
Chapter 12

Along "reaction paths", configurations can be connected one-to-one according to their

symmetries and energies. This is another part of the Woodward-Hoffmann rules

I. Concepts of Configuration and State Energies

A. Plots of CSF Energies Give Configuration Correlation Diagrams

The energy of a particular electronic state of an atom or molecule has been

expressed in terms of Hamiltonian matrix elements, using the SC rules, over the various

spin-and spatially-

adapted determinants or CSFs which enter into the state wavefunction.

E=ΣI,J < ΦΙ | H | ΦJ > CI CJ .

The diagonal matrix elements of H in the CSF basis multiplied by the appropriate CI

amplitudes < ΦΙ | H | ΦI > CI CI  represent the energy of the Ith CSF weighted by the

strength ( CI2 ) of that CSF in the wavefunction. The off-diagonal elements represent the

effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have

nearly the same energy ( i.e., < ΦΙ | H | ΦI > ≅ < ΦJ |  H | ΦJ > )

and there is strong coupling ( i.e., < ΦΙ | H | ΦJ > is large ). Whenever the

CSFs are widely separated in energy, each wavefunction is  dominated by a single CSF.

B. CSFs Interact and Couple to Produce States and State Correlation Diagrams

Just as orbital energies connected according to their symmetries and plotted as

functions of geometry constitute an orbital correlation diagram, plots of the     diagonal CSF

   energies   , connected according to symmetry, constitute a    configuration correlation diagram      (

CCD ). If, near regions where energies of CSFs of the same symmetry cross (according to

the direct product rule of group theory discussed in Appendix E, only CSFs of the same

symmetry mix because only they have non-vanishing < ΦI | H | ΦJ > matrix elements), CI

mixing is allowed to couple the CSFs to give rise to "avoided crossings", then the CCD is

converted into a so-called    state correlation diagram      ( SCD ).

C. CSFs that Differ by Two Spin-Orbitals Interact Less Strongly than CSFs that Differ by

One Spin-Orbital



The strengths of the couplings between pairs of CSFs whose energies cross are

evaluated through the SC rules. CSFs that differ by more than two spin-orbital occupancies

do not couple; the SC rules give vanishing Hamiltonian matrix elements for such pairs.

Pairs that differ by two spin-orbitals (e.g. |.. φa... φb...| vs |.. φa'... φb'...| ) have interaction

strengths determined by the two-electron integrals

< ab | a'b' > - < ab | b'a'>. Pairs that differ by a single spin-orbital (e.g. |.. φa... ...| vs |..

φa'... ...| ) are coupled by the one- and two- electron parts of H: < a | f | b> + Σ j [< aj | bj> -

< aj | jb > ]. Usually, couplings among CSFs that differ by two spin-orbitals are much

weaker than those among CSFs that differ by one spin-orbital. In the latter case, the full

strength of H is brought to bear, whereas in the former, only the electron-electron coulomb

potential is operative.

D. State Correlation Diagrams

In the SCD, the energies are connected by symmetry but the configurational nature

as reflected in the CI coefficients changes as one passes through geometries where

crossings in the CCD occur. The SCD is the ultimate product of an orbital and

configuration symmetry and energy analysis and gives one the most useful information

about whether reactions will or will not encounter barriers on the ground and excited state

surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory

closing of 1,3-butadiene to produce cyclobutene. The OCD given earlier for this proposed

reaction path is reproduced below.
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Recall that the symmetry labels e and o refer to the symmetries of the orbitals under

reflection through the one Cv plane that is     preserved     throughout the proposed disrotatory

closing. Low-energy configurations (assuming one is interested in the thermal or low-lying

photochemically excited-state reactivity of this system) for the reactant molecule and their

overall space and spin symmetry are as follows:

(i) π12π22 = 1e21o2 , 1Even

(ii) π12π21π31  = 1e21o12e1 , 3Odd and 1Odd.

For the product molecule, on the other hand, the low-lying states are

(iii) σ2π2 = 1e22e2 , 1Even

(iv) σ2π1π∗1 = 1e22e11o1 , 3Odd , 1Odd.

Notice that although the lowest energy configuration at the reactant geometry π12π22 =

1e21o2  and the lowest energy configuration at the product geometry σ2π2 = 1e22e2 are

both of 1Even symmetry, they are     not    the same configurations; they involve occupancy of

different symmetry orbitals.



In constructing the CCD, one must trace the energies of all four of the above CSFs

(actually there are more because the singlet and triplet excited CSFs must be treated

independently) along the proposed reaction path. In doing so, one must realize that the

1e21o2 CSF has low energy on the reactant side of the CCD because it corresponds to

π12π22 orbital occupancy, but on the product side, it corresponds to σ2π∗2 orbital

occupancy and is thus of very high energy. Likewise, the 1e22e2 CSF has low energy on

the product side where it is σ2π2  but high energy on the reactant side where it corresponds

to π12π32 . The low-lying singly excited CSFs are 1e22e11o1 at both reactant and product

geometries; in the former case, they correspond to π12π21π31  occupancy and at the latter to

σ2π1π∗1 occupancy. Plotting the energies of these CSFs along the disrotatory reaction path

results in the CCD shown below.
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If the two 1Even CSFs which cross are allowed to interact (the SC rules give their

interaction strength in terms of the exchange integral

< |1e21o2 | H | |1e22e2 | > = < 1o1o | 2e2e > = K 1o,2e ) to produce states which are

combinations of the two 1Even CSFs, the following SCD results:
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This SCD predicts that the thermal (i.e., on the ground electronic surface)

disrotatory rearrangement of 1,3-butadiene to produce cyclobutene will experience a

   symmety-imposed barrier    which arises because of the avoided crossing of the two 1Even

configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the

configuration) which is best for the ground state of the reactant is not identical to that of the

product molecule. The SCD also predicts that there should be no symmetry-imposed barrier

for the singlet or triplet excited-state rearrangement, although the reaction leading from

excited 1,3-butadiene to excited cyclobutene may be endothermic on the grounds of bond

strengths alone.

It is also possible to infer from the SCD that excitation of the lowest singlet ππ∗

state of 1,3-butadiene would involve a low quantum yield for producing cyclobutene and

would, in fact, produce ground-state butadiene. As the reaction proceeds along the singlet

ππ∗ surface this 1Odd state intersects the ground 1Even surface on the    reactant side    of the

diagram; internal conversion ( i.e., quenching from the 1Odd to the 1Even surfaces induced

by using a  vibration of odd symmetry to "digest" the excess energy (much like vibronic

borrowing in spectroscopy) can lead to production of ground-state reactant molecules.

Some fraction of such events will lead to the system remaining on the 1Odd surface until,

further along the reaction path, the 1Odd surface again intersects the 1Even surface on the

    product side    at which time quenching to produce ground-state products can occur.



Although, in principle, it is possible for some fraction of the events to follow the 1Odd

surface beyond this second intersection and to thus lead to 1Odd product molecules that

might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a result,

reactions which are chemiluminescent are rare. An appropriate introduction to the use of

OCD's, CCD's, and SCD's as well as the radiationless processes that can occur in thermal

and photochemical reactions is given in the text     Energetic Principles of Chemical Reactions   

, J. Simons, Jones and Bartlett, Boston (1983).

II. Mixing of Covalent and Ionic Configurations

As chemists, much of our intuition concerning chemical bonds is built on simple

models introduced in undergraduate chemistry courses.  The detailed examination of the H2

molecule via the valence bond and molecular orbital approaches forms the basis of our

thinking about bonding when confronted with new systems. Let us examine this model

system in further detail to explore the electronic states that arise by occupying two orbitals

(derived from the two 1s orbitals on the two hydrogen atoms) with two electrons.

In total, there exist     six     electronic states for all such two-orbital, two-electron

systems. The heterolytic fragments  X + Y••   and  X••   + Y produce two singlet states; the

homolytic fragments X• + Y• produce one singlet state and a set of three triplet states

having MS = 1, 0, and -1. Understanding the relative energies of these six states , their

bonding and antibonding characters, and which molecular state dissociates to which

asymptote are important.

Before proceeding, it is important to clarify the notation (e.g., X•, Y•, X, Y••  ,

etc.), which is designed to be applicable to neutral as well as charged species. In all cases

considered here, only two electrons play active roles in the bond formation. These electrons

are represented by the dots. The symbols X• and Y• are used to denote species in which a

single electron is attached to the respective  fragment. By X•• , we mean that both electrons

are attached to the X- fragment; Y  means that neither electron resides on the Y- fragment.

Let us now examine the various bonding situations that can occur; these examples will help

illustrate and further clarify this notation.

A. The H2 Case in Which Homolytic Bond Cleavage is Favored

To consider why the two-orbital two-electron single bond formation case can be

more complex than often thought, let  us consider the H2 system in more detail.  In the

molecular orbital description of H2, both bonding σg and antibonding σu mos appear.



There are two electrons that can both occupy the σg mo to yield the ground electronic state

H2(1Σg+,  σg2); however, they can also occupy both orbitals to yield 3Σu+(σg1σu1) and
1Σu+ (σg1σu1), or both can occupy the σu mo to give the 1Σg+(σu2) state.  As

demonstrated explicitly below, these latter two states dissociate heterolytically to X + Y ••  =

H+ + H-, and are sufficiently high in energy relative to X• + Y• = H + H that we ordinarily

can ignore them. However, their presence and character are important in the development

of a full treatment of the molecular orbital model for H2 and are    essential    to a proper

treatment of cases in which heterolytic bond cleavage is favored.

B. Cases in Which Heterolytic Bond Cleavage is Favored

For some systems one or both of the heterolytic bond dissociation asymptotes

(e.g., X+ Y ••  or X ••  + Y) may be    lower    in energy than the homolytic bond dissociation

asymptote.  Thus, the states that are analogues of the 1Σu+(σg1σu1) and 1Σg+(σu2) states of

H2 can no longer be ignored in understanding the valence states of the XY molecules. This

situation arises quite naturally in systems involving transition metals, where interactions

between empty metal or metal ion orbitals and 2-electron donor ligands are ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies

lower than the homolytic products. The first involves transition metal dimer cations, M2+.

Especially for metals to the right side of the periodic table, such cations can be considered

to have ground-state electron configurations with σ2dndn+1 character, where the d electrons

are not heavily involved in the bonding and the σ bond is formed primarily from the metal

atom s orbitals.  If the σ bond is homolytically broken, one forms X• + Y• = M (s1dn+1)

+ M+ (s1dn). For most metals, this dissociation asymptote lies higher in energy than the

heterolytic products X••  + Y = M (s2dn) + M+ (s0dn+1), since the latter electron

configurations correspond to the ground states for the neutrals and ions, respectively.  A

prototypical species which fits this bonding picture is Ni2+.

The second type of system in which heterolytic cleavage is favored arises with a

metal-ligand complex having an atomic metal ion (with a s0dn+1 configuration) and a two

electron donor, L •• .  A prototype is (Ag  C6H6)+ which was observed to photodissociate

to form X• + Y• = Ag(2S, s1d10) + C6H6+(2B1) rather than the lower energy

(heterolytically cleaved) dissociation limit  Y + X••   =

Ag+(1S, s0d10) + C6H6 (1A1). 

C. Analysis of Two-Electron, Two-Orbital, Single-Bond Formation



1. Orbitals, Configurations and States

The resultant  family of six electronic states can be described in terms of the six

configuration state functions (CSFs) that arise when one occupies the pair of bonding σ
and antibonding σ* molecular orbitals with two electrons. The CSFs are combinations of

Slater determinants formed to generate proper spin- and spatial symmetry- functions. 

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs

can be formed from one or more Slater determinants. For example, to describe the singlet

CSF corresponding to the closed-shell σ2 orbital occupancy, a single Slater determinant

1Σ (0)  =  |σα σβ|  =  (2)-1/2 { σα(1) σβ(2) -  σβ(1) σα(2)  }

suffices. An analogous expression for the (σ*)2  CSF is given by

1Σ** (0)  =  | σ*ασ*β |  =   (2)−1/2 { σ*α (1) σ*β (2) - σ*α (2) σ*β (1) }.

Also, the MS = 1 component of the triplet state having σσ* orbital occupancy can be

written as a single Slater determinant:

3Σ* (1)  =  |σα σ*α|  =  (2)-1/2 { σα(1) σ* α(2) -  σ* α(1) σα(2)  },

 as can  the MS = -1 component of the triplet state

3Σ
*
(-1)  =  |σβ σ*β|  =  (2)-1/2 { σβ(1) σ* β(2) -  σ* β(1) σβ(2)  }.

However, to describe the singlet CSF and MS = 0 triplet CSF belonging to the σσ*

occupancy, two Slater determinants are needed:

1Σ* (0)  =   
1

2
  [ ]σασ*β -  σβσ*α  

is the singlet CSF and

3Σ
*
(0)  =  

1

2
 [ ]σασ*β + σβσ*α  



is the triplet CSF. In each case, the spin quantum number S, its z-axis projection MS , and

the Λ quantum number are given in the conventional 2S+1Λ(MS) notation.

2. Orbital, CSF, and State Correlation Diagrams

i. Orbital Diagrams

The two orbitals of the constituent atoms or functional groups (denoted sx and sy

for convenience and in anticipation of considering groups X and Y that possess valence s

orbitals) combine to form a bonding σ = σg molecular orbital and an antibonding σ* = σu

molecular orbital (mo).  As the distance R between the X and Y fragments is changed from

near its equilibrium value of Re and approaches infinity, the energies of the σ and σ*

orbitals vary in a manner well known to chemists as depicted below.

E

RRe

*σuσ =

σσg =

YsXs ,

Energies of the bonding σ and antibonding σ* orbitals as functions of interfragment

distance; Re denotes a distance near the equilibrium bond length for XY.

In the heteronuclear case, the sx and sy orbitals still combine to form a bonding σ
and an antibonding σ* orbital, although these orbitals no longer belong to g and u

symmetry.  The energies of these orbitals, for R values ranging from near Re to R→∞, are

depicted below.
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Energies of the bonding σ and antibonding σ* orbitals as functions of internuclear distance.

Here, X is more electronegative than Y.

For the homonuclear case, as R approaches ∞, the energies of the σg and σu

orbitals become degenerate. Moreover, as R → 0, the orbital energies approach those of the

united atom. In the heteronuclear situation, as R approaches ∞,  the energy of the σ orbital

approaches the energy of the sx orbital, and the σ* orbital converges to the sy orbital

energy.  Unlike the homonuclear case, the σ and σ* orbitals are     not    degenerate as R→ ∞.

The energy "gap" between the σ and σ* orbitals at R  = ∞ depends on the electronegativity

difference between the groups X and Y.  If this gap is small, it is expected that the behavior

of this (slightly) heteronuclear system should approach that of the homonuclear X2 and Y2

systems. Such similarities are demonstrated in the next section.

ii. Configuration and State Diagrams

The energy variation in these orbital energies gives rise to variations in the energies

of the six CSFs and of the six electronic states that arise as combinations of these CSFs.

The three singlet (1Σ (0),1Σ* (0), and 1Σ** (0) ) and three triplet (3Σ*(1), 3Σ*(0) and
3Σ*(-1)) CSFs are, by no means, the true electronic eigenstates of the system; they are

simply spin and spatial angular momentum adapted antisymmetric spin-orbital products. In

principle, the set of CSFs ΦΙ  of the same symmetry must be combined to form the proper

electronic eigenstates ΨΚ of the system:



ΨΚ = Σ
Ι
  CΙΚ ΦΙ .

Within the approximation that the valence electronic states can be described adequately as

combinations of the above valence CSFs, the three 1Σ, 1Σ* , and 1Σ** CSFs must be

combined to form the three lowest energy valence electronic states of 1Σ symmetry.  For

the homonuclear case, the 1Σ* CSF does not couple with the other two because it is of

ungerade symmetry, while the other CSFs 1Σ  and1Σ** have gerade symmetry and do

combine.

The relative amplitudes CΙΚ of the CSFs ΦΙ within each state ΨΚ are determined by

solving the configuration-interaction (CI) secular problem:

Σ
J
  〈ΦΙ H ΦJ〉 C

Κ
J
  = EΚ   CΚ

Ι   

for the state energies EΚ  and state CI coefficient vectors CΚ
Ι   . Here, H is the electronic

Hamiltonian of the molecule.

To understand the extent to which the 1Σ and 1Σ**  (and 1Σ* for heteronuclear

cases) CSFs couple, it is useful to examine the energies

〈ΦΙ H ΦΙ〉 of these CSFs for the range of internuclear distances of interest Re<R<∞.
Near Re, where the energy of the σ orbital is substantially below that of the σ* orbital, the

σ2 1Σ CSF lies significantly below the σσ* 1Σ* CSF which, in turn lies below the σ*2

1Σ** CSF; the large energy splittings among these three CSFs simply reflecting the large

gap between the σ and σ*  orbitals. The 3Σ* CSF generally lies below the corresponding
1Σ* CSF by an amount related to the exchange energy between the σ and σ*  orbitals.

As R → ∞, the CSF energies 〈ΦΙ H ΦJ〉 are more difficult to "intuit" because the

σ and σ* orbitals become degenerate (in the homonuclear case) or nearly so. To pursue this

point and arrive at an energy ordering for the CSFs that is appropriate to the R → ∞ region,

it is useful to express each of the above CSFs in terms of the atomic orbitals sx and sy that

comprise σ and σ*.  To do so, the LCAO-MO expressions for σ and σ*,

σ = C [sx + z sy]

and

σ* = C* [z sx  - sy],



are substituted into the Slater determinant definitions of the CSFs.  Here C and C* are the

normalization constants.  The parameter z is 1.0 in the homonuclear case and deviates from

1.0 in relation to the sx and sy orbital energy difference (if sx lies below sy, then z < 1.0; if

sx lies above sy, z > 1.0).

To simplify the analysis of the above CSFs, the familiar homonuclear case in which

z = 1.0 will be examined first.  The process of substituting the above expressions for σ and

σ* into the Slater determinants that define the singlet and triplet CSFs can be illustrated as

follows:

1Σ(0) = σα σβ = C2  (sx + sy) α(sx + sy) β

= C2 [sx α sx β + sy α sy β + sx α sy β + sy α sx β]

The first two of these atomic-orbital-based Slater determinants (sx α sx  β and sy α sy

β) are denoted "ionic" because they describe atomic orbital occupancies, which are

appropriate to the R → ∞ region,  that correspond to X ••  + Y and X + Y ••  valence bond

structures, while sx α sy β and sy α sx β are called "covalent" because they

correspond to X•  + Y• structures.

In similar fashion, the remaining five CSFs may be expressed in terms of atomic-

orbital-based Slater determinants. In so doing, use is made of the antisymmetry of the

Slater determinants

| φ1 φ2 φ3 | =  - | φ1 φ3 φ2 |, which implies that any determinant in which two or more spin-

orbitals are identical vanishes | φ1 φ2 φ2 | =  - | φ1 φ2 φ2 | = 0. The result of decomposing the

mo-based CSFs into their atomic orbital components is as follows:

1Σ** (0)  = σ*α σ*β
= C*2 [ sx α sx β + sy α sy β

− sx α sy β − sy α sx β]

1Σ* (0)  = 
1

2
 [ ]σα σ*β -  σβ σ*α  

= CC* 2  [sx α sx β − sy α sy β]

3Σ* (1) = σα σ*α
= CC* 2sy α sx α



3Σ* (0) =  
1

2
 [ ]σα σ*β +  σβ σ*α  

=CC* 2  [sy α sx β − sx α sy β]

3Σ* (-1) = σα σ*α
= CC* 2sy β sx β

These decompositions of the six valence CSFs into atomic-orbital or valence bond

components allow the R  = ∞ energies of the CSFs to be specified.  For example, the fact

that both 1Σ and 1Σ** contain 50% ionic and 50% covalent structures implies that, as R →
∞, both of their energies will approach the average of the covalent and ionic atomic

energies 1/2 [E (X•)  + E (Y•)  + E (Y) + E ( X
••  ) ].  The 1Σ* CSF energy approaches the

purely ionic value E (Y)+ E (X•• ) as R → ∞. The energies of  3Σ*(0), 3Σ*(1) and 3Σ*(-1)

all approach the purely covalent value E (X•) + E (Y•)  as R → ∞.
The behaviors of the energies of the six valence CSFs as R varies are depicted

below for situations in which the homolytic bond cleavage is energetically favored (i.e., for

which  E (X•) + E (Y•)  <  E (Y)+ E (X•• ) ).
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Configuration correlation diagram for homonuclear case in which homolytic bond cleavage

is energetically favored.

When heterolytic bond cleavage is favored, the configuration energies as functions of

internuclear distance vary as shown below.
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Configuration correlation diagram for a homonuclear case in which heterolytic  bond

cleavage is energetically favored.

It is essential to realize that the energies 〈ΦΙ HΦΙ〉 of the CSFs do     not    represent

the energies of the true electronic states EK ; the CSFs are simply spin- and spatial-

symmetry adapted antisymmetric functions that form a     basis    in terms of which to expand

the true electronic states.  For R-values at which the CSF energies are separated widely, the

true EK are rather well approximated by individual 〈ΦΙ HΦΙ〉  values; such is the case

near Re.

For the homonuclear example, the 1Σ and 1Σ** CSFs undergo CI coupling to form

a pair of states of 1Σ symmetry (the 1Σ* CSF cannot partake in this CI mixing because it is

of ungerade symmetry; the 3Σ* states can not mix because they are of triplet spin

symmetry). The CI mixing of the 1Σ and 1Σ** CSFs is described in terms of a 2x2 secular

problem











〈1ΣH1Σ〉 〈1ΣH1Σ**〉

〈1Σ**H1Σ〉 〈1Σ**Η1Σ**〉
 







A

B
   = E  







A

B
   

The diagonal entries are the CSF energies depicted in the above two figures. Using the

Slater-Condon rules, the off-diagonal coupling can be expressed in terms of an exchange

integral between the σ and σ* orbitals:

〈1ΣH1Σ**〉 = 〈σα σβHσ*α σ*β〉 = 〈σσ 1
r12

   σ*σ*〉 = Κσσ*

At R → ∞, where the 1Σ and 1Σ**  CSFs are degenerate, the two solutions to the above CI

secular problem are:

E
+
_ =1/2 [  E (X•) + E (Y•)  + E (Y)+ E (X•• ) ]  -

+
   〈σσ  

1
r12

   σ* σ*〉

with respective amplitudes for the 1Σ and 1Σ** CSFs given by

A
+
-   = ±  1

2
  ; B

+
-   = -+ 

1

2
  .

The first solution thus has

Ψ−  =  
1

2
    [σα σβ - σ*α σ*β]

which, when decomposed into atomic valence bond components, yields

Ψ− = 
1

2
   [ sxα syβ - sxβ syα].

The other root has

Ψ+ = 
1

2
    [σα σβ + σ*α  σ*β]

= 
1

2
    [ sxα  sxβ + sy α  syβ].

Clearly, 1Σ and 1Σ**, which both contain 50% ionic and 50% covalent parts, combine to

produce Ψ_  which is purely covalent and Ψ+ which is purely ionic.



The above strong CI mixing of 1Σ and 1Σ** as R → ∞ qualitatively alters the

configuration correlation diagrams shown above. Descriptions of the resulting valence

singlet and triplet Σ     states    are given below for homonuclear situations in which covalent

products lie below and above ionic products, respectively. Note that in both cases, there

exists a single attractive curve and five (n.b., the triplet state has three curves superposed)

repulsive curves.

∗∗1 Σ

E

R

1 Σ ∗

∗
Σ3

1 Σ

E(Y) + E(X:)

E(X•) + E(Y•)

State correlation diagram for homonuclear case in which homolytic bond cleavage is

energetically favored.



1 Σ ∗∗

E

R

1 Σ ∗

∗
Σ3

1
Σ

E(X•) + E(Y•)

E(X:) + E(Y)

State correlation diagram for homonuclear case in which heterolytic bond cleavage is

energetically favored.

If the energies of the sx and sy orbitals do not differ significantly (compared to the

coulombic interactions between electron pairs), it is expected that the essence of the

findings described above for homonuclear species will persist even for heteronuclear

systems.  A decomposition of the six CSFs listed above, using the     heteronuclear    molecular

orbitals introduced earlier yields:

1Σ(0) = C2 [ sxα sxβ +z2 syα syβ
+z  sxα syβ +z syα sxβ]

1Σ**(0) = C*2 [z2 sxα sxβ + syα syβ
-zsxα syβ -z syα sxβ]

1Σ*(0)  = 
CC*

2
  [ 2zsxα sxβ -2z syα syβ

+ ( z2 - 1)syα sxβ + (z2 - 1) sxα syβ]



3Σ*(0) = 
CC*

2
 ( z2 + 1)  [syα sxβ - sxα syβ]

3Σ*(1) =  CC* (z2 + 1)  syα sxα

3Σ*(-1) = CC* (z2 + 1) syβ sxβ

Clearly, the three 3Σ*  CSFs retain purely covalent R → ∞ character even in the

heteronuclear case.  The 1Σ, 1Σ**, and 1Σ* (all three of which can undergo CI mixing

now) possess one covalent and two ionic components of the form sxα syβ + syα
sxβ, sxα sxβ, and  syα syβ.  The three singlet CSFs therefore can be combined to

produce a singlet covalent product function sxα syβ + syα sxβ as well as     both     X + Y
••   and X ••   + Y ionic product wavefunctions

syα syβ and sxα sxβ, respectively. In most situations, the energy ordering of the

homolytic and heterolytic dissociation products will be either  E (X•) + E (Y•) < E (X•• ) +

E (Y ) < E (X) + E (Y•• ) or E (X •• ) + E (Y) < E (X•) + E (Y•) < E (X) + E (Y •• ) .

The extensions of the state correlation diagrams given above to the heteronuclear

situations are described below.



1 Σ ∗∗

E

1 Σ ∗

∗
Σ3

1
Σ

R

E(X) + E(Y:)

E(X:) + E(Y)

E(X•) + E(Y•)

State correlation diagram for heteronuclear case in which homolytic  bond

cleavage is energetically favored.



∗∗1 Σ

E
1 Σ ∗

Σ3

1
Σ

R

∗ E(X) + E(Y:)

E(X•) + E(Y•)

E(X:) + E(Y)

State correlation diagram for heteronuclear case in which heterolytic

bond cleavage to one product is energetically favored but homolytic

cleavage lies below the second heterolytic asymptote.



∗∗1 Σ

E
1 Σ ∗

∗
Σ3

1 Σ

R

E(X•) + E(Y•)

E(X) + E(Y:)

E(X:) + E(Y)

State correlation diagram for heteronuclear case in which both heterolytic  bond cleavage

products are energetically favored relative to homolytic cleavage.

Again note that only one curve is attractive and  five are repulsive in all cases. In

these heteronuclear cases, it is the mixing of the 1Σ, 1Σ*, and 1Σ**  CSFs, which varies

with R, that determines which molecular state connects to which asymptote. As the energy

ordering of the asymptotes varies, so do these correlations.

3. Summary



Even for the relatively simple two-electron, two-orbital single-bond interactions

between a pair of atoms or functional groups, the correlations among energy-ordered

molecular states and energy-ordered asymptotic states is complex enough to warrant

considerations beyond what is taught in most undergraduate and beginning graduate

inorganic and physical chemistry classes. In particular, the correlations that arise when one

(or both) of the heterolytic bond dissociation aysmptotes lies below the homolytic cleavage

products are important to realize and keep in mind.

In all cases treated here, the three singlet states that arise produce one and only one

attractive (bonding) potential energy curve; the other two singlet surfaces are repulsive. The

three triplet surfaces are also repulsive. Of course, in arriving at these conclusions, we have

considered only contributions to the inter-fragment interactions that arise from valence-

orbital couplings; no consideration has been made of attractive or repulsive forces that

result from one or both of the X- and Y- fragments possessing net charge. In the latter

case, one must, of course, add to the qualitative potential surfaces described here any

coulombic, charge-dipole, or charge-induced-dipole energies. Such additional factors can

lead to attractive long-range interactions in typical ion-molecule complexes.

 The necessity of the analysis developed above becomes evident when considering

dissociation of diatomic transition metal ions.  Most transition metal atoms have ground

states with electron configurations of the form  s2dn  (for first-row metals, exceptions

include Cr (s1d5 ), Cu (s1d10),  and the s1d9 state of Ni is basically isoenergetic with the

s2d8 ground state).  The corresponding positive ions have ground states with s1dn (Sc, Ti,

Mn, Fe) or s0dn+1 (V, Cr, Co, Ni, Cu) electron configurations .  For each of these

elements, the alternate electron configuration leads to low-lying excited states.

One can imagine forming a M2+ metal dimer ion with a configuration described as

σg2 d2n+1 , where the σg bonding orbital is formed primarily from the metal s orbitals and

the d orbitals are largely nonbonding (as is particularly appropriate towards the right hand

side of the periodic table).  Cleavage of such a σ bond tends to occur heterolytically since

this forms lower energy species, M(s2dn) + M+(s0dn+1), than homolytic cleavage to

M(s1dn+1) + M+(s1dn).  For example, Co2 + dissociates to Co(s2d7) + Co+(s0d8) rather

than to Co(s1d8) + Co+(s1d7),2 which lies 0.85 eV higher in  energy.

Qualitative aspects of the above analysis for homonuclear transition metal dimer

ions will persist for heteronuclear ions.  For example, the ground-state dissociation

asymptote for CoNi+ is the heterolytic cleavage products Co(s2d7) + Ni+(s0d9).  The

alternative heterolytic cleavage to form Co+(s0d8) + Ni(s2d8) is 0.23 eV higher in energy,

while homolytic cleavage can lead to Co+(s1d7) + Ni(s1d9), 0.45 eV higher, or Co(s1d8) +

Ni+(s1d8), 1.47 eV higher. This is the situation illustrated in the last figure above. 



III. Various Types of Configuration Mixing

A. Essential CI

The above examples of the use of CCD's show that, as motion takes place along the

proposed reaction path, geometries may be encountered at which it is    essential    to describe

the electronic wavefunction in terms of a linear combination of more than one CSF:

Ψ = ΣI CI ΦI ,

where the ΦI are the CSFs which are undergoing the avoided crossing. Such essential

configuration mixing is often referred to as treating "   essential CI   ".

B. Dynamical CI

To achieve  reasonable chemical accuracy (e.g., ± 5 kcal/mole) in electronic

structure calculations it is necessary to use a multiconfigurational Ψ even in situations

where no obvious strong configuration mixing (e.g., crossings of CSF energies) is

present. For example, in describing the π2 bonding electron pair of an olefin or the ns2

electron pair in alkaline earth atoms, it is important to mix in doubly excited CSFs of the

form (π*)2 and np2 , respectively. The reasons for introducing such a CI-level treatment

were treated for an alkaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by

using the identity:

C1 | ..φα φβ..| - C2 | ..φ' α φ' β..|

= C1/2 { | ..( φ - xφ')α ( φ + xφ')β..| - | ..( φ - xφ')β ( φ + xφ')α..| },

where

x = (C2/C1)1/2 .

This allows one to interpret the combination of two CSFs which differ from one another by

a double excitation from one orbital (φ) to another (φ') as equivalent to a singlet coupling of



two different (non-orthogonal) orbitals (φ - xφ') and (φ  + xφ'). This picture is closely

related to the so-called generalized valence bond (GVB) model that W. A. Goddard and his

co-workers have developed (see, for example, W. A. Goddard and L. B. Harding, Annu.

Rev. Phys. Chem.     29    , 363 (1978)). In the simplest embodiment of the GVB model, each

electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron

pair is "doubly excited" to a correlating orbital. The direct product of all such pair

correlations generates the GVB-type wavefunction. In the GVB approach, these electron

correlations are not specified in terms of double excitations involving CSFs formed from

orthonormal spin orbitals; instead, explicitly non-orthogonal GVB orbitals are used as

described above, but the result is the same as one would obtain using the direct product of

doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital

pairs" involve mixing the π and π* orbitals to produce two left-right polarized orbitals as

depicted below:

       left polarized       right polarized

π −xπ∗π + xπ∗

π∗

π

In this case, one says that the π2 electron pair undergoes left-right correlation when the

(π*)2 CSF is mixed into the CI wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the ns and

np orbitals (actually, one must mix in equal amounts of p1, p -1 , and p0 orbitals to preserve

overall 1S symmetry in this case), and give rise to angular correlation of the electron pair.

Use of an (n+1)s2 CSF for the alkaline earth calculation would contribute in-out or radial

correlation because, in this case, the polarized orbital pair formed from the ns and (n+1)s

orbitals would be radially polarized.

The use of doubly excited CSFs is thus seen as a mechanism by which Ψ can place

electron     pairs   , which in the single-configuration picture occupy the same orbital, into



different regions of space (i.e., one into a member of the polarized orbital pair) thereby

lowering their mutual coulombic repulsions. Such electron correlation effects are referred to

as "    dynamical electron correlation    "; they are extremely important to include if one expects

to achieve chemically meaningful accuracy (i.e., ± 5 kcal/mole).


