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We discuss the calculation of local concentration ttuctuations, at constant volume and temperature, for an open,
non-interacting, chemicaUy-reactive fluid. One conclusion is that even for ideal mixtures, ttuctuations cannot be cal-
culated using a grand-canonical theory if the open volume element constitutes a non-negligible part of the total sys-
tem. It is also shown that the calculation of equilibrium ttuctuations for interacdng molecules is, in general, not
given by the ordinary grand-canonical result. There does exist a coupling between reaction progress fluctuations and
concentration tluctuations due to migration. .

In this paper we discuss static concentration fluc-
tuations occurring in open chemically reactive fluids
at equilibrium. Intuitively, one might expect concen-
tration fluctuations to arise from either of two sources.

Reactant particles can diffuse into or out of an open
volume element, thereby altering the local concentra-
tions. In addition, fluctuations in the progress variab'e
of a chemical reaction can affect local concentrations.

A question which naturally arises is: how can one in-
corporate both diffusion and progress variab'e fluc-
tuations into a calculation of local-concentration fluc-

tuations? Although the present 'etter does not answer
this question, it does show that previously obtained
answers are not generally correct.

It should be noted that our goal here is not to in-
vestigate the time decay of concentration fluctuations
but rather to study static fluctuations in 8n open sys-
tem which is in equiIibrium with a finite encIosing
volume. Keizer [1J has given a very in:e:&:>ting
stochastic treatment of the dynamics of fluctuatiJns
for an isomerization reaction in a closed system in the
thermodynamic limit (V -+00). The reader should
consult Keizer's article for several other references to

this interesting question.
Let us begin by considering a closed vessel of

(constant) volume V. which is isolated from its sur-
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roundings. We assume that the reversib'e chemical re-
action

O)VIAl +v2A2+...+vsAs=O

has reached equiIibrium within the vessel,and we
designate the equiJibriumconcentrations of the reac-
tants by {Cp; i = 1,2, ...s}. Theinstantaneousvalue
of the tota' concentration of reactant i is given in
terms of the progress variab'et ~as

C. = C~ + v.~ .I I I

The stoichiometric coefficients vi are positive for
products and negative for reactants. The probability
of fluctuations in the progressvariab'e, at constant
volume and energy (E). can be expressed in terms of
the entropy change accompanying the fluctuation [2]

(2)

P(~) = exp{k-I [S(~,E, V)-S(O,E, V)n

jexp{k-I [S(~,E, V)-S(O,E, V)] }d~
Because fluctuations are smali, except near critical
points, the entropy change appearing in eq. (3) can be
accurately approximated as [2J :

S(tE, V) - S(o,2, V) =l(a2s/a~2)E, V,t=O ~2. (4)

(3)

t Notice that one can define a progress variable only for a
closed system.
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Eq. (3), together with eq. (4), provide the correct
probability density for calculatingequilibrium average
tluctuations of quantities which depend upon ~.

Let us now tum our attention to a smali open sub-
system of constant volume n, which i"in thermal
equilibrium with the remainder of the ~riginalvessel.
The instantaneous concentration of reactant ; within
the volume n is represented by C',and the deviation
of c; from its equilibrium value c? =Cp is denoted by
8c;. To calculate equilibrium tluctuations in tocal
concentrations, we propose the followingequation*:

(8c;8Cl =f d~(8c;8cj>tP(~),

where pm is given by eqs. (3) and (4) and (óc;8cj>t is
the local-concentration tluctuation calculated at fixed

~.
Eq. (5) clearly impliesthat progressvariable tluc-

tuations and local concentration tluctuations are not
necessariJyindependent. The concentration tluctu-
ations depend uponthe number ofmolecules of each
reactant within n, which, in tum, depends upon ~.
Therefore, the progress variable ~and the number of
molecules of each reacting species are interrelated
variabIes. This can also be seen by considering how
molecular scattering events give rise to changes in the
number of reactani molecules within n. Each bi-

molecular encounter can give rise to one of four dis-
tinguishable outcomes:

(i) the molecules non-reactively scatter and re-
mainin n;

(ii) themoleculesreactivelyscatterand remainin
n;

(iii) the molecules non-reactively scatter and one
or both of the molecules moves out of n;

(iv) the molecules reactively scatter and one or
more of the products leaves n.

The fourth outcome, whose probability is linked
through sum-rules or conservation laws to the probabi-
lities of the first three outcomes, provides the coupling
between progress variable- and local concentration-
tluctuations.

.The superscript O is used to designate equilibrium. Eq. (S)
is merely a statement of conditional probability. That is,

we take the probability pm of a fluctuation in t multiplied

by the concentration fluctuation (6C;6Cj)t occurring at
that value of t. The result is then averaged over t.
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(5)

For non-critical systems, the (symmetric) distribu-
tion P(~) is quite sharply peaked about ~=O. In this
case, we can evaluate the integral in eq. (5) to a high
degree of accuracy by expanding the frozen fluctu-

ation (óc;8cj>t in powers of~, keeping only terms to
second order in ~.The symmetry and narrowness of
p(n allows us to extend the ~.integration from -00 to
-1<>0,thereby eliminating the contribution of the term
linear in ~. The equilibrium fluctuations resulting
from this expansion are given as follows:

(32 (8C;8Cj>t)(8c;8cl =(óc;8cj>t=O - ! 2 -a~ E,v, t-O

[

S vlVm

(
aPI

)x E -n-
l,m=1 kT anm T,P,np-Fm
-
( )

-

( ) ]

-1
+ ~V ap - AJ{ aT v-l

kT a~ E,v kT2 a~ E,v '
(6)

where we have expressed (a2s/a~2)E v in terms of
the partial molal volume and enthalpy differences
(~V =E~=I v;V;,t:Ji = E:=l v/i;) and various
thermodynamic derivatives. In the V -+ 00 (n =con-
stant) limit, the equilibrium tluctuations can be seen
to reduce to the frozen (at ~ =O) f1uctuations. This is

the usual result for a grand-canonicalensemble [3],
which is valid for non-ideal systems as well. On the
other hand, if the ratio n/v is not negligiblysmali,
both terms in eq. (6) must be examined more careful-
lyt.

If the molecules in the system are non-interacting,
one can use a simple statistical weighting factor to cal.
culate the probability of finding n; moleeules of

species; ~ =l, 2, ...s) in the volume n and the remain-
ing [V(C; +v;O - n;](=N;-n;) molecules in the
volume outside n. The proper weighting factor is
given by

s N;! (
n
)
n;

( n
;
N;-n;

p(nl' ...ns)= fl (N.- .), ,I V l-V'
" ,=1, n, .n,. (7)

With the above probability funetion, one obtains the
following results for the fluctuations appearing in
eq. (5):

t Of course, the grand-canonical ensemble fluctuation theory
assumes, from the beginning, that n/v is negJjgible. ~
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(OC/)Cj>t=O (Sa)ifi *"j ,

(OC;>t= (CjO+"j~)(n-1- V-l). (Sb)

The fact that (ocl>t is linear in ~immediately implies
that the second term in eq. (6) does not contribute
to the overallconcentration fluctuations.

Wetherefore find that, for non-interacting mole-
cules with finite n/v, the results of eqs. (Sa) and (Sb)
with~=Ogivethe desired equilibrium fluctuations.
It should be pointed out that eq. (Sb) is not identi-
cal to the usual grand-canonicalformula for non-inter-
acting molecules,which states that

(oc?>O=c9n-1 ., ,
The two results differ by a factor of I - nj V,which
reduces to unity only in the V --jo00 limit; Thus, even

for ideal reacting mixtures, this correction .to the
grand-canonicalformula should be included.

For non-ideal systems with finite n/v, one must
compute both terms in eq. (6). The second term can
be interpreted aSgiving rise to a coupling between ~-
fluctuations and concentration fluctuations which are
due to diffusion. Thus far, we have been unable to ob-
tain closed expressionsfor these terms for any model
system which might be of general interest. The princi-
pal difficulty lies in the fact that the volume (V -n)
of the "bath" system cannot be taken to be infinitely

(9)

large.Until an analytical solution of this problem
becomes available, it is our feeling that it would be
very usefuI to compare the results of computer experi-
ments in which (oCjocA=oand (a2(oCjOCjva~2)E,V,t=O
are obtained for interacting finite systems to the re-
sults of the (V --jo00)grand-canonicaltheory

(OCjOCj') =krn-1 (dC,./aJlj') r n . .
,..,lJ.k'l'j

In this way, one could leam under what conditions
corrections to the grand-canonicalresults due to the
non-ideal nature of the system can be neglected. We
strongly urge researcherswho have the expertise and
facilities for such computer studies to undertake these
investigations in the near future.

(lO)

We thank Professor John M. Deutch for pointing
out the need for a discussion of the role of progress
variable fluctuations in determining local-concentra-
tion fluctuations.
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