatives with respect to P, and r
are related. However, the operators belonging to different
centers L, L, do commute. Of course the components of
the translation operators all commute.

B. Invariance relations for integrals

In this section we analyze the consequences of the in-
variance relations involving any integral /. The translational
invariance of Eq. (9) can be developed as follows:

N
exp[t-Z VPK]I=I
K=1
N
=I+ Yy t, 3 Iy
K=1

a = x,p,z
1 N
+— 2 tats 3 Ixasp
aff KJ
1 N
T3y D tatgty X Iarprsy +
aBy KIM
(14)
where the shorthand notation
=L, L _p i, e (15)
0Py, 0P, 0P,

has been introduced. Since the 7, are independent and of
arbitrary magnitudes, the terms of each order must separate-
ly vanish. From the first-order terms we therefore have

N
Y Ixa =0, a=xyz (16)

K=1
which amount to three relations among the first derivative
integrals {Z, }. Similarly, the second-order terms give
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N
zl;tatﬁ ;IKME =0. (17)
a J

However, not all nine relations are independent due to the
permutational symmetry of the integrals (e.g., Ix.;z
= I} ggq.for K #L,ora#p). Inconsideration of these sym-
metries the following two sets of equations can be written

N
S Ixosp =0, @B =xp,yz,zy (18a)
KJ
and
N N
2 z IKaJa + z IKaKa =O’ a = X, ),2. USb)
K>J K=1

Thus these equations give six relations among the second
derivative integrals. The relations among the third- and
higher-order derivatives can also be straightforwardly ob-
tained from Egq. (14).

The usefulness of these kinds of relations can be seen by
considering an example of a two-center integral for which
Eq. (16) reads I,, = — I,, (@ = x,y,z). That is, one of the
integral derivatives can be found knowing the other (for each
a). As will be seen shortly, not all of the translation and
rotation constraints of a given order are mutually indepen-
dent. In the following section we represent a more systematic
approach for determining the number of independent con-
straints of a given order and a method for calculating the
dependent integral derivatives from a set of independent
ones.

Before moving on to the analysis of the full set of rota-
tion and translation relations of a given order, we need to
show how to derive relations from the rotational invariance
relation. Using Eq. (12) to allow R to act on all of the Gaus-
sians in an integral 7 and expanding the exponential appear-
ing in Eq. (12} one obtains

1{6x} = 1{G} + {45 (L ~ 16
+ 1/21”¢-; Ly — IK)GK]

x [4»; L =116, || + . (19)

Because the components of ¢ are independent and arbitrary
rotation angles, the first-order terms give

N N
Y Loxl= Y lxl, a=xyz (20)
K=1 K=1

Here the operator L, has been pulled outside the integral 7
since the Py are not integration variables (R and R’ are), and
the notation [, I has been introduced to mean that the /
operator is applied to the vector ry in the Gaussian Gy ap-
pearing in 1. That is, /. I represents I (I, G ). These rela-
tions show that the first-order effect of rotation of the nu-
clear centers about an axis through the lab-fixed origin on an
integral is identical to the rotation of the Gaussian orienta-
tions about a parallel axis through the fixed nuclear center.
Before writing the second-order terms, let us write Eq.

(20) explicitly in terms of the derivatives of the integrals. The
left-hand side of Eq. (20) is

J. Chem. Phys., Vol. 82, No. 10, 15 May 1985

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Banerjee, Jensen, and Simons: Symmetries in integral derivatives 4569

9 _p 9
ET

121 L I{G}= K}: (an ) 1{G¢}

K AP,

N
= Z (PKaIKﬂ_ KBIKa)’

K=1
afly = xyz,yzx,zxy. (21)

To write the right-hand side (RHS) of Eq. (20) let us, for
example, consider the case ¥ = z (the other two cases y = y,x
follow from cyclic permutations):

N
RHS = ¥ L J{Gg}
K=1

a a
I {xy ——y ——)G ] 22
1 {( * dyx x Oxg * 22

f

M=

K

[

Now since
a
xK GK(PK9rrnx ,ny,nz,f)
K

I 1\ 12
=n, ( «t ) Ge(Pg.rpon, + 1n, — Ln, &)
2n, — 1

—(2n, + 1)"/%2n, + 1)'/2

X Gg(Pgrg,n, + Ln, + 1,n,.£) (23)

it can be seen that /,, transforms a Gaussian into a linear
combination of two Gaussians belonging to the same shell:

N 2 1 172
RHS= ¥ [ny( At ) Ie(n, + 1n, — 1)

K=1 Zny—l
2n, + 1\ ]

—n, Ig(n, —1,n ). (24
(an_l) l L+ 24

Here I (n, + 1,n, — 1) means that the K'th Gaussian
Gy En,,,ny,n,} in the integral 7 has been replaced by
Gk {n, + 1,n, — 1,n,} with n, unchanged and with proper
normalization included. The point that these integrals are of
the same shell is quite computationally important because
such integrals are automatically calculated within the same
integral-evaluation routines which evaluate Iy (n,,n,,n,). In
general the right-hand side of Eq. (20) can be written as

N .
RHS = ¥ {Ad.zlx(n, + g — 1)
K=1
—Ag Iy(n, — 1,ng + )}= w8 (25)
with af chose in cyclic order (@f8 = yz,zx,xy), and

2ng + 1)‘/2

e (26)

ABa =na(

Thus combining the results of Egs. (21) and (25), the working
relations expressed in Eq. (20) can be rewritten explicitly to
yield the three first-order rotational invariance conditions:

N
Kz (Pralyg — Pygly,) =14, of=yzzxxy. (27)
=1

Kahn’ also arrived at this equation based on a different set of
arguments.

The second-order rotational conditions from Eq. (19)
are

%;¢a e[Lox —lox ) [Lor — Iy 1 =0, af=xyz

(28)
which, because the ¢, and ¢, are independent, reduce to

N N
2 LxLgl= — 2 (IaKlﬁJ - laKLBJ - LaKIBJ)I’
K7 K7

af=xy.z. (29)
All of these nine conditions are not independent! To see the
hidden dependence let us subtract 25, Lg, L,k thereby ob-
taining

JiK [Lax:Lps 1 = "é{[lamlmll— [laxsLas 11

— [Laxslar 11} (30)

which, from the commutation relations of Eq. (13), is a first-
order expression in L. This clearly displays the lack of inde-
pendence of Eqs. (29). In fact Eq. (29) contains only six inde-
pendent conditions for af: xx,yy,zz,xy, yz,zx.

To write Eq. (29) in a manner which makes clear how
these results can be used to relate some second integral de-
rivatives to others, let us first examine the right-hand side of
Eq. (29). From Egs. (22) and (25) it should be clear that the
term [, g, I can be evaluated in terms of integrals belong-
ing to the same shell as the original integral I

Ll =1.4{A4,, I;(n, + 1,n, — 1)

— A Iyn, — W)n, + 1)}, Boy=xyz,yzxzxy.

(31a)
Application of / . to I, (n, + 1,n, F- 1) can be achieved by
using Egs. (22) and (23) once again. For K £J we have
IaKIJ(na + l’ny - 1)
=A,, Ixn, +Ln, —Lin, +1,n, —1)
—A,, Lign, +n, —Ln, —1,n, + 1),

QUY = XYZ,YXZ,ZX). (31b)
For K = J the analysis is similar although there are special
cases of @ = B and a #p. The essential point is that [, /5, 1
does not require the evaluation of integral derivatives; it is
simply another integral belonging to the same shell as the
original integral 1.
We can now rewrite the six independent relations of Eq.
(29), in which the left-hand side will only involve second
derivatives of integrals, by explicitly writing out the quantity
Zx; L,k L, 1. Then for u = v we have

N
> {2Pxq Py Ixays + 2Pxp Pig Ixasa }

K>J

N N
- Z 2PKa PJB IKBJa + 2 {P%(a IKﬁKB
KJ K=1

+ P%{ﬁ IKaKa} =Ia
where

(32a)

a N
Logog =Lopap + > {Pra Ixa + Prs Ixs}s
K=1

af} = xy,yz,zx
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and for y#v
N
Z {PKa PJ‘V IKBJa - PKa PJa IKBJy - PKB P.Iy IKaJa
KJ
+ PKB PJa' IKaJ‘y} aByo” (32b)
where
~ N
Iaﬁya = Iaﬁyo- - KZ] PKE‘ IKy’

(@B )#(A0): yz,zx,xp.

Here Tis the right-hand side of Eq. (29). The additional terms :

of the right-hand side of Eq. (32a) and (32b) are the first
derivative terms from the left-hand side of Eq. (29).
Insummary Eq. (32) expresses relationships among var-
ious second-integral derivatives {1y, 5 }. The matrix of coef-
ficients multiplying the Ix,,; involves only geometrical in-
formation { Py, } relating to the positions of the N centers in
1. As aresult the relations given in Eq. (32) are equally valid
for all integral derivatives involving the same N centers.

C. Invariance relations for derivatives of integrals

So far we have derived relations among the first- and
second-order derivatives of integrals based on the fact that
an integral is translationally and rotationally invariant. Ad-
ditional relations among the second- and higher-order inte-
gral derivatives can be obtained if we recognize that the de-
rivatives 91 /3 PJ# = 1L,N; u = x,p,x) themselves are also

invariant under T and R

'f( o1 )= or (33)

ap,,) ~ ap,,

ﬁ(al)z ar a4
ap,,) P,

It should be noted that the invariance condition R77 = I
does not contribute independent relations since, from Eq.
(34), R3 01 /3P,,) is the second-order term of RTI 1tis
straightforward to write down explicitly the resulting rela-
tions involving the second integral derivatives by substitut-
ing I,, for I in Eqs. (16) and (27):

N
Z Iy, =0, au=xyz,J=1N (35)
K=1
and
aff = yz,zx,xy,
P I — P, T ,
KZ] { Ka 1 KBJu KB Km’#} BJ,u 1w =x,y,z;J= LN,
(36a)
where
Lgy = Z LI, {Gk}, aBy=xpzyzx.zxy. (36b)

Vincent et al.® have derived relations similar to Eq. (36).
Their expressions are more complicated since they contain
extra first derivative terms. Note that each of Egs. (35) and
(36) yield 3 X 3N relations among the second integral deriva-
tives.

Summarizing the development so far, we have obtained
translational and rotational invariance relations to first or-

der. Those pertaining to the first derivatives of the integrals
are shown in Eqs. (16) and (27) and amount to a total of six
relations. For the second-order integral derivatives, the rela-
tions consist of six second-order translational invariance re-
lations {Eq. (18)], 3 X 3N relations arising from first-order
translational invariance of the first derivative integrals [Eq.
(35)}, 3 X 3N relations arising from the first-order rotational
invariance of the first derivatives [Eq. (36)], and six second-
order rotational invariance relations [Egs. (32)). Thus we
have a fotal of 6(3N + 2) relations involving 3N (3N + 1)/2
second integral derivatives and a total of six relations among
the 3NV first integral derivatives.

HI. IMPLEMENTATION

In this section we deal with how to make use of the
symmetry equations in reducing the number of (indepen-
dent) first- and second-order derivative integrals that need to
be explicitly calculated. Out of the 3N displacements of the N
nuclei, ¥N'=3N — 6 (3N — 5 for collinear geometries) of
these displacements lead to independent first order deriva-
tives; N '(N' + 1)/2 arise in independent second derivatives.
Given that there are six symmetry relations among the 3NV
first integral derivatives, one might decide to explicitly cal-
culate any (3N — 6) derivatives and to obtain the remaining
six via our symmetry relations. However, this procedure
cannot directly be applied since the symmetry relations of
Eqgs. (16) and (27) are not always an independent set, and it is
not possible to make arbitrary choices of the (3N — 6) inte-
grals to be evaluated explicitly. Similar problems arise again
in the case of second-derivative integrals where the number
of symmetry relations [6(3N + 2)] exceeds the total number
of integrals [3NV (3N + 1)/2]. Clearly more needs to be said
before the above symmetry relations can be implemented in
a manner which eliminates redundancies and clarifies which
derivatives can be chosen as independent.

The first-order relations of Egs. (16) and (27), as well as
the second-order relations of Egs. (18), (32), (35), and (36),
respectively, constitute systems of m simultaneous inhomo-
geneous linear equations in » integral derivatives as the var-
iables. The coefficient matrix (m X n) depends only upon the
geometry of the N Gaussian centers { P }. The problem is to
first reduce the respective linear system of equations to one
containing only 7 (<m) independent relations, where r is the
rank of the system of equations. The next step is to write »
dependent integrals in terms of the n —r independent
ones."! In the following subsection we detail steps involved
in such calculations.

A. First derivative (gradient) integrals

We can simplify the set of linear equations given in Egs.
(16) and (27) by first solving Eq. (16) for I, :

N—-1
INa = - 2 IKa’
K=1

Eliminating the derivative I, from Eq. (27), we obtain
N—-1 A\ A
Z {PKa IKfI _PKBIKa}=Ia ’
K=1

which constitute three independent relations in terms of the

a=xy.z. (37)

aff = xyyz,zx (38)
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3(N — 1) gradient integrals Ix, (K = LN — 1). Here ?’Ka is
defined by Py, = Px, — Py, . Equations (38) can be solved
separately for the I, (K =1,N — 1) after which Eq. (37)
gives the Iy, . The special case in which all of the centers are
collinear must be treated separately, since only two of the
three relations in Eg. (38) are then independent due to the
identity P, E,, + P,, E,, + P, E,, =0, where E; repre-
sents the left- or right-hand side of Eq. (38). Thus for collin-
ear centers (P, #0), instead of Eq. (38) we use the following
two independent relations

N—1 . ~
2 (Pxo Ixg — Prg Ixa) = 1op, aB =xyyz. (39)
K=1

Recall that the 7,4 defined in Eq. (25) involve integrals from
the same shell as the original integral I. The independeth

4571

gradient integrals which must be calculated explicitly are
solely determined through the solution of Eq. (38) or (39).
There are a total of 3¥ — 6 (3N — 5 for collinear centers)
such independent gradient integrals. Equation (37) can then
be used to uniquely determine the I,,. To make perfectly
clear the steps to be followed in achieving and implementing
the final working equations, let us consider in further detail
the particular case where I involves three Gaussian centers.

1. Three center case

In this case we have in Eqgs. (37) and (38) a total of six
relations involving {3V ) nine integral derivatives. We begin
by writing explicitly the three relations given by Eq. (38) in
terms of the six integral derivatives I, (K = 1,2; a = x,p,2)
as

-I 1x
_Ply Plx 0 _P2y P2x 0 7 Ixy
o ~P, P, 0 —-P, P, I" =1, (40)
A A A A
p, 0o P, P, 0 P | |l [L
1,
L 122 o
Using elementary row operations, we can transform this system of equations to lower row-echelon form
rI 1x ] -
A A ~ A Ix 1
_Ply Plx 0 _PZy P2x 0 Ily Iy
-P, P 0 P P I, rg
0 12 iy 5 3 5 ?,22 5 2% I1 _ P I, (41)
o oo () (M) (B3| S + 3,1,
'-Plz P2y _PZZ Plx _P2x Ply IZy -
+ P 1y sz
1. |
In obtaining Eq. (41) from Eq. (40) we assumed that there 1, I, I,
existed nonzero pivot elements in each of the rows of the
. . . A Ilz = Iyz —B IZy (42)
rectangular coefficient matrix of Eq. (40). In particular we
assume that the centers have been numbered and the axes 1o L. 1.

labeled such that f’, , is a nonzero pivot element. The num-
bering of the two centers (K = 1,2) and_of the direction
(@ = x,p,z)is arbitrary. Thus our choice of P, , #0 means that
we assume that the centers and directions are chosen such
that at least one center has a different y component from
center N.

From this lower-echelon form it is possible to say that
(I,,) and any two of (I,,,I,,,I,,) are independent integral de-
rivatives. Moreover the rank of the above coefficient matrix
is three which shows that all three relations of Eq. (40) are
independent. Considering permutations among the center
indices (1,2,3) and among the components (x,y,z), one de-
duces that any independent set of integral derivatives must
be of the form Iy, ,l,5, and I,, (K #J; B #y). That is, any
choice of independent integral derivatives must span at least
two centers.

Taking a particular choice for the independent integral
derivatives (I,,,1,,,1,,), Eq. (40) can be rewritten in a parti-
tioned form as

The square matrix A has the dimension r{ = 3) equal to the
rank of the coefficient matrix of Eq. (40), which is also equal
to the number of relations in Eq. (39). The rectangular ma-
trix B has dimensions #X {3(N — 1) — r}. The columns of
the A and B matrices are the corresponding columns of the
coefficient matrix in Eq. (40) multiplying the appropriate
integral derivatives:

[—P, O -?,]
A= o P, 0 (43a)
| B, P, P, |
P, P, 0 ]
B=|-?., -P, B, (43b)
0 R ,

Equation (42) allows the dependent integral derivatives
(11> 1., I,,) to be obtained directly in terms of the indepen-
dent ones (I, I,,, I,;) via a straightforward solution of the
simultaneous linear equations.
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Notice that A and B matrix elements involve only geo-
metrical variables and therefore need to calculated only once
for a given set of H centers regardless of what orbitals on
those centers are involved. However, the elements 7., I,
and I,, must be calculated for each integral derivative. Com-
putational simplifications arise in evaluating I, ., I, and I,
from Eq. (42) rather than by direct calculation because, as
seen from Egs. (22)-(24), the elements I, I,, and I, in-
volve linear combinations of integrals in which one Gaussian
has been replaced by another from the same shell. Once the

set of I, (K =1, N= 1) are in hand, the remaining three
i

o ) -1

It should be mentioned that the transformation equations
for the special cases when all three centers lie along a coordi-
nate axis (the y axis as explained above) or parallel to the
coordinate plane are contained in Eq. (44) as special cases.
For all three centers lying along the y axis ( P;, #0), the x-
and z-coordinates vanish and Eq. (44) reduces to

%" &) L)L)
[ 8] )

which clearly displays the necessary equivalence between
the x and z directions for this special case.

In summary our main conclusion regarding the transla-
tional and rotational invariance in the three-center case is
that, out of nine possible integral derivatives, only three (four
for collinear centers) need to be calculated explicitly; the re-
maining six (five for collinear centers) can be found from the

(45)

symmetry relations. We will now simply state the conclu-

sions of analogous analyses of the two- and four-center cases
pertaining to the first derivative integrals.

2. Two-center integral gradients

For this obviously collinear case, the two relations in
Eq. (39) involving the three integral derivatives (,,, I,,, and
1,,) are already in lower row-echelon form. The rank of the
coefficient matrix is two and either 7,, or I;, can be chosen to
be an independent gradient. Because of permutational sym-
metry between the two centers and among the components
(x, ,2), any one of the gradients I, can be chosen to be
independent. Again assuming that the centers and axes are
chosen such that P,, #0 and choosing I, to be the indepen-
dent integral which is explicitly calculated, the result analo-
gous to Eq. (42) reads

P, 071 [I.1 I[L P,
[0 ) =[] [2] ow
0 Ply Ilz Iyz ""Plz

from which the elements I, and I,, can be calculated. Equa-

Banerjee, Jensen, and Simons: Symmetries in integral derivatives

integrals I, can directly be obtained from Eq. (37).

To deal with the case when all three centers are collin-
ear, one must use Eq. (39) instead of Eq. (38) along with Eq.
(37). The corresponding explicit form of Eq. (39) is identical
to Eq. (40) but without the bottom row. The coefficient ma-
trix then is already in a lower echelon form of rank two and
any four out of the five integral derivatives I, , I,,, I,,, and

' !22 are independent. Choosing I,,, I,,, I,,, and I,, with
P,,#0 to be independent, the transformation equation
[analogous to Eq. (42)] from which the remaining integral
derivatives I,, and I,, can be obtained is

I,
2 0 ] I, @)
Py, Py L,

L,

tion (37) can then be used to give the remaining integral de-
rivatives ,, = — I, (@ =x, y,2z).

3. Four-center integral gradients

Writing Eq. (38) for the four-center case, one has three
relations involving nine integral derivatives I, (K = 1,2,3;
a = X, y,z). Transformation to the lower row-echelon form
shows that the rank of the coefficient matrix is three. For
noncollinear geometries, the six independent derivatives are
oftheform I, I;p, I, (K #L,B #¥),andI,, (J #Kor L,
& =X, y,2). Again assuming that centers and directions are
chosen such that P,, #0, we can select I, I, I,,, I, I,
and I, as the six independent derivatives. The transforma-
tion equation analogous to Eq. (42) from which 7,,, I,,, and
I, are obtained has the same 3 X3 A matrix and a 3X6 B
matrix whose columns correspond to the six independent
derivatives. As before, these A and B matrices are extracted
directly from the columns of the coefficient matrix appear-
ing in Eq. (38). Equation (37) then gives the remaining inte-
gral derivatives I, I, , and I,.

Again, for the collinear four-center case, two relations
of Eq. (39) are already in the echelon form. The seven inde-
pendent integral derivatives can be chosen (again with
P, #0)tobel,, and I, (K =2, N — 1; a =x, y,z). These
integral derivatives determine all of the remaining (depen-
dent) integrals.

B. Second Derivative (Hessian) integrals

We can now perform a similar analysis for the relations
in Eqs. (18), (32), (35), and (36) involving the so-called Hes-
sian integrals. Before we begin to perform the row-echelon
reduction, we note that the computational effort in setting
up or utilizing these symmetry relations arises mainly
through the calculation of the right-hand sides (the /4, or
1,44, ) of the equations which arise via the rotational invar-
iance of I of I,,. The elements of the left-hand side coeffi-
cient matrix only involve the geometrical coordinates of the
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N centers and need to calculated only once for any given
nuclear positions. Thus they remain valid and unchanged for
all of the integrals involving basis functions of the same
centers. The right-hand side elements of Eqs. (18) and (35)
corresponding to the translational symmetries are zero. On
the other hand, the right-hand side of Eqs. (36) and (32) are
given, respectively, in Egs. {36) and (31)~{32). As mentioned
earlier, their calculation involves generating linear combina-
tions of integrals or first integral derivatives in which a
Gaussian is replaced by another from the same shell; thus
although the evaluation of these right-hand side elements is
the most computationally difficult step in implementing the
symmetry relations treated here, such calculations are con-
siderably easier than the explicit evaluation of additional
second integral derivatives.

As pointed out earlier, the number of second-order
symmetry relations [6(3N + 2)] is much larger than the
number of Hessian integrals [3N (3N + 1)/2] for N<4.
Hence, not all of the symmetry relations are independent.
Therefore whenever it is possible to locate and discard de-
pendent relations, it should be done. This will considerably
simplify computational effort in two ways. One saves by not
having to calculate the right-hand sides belonging to such
relations; moreover dealing with fewer equations gives rise
to a considerably simplified analog of Eq. (42). Thus our aim
is to discard all such dependent relations and to work with
only the independent ones.

Toillustrate such a reduction, we note that by substitut-
ing Eq. (35) into Eq. (18) we obtain a trivial identity

N N (N—1
ZIKaJB = 2 [ z Tkass +INaJB]
KJ 1

J=1 K=

N N—-1 N-—1
=3 [ S L — 3 zm,] —o,
J=11lKk=1 K=1

This means that the second-order translation relations of Eq.
(18) are not independent of Eq. (35). Similarly, by substitut-
ing Eq. (36) into Eq. (32), it is found that the relations of Eq.
(32) are also not independent. Hence, Eqgs. (18) and {32) can
be eliminated from further consideration. As a result of the
above observations, we need only work with 9N relations
from each of Eqgs. (35) and (36).

The next stage of simplification involves rewriting the
relations of Eqs. (35) and (36) in a partitioned form with the
integrals derivatives Jy, ;5 (/= 1, N; a, B = x, y, z) separat-
ed from the complementary set involving derivatives on the
remaining centers I, (K, J =1, N — 1). We begin by re-
writing the independent relations of Eq. (35) as

N-t J=1,N-—-1,
INaly = - K§=:1 IKaJy, ’ a, = x', »,z (473)
and
N
Z Inke =0, ap = xx,yy, 2z, xp, yz, zx. (47b)
K=1

These are a total of 9N — 1) + 6 relations involving the
same number 9N — 1) + 6 of integral derivatives involving
the N th center. Using these equations, it is straightforward
to eliminate from Eq. {36) Hessian integrals involving the
N th center:

No1 A R aff = xy, yz, zx,

2 (Pxe IKBJ;L _PKB IKaJp)=IaBJ;n H=x)2 (48)
k=1 J=1,N—-1,
where ?’Ka =Py, — Pra-

The relations in Eq. (48) still contain dependencies
which can be exposed by noting the following three indepen-
dent relations among the relations (RAR) of Eq. (48):

N—1 A

Z {Ply Eopip + Py, EByJB - PJﬁ’(EaﬁJy + Eﬁ‘yJa)} =0,
J=1

afy = xyz, yzx, zxy. (49)

Here E,z,, represents the left- or right-hand side of a rela-
tion in Eq. {48) for the given values of @, 3, ¥, and J. These
three RAR’s can be verified quite easily by simple substitu-
tion. Based on these three RAR’s it is possible to discard
three of the relations of Eq. (48). One particular choice,
which imposes the minimum number of constraints on the
allowable geometries of the N centers, is to discard the three
relations of the form E ., E,,;,, and E,, for a value of J
for which some P,z #0. Analogous to our treatment of the
gradient integrals (in which P, , £0, was assumed) we choose
J=1and 8 =y so that the relations E, ,,, E,,,,, and E,,,,
are discarded. Equation (48) then becomes

N—1 . N
Z (PKa IKBJ;t _PKE IKaJ,u,)zIaBJy’
K=1

afl = xy, yz, zx,
p=x,3zJ=1,N-1, (50)
(Exylz! szlz’ Ez.xlx )'

The discarded conditions E.,,, E..i,, E..,, are enclosed in
parentheses above. Equation (50) represents aset of (ON ' — 3)
independent relations involving 3N '(3N ' -+ 1)/2 Hessian in-
tegrals where N'=N — 1. Therefore {3N'3N'+ 1)/
2 — (9N’ — 3)} integrals are truly independent and need to
be calculated explicitly, while (9N’ — 3) integrals can be ob-
tained in terms of these from the symmetry relations of Eq.
(50). Note that {3N'(3N’'+1)/2-(9N'—3)} equals
{(3N — 6)(3N + 6 + 1)/2}, the number of independent inte-
gral derivatives predicted at the beginning of this section. A
specific choice of these independent Hessian integrals can be
made from the echelon form of the coefficient matrix of Eq.
(%0} The case of collinear centers must again be considered
separately. Due to the reduced geometrical flexibility, fewer
Hessian integrals are determined through the symmetry re-
lations. In addition to the three RAR’s given in Eq. (49) the
constraints due to the collinear centers can be represented by
the 3(N — 1) RAR’s of Eq. (46) as

J=1,N—1,
Py, Eny# + Py, Esz/-t +PKy szJu =0, H=X) 2, (51)
K fixed.

From the total of 3N RAR’s only 3N — 2 can be shown to be
independent and be discarded. For P,, #0 we chose to dis-
card the relations E, ;, and E,;, =L N — L, p=x,,2)
from Eq. (46). The final set of {6(N — 1) — 1} independent
relations for the collinear centers can be represented as
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N—-1 . S
Z (an IKBJ;L - PKB IKaJ,u) =IaBJ,u’
K=1
af = xy, yz,
p=x,yzJ=1,N—-1, (52)

( ylz)

Forcollinearcentersthus {3V (3N’ + 1)/2 — 6N’ + 1} inte-
grals will be independent and 6V’ — 1 integrals will be calcu-
lated in terms of these from Eq. (52). Note that
{3N'3N’' 4+ 1)/2 — 6N + 1} equals {3§ —5)
(3N — 5 + 1)/2}. A specific choice of these independent in-
tegrals will be made from the echelon form of Eq. (52).

The plan for the solution of Egs. (47) and (50) [or (52) for
collinear centers] is as follows. First we perform the row
reduction of Eq. (50) [or Eq. (52)] and obtain equations giving
the dependent Hessian integrals in terms of the explicitly
calculated independent ones. Knowing the values of these
integral derivatives, the remaining integrals (i.e., those in-
volving center N) can be obtained from Egs. (47). It is
straightforward to show that the (¥ — 1) + 6 relations of
Eq. (47) (involving the same number of integrals) are a/l inde-
pendent. This means that the independent integral deriva-
tives are solely determined through the solutions of Eq. (50)
[or Eq. (52) for collinear centers}.

1. Three-center Hessian integrals

For this case, Eq. (50) gives 15 independent relations
involving 21 Hessian integrals. The coefficient matrix for
this case is given in the Appendix. The six independent inte-
grals inferred from the echelon form of the coefficient matrix
can be chosen to be Iy,,, I, Ls,s I,y Ly, and I,

whenever ?’ly #0 and ?’,y ﬁh — ?’IZ ?’zy #0. In general
based on the permutational symmetry among the centers
(1,2,3) and among the components (x, , z), one may deduce
that, for Py, #0 and Py, P;; — Pxg P, #0, the six inde-
pendent integrals arise from action of unique pairs of differ-
ential operators dPx,, dP,, P4, anddP,, (J=1,N—1;
p=x,y,z;J #K #L; a#p). The corresponding 15 de-
pendent integrals are of the form I,,, [K=1,N—1;
a=x,y2zJ=1;8=x,z (Ka)>JB)]. From the coefficient
matrix given in the Appendix, it is straightforward to write
down the columns corresponding to these dependent and
independent Hessian integrals which constitute the elements
of the corresponding A (15X 15) and B (15X 6) matrices.
Once A and B are in hand, the dependent integral derivatives
can be evaluated. The remaining dependent integrals of the
form I, are directly calculated from Eq. (47).

[t should be emphasized that the conditions an #0
and an P 8 — PKﬁ P e 70 are not restrictions on the geom-
etry in the ponlinear case. One of the three elements
PKX » Pg,,0r sz is nonzero since atom K and atom N do not
have the same center; thus PK‘z #0 for some a. For some
atom J the atoms ¥, K, and J are not collinear by assump-
tion. Then if

A A
PKa_PKy
A =K
PJa PJ,u

Banerjee, Jensen, and Simons: Symmetries in integral derivatives

and
2\)Ktz ?)Kv
= == auv = Xxyz, zxy, yzx,
PJa PJV

the three atoms are collinear, contrary to assumption.
Therefore we can let 8 = u or v depending on which of the
above is not true. The consequences of the above conditions
are presented in more detail in the Appendix.

To deal with the case of collinear centers we analyze Eq.
(52) [instead of Eq. (50)] which yields 11 independent rela-
tions involving the same 21 Hessian integrals. The 10 inde-
pendent integrals, as inferred from the echelon form of the
coefficient matrix (again for Ply #0), can be constructed by
applying unique pairs of the differential elements
oP,,, dP,,, dP,,, and dP,, to I. From here on, one follows
the standard procedure to obtain all the remaining depen-
dent Hessian integrals.

In general taking into account the 24 Hessian integrals
I y.rp Obtainable from Eq. (47), one must calculate only six
(ten for collinear centers) Hessian integrals explicitly out of
the total of 45; the remaining 39 (35 for collinear centers) are
obtained from the symmetry relations. In what follows we
now give a slightly condensed description of the four- and
two-center cases.

2. Four-center Hessian integrals

Equation (50) for this case produces 24 independent re-
lations involving 45 Hessian integrals. From the echelon
form of the coefficient matrix, the 21 independent Hessian
integrals can be chosen to be constructed by applying all
pairs of the differential elements oPy,, 9Py, IP,,, 3Py,
dP;,, and 9P;, to I (Ply #0 and Ply Pzz — P, P,,#0). The
24 dependent integrals can then be found in terms of these by
using an analog of Eq. (42) in which the A(24x24) and
B(24 % 21) matrices are straightforwardly obtained from the
corresponding columns of the coefficient matrix.

For four collinear centers, Eq. (52) involves 17 relations.
For P, #0 the 28 independent integrals are obtained by us-
ing all pairs of the differentials dP,, and 4P,
K=23a=x,y,2).

In summary, taking into account the additional 33 de-
pendent Hessian integrals determined by Eq. (47), we con-
clude that out of the total of 78 Hessian integrals for N = 4,
only 21 (28 for collinear centers) need be calculated explicitly
while the remaining 57 (50 for collinear centers) are deter-
mined through symmetry relations.

3. Two-center Hessian integrals

For this obviously collinear case, Eq. (52} gives five in-
dependent relations involving six Hessian integrals. For
P,, #0, the one independent integral can be chosen to be
I,,,, which determine the remaining five. Taking into ac-
count the additional 15 dependent integrals determined by
Eq. {47), we conclude that out of a total of 21 Hessian inte-
grals only one needs to be calculated explicitly.

IV. DISCUSSION AND CONCLUSION

In this paper we have given useful working relations
which allow one to evaluate certain first and second integral
derivatives in terms of others. With respect to the first deri-
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vative or gradient integrals, the basic symmetry relations are
embodied in Egs. (37) and (38) [or Eq. (39) for collinear
centers]. The (3N — 6) independent integral derivatives can
be chosen to be of the form I,, Ip,, I,,, and I,
V=1L,N—1u=x,yz; KL #J) for nonlinear geome-
tries. For linear geometries the (3N — 5) independent inte-
gral derivatives are of the form Iy, and I,, (/=1,N — ;
u = x,y, z;J #K ). Though these choices are not unique they
provide maximum flexibility in choosing the coordinates of
the centers.

Similarly for the Hessian integral derivatives we have
provided working results in Eqs. (47) and (50) [or Eq. (52) for
collinear centers]. For nonlinear geometries, the
3N'(3N’ + 1)/2 — (9N’ — 3} independent Hessian integrals
(N' = N — 1) can be constructed from unique pairs of the
differential elements JPg,, JP,,, dP,,, and JP,
V=1,N—-Lu=xyz;K #L #J)actingon I. For collin-
ear geometries on the other hand, the {3N'(3N'+ 1)/
2 — 6N’ + 1} independent Hessian integrals for (P, #0)
can be constructed from pairs of dPyx, and JP,,
V=1L,N-1;u=xy,2; J#K) acting on I. The savings
gained in computing second integral derivatives is very
impressive. For the two- , three- , and four-center integral
cases there exist a total of 21, 45, and 78 second derivatives of
which only 1, 6, and 21 need to be explicitly evaluated!

Obtaining relations among the third and higher deriva-
tives of integrals is straightforward. If §® refers to the nth
order representation of the symmetry operation T or R, and
I'™, denotes the nth nuclear derivative of the integral, then a
complete set of relations of the nth derivative come from the
combinations § ™7 ©, §=Nr _sOrr—1N In particular
considering the case of third derivative integrals, from the
total of M =3N(3N+ 1)(3NV +2)/3! such integrals,
M "=N'(N"+1)}N'+2)/3! are independent, where

= (3N — 6)[or (3N — 5)for collinear centers]. Taking the
cue from the gradxent and Hessian integrals, the transla-
tional conditions 7"I® determine the integrals I NeuLv
(/, L = 1, N) while the rotational conditions R 'I? yield
N—1
z (PKa IKﬁJuLv - PKﬁ IKaJuLv) - aBJ,uLv’

aff = xy, yz, zx,

my==xY,z

/{, L =1,N— L;(Ju)>(Lv}.
For P, #0 the M’ independent third derivative integrals
can be obtained from unique combinations of N’ differential
elements

Py 0P P53, 0P, \L = LN — L,u=x,y,zK #J #£L).

The integral derivatives needed for ab initio quantum
chemical applications involve the contracted Gaussian func-
tions. Since the contractions (linear combinations) are per-
formed over the same center and because the derivative V'
is a linear operator, the derivatives of contracted-Gaussian
based integrals are easily obtained V™I(i,jk,l)
=32, 10 CuiC,CixC,/ V"I ( uvio), where I(uvio) refers
to the orbltal 1ndlces of the integral involving primitive
Gaussians. That means, for theintegral set { I  uvAo)} which
maps onto the contracted integral I (jjk! ), if {1 ( uvAo)} is de-

pendent (independent)sois? (ijk! ). Dupuisetal.® and Vincent
et al.® have suggested, for translational and rotational invar-
iance, that a sum over all the derivatives arising from four
shells of integrals multiplied by the appropriate density ma-
trix element be used instead of the individual integrals. This
approach greatly reduces the number of times that invar-
iance conditions must be applied.

Although the set of first- and second-order relations
obtained here are based upon the straightforward applica-
tion of the translational and rotational invariance of any in-
tegral (or integral derivative), the identification of the inde-
pendent and dependent variables as well as the
determination of the number of independent equations re-
quired substantial analysis. In fact, the reduction of the
working equations, via elementary row operations, to gener-
ate lower row-echelon and ultimately reduced row-echelon
forms became sufficiently complicated in the three- and
four-center second integral derivative cases that these opera-
tions were carried out analytically on the computer using the
algebraic programming language REDUCE.'? In particular
the nontransparent relations given in Eq. (49) were discov-
ered using REDUCE. Also the REDUCE codes were used to
check our hand evaluations for the first derivative and two-
center second derivative cases.
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APPENDIX

In what follows we are using the three-center case as an
example. The N-center case is completely analogous and we
will simply state the general case. For quantum chemical
integrals N<4, but we do not make that restriction in the
following.

Equation (50) is a system of linear equations. In Table I
we give the coefficient matrix for the three-center case where
we have used the abbreviation p, for P,,. The variable
names have been written above each column, and we have
used E,g,, tolabel the relations on the left of the matrix. The
right-hand side of E_4,, is I.g,,. It should be noted that
E, .., E,; ;> and E,,,, have been removed since we have ear-
lier shown them to be redundant.

One method of solving the relations is Gaussian elimi-
nation. The first 11 rows are already in upper triangular
form and would not be changed in the downward reduction.
The bottom four relations, however, would be transformed.
In general there will be 3{N — 2) + 1 analogous relations for
N-center case (N3>3), and in general these will be trans-
formed by downward elimination into

—1 N-—-1

N
KZ CszIKny + Z CnyIKzJp

— 1

+ z CKszKxJp _PlzInyu

+PlyszJ/,¢ +Plx1er,u’
L=2,N—1; N=34,.,

Ju =1y, Lv, B (53)
v=x,y,2
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where we have introduced the notation

A A A A
Cxag = Pio Pxg — Pip Py,, af=xy,yzzx.

For the three-center case Ju takes the four values
2 coocooccoxNoooooo 1y,2x,2y,2z.
- ! For the linear case Eq. (53) yields the trivial relation
NN 0 = 0. Since the two-center case is always linear there is no
j eeeee f i eeeees analogous set of relations. For the nonlinear case at least one
of the terms of the left-hand side of Eq. (53) will be nonzero.
— - A A A A
gloeoocok [‘f °eeeeceee Let us assume for example that (P, P,, — P,, P,,) is
h nonzero. Then I,,;, does not need to be calculated explicitly
g|°oecccccccn Nooo N for each of the relations in Eq. (53). These relations can be
s ! applied in any order with one exception. To solve for 7,,,,
RIS ) (Ju = 2z) requires knowing I, ,, and I, ,, which first need to
.j‘ eeeeeees NN be calculated from two of the other relations. It should be
empbhasized that in using downward elimination to arrive at
g|lococecooNooNNoO No o Eq. (53) the only nonzero pivot element that was assumed
~ ! ! was P,
- o e o Next let us look at rows 4-11 in Table 1. These corre-
s locoocoNoocoocoNoNooN . .
& | | spond in the general case to the relations
- N—1 .
g oooi‘?l\llooﬁ“ooooot\lo — Z (PKyIKxJ#—PKXIKyJﬂ)=InyM, (54a)
b~ K=1
N1 o ~
a OOON—N—QOOOOOONNOO 2 (PKyIKzJu_PKZIKyJ#)=Isz#, (54b)
= [ K=1
[N
o N L=2,N-1;N=234,..,
4 locoocoNococoococooNooo Ju =1y, Lv,
R i v=ux,J,2z.
. _ _ For the two-center case the above yields two relations.
§|°° NooocooooNooo °|< For the three-center case we get eight relations. In general
~ Eqgs. (54) yield 6(; — 2) + 2 relations. Since P,, #0 Eq. (54a)
s loNococoocooocoNooooN can be so.lved for I,,, and Eq. (54b) for I‘l,:,”. Thus these
R | 6N — 10 integrals do not need to be explicitly calculated.
“ N - . Also these relations can be applied in any order. This can be
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g = 4-11 and column 4-11) of Table L. This is true in general.
§ 2 “NoocoooNoaocoooNOo Next the first three rows of the coefficient matrix corre-
g ~ ' ' spond to the relations
S coNocooNoooooXoo S D
;g e | | z (Pra Ixg1n — Prg Ikorn) = Lapius (55)
K=1
.o - - - - —
% 2 |"Nooco>~NoococoooNoo aPp = xyx, yzx, yzz.
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