
Section 2 Simple Molecular Orbital Theory

In this section, the conceptual framework of molecular orbital theory is developed.

Applications are presented and problems are given and solved within qualitative and semi-

empirical models of electronic structure.     Ab Initio     approaches to these same matters, whose

solutions require the use of digital computers, are treated later in Section 6. Semi-

empirical methods, most of which also require access to a computer, are treated in this

section and in Appendix F.

Unlike most texts on molecular orbital theory and quantum mechanics, this text

treats polyatomic molecules before linear molecules before atoms. The finite point-group

symmetry (Appendix E provides an introduction to the use of point group symmetry) that

characterizes the orbitals and electronic states of non-linear polyatomics is more

straightforward to deal with because fewer degeneracies arise. In turn, linear molecules,

which belong to an axial rotation group, possess fewer degeneracies (e.g., π orbitals or

states are no more degenerate than δ, φ, or γ orbitals or states; all are doubly degenerate)

than atomic orbitals and states (e.g., p orbitals or states are 3-fold degenerate, d's are 5-

fold, etc.). Increased orbital degeneracy, in turn, gives rise to more states that can arise

from a given orbital occupancy (e.g., the 2p2 configuration of the C atom yields fifteen

states, the π2 configuration of the NH molecule yields six, and the ππ* configuration of

ethylene gives four states). For these reasons, it is more straightforward to treat low-

symmetry cases (i.e., non-linear polyatomic molecules) first and atoms last.

It is recommended that the reader become familiar with the point-group symmetry

tools developed in Appendix E before proceeding with this section. In particular, it is

important to know how to label atomic orbitals as well as the various hybrids that can be

formed from them according to the irreducible representations of the molecule's point

group and how to construct symmetry adapted combinations of atomic, hybrid, and

molecular orbitals using projection operator methods. If additional material on group theory

is needed, Cotton's book on this subject is very good and provides many excellent

chemical applications.

Chapter 4

Valence Atomic Orbitals on Neighboring Atoms Combine to Form Bonding, Non-Bonding

and Antibonding Molecular Orbitals

I. Atomic Orbitals



In Section 1 the Schrödinger equation for the motion of a single electron moving

about a nucleus of charge Z was explicitly solved. The energies of these orbitals relative to

an electron infinitely far from the nucleus with zero kinetic energy were found to depend

strongly on Z and on the principal quantum number n, as were the radial "sizes" of these

hydrogenic orbitals. Closed analytical expressions for the r,θ, and φ dependence of these

orbitals are given in Appendix B. The reader is advised to also review this material before

undertaking study of this section.

A. Shapes

Shapes of atomic orbitals play central roles in governing the types of directional

bonds an atom can form.

All atoms have sets of bound and continuum s,p,d,f,g, etc. orbitals. Some of these

orbitals may be unoccupied in the atom's low energy states, but they are still present and

able to accept electron density if some physical process (e.g., photon absorption, electron

attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen

atom has 1s, 2s, 2p, 3s, 3p, 3d, etc. orbitals. Its negative ion H- has states that involve

1s2s, 2p2, 3s2, 3p2, etc. orbital occupancy. Moreover, when an H atom is placed in an

external electronic field, its charge density polarizes in the direction of the field. This

polarization can be described in terms of the orbitals of the isolated atom being combined to

yield distorted orbitals (e.g., the 1s and 2p orbitals can "mix" or combine to yield sp hybrid

orbitals, one directed toward increasing field and the other directed in the opposite

direction). Thus in many situations it is important to keep in mind that each atom has a full

set of orbitals available to it even if some of these orbitals are not occupied in the lowest-

energy state of the atom.

B. Directions

Atomic orbital directions also determine what directional bonds an atom will form.

Each set of p orbitals has three distinct directions or three different angular

momentum m-quantum numbers as discussed in Appendix G. Each set of d orbitals  has

five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they

are spherically symmetric, and have only m = 0. Note that the degeneracy of an orbital

(2l+1), which is the number of distinct spatial orientations or the number of m-values,

grows with the angular momentum quantum number l of the orbital without bound. 

It is because of the    energy degeneracy     within a set of orbitals, that these distinct

directional orbitals (e.g., x, y, z for p orbitals) may be combined to give new orbitals



which no longer possess specific spatial directions but which have specified angular

momentum characteristics. The act of combining these degenerate orbitals does not change

their energies. For example, the 2-1/2(px +ipy) and

2-1/2(px -ipy)  combinations no longer point along the x and y axes, but instead correspond

to specific angular momenta (+1h and -1h) about the z axis. The fact that they are angular

momentum eigenfunctions can be seen by noting that the x and y orbitals contain φ
dependences of cos(φ) and sin(φ), respectively. Thus the above combinations contain

exp(iφ) and exp(-iφ), respectively. The sizes, shapes, and directions of a few s, p, and d

orbitals are illustrated below (the light and dark areas represent positive and negative

values, respectively).
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C. Sizes and Energies

Orbital energies and sizes go hand-in-hand; small 'tight' orbitals have large electron

binding energies (i.e., low energies relative to a detached electron). For orbitals on

neighboring atoms to have large (and hence favorable to bond formation) overlap, the two

orbitals should be of comparable size and hence of similar electron binding energy.

The size (e.g., average value or expectation value of the distance from the atomic

nucleus to the electron) of an atomic orbital is determined primarily by its principal quantum

number n and by the strength of the potential attracting an electron in this orbital to the



atomic center (which has some l-dependence too). The energy (with negative energies

corresponding to bound states in which the electron is attached to the atom with positive

binding energy and positive energies corresponding to unbound scattering states) is also

determined by n and by the electrostatic potential produced by the nucleus and by the other

electrons. Each atom has an infinite set of orbitals of each l quantum number ranging from

those with low energy and small size to those with higher energy and larger size.

Atomic orbitals are solutions to an orbital-level Schrödinger equation in which an

electron moves in a potential energy field provided by the nucleus and all the other

electrons. Such one-electron Schrödinger equations are discussed, as they pertain to

qualitative and semi-empirical models of electronic structure in Appendix F. The spherical

symmetry of the one-electron potential appropriate to atoms and atomic ions is what makes

sets of the atomic orbitals degenerate. Such degeneracies arise in molecules too, but the

extent of degeneracy is lower because the molecule's nuclear coulomb and electrostatic

potential energy has lower symmetry than in the atomic case. As will be seen, it is the

symmetry of the potential experienced by an electron moving in the orbital that determines

the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the

potential and kinetic energies are not changed if one applies such an operator R to the

coordinates and momenta of    all    the electrons in the system. Because symmetry operations

involve reflections through planes, rotations about axes, or inversions through points, the

application of such an operation to a product such as Hψ gives the product of the operation

applied to each term in the original product. Hence, one can write:

R(H ψ) = (RH) (Rψ).

Now using the fact that H is invariant to R, which means that (RH) = H, this result

reduces to:

R(H ψ) = H (Rψ),

which says that R commutes with H:

[R,H] = 0.

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions

that are eigenstates of H can be labeled by the symmetry of the point group of the molecule

(i.e., those operators that leave H invariant). It is for this reason that one

constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.



II. Molecular Orbitals

Molecular orbitals (mos) are formed by combining atomic orbitals (aos) of the

constituent atoms. This is one of the most important and widely used ideas in quantum

chemistry. Much of chemists' understanding of chemical bonding, structure, and reactivity

is founded on this point of view.

When aos are combined to form mos, core, bonding, nonbonding, antibonding,

and Rydberg molecular orbitals can result.  The mos φi are usually expressed in terms of

the constituent atomic orbitals χa  in the linear-combination-of-atomic-orbital-molecular-

orbital (LCAO-MO) manner:

φi  = Σa Cia χa .

The orbitals on one atom are orthogonal to one another because they are eigenfunctions of a

hermitian operator (the atomic one-electron Hamiltonian) having different eigenvalues.

However, those on one atom are not orthogonal to those on another atom because they are

eigenfunctions of different operators (the one-electron Hamiltonia of the different atoms).

Therefore, in practice, the primitive atomic orbitals must be orthogonalized to preserve

maximum identity of each primitive orbital in the resultant orthonormalized orbitals before

they can be used in the LCAO-MO process. This is both computationally expedient and

conceptually useful. Throughout this book, the atomic orbitals (aos) will be assumed to

consist of such orthonormalized primitive orbitals once the nuclei are brought into regions

where the "bare" aos interact.

Sets of orbitals that are not orthonormal can be combined to form new orthonormal

functions in many ways.  One technique that is especially attractive when the original

functions are orthonormal in the absence of "interactions" (e.g., at large interatomic

distances in the case of atomic basis orbitals) is the so-called symmetric orthonormalization

(SO) method.  In this method, one first forms the so-called overlap matrix

Sµν = <χµ|χν>

for all functions χµ to be orthonormalized.  In the atomic-orbital case, these functions

include those on the first atom, those on the second, etc.

Since the orbitals belonging to the individual atoms are themselves orthonormal, the

overlap matrix will contain, along its diagonal, blocks of unit matrices, one for each set of

individual atomic orbitals.  For example, when a carbon and oxygen atom, with their core



1s and valence 2s and 2p orbitals are combined to form CO, the 10x10 Sµ,ν matrix will

have two 5x5 unit matrices along its diagonal (representing the overlaps among the carbon

and among the oxygen atomic orbitals) and a 5x5 block in its upper right and lower left

quadrants.  The latter block represents the overlaps <χC µ|χOν> among carbon and oxygen

atomic orbitals.

After forming the overlap matrix, the new orthonormal functions χ' µ are defined as

follows:

χ' µ  = Σν (S-1/2)µν χν  .

As shown in Appendix A, the matrix S-1/2  is formed by finding the eigenvalues {λi} and

eigenvectors {Viµ} of the S matrix and then constructing:

(S-1/2)µν = Σ i Viµ Viν (λi)-1/2.

The new functions {χ' µ} have the characteristic that they evolve into the original functions

as the "coupling", as represented in the Sµ,ν matrix's off-diagonal blocks, disappears.

Valence orbitals on neighboring atoms are coupled by changes in the electrostatic

potential due to the other atoms (coulomb attraction to the other nuclei and repulsions from

electrons on the other atoms). These coupling potentials vanish when the atoms are far

apart and become significant only when the valence orbitals overlap one another. In the

most qualitative picture, such interactions are described in terms of off-diagonal

Hamiltonian matrix elements (hab; see below and in Appendix F) between pairs of atomic

orbitals which interact (the diagonal elements haa represent the energies of the various

orbitals and are related via Koopmans' theorem (see Section 6, Chapter 18.VII.B) to the

ionization energy of the orbital). Such a matrix embodiment of the molecular orbital

problem arises, as developed below and in Appendix F, by using the above LCAO-MO

expansion in a variational treatment of the one-electron Schrödinger equation appropriate to

the mos {φi}.

In the simplest two-center, two-valence-orbital case (which could relate, for

example, to the Li2 molecule's two 2s orbitals ), this gives rise to a 2x2 matrix eigenvalue

problem (h11,h12,h22) with a low-energy mo (E=(h11+h22)/2-1/2[(h11-h22)2 +4h212]1/2)

and a higher energy mo (E=(h11+h22)/2+1/2[(h11-h22)2 +4h212]1/2) corresponding to

bonding and antibonding orbitals (because their energies lie below and above the lowest

and highest interacting atomic orbital energies, respectively). The mos themselves are

expressed φ i = Σ Cia χa where the LCAO-MO coefficients  Cia are obtained from the

normalized eigenvectors of the hab matrix. Note that the bonding-antibonding orbital energy

splitting depends on hab2 and on the energy difference (haa-hbb); the best bonding (and



worst antibonding) occur when two orbitals couple strongly (have large hab) and are similar

in energy (haa ≅ hbb).



2s

2p 2p

2s

σ

σ∗

σ
π

π∗

σ∗

2p

2s

2p

2s
σ

σ∗

σ

π

π∗

σ∗

Homonuclear Bonding With 2s and 2p Orbitals

Heteronuclear Bonding With 2s and 2p Orbitals



In both the homonuclear and heteronuclear cases depicted above, the energy

ordering of the resultant mos depends upon the energy ordering of the constituent aos as

well as the strength of the bonding-antibonding interactions among the aos. For example, if

the 2s-2p atomic orbital energy splitting is large compared with the interaction matrix

elements coupling orbitals on neighboring atoms h2s,2s and h2p,2p , then the ordering

shown above will result. On the other hand, if the 2s-2p splitting is small, the two 2s and

two 2p orbitals can all participate in the formation of the four σ mos. In this case, it is

useful to think of the atomic 2s and 2p orbitals forming sp hybrid orbitals with each atom

having one hybrid directed toward the other atom and one hybrid directed away from the

other atom. The resultant pattern of four σ mos will involve one bonding orbital (i.e., an

in-phase combination of two sp hybrids), two non-bonding orbitals (those directed away

from the other atom) and one antibonding orbital (an out-of-phase combination of two sp

hybrids). Their energies will be ordered as shown in the Figure below.
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Here σn is used to denote the non-bonding σ-type orbitals and σ, σ*, π, and π* are used to

denote bonding and antibonding σ- and π-type orbitals.

Notice that the total number of σ orbitals arising from the interaction of the 2s and

2p orbitals is equal to the number of aos that take part in their formation. Notice also that

this is true regardless of whether one thinks of the interactions involving bare 2s and 2p

atomic orbitals or hybridized orbitals. The only advantage that the hybrids provide is that

they permit one to foresee the fact that two of the four mos must be non-bonding because



two of the four hybrids are directed away from all other valence orbitals and hence can not

form bonds. In all such qualitative mo analyses, the final results (i.e., how many mos there

are of any given symmetry) will     not    depend on whether one thinks of the interactions

involving atomic or hybrid orbitals. However, it is often easier to "guess" the bonding,

non-bonding, and antibonding nature of the resultant mos when thought of as formed from

hybrids because of the directional properties of the hybrid orbitals.

C. Rydberg Orbitals

It is essential to keep in mind that all atoms possess 'excited' orbitals that may

become involved in bond formation if one or more electrons occupies these orbitals.

Whenever aos with principal quantum number one or more unit higher than that of the

conventional aos becomes involved in bond formation,  Rydberg mos are formed.

Rydberg orbitals (i.e., very diffuse orbitals having principal quantum numbers

higher than the atoms' valence orbitals) can arise in molecules just as they do in atoms.

They do not usually give rise to bonding and antibonding orbitals because the valence-

orbital interactions bring the atomic centers so close together that the Rydberg orbitals of

each atom subsume both atoms. Therefore as the atoms are brought together, the atomic

Rydberg orbitals usually pass through the internuclear distance region where they

experience (weak) bonding-antibonding interactions all the way to much shorter  distances

at which they have essentially reached their united-atom limits. As a result, molecular

Rydberg orbitals are molecule-centered and display little, if any, bonding or antibonding

character. They are usually labeled with principal quantum numbers beginning one higher

than the highest n value of the constituent atomic valence orbitals, although they are

sometimes labeled by the n quantum number to which they correlate in the united-atom

limit.

An example of the interaction of 3s Rydberg orbitals of a molecule whose 2s and 2p

orbitals are the valence orbitals and of the evolution of these orbitals into united-atom

orbitals is given below.
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D. Multicenter Orbitals

If aos on one atom overlap aos on more than one neighboring atom, mos that

involve amplitudes on three or more atomic centers can be formed. Such mos are termed

delocalized or multicenter mos.

Situations in which more than a pair of orbitals interact can, of course, occur.

Three-center bonding occurs in Boron hydrides and in carbonyl bridge bonding in

transition metal complexes as well as in delocalized conjugated π orbitals common in

unsaturated organic hydrocarbons. The three pπ orbitals on the allyl radical (considered in

the absence of the underlying σ orbitals) can be described qualitatively in terms of three pπ
aos on the three carbon atoms. The couplings h12 and h23 are equal (because the two CC

bond lengths are the same) and h13 is approximated as 0 because orbitals 1 and 3 are too far

away to interact. The result is a 3x3 secular matrix  (see below and in Appendix F):

h11 h12 0
h21h 22h 23

0   h 32h 33

whose eigenvalues give the molecular orbital energies and whose eigenvectors give the

LCAO-MO coefficients Cia .

This 3x3 matrix gives rise to a bonding, a non-bonding and an antibonding orbital

(see the Figure below). Since all of the haa are equal and h12 = h23, the resultant orbital

energies are :  h11 + √ 2 h12 , h11 , and h11-√2 h12 , and the respective LCAO-MO coefficients

Cia are (0.50, 0.707, 0.50), (0.707, 0.00, -0.707), and (0.50, -0.707, 0.50). Notice that

the sign (i.e., phase) relations of the bonding orbital are such that overlapping orbitals

interact constructively, whereas for the antibonding orbital they interact out of phase. For

the nonbonding orbital, there are no interactions because the central C orbital has zero

amplitude in this orbital and only h12 and h23 are non-zero.
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E. Hybrid Orbitals

It is sometimes convenient to combine aos to form hybrid orbitals that have well

defined directional character and to then form mos by combining these hybrid orbitals. This

recombination of aos to form hybrids is     never     necessary and never provides any

information that could be achieved in its absence. However, forming hybrids often allows

one to focus on those interactions among directed orbitals on neighboring atoms that are

most important.

When atoms combine to form molecules, the molecular orbitals can be thought of as

being constructed as linear combinations of the constituent atomic orbitals. This clearly is

the only reasonable picture when each atom contributes only one orbital to the particular

interactions being considered (e.g., as each Li atom does in Li2 and as each C atom does in

the π orbital aspect of the allyl system). However, when an atom uses more than one of its

valence orbitals within  particular bonding, non-bonding, or antibonding interactions, it is

sometimes useful to combine the constituent atomic orbitals into hybrids and to then use the

hybrid orbitals to describe the interactions. As stated above, the directional nature of hybrid

orbitals often makes it more straightforward to "guess" the bonding, non-bonding, and

antibonding nature of the resultant mos. It should be stressed, however, that exactly the

same quantitative results are obtained if one forms mos from primitive aos or from hybrid

orbitals; the hybrids span exactly the same space as the original aos and can therefore

contain no additional information. This point is illustrated below when the H2O and N2

molecules are treated in both the primitive ao and hybrid orbital bases.

Chapter 5

Molecular Orbitals Possess Specific  Topology, Symmetry, and Energy-Level Patterns



In this chapter the symmetry properties of atomic, hybrid, and molecular orbitals

are treated. It is important to keep in mind that     both        symmetry        and        characteristics of orbital

   energetics and bonding "topology"   , as embodied in the orbital energies themselves and the

interactions (i.e., hj,k values) among the orbitals, are involved in determining the pattern of

molecular orbitals that arise in a particular molecule.

I. Orbital Interaction Topology

The pattern of mo energies can often be 'guessed' by using qualitative information

about the energies, overlaps, directions, and shapes of the aos that comprise the mos.

The orbital interactions determine how many and which mos will have low

(bonding), intermediate (non-bonding), and higher (antibonding) energies, with all

energies viewed relative to those of the constituent atomic orbitals. The general patterns

that are observed in most compounds can be summarized as follows:

i. If the energy splittings among a given atom's aos with the same principal quantum

number are small, hybridization can easily occur to produce hybrid orbitals that are directed

toward (and perhaps away from) the other atoms in the molecule. In the first-row elements

(Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In

contrast, for Ca, Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is

larger. Orbitals directed toward other atoms can form bonding and antibonding mos; those

directed toward no other atoms will form nonbonding mos.

ii. In attempting to gain a qualitative picture of the electronic structure of any given

molecule, it is advantageous to begin by hybridizing the aos of those atoms which contain

more than one ao in their valence shell. Only those aos that are not involved in π-orbital

interactions should be so hybridized.

iii. Atomic or hybrid orbitals that are not directed in a σ-interaction manner toward other

aos or hybrids on neighboring atoms can be involved in π-interactions or in nonbonding

interactions.

iv. Pairs of aos or hybrid orbitals on neighboring atoms directed toward one another

interact to produce bonding and antibonding orbitals. The more the bonding orbital lies

below the lower-energy ao or hybrid orbital involved in its formation, the higher the

antibonding orbital lies above the higher-energy ao or hybrid orbital.



For example, in formaldehyde, H2CO, one forms sp2 hybrids on the C atom; on

the O atom, either sp hybrids (with one p orbital "reserved" for use in forming the π and π*

orbitals and another p orbital to be used as a non-bonding orbital lying in the plane of the

molecule) or sp2 hybrids (with the remaining p orbital reserved for the π and π* orbitals)

can be used. The H atoms use their 1s orbitals since hybridization is not feasible for them.

The C atom clearly uses its sp2 hybrids to form two CH and one CO σ bonding-

antibonding orbital pairs.

The O atom uses one of its sp or sp2 hybrids to form the CO σ bond and antibond.

When sp hybrids are used in conceptualizing the bonding, the other sp hybrid forms a lone

pair orbital directed away from the CO bond axis; one of the atomic p orbitals is involved in

the CO π and π* orbitals, while the other forms an in-plane non-bonding orbital.

Alternatively, when sp2 hybrids are used, the two sp2 hybrids that do not interact with the

C-atom sp2 orbital form the two non-bonding orbitals. Hence, the final picture of bonding,

non-bonding, and antibonding orbitals does not depend on which hybrids one uses as

intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N2 can be

formed into pairs of sp hybrids on each N atom plus a pair of pπ atomic orbitals on each N

atom. The sp hybrids directed

toward the other N atom give rise to bonding σ and antibonding σ∗ orbitals, and the sp

hybrids directed away from the other N atom yield nonbonding σ orbitals. The pπ orbitals,

which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis,

produce bonding π and antibonding π* orbitals.

v. In general, σ interactions for a given pair of atoms interacting are stronger than π
interactions (which, in turn, are stronger than δ interactions, etc.) for any given sets (i.e.,

principal quantum number) of aos that interact. Hence, σ bonding orbitals (originating from

a given set of aos) lie below π bonding orbitals, and σ* orbitals lie above π* orbitals that

arise from the same sets of aos. In the N2 example, the σ bonding orbital formed from the

two sp hybrids lies below the π bonding orbital, but the π* orbital lies below the σ*

orbital. In the H2CO example, the two CH and the one CO bonding orbitals have low

energy; the CO π bonding orbital has the next lowest energy; the two O-atom non-bonding

orbitals have intermediate energy; the CO π* orbital has somewhat higher energy; and the

two CH and one CO antibonding orbitals have the highest energies.

vi. If a given ao or hybrid orbital interacts with or is coupled to orbitals on more than a

single neighboring atom, multicenter bonding can occur. For example, in the allyl radical

the central carbon atom's pπ orbital is coupled to the pπ orbitals on both neighboring atoms;



in linear Li3, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal

Li atoms; in triangular Cu3, the 2s orbitals on each Cu atom couple to each of the other two

atoms' 4s orbitals.

vii. Multicenter bonding that involves "linear" chains containing N atoms (e.g., as in

conjugated polyenes or in chains of Cu or Na atoms for which the valence orbitals on one

atom interact with those of its neighbors on both sides) gives rise to mo energy patterns in

which there are N/2 (if N is even) or N/2 -1 non-degenerate bonding orbitals and the same

number of antibonding orbitals (if N is odd, there is also a single non-bonding orbital).

viii. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., as in cyclic

conjugated polyenes or in rings of Cu or Na atoms for which the valence orbitals on one

atom interact with those of its neighbors on both sides and the entire net forms a closed

cycle) gives rise to mo energy patterns in which there is a lowest non-degenerate orbital and

then a progression of doubly degenerate orbitals. If N is odd, this progression includes (N-

1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate levels and a final non-

degenerate highest orbital. These patterns and those that appear in linear multicenter

bonding are summarized in the Figures shown below.
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ix. In extended systems such as solids, atom-based orbitals combine as above to form so-

called 'bands' of molecular orbitals.  These bands are continuous rather than discrete as in

the above cases involving small polyenes. The energy 'spread' within a band depends on

the overlap among the atom-based orbitals that form the band; large overlap gives rise to a

large band width, while small overlap produces a narrow band. As one moves from the

bottom (i.e., the lower energy part) of a band to the top, the number of nodes in the

corresponding band orbital increases, as a result of which its bonding nature decreases. In

the figure shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is

illustrated. The d-orbital band is narrow because the 3d orbitals are small and hence do not

overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p orbitals

overlap to a greater extent. The d-band is split into σ, π, and δ components corresponding

to the nature of the overlap interactions among the constituent atomic d orbitals. Likewise,

the p-band is split into σ  and π components. The widths of the σ components of each band

are larger than those of the π components because the corresponding σ overlap interactions



are stronger. The intensities of the bands at energy E measure the densities of states at that

E. The total integrated intensity under a given band is a measure of the total number of

atomic orbitals that form the band.
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II. Orbital Symmetry

Symmetry provides additional quantum numbers or labels to use in describing the

mos. Each such quantum number further sub-divides the collection of all mos into sets that

have vanishing Hamiltonian matrix elements among members belonging to different sets.

Orbital interaction "   topology    " as discussed above plays a most- important role in



determining the orbital energy level patterns of a molecule.     Symmetry     also comes into play

but in a different manner. Symmetry can be used to characterize the core, bonding, non-

bonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this

can be carried out in a systematic manner. Once the various mos have been labeled

according to symmetry, it may be possible to recognize additional degeneracies that may

not have been apparent on the basis of orbital-interaction considerations alone. Thus,

topology provides the basic energy ordering pattern and then symmetry enters to identify

additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitals in NH3,

when symmetry adapted within the C3v point group, cluster into a1 and e mos as shown in

the Figure below. The N-atom localized non-bonding lone pair orbital and the N-atom 1s

core orbital also belong to a1 symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and

antibond, and three O-atom non-bonding orbitals of the methoxy radical H3C-O also cluster

into a1 and e orbitals as shown below. In these cases, point group symmetry allows one to

identify degeneracies that may not have been apparent from the structure of the orbital

interactions alone.
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The three resultant molecular orbital energies are, of course, identical to those

obtained without symmetry above. The three LCAO-MO coefficients , now expressing the

mos in terms of the symmetry adapted orbitals are Cis = ( 0.707, 0.707, 0.0) for the

bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for

the antibonding orbital. These coefficients, when combined with the symmetry adaptation

coefficients Csa given earlier, express the three mos in terms of the three aos as φi= ΣsaCis

Csa χa ; the sum Σs Cis Csa  gives the LCAO-MO coefficients Cia which, for example, for

the bonding orbital, are ( 0.7072, 0.707, 0.7072), in agreement with what was found

earlier without using symmetry.

The low energy orbitals of the H2O molecule can be used to illustrate the use of

symmetry within the primitive ao basis as well as in terms of hybrid orbitals. The 1s orbital

on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its

three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of

symmetry, these six valence orbitals would give rise to a 6x6 secular problem. By

combining the two Hydrogen 1s orbitals into 0.707(1sL + 1sR) and 0.707(1sL - 1sR)

symmetry adapted orbitals (labeled a1 and b2 within the C2v point group; see the Figure

below), and recognizing that the Oxygen 2s and 2pz orbitals belong to a1  symmetry (the z

axis is taken as the C2 rotation axis and the x axis is taken to be perpendicular to the plane

in which the three nuclei lie) while the 2px orbital is b1 and the 2py orbital is b2 , allows the

6x6 problem to be decomposed into a 3x3 ( a1) secular problem, a 2x2 ( b2) secular

problem and a 1x1 ( b1 ) problem. These decompositions allow one to conclude that there

is one nonbonding b1 orbital (the Oxygen 2px orbital), bonding and antibonding b2 orbitals

( the O-H bond and antibond formed by the Oxygen 2py orbital interacting with 0.707(1sL

- 1sR)),  and, finally, a set of bonding, nonbonding, and antibonding a1 orbitals (the O-H

bond and antibond formed by the Oxygen 2s and 2pz orbitals interacting with 0.707(1sL +

1sR) and the nonbonding orbital formed by the Oxygen 2s and 2pz orbitals combining to

form the "lone pair" orbital directed along the z-axis away from the two Hydrogen atoms).
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Alternatively, to analyze the H2O molecule in terms of hybrid orbitals, one first

combines the Oxygen 2s, 2pz,  2px and 2py orbitals to form four sp3 hybrid orbitals. The

valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J.

Gillespie and R. S. Nyholm, Quart. Rev.     11     , 339 (1957) and R. J. Gillespie, J. Chem.

Educ.     40     , 295 (1963)) directs one to involve all of the Oxygen valence orbitals in the

hybridization because four σ-bond or nonbonding electron pairs need to be accommodated

about the Oxygen center; no π orbital interactions are involved, of course. Having formed

the four sp3  hybrid orbitals, one proceeds as with the primitive aos; one forms symmetry

adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly as above

to form 0.707(1sL + 1sR) and 0.707(1sL - 1sR). The two sp3  hybrids which lie in the



plane of the H  and O nuclei ( label them L and R) are combined to give symmetry adapted

hybrids: 0.707(L+R) and 0.707(L-R), which are of a1 and b2 symmetry, respectively ( see

the Figure below).  The two sp3  hybrids that lie above and below the plane of the three

nuclei (label them T and B) are also symmetry adapted to form 0.707(T+ B) and 0.707(T-

B), which are of a1 and b1 symmetry, respectively. Once again, one has broken the 6x6

secular problem into a 3x3 a1 block, a 2x2 b2 block and a 1x1 b1 block. Although the

resulting bonding, nonbonding and antibonding a1 orbitals, the bonding and antibonding

b2  orbitals and the nonbonding b1 orbital are now viewed as formed from symmetry

adapted Hydrogen orbitals and four Oxygen sp3  orbitals, they are, of course,    exactly the

   same    molecular orbitals as were obtained earlier in terms of the symmetry adapted primitive

aos. The formation of hybrid orbitals was an intermediate step which could not alter the

final outcome.
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That no degenerate molecular orbitals arose in the above examples is a result of the

fact that the C2v  point group to which H2O and the allyl system belong (and certainly the

Cs subgroup which was used above in the allyl case) has no degenerate representations.

Molecules with higher symmetry such as NH3 , CH4, and benzene have energetically

degenerate orbitals because their molecular point groups have degenerate representations.



B. Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry is intermediate

in complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the

nuclei and the other electrons is described by either the C∞v or D∞h group. The essential

difference between these symmetry groups and the finite point groups which characterize

the non-linear molecules lies in the fact that the electrostatic potential which an electron feels

is invariant to rotations of    any     amount about the molecular axis (i.e., V(γ +δγ ) =V(γ ), for

any angle increment δγ). This means that the operator Cδγ  which generates a rotation of the

electron's azimuthal angle γ by an amount δγ about the molecular axis commutes with the

Hamiltonian [h, Cδγ  ] =0.  Cδγ can be written in terms of the quantum mechanical operator

Lz = -ih ∂/∂γ describing the orbital angular momentum of the electron about the molecular

(z) axis:

Cδγ  = exp( iδγ Lz/h).

Because Cδγ  commutes with the Hamiltonian and Cδγ  can be written in terms of Lz , Lz

must commute with the Hamiltonian. As a result, the molecular orbitals φ of a linear

molecule must be eigenfunctions of the  z-component of angular momentum Lz:

-ih ∂/∂γ φ = mh φ.

The electrostatic potential is not invariant under rotations of the electron about the x or y
axes (those perpendicular to the molecular axis), so Lx and Ly do     not    commute with the

Hamiltonian. Therefore, only Lz provides a "good quantum number" in the sense that the

operator Lz commutes with the Hamiltonian.

In summary, the molecular orbitals of a linear molecule can be labeled by their m

quantum number, which plays the same role as the point group labels did for non-linear

polyatomic molecules, and which gives the eigenvalue of the angular momentum of the

orbital about the molecule's symmetry axis. Because the kinetic energy part of the

Hamiltonian contains (h2/2me r2) ∂2/∂γ2 , whereas the potential energy part is independent

of γ , the energies of the molecular orbitals depend on the    square    of the m quantum

number. Thus, pairs of orbitals with m= ± 1 are energetically degenerate; pairs with m= ±
2 are degenerate, and so on. The absolute value of m, which is what the energy depends

on, is called the λ quantum number. Molecular orbitals with λ = 0 are called σ orbitals;

those with λ = 1 are π orbitals; and those with λ = 2 are δ orbitals.



Just as in the non-linear polyatomic-molecule case, the atomic orbitals which

constitute a given molecular orbital must have the same symmetry as that of the molecular

orbital. This means that σ,π, and δ molecular orbitals are formed, via LCAO-MO, from

m=0, m= ± 1, and m= ± 2 atomic orbitals, respectively. In the diatomic N2 molecule, for

example, the core orbitals are of σ symmetry as are the molecular orbitals formed from the

2s and 2pz atomic orbitals (or their hybrids) on each Nitrogen atom. The molecular orbitals

formed from the atomic 2p-1 =(2px- i 2py) and the 2p+1 =(2px + i 2py ) orbitals are of π
symmetry and have m = -1 and +1.

For homonuclear diatomic molecules and other linear molecules which have a center

of symmetry, the inversion operation (in which an electron's coordinates are inverted

through the center of symmetry of the molecule) is also a symmetry operation. Each

resultant molecular orbital can then also be labeled by a quantum number denoting its parity

with respect to inversion. The symbols g (for gerade or even) and u (for ungerade or odd)

are used for this label. Again for N2 , the core orbitals are of σg and σu  symmetry, and the

bonding and antibonding σ orbitals formed from the 2s and 2pσ  orbitals on the two

Nitrogen atoms are of σg and σu symmetry. 
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The bonding π molecular orbital pair (with m = +1 and -1) is of πu symmetry whereas the

corresponding antibonding orbital is of πg symmetry. Examples of such molecular orbital

symmetries are shown above.

The use of hybrid orbitals can be illustrated in the linear-molecule case by

considering the N2  molecule. Because two π bonding and antibonding molecular orbital

pairs are involved in N2 (one with m = +1, one with m = -1), VSEPR theory guides one to

form sp hybrid orbitals from each of the Nitrogen atom's 2s and 2pz (which is also the 2p

orbital with m = 0) orbitals. Ignoring the core orbitals, which are of σg and σu symmetry as

noted above, one then symmetry adapts the four sp hybrids (two from each atom) to build

one σg orbital involving a bonding interaction between two sp hybrids pointed toward one



another, an antibonding σu orbital involving the same pair of sp orbitals but coupled with

opposite signs, a nonbonding σg orbital composed of two sp hybrids pointed away from

the interatomic region combined with like sign, and a nonbonding σu orbital made of the

latter two sp hybrids combined with opposite signs. The two 2pm orbitals (m= +1 and -1)

on each Nitrogen atom are then symmetry adapted to produce a pair of bonding πu orbitals

(with m = +1 and -1) and a pair of antibonding πg orbitals (with m = +1 and -1). This

hybridization and symmetry adaptation thereby reduces the 8x8 secular problem (which

would be 10x10 if the core orbitals were included) into a 2x2 σg problem (one bonding and

one nonbonding), a 2x2  σu problem (one bonding and one nonbonding),  an identical pair

of 1x1 πu problems (bonding), and an identical pair of 1x1 πg problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points

of view is provided by the CO molecule. Using, for example, sp hybrid orbitals on C and

O, one obtains a picture in which there are: two core σ orbitals corresponding to the O-atom

1s and C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding

orbitals arising from the four sp hybrids; a pair of bonding and a pair of antibonding π
orbitals formed from the two p orbitals on O and the two p orbitals on C. Alternatively,

using sp2 hybrids on both C and O, one obtains: the two core σ orbitals as above;  a CO

bonding and antibonding orbital pair formed from the sp2 hybrids that are directed along

the CO bond; and a single π bonding and antibonding π* orbital set. The remaining two

sp2 orbitals on C and the two on O can then be symmetry adapted by forming ±
combinations within each pair to yield: an a1 non-bonding orbital (from the + combination)

on each of C and O directed away from the CO bond axis; and a pπ orbital on each of C and

O that can subsequently overlap to form the second π bonding and π* antibonding orbital

pair.

It should be clear from the above examples, that no matter what particular hybrid

orbitals one chooses to utilize in conceptualizing a molecule's orbital interactions,

symmetry ultimately returns to force one to form proper symmetry adapted combinations

which, in turn, renders the various points of view equivalent. In the above examples and in

several earlier examples, symmetry adaptation of, for example, sp2 orbital pairs (e.g., spL2

± spR2) generated orbitals of pure spatial symmetry. In fact, symmetry combining hybrid

orbitals in this manner amounts to forming other hybrid orbitals. For example, the above ±
combinations of sp2 hybrids directed to the left (L) and right (R) of some bond axis

generate a new    sp     hybrid directed along the bond axis but opposite to the sp2 hybrid used

to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the

CO example, these combinations of sp2 hybrids on O and C produce sp hybrids on O and

C and pπ orbitals on O and C.

C. Atoms



Atoms belong to the full rotation symmetry group; this makes their symmetry

analysis the most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In

particular, the potential field experienced by an electron in an orbital becomes invariant to

rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule case, it is

invariant only to rotations of the electron's position about the molecule's symmetry axis

(the z axis). These invariances are, of course, caused by the spherical symmetry of the

potential of any atom. This additional symmetry of the potential causes the Hamiltonian to

commute with all three components of the electron's angular momentum: [Lx , H] =0, [Ly ,

H] =0, and [Lz , H] =0. It is straightforward to show that H also commutes with the

operator L2 = Lx2 + Ly2 + Lz2 , defined as the sum of the squares of the three individual

components of the angular momentum. Because Lx, Ly, and Lz do not commute with one

another, orbitals which are eigenfunctions of H cannot be simultaneous eigenfunctions of

all three angular momentum operators. Because Lx, Ly, and Lz  do commute with L2 ,

orbitals can be found which are eigenfunctions of H, of L2 and of any one component of L;

it is convention to select Lz as the operator which, along with H and L2 , form a mutually

commutative operator set of which the orbitals are simultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both l and m quantum numbers,

which play the role that point group labels did for non-linear molecules and λ did for linear

molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly

contains L2/2mer2 , (ii) the Hamiltonian does not contain additional Lz , Lx, or Ly factors,

and (iii) the potential energy part of the Hamiltonian is spherically symmetric (and

commutes with L2 and Lz), the energies of atomic orbitals depend upon the l quantum

number and are independent of the m quantum number. This is the source of the 2l+1- fold

degeneracy of atomic orbitals.

The angular part of the atomic orbitals is described in terms of the spherical

harmonics Yl,m  ; that is, each atomic orbital φ can be expressed as

φn,l,m = Yl,m  (θ, ϕ ) Rn,l (r).

The explicit solutions for the Yl,m  and for the radial wavefunctions Rn,l are given in

Appendix B. The variables r,θ,ϕ give the position of the electron in the orbital in

spherical coordinates. These angular functions are, as discussed earlier, related to the

cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the

orbitals with l=2 and m=2,1,0,-1,-2 can be expressed in terms of the dxy, dxz, dyz, dxx-yy ,

and dzz orbitals. Either set of orbitals is acceptable in the sense that each orbital is an



eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the

Hamiltonian- eigenfunction feature. The orbital set labeled with l and m quantum numbers

is most useful when one is dealing with isolated atoms (which have spherical symmetry),

because m is then a valid symmetry label, or with an atom in a local environment which is

axially symmetric (e.g., in a linear molecule) where the m quantum number remains a

useful symmetry label. The cartesian orbitals are preferred for describing an atom in a local

environment which displays lower than axial symmetry (e.g., an atom interacting with a

diatomic molecule in C2v symmetry).

The radial part of the orbital Rn,l(r) as well as the orbital energy εn,l depend on l

because the Hamiltonian itself contains l(l+1)h2/2mer2; they are independent of m because

the Hamiltonian has no m-dependence. For bound orbitals, Rn,l(r) decays exponentially for

large r (as exp(-2r√2εn,l )), and for unbound (scattering) orbitals, it is oscillatory at large r

with an oscillation period related to the deBroglie wavelength of the electron. In Rn,l (r)

there are (n-l-1) radial nodes lying between r=0 and r=∞ . These nodes provide differential

stabilization of low-l orbitals over high-l orbitals of the same principal quantum number n.

That is, penetration of outer shells is greater for low-l orbitals because they have more

radial nodes; as a result, they have larger amplitude near the atomic nucleus and thus

experience enhanced attraction to the positive nuclear charge. The average size (e.g.,

average value of r; <r> = ∫R2n,l r r2 dr) of an orbital depends strongly on n, weakly on l

and is independent of m; it also depends strongly on the nuclear charge and on the potential

produced by the other electrons. This potential is often characterized qualitatively in terms

of an effective nuclear charge Zeff which is the true nuclear charge of the atom Z minus a

screening component Zsc which describes the repulsive effect of the electron density lying

radially inside the electron under study. Because, for a given n,  low-l orbitals penetrate

closer to the nucleus than do high-l orbitals, they have higher Zeff values (i.e., smaller Zsc

values) and correspondingly smaller average sizes and larger binding energies.

Chapter 6

Along "Reaction Paths", Orbitals Can be Connected One-to-One According to Their

Symmetries and Energies. This is the Origin of the Woodward-Hoffmann Rules

I. Reduction in Symmetry

As fragments are brought together to form a larger molecule, the symmetry of the

nuclear framework (recall the symmetry of the coulombic potential experienced by electrons

depends on the locations of the nuclei) changes. However, in some cases, certain

symmetry elements persist throughout the path connecting the fragments and the product

molecule. These preserved symmetry elements can be used to label the orbitals throughout

the 'reaction'.



The point-group, axial- and full-rotation group symmetries which arise in non-

linear molecules, linear molecules, and atoms, respectively, are seen to provide quantum

numbers or symmetry labels which can be used to characterize the orbitals appropriate for

each such species. In a physical event such as interaction with an external electric or

magnetic field or a chemical process such as collision or reaction with another species, the

atom or molecule can experience a change in environment which causes the electrostatic

potential which its orbitals experience to be of lower symmetry than that of the isolated

atom or molecule. For example, when an atom interacts with another atom to form a

diatomic molecule or simply to exchange energy during a collision, each atom's

environment changes from being spherically symmetric to being axially symmetric. When

the formaldehyde molecule undergoes unimolecular decomposition to produce CO + H2

along a path that preserves C2v symmetry, the orbitals of the CO moiety evolve from C2v

symmetry to axial symmetry.

It is important, therefore to be able to label the orbitals of atoms, linear, and non-

linear molecules in terms of their full symmetries as well in terms of the groups appropriate

to lower-symmetry situations. This can be done by knowing how the representations of a

higher symmetry group decompose into representations of a lower group. For example, the

Yl,m  functions appropriate for spherical symmetry, which belong to a 2l+1 fold degenerate

set in this higher symmetry, decompose into doubly degenerate pairs of functions Yl,l  , Yl,-

l ; Yl,l-1 , Yl,-1+1;   etc., plus a single non-degenerate function Yl,0 , in axial symmetry.

Moreover, because L2 no longer commutes with the Hamiltonian whereas Lz does, orbitals

with different l-values but the same m-values can be coupled. As the N2 molecule is formed

from two N atoms, the 2s and 2pz orbitals, both of which belong to the same (σ) symmetry

in the axial rotation group but which are of different symmetry in the isolated-atom

spherical symmetry, can mix to form the σg bonding orbital, the σu antibonding, as well as

the σg and σu nonbonding lone-pair orbitals. The fact that 2s and 2p have different l-values

no longer uncouples these orbitals as it did for the isolated atoms, because l is no longer a

"good" quantum number.

Another example of reduced symmetry is provided by the changes that occur as

H2O fragments into OH and H. The σ bonding orbitals (a1 and b2) and in-plane lone pair

(a1) and the σ* antibonding (a1 and b2)  of H2O become a' orbitals (see the Figure below);

the out-of-plane b1 lone pair orbital becomes a'' (in Appendix IV of     Electronic        Spectra       and

    Electronic        Structure        of        Polyatomic         Molecules    , G. Herzberg, Van Nostrand Reinhold Co.,

New York, N.Y. (1966) tables are given which allow one to determine how particular

symmetries of a higher group evolve into symmetries of a lower group).
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To further illustrate these points dealing with orbital symmetry, consider the

insertion of CO into H2 along a path which preserves C2v symmetry. As the insertion

occurs, the degenerate π bonding orbitals of CO become b1 and b2 orbitals. The

antibonding π* orbitals of CO also become b1 and b2. The σg bonding orbital of H2

becomes a1 , and the σu antibonding H2 orbital becomes b2. The orbitals of the reactant

H2CO are energy-ordered and labeled according to C2v symmetry in the Figure shown

below as are the orbitals of the product H2 + CO.



H2CO ==> H2 + CO Orbital Correlation Diagram in C2v Symmetry
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When these orbitals are connected according to their symmetries as shown above,

one reactant orbital to one product orbital starting with the low-energy orbitals and working

to increasing energy, an orbital correlation diagram (OCD) is formed. These diagrams play

essential roles in analyzing whether reactions will have symmetry-imposed energy barriers

on their potential energy surfaces along the reaction path considered in the symmetry

analysis. The essence of this analysis, which is covered in detail in Chapter 12, can be

understood by noticing that the sixteen electrons of ground-state H2CO do     not    occupy their

orbitals with the same occupancy pattern, symmetry-by-symmetry, as do the sixteen

electrons of ground-state H2 + CO. In particular, H2CO places a pair of electrons in the

second b2 orbital while H2 + CO does not; on the other hand, H2 + CO places two

electrons in the sixth a1 orbital while H2CO does not. The mismatch of the orbitals near the

5a1, 6a1, and 2b2 orbitals is the source of the mismatch in the electronic configurations of

the ground-states of H2CO and H2 + CO. These mismatches give rise, as shown in

Chapter 12, to symmetry-caused energy barriers on the H2CO ==> H2 + CO reaction

potential energy surface.

II. Orbital Correlation Diagrams



Connecting the energy-ordered orbitals of reactants to those of products according

to symmetry elements that are preserved throughout the reaction produces an orbital

correlation diagram.

In each of the examples cited above, symmetry reduction occurred as a molecule or

atom approached and interacted with another species. The "path" along which this approach

was thought to occur was characterized by symmetry in the sense that it preserved certain

symmetry elements while destroying others. For example, the collision of two Nitrogen

atoms to produce N2 clearly occurs in a way which destroys spherical symmetry but

preserves axial symmetry. In the other example used above, the formaldehyde molecule

was postulated to decompose along a path which preserves C2v symmetry while destroying

the axial symmetries of CO and H2. The actual decomposition of formaldehyde may occur

along some other path, but    if    it were to occur along the proposed path, then the symmetry

analysis presented above would be useful.

The symmetry reduction analysis outlined above allows one to see new orbital

interactions that arise (e.g., the 2s and 2pz interactions in the N + N ==> N2 example) as

the interaction increases. It also allows one to construct orbital correlation diagrams

(OCD's) in which the orbitals of the "reactants" and "products" are energy ordered and

labeled by the symmetries which are preserved throughout the "path", and the orbitals are

then correlated by drawing lines connecting the orbitals of a given symmetry, one-by-one

in increasing energy, from the reactants side of the diagram to the products side. As noted

above, such orbital correlation diagrams play a central role in using symmetry to predict

whether photochemical and thermal  chemical reactions will experience activation barriers

along proposed reaction paths (this subject is treated in Chapter 12).

To again illustrate the construction of an OCD, consider the π orbitals of 1,3-

butadiene as the molecule undergoes disrotatory closing (notice that this is where a

particular path is postulated; the actual reaction may or may not occur along such a path) to

form cyclobutene. Along this path, the plane of symmetry which bisects and is

perpendicular to the C2-C3 bond is preserved, so the orbitals of the reactant and product are

labeled as being even-e or odd-o under reflection through this plane. It is     not    proper to label

the orbitals with respect to their symmetry under the plane containing the four C atoms;

although this plane is indeed a symmetry operation for the reactants and products, it does

not remain a valid symmetry throughout the reaction path.
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The four π orbitals of 1,3-butadiene are of the following symmetries under the

preserved plane (see the orbitals in the Figure above): π1 = e, π2 = o, π3 =e, π4 = o. The π
and π* and σ and σ* orbitals of cyclobutane which evolve from the four active orbitals of

the 1,3-butadiene are of the following symmetry and energy order: σ = e, π = e, π* = o, σ*

= o. Connecting these orbitals by symmetry, starting with the lowest energy orbital and

going through the highest energy orbital, gives the following OCD:
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The fact that the lowest two orbitals of the reactants, which are those occupied by the four

π electrons of the reactant, do not correlate to the lowest two orbitals of the products,

which are the orbitals occupied by the two σ and two π electrons of the products, will be

shown later in Chapter 12 to be the origin of the activation barrier for the thermal

disrotatory rearrangement (in which the four active electrons occupy these lowest two

orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state

having orbital occupancy π12π21π31 , then reaction along the path considered would not

have any symmetry-imposed barrier because this singly excited configuration correlates to a

singly-excited configuration σ2π1π*1 of the products. The fact that the reactant and product

configurations are of equivalent excitation level causes there to be no symmetry constraints

on the photochemically induced reaction of 1,3-butadiene to produce cyclobutene. In

contrast, the thermal reaction considered first above has a symmetry-imposed barrier



because the orbital occupancy is forced to rearrange (by the occupancy of two electrons)

from the ground-state wavefunction of the reactant to smoothly evolve into that of the

product.

It should be stressed that although these symmetry considerations may allow one to

anticipate barriers on reaction potential energy surfaces, they have nothing to do with the

thermodynamic energy differences of such reactions. Symmetry says whether there will be

symmetry-imposed barriers above and beyond any thermodynamic energy differences. The

enthalpies of formation of reactants and products contain the information about the

reaction's overall energy balance.

As another example of an OCD, consider the N + N ==> N2 recombination reaction

mentioned above. The orbitals of the atoms must first be labeled according to the axial

rotation group (including the inversion operation because this is a homonuclear molecule).

The core 1s orbitals are symmetry adapted to produce 1σg and 1σu orbitals (the number 1 is

used to indicate that these are the lowest energy orbitals of their respective symmetries); the

2s orbitals generate 2σg and 2σu orbitals; the 2p orbitals combine to yield 3σg , a pair of

1πu orbitals, a pair of 1πg orbitals, and the 3σu orbital, whose bonding, nonbonding, and

antibonding nature was detailed earlier. In the two separated Nitrogen atoms, the two

orbitals derived from the 2s atomic orbitals are degenerate, and the six orbitals derived from

the Nitrogen atoms' 2p orbitals are degenerate. At the equilibrium geometry of the N2

molecule, these degeneracies are lifted, Only the degeneracies of the 1πu and 1πg orbitals,

which are dictated by the degeneracy of +m and -m orbitals within the axial rotation group,

remain.

As one proceeds inward past the equilibrium bond length of N2, toward the united-

atom limit in which the two Nitrogen nuclei are fused to produce a Silicon nucleus, the

energy ordering of the orbitals changes. Labeling the orbitals of the Silicon atom according

to the axial rotation group, one finds the 1s is σg , the 2s is σg ,  the 2p orbitals are σu and

πu , the 3s orbital is σg , the 3p orbitals are σu  and πu , and the 3d orbitals are σg , πg ,

and δg. The following OCD is obtained when one connects the orbitals of the two separated

Nitrogen atoms (properly symmetry adapted) to those of the N2 molecule and eventually to

those of the Silicon atom.
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The fact that the separated-atom and united-atom limits involve several crossings in the

OCD can be used to explain barriers in the potential energy curves of such diatomic

molecules which occur at short internuclear distances. It should be noted that the Silicon

atom's 3p orbitals of πu symmetry and its 3d orbitals of σg and δg symmetry correlate with

higher energy orbitals of N2 not with the valence orbitals of this molecule, and that the 3σu

antibonding orbital of N2 correlates with a higher energy orbital of Silicon (in particular, its

4p orbital).

Chapter 7

The Most Elementary Molecular Orbital Models Contain Symmetry, Nodal Pattern, and

Approximate Energy Information

I. The LCAO-MO Expansion and the Orbital-Level Schrödinger Equation

In the simplest picture of chemical bonding, the valence molecular orbitals φi are

constructed as linear combinations of valence atomic orbitals χµ according to the LCAO-

MO formula:

φi = Σµ Ciµ χµ.

The core electrons are not explicitly included in such a treatment, although their effects are

felt through an electrostatic potential

V that has the following properties:

i.  V contains contributions from all of the nuclei in the molecule exerting coulombic

attractions on the electron, as well as coulombic repulsions and exchange interactions

exerted by the other electrons on this electron;

ii.  As a result of the (assumed) cancellation of attractions from distant nuclei and

repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that

surround  these distant nuclei, the effect of V on any particular mo φi depends primarily on

the atomic charges and local bond polarities of the atoms over which φi  is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be

developed in which one assumes that each mo φi obeys a one-electron Schrödinger

equation

h φi = εi φi.



Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron

and the potential V mentioned above:

[ - h2/2me ∇2 + V] φi = εi φi .

Expanding the mo φi in the LCAO-MO manner, substituting this expansion into the above

Schrödinger equation, multiplying on the left by χ*ν, and integrating over the coordinates

of the electron generates the following orbital-level eigenvalue problem:

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ.

If the constituent atomic orbitals {χµ} have been orthonormalized as discussed earlier in

this chapter, the overlap integrals <χν |χµ> reduce to δµ,ν.

II. Determining the Effective Potential V

In the most elementary models of orbital structure, the quantities that explicitly

define the potential V are not computed from first principles as they are in so-called    ab initio    

methods (see Section 6). Rather, either experimental data or results of    ab initio    

calculations are used to determine the parameters in terms of which V is expressed. The

resulting empirical or semi-empirical methods discussed below differ in the sophistication

used to include electron-electron interactions as well as in the manner experimental data or

   ab initio     computational results are used to specify V.

If experimental data is used to parameterize a semi-empirical model, then the model

should not be extended beyond the level at which it has been parameterized. For example,

experimental bond energies, excitation energies, and ionization energies may be used to

determine molecular orbital energies which, in turn, are summed to compute total energies.

In such a parameterization it would be incorrect to subsequently use these mos to form a

wavefunction, as in Sections 3 and 6, that goes beyond the simple 'product of orbitals'

description. To do so would be inconsistent because the more sophisticated wavefunction

would duplicate what using the experimental data (which already contains mother nature's

electronic correlations) to determine the parameters had accomplished.

Alternatively, if results of    ab initio     theory at the single-configuration orbital-product

wavefunction level are used to define the parameters of a semi-empirical model, it would

then be proper to use the semi-empirical orbitals in a subsequent higher-level treatment of

electronic structure as done in Section 6.

A. The Hückel Parameterization of V



In the most simplified embodiment of the above orbital-level model, the following

additional approximations are introduced:

1.  The diagonal values <χµ|- h2 /2me ∇2 + V|χµ>, which are usually denoted αµ,

are taken to be equal to the energy of an electron in the atomic orbital χµ and, as such, are

evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

<χµ|- h2/2me ∇2 + V |χµ> = -IPµ,

for atomic orbitals that are occupied in the atom, and

<χµ|- h2/2me ∇2 + V |χµ> = -EAµ,

for atomic orbitals that are not occupied in the atom.

These approximations assume that contributions in V arising from coulombic

attraction to nuclei other than the one on which χµ is located, and repulsions from the core,

lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent

that

<χµ| V | χµ> contains only potentials from the atom on which χµ sits.

It should be noted that the IP's  and EA's of valence-state orbitals are not identical

to the experimentally measured IP's and EA's of the corresponding atom, but can be

obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon

atom is the energy difference associated with the hypothetical process

C(1s22s2px2py2pz) ==> C+(1s22s2px2py) .

If the energy differences for the "promotion" of C

C(1s22s22px2py) ==> C(1s22s2px2py2pz) ; ∆EC

and for the promotion of C+

C+(1s22s22px) ==> C+(1s22s2px2py) ; ∆EC+

are known, the desired VSIP is given by:



IP2pz
 = IPC  + ∆EC+  - ∆EC .

The EA of the 2p orbital is obtained from the

C(1s22s22px2py) ==> C-(1s22s22px2py2pz)

energy gap, which means that EA2pz
 = EA

C
 . Some common IP's of valence 2p orbitals in

eV are as follows: C (11.16), N (14.12), N+ (28.71), O (17.70), O+ (31.42), F+ (37.28).

2.  The off-diagonal elements <χν |- h2/2me ∇2 + V |χµ> are

taken as zero if χµ  and χν belong to the same atom because the atomic orbitals are

assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to

an electron moving in that atom. They are set equal to a parameter denoted βµ,ν if χµ and

χν reside on neighboring atoms that are chemically bonded. If χµ and χν reside on atoms

that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the βµ,ν parameters is often approximated by

assuming that βµ,ν is proportional to the overlap Sµ,ν between the corresponding atomic

orbitals:

βµ,ν = βoµ,ν Sµ,ν .

Here βoµ,ν is a constant (having energy units) characteristic of the bonding interaction

between χµ  and χν; its value is usually determined by forcing the molecular orbital

energies obtained from such a qualitative orbital treatment to yield experimentally correct

ionization potentials, bond dissociation energies, or electronic transition energies.

The particular approach described thus far forms the basis of the so-called      Hückel

     model   . Its implementation requires knowledge of the atomic αµ and β0µ,ν values, which

are eventually expressed in terms of experimental data, as well as a means of calculating the

geometry dependence of the βµ,ν 's (e.g., some method for computing overlap matrices

Sµ,ν ).

B. The Extended Hückel Method

It is well known that bonding and antibonding orbitals are formed when a pair of

atomic orbitals from neighboring atoms interact. The energy splitting between the bonding



and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,

the energy of the antibonding orbital lies higher above the arithmetic mean Eave = EA + EB

of the energies of the constituent atomic orbitals (EA and EB) than the bonding orbital lies

below Eave . If overlap is ignored, as in conventional Hückel theory (except in

parameterizing the geometry dependence of βµ,ν), the differential destabilization of

antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following

overlap-dependent manner:

hν ,µ = <χν |- h2/2me ∇2 + V |χµ> = 0.5 K (hµ,µ + hν ,ν) Sµ,ν  ,

and explicitly treating the overlaps among the constituent atomic orbitals {χµ} in solving

the orbital-level Schrödinger equation

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ,

Hoffmann introduced the so-called extended Hückel method. He found that a value for K=

1.75 gave optimal results when using Slater-type orbitals as a basis (and for calculating the

Sµ,ν). The diagonal hµ,µ elements are given, as in the conventional Hückel method, in

terms of valence-state IP's and EA's. Cusachs later proposed a variant of this

parameterization of the off-diagonal elements:

hν ,µ = 0.5 K (hµ,µ + hν ,ν) Sµ,ν (2-|Sµ,ν |).

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization

energies (αµ's), the number of valence electrons (#Elec.) as well as the orbital exponents

(es , ep and ed) of Slater-type orbitals used to calculate the overlap matrix elements Sµ,ν

corresponding are given below.



Atom # Elec. es=ep ed αs(eV) αp(eV) αd(eV)

H 1 1.3 -13.6

Li 1 0.650 -5.4 -3.5

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -8.5

C 4 1.625 -21.4 -11.4

N 5 1.950 -26.0 -13.4

O 6 2.275 -32.3 -14.8

F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0

Mg 2 0.950 -9.0 -4.5

Al 3 1.167 -12.3 -6.5

Si 4 1.383 1.383 -17.3 -9.2 -6.0

P 5 1.600 1.400 -18.6 -14.0 -7.0

S 6 1.817 1.500 -20.0 -13.3 -8.0

Cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hückel or extended Hückel methods no    explicit    reference is made to electron-

electron interactions although such contributions are absorbed into the V potential, and

hence into the αµ and βµ,ν parameters of Hückel theory or the hµ,µ and hµ,ν parameters of

extended Hückel theory. As electron density flows from one atom to another (due to

electronegativity differences), the electron-electron repulsions in various atomic orbitals

changes. To account for such charge-density-dependent coulombic energies, one must use

an approach that includes explicit reference to inter-orbital coulomb and exchange

interactions. There exists a large family of semi-empirical methods that permit explicit

treatment of electronic interactions; some of the more commonly used approaches are

discussed in Appendix F.


