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ABSTRACT. Building upon the Hamiltonian expansion of Helgaker and the
MCSCF energy derivative developments of Jergensen, an analysis of the
geometrical derivatives of the CI energy is performed. Combining the
geometry variation of the Hamiltonian with that of the molecular
orbitals (as given by the MCSCF orbital response of Jergensen) allows
the variation of the CI configuration expansion coefficients to also
be handled by response theory. After developing the form of the CI
energy derivatives, a few observations are made concerning their
computational practicality.

1. INTRODUCTION

In the two precedingpapers, Helgaker and Jergensen have set the stage
for examining confiquration interaction (CI) energy derivatives. In
particular, Helgaker demonstrated how an especially clever atomic
orbital (ao) parameterization and orthonormalization process1 allows
for efficient treatment of the geometry dependence of the electronic
Hamiltonian (H) and directly results in expressions which are in the
molecular orbital basis. The resulting expressions for geometrical
derivatives of the Hamiltonian contain ao integral derivatives as well
as undifferentiated integrals which have been subjected toc so called
one-index transformations (using derivatives of the ao overlap matrix
as transformation matrices (see his Eg. (19)}). P. Jergensen's paper
shows how to use the resulting geometry dependence of H to develop
expressions for geometrical derivatives of the MCSCF energy. His
analysis is carried out in terms of exponential unitary operators which
describe the responses of the molecular orbital (mo) and configuration-
space expansion coefficients to geometrical displacements.

In the present paper, analogous methods are utilized to express
the derivative of the CI energy with respect to geometry. Relative to
the MCSCF case, two fundamental changes must be made in deriving the
CI expressions:

1) The molecular orbital expansion coefficients can not be assumed
to be fully variationally optimized; only the configuration-space can
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be taken to obey the generalized Brillouin theorem? (GBT) .

2) The two-step procedures by which the molecular orbital and
configuration-space wavefunction amplitudes are chosen must be properly
represented in the derivation.

Although a few remarks pertinent to the computational implementat-
ion of the working equations are made here, these matters are covered
in substantial detail in later papers by R. Shepard and H.J.Aa. Jensen.
The focus of the present paper is a clear development of the CI energy
derivative expressions building upon the preceding papers by Helgaker
and Jergensen. The strategy to be used can be described as follows:

1) The molecular orbital and configquration-space response
techniques introduced earlier by Jergensen are used in two separate
steps to describe the geometrical responses of the mo's (which are
assumed to be SCF- or MCSCF-optimized orbitals) and of the configurat-
ion-space wavefunction amplitudes (which are assumed to be CI-
optimized).

2) The mo responses thus cobtained are combined with Helgaker's
Hamiltonian derivative expressions to define and analyze the geometry
dependence of an_effective Hamiltonian H. Isolating the mo responses in
the Hamiltonian H makes the CI energy function identical in form to the
MCSCF form treated in the preceeding papers. This connection to the
MCSCF development allows the CI energy derivatives to be written =
directly from Jergensen's MCSCF expressions by simply replacing H by H.

3) The resulting CI energy derivatives are then written in a
manner which elucidates several aspects of their computational
implementation and which permits interchange-theorem-like methods to be
implemented.

2. DEVELOPMENT
2.1. The Orbital Response.
The orthonormal molecular orbitals are assumed to have been variation-
ally optimized at a molecular geometry denoted X,. This optimization
may have involved either an MCSCF or SCF wavefunction either of which
is denoted |o>. The requirement that the orbital and configuration
amplitudes of !o) are optimized at X, results in the generalized
Brillouin theorem for both the orbital and configuration spaces3 of
|o> (see Eqs. (20), (24) of Jorgensen)
Fp = <o|[Py,H]|o> = 0 (1a)
Fpq = <o [Epg.H]|o> = 0 (1b)
where P, and E§q are the state transfer operators4

Pp = |n><o|—*o><n| (2a)

and unitary group generators4
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Epq = g {agcaqc—aaaapc} (2b)

described in the preceeding paper. It should be noted that the
Hamiltonian H and wavefunction lo> are evaluated at X, in Egs. (1) and
that the functions {|n>}span the orthogonal complement space of the
MCSCF (or SCF, in which case there are no |n> and hence no P,) function.

To express the response of the mo's and configuration amplitudes
to a displacement of the geometry from X, to X, + X, Jorgensen's Eq.
(23) is combined with Helgaker's order-by-order (in X) expansion of H
(see his Eq. (30)). These orbital responses, denoted K&glhave been
explicitly given by Jergensen and Simons® through second order (n = 2)
and by Simons, Jeorgensen, and Helgakerethrough n = 4, For example, the
first-order response parameters xﬁé)are obtained by solving

(1)
&0 (g1)) = (E(1)) (3)

where Fﬁ%’and Fﬁll are GBT elements as in Eg. (1) but with the
Hamiltonian H replaced by Helgaker's first Hamiltonian H (in Eq. (19)).
The matrix G® is Jorgensen's Hessain matrix (see his Eg. (21)) which
contains both orbital- and state-function components; the parameters
Sél} describe responses of the MCSCF confiquration amplitude. It should
be noted that solution of the above orbital response problem involves
simultaneous treatment of the orbital and configuration responses in
situations where MCSCF orbitals are used.

2. 2. The Effective Hamiltonian.

Now that the molecular orbitals' responses to geometrical dis-
placements have been formulated, it is possible to address the CI
wavefunction amplitude response problem. Given a CI wavefunction |CI>
constructed from orbitals which have been optimized as described above
and whose orbital response parameters Kﬁg)are taken as known, attention
is to be focused on the CI energy function

Ecr = <CI|H|cI> (4)

In particular, the variation of Epy with geometry must be related to
variation in the state-space expansion coefficients and those in the
mo's and in H.

Combining Helgaker's expansion of H in powers of X with the above
molecular orbital responses and Jergensen's unitary exponential
parameterizations of the configuration amplitudes and orbital
variations (see Jorgensen's Egq. (16)) allows all of the X-dependence
of Eqry to be displayed
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Ecr <CI|exp{I s P) exp{; xpq Epq)
nnn q

H exp(- | «yg Exg) exp(- ]| S P)|CI>
rs mmm

<CI|exp(§) exp(E) H exp(-é) expt—§}|CI> (5)

where |CI> denotes the CI functlon at X5- In Eg. (5) as in all of the
subsequent equations the 8 operator and its S, parameters refer to the
CI state-space. This space is likely to be quite large compared to the
state-space used in Sec. 2.1 in treating the MCSCF response problem.
The, as yet undetermined, S, parameters can be isolated from the known
geometry dependence of Kpq and of H by introducing the effective
Hamiltonian

H = exp{g kpq EBq) H exp(~ | krg Efg) (6)
q rs

This allows the Ecy function of Eq. (5) to be cast into a form in which
only the configuration amplitude variations are explicitly displayed

Ecy = <CI|exp(S) H exp(-S)|CI> (7)

The essential point to be made concerning the introduction of H is

that the geometry dependences of H (given earlier by Helgaker) and of

R (as outlined above and explicitly given through fourth order in refs.
(5) and (7)) combine to provide an order-by-order expansion for H,
which appears through fourth order in ref. (6). The lowest three such
terms in the X-dependence of H are

Hy = H, the Hamiltonian at X, (8a)
ﬁl = Hy) - [Ktl),H] (8b)
5y = ¥Hp-[(1),my]-%[c (1), «(1),m]-5[c(2),H] (8c)

It should be stressed that these expressions for the H, are not simply
disguising difficult-to-evaluate factors. Quite to the contrary, they
are actually suggestive of computationally practical strategies. For
example, each of the commentators [x‘ll,Hm] can be reexpressed in
terms of a one-and-two-body Hamiltonian whose integrals (or integral
derivatives) have been subjected to the one-index transformation
introduced earlier by Helgaker (but with the Kéé) array as the trans-
formation matrix). The net result is that H, is, in effect, a one-and
two-body Hamiltonian whose "integrals" have been one-index transformed
one or more times. H.J.Aa. Jensen's, R. Shepard's and T. Helgaker's
later papers more fully treat the computational aspects of these

transformations. For now it should be sufficient to observe that the ﬁn
can be viewed as computationally tractable one-and two electron
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operators which contain the explicit geometry dependence of both the
ao basis orbitals and the MCSCF (or SCF/mo's).

2.3. CI Energy Derivatives.

The developments given in the preceeding paper by Jorgensen for MCSCF
wavefunctions can now be applied to Eg. (7) to immediately write the
desired expressions for the CI energy derivatives. Jergensen's MCSCF
development, when restricted to contain only the state-function o
response parameters {Sn} as Eq. (7) and with H replaced by the above H,
yields the appropriate CI derivatives, the first two of which are given
below:

E; = <CI|Hj|cI> = <c1|Hy|c1> -<c1|[x(1),H] |cI> (9a)

KE; = %<CI|Hy|cI> + %) F{l)s{1)
n

¥<CI|Hp|c1> - <c1|[x(1),m]|cI>

-y<c1| [k (1), (1), H] |c1> - y<cr|[x(2),H] |cI>

+x){<c1|Hy |n> - <cx|[x(1),H] [n>}sfl) (9b)
n

where Sél] are the CI state-space amplitude responses obtained by
solving the first order piece of Jergensen's Eq. (23):

Y Gnm sS4l = F{1) = <c1|Hy|n> - <cz|[x(1),H] |n> (10)
m

The matrix element Gp, is the state-space Hessian matrix (see
Jergensen's Eg. (21)):

Gpm = <n|H|m> - Ecrépm (11)

and Eﬁl) is the state-space GBT element defined with respect to the
first-order effective Hamiltonian Hj.

2.4. Observations on Implementation of the Ej.

As written in Egs. (9), the evaluation of the first two CI energy
derivatives would appear to require the following steps:

1) The computation of CI expectation values of the Hamiltonian
derivatives Hj; and Hp given earlier by Helgaker.

2) The solution of the first- and second-order orbital response
equations (e.g. Eq. 3)) for «i{l) and Kég’.

3) Carrying out one-index transformations on the integrals
defining H or Hj, followed by calculation of CI expectation values for
the resultant operators (to compute, for example, <CII[Ktn},Hm]|CI>
(n,m = 0,1,2) and <cI|[x(1),k(1) g]|cI>.

4) Solution of the first-order CI-space response equation (Eq.
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(10)) for Sﬁf) followed by contraction of Sél) with the corresponding
GBT element Fil).

Although the computational evaluation of the above CI energy
derivatives is more difficult than in the MCSCF case, the four-step
outline given above presents an overly pessimistic view of the
situation. Calculation of the CI expectation values of H; and Hp are
in fact required, but are by no means the bottleneck in the calculat-
ions. Moreover, solution of the state-space response equations, which
may involwve " 106 configurations, can be evaluated using direct-CI
like methods by first expressing Gpp and Fﬁl) of Eq. (10) within the
primitive configuration space as demonstrated in refs. (6) and (8).
The later paper by H.J.Aa. Jensen deals explicitly with the matter and
show that even very large configuration spaces can be handled.

Evaluation of the second term in Eq. (9a) and the second, third,
and fourth terms in Eq. (9b) requires further analysis. The use of
one-index transformations with Kf_;l] or Kl(_.%] as the transformation
matrix can be used to evaluate <CI|[x(1),H]|c1>, <cI|[x(1),H;]]|cI>
and <CI|[K(2),H]ICI> as CI expectation values and two successive one-
index transformations would allow (CII[x(l),K(l],H]ICI> to be computed
likewise. The disadvantages of such an approach are that one must
solve the MCSCF response equations described earlier for each of the 3
N cartesian displacement directions in X and that one must carry out
the one-index transformations for each of these 3 N directions. The
primary advantage of the above approach is that, once the one-index
transformations are carried out, only CI average values need be
evaluated.

Handy and Schaefer? have suggested that contributions such as
those treated above via one-index transformations can be more
efficiently handled by introducing interchange-theorem-like methods.
For example, they correctly point out that <CI[[x[n},Hm]|CI> can be
reexpressed in a form whose implementation does not require the
solution of (3N)™ linear response equations. They use the fact that
the equations which determine the KZEJ parameters are of the form

1)

€% (S(n)) = (x(R)) (12)
where the I{M) vector involves lower order Eﬁil and §}5) (2 < n)
parameters (see Egs. (63) - (66) of ref. (6)) and G° is the full
(i.e. orbital- and configuration-space) Hessian of the MCSCF problem
which characterizes the orbital responses. This allows K:l(.sa) to be
written (formally):

k$3) = I (621, rs TR+ T (60)5Y,k TER! (13)
rs

in terms of the orbital-orbital and orbital-configuration components
(G°)p§,rs and (G°)pY,x Of the MCSCF Hessian matrix. Using Eq. (13)
allows one to write
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<cr|[k(m),m ] |c1> = g <c1| [Epq, iyl |cI>
q

rs

(6°)5%,re TER)+ gq = <C1| [EpgsBpl [CI> (6°)5d,x TEM)

r

which can be rewritten as

Ny
- gs Krs T4 4 I ¥ ) (14)

n A
Here (K,g, Kx) is the vector obtained by solving the linear response
equations

go § - =5y (15)
oast )
where cI
Frg T <CH[Ezg.Hy] |CI> : (16)

is the orbital-space GBT vector for the Hamiltonian Hy but involving
the CI wavefunction. Egs. (15) would have to be solved only (3N)0
times which, if m < n, results in potentially less work than solving
for the k(n). For example, for m = o, Eq. (15) is only a single linear
equation whose dimension is equal to that of the combined MCSCF
orbital and configuration parameter spaces.

In summary, the computational implementation of Egs. (9) for E;
and Ey is likely feasible when the full power of direct-CI type
methods (for Eg. (10)) and one-index transformations are utilized.
Even the third CI energy derivative Ej given in ref. (6) may be
within reach because it still only requires the Sﬁli CI-space response
parameters (although it also requires k(3) or the use of a Handy-
Schaefer-type rearrangement). However, the evaluations of E4 (see ref.
(6)) re?uires that the second-order CI response equations be solved
for Sﬁz ; This is a considerably more difficult task, so it will be
some time before CI fourth energy derivatives are obtained for
substantial configuration expansion lengths.
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