
Time Independent Perturbation Theory D

Perturbation theory is used in two qualitatively different contexts in quantum
chemistry. It allows one to estimate (because perturbation theory is usually employed
through some finite order and may not even converge if extended to infinite order) the
splittings and shifts in energy levels and changes in wavefunctions that occur when an
external field (e.g., electric or magnetic or that due to a surrounding set of 'ligands'- a
crystal field) is applied to an atom, molecule, ion, or solid whose 'unperturbed' states are
known. These 'perturbations' in energies and wavefunctions are expressed in terms of the
(complete) set of unperturbed states. For example, the distortion of the 2s orbital of a Li
atom due to the application of an external electric field along the y-axis is described by
adding to the (unperturbed) 2s orbital components of py-type orbitals (2p, 3p, etc.):

φ = a 2s + Σn Cn npy.

The effect of adding in the py orbitals is to polarize the 2s orbital along the y-axis. The
amplitudes Cn are determined via the equations of perturbation theory developed below; the
change in the energy of the 2s orbital caused by the application of the field is expressed in
terms of the Cn coefficients and the (unperturbed) energies of the 2s and npy orbitals.

There is another manner in which perturbation theory is used in quantum chemistry
that does     not    involve an externally applied perturbation. Quite often one is faced with
solving a Schrödinger equation to which no exact solution has been (yet) or can be found.
In such cases, one often develops a 'model' Schrödinger equation which in some sense is
designed to represent the system whose full Schrödinger equation can not be solved. The
difference between the Hamiltonia of the full and model problems, H and H0, respectively
is used to     define    a perturbation V=H-H0 . Perturbation theory is then employed to
approximate the energy levels and wavefunctions of the full H in terms of the energy levels
and wavefunctions of the model system (which, by assumption, can be found). The
'imperfection' in the model problem is therefore used as the perturbation. The success of
such an approach depends strongly on how well the model H0 represents the true problem
(i.e., on how 'small' V is). For this reason, much effort is often needed to develop
approximate Hamiltonia for which V is small and for which the eigenfunctions and energy
levels can be found.

I. Structure of Time-Independent Perturbation Theory

A. The Power Series Expansions of the Wavefunction and Energy

Assuming that all wavefunctions Φk and energies Ek0 belonging to the unperturbed

Hamiltonian H0 are known

H0 Φk = Ek0 Φk ,

and given that one wishes to find eigenstates (ψk and Ek) of the perturbed Hamiltonian

H=H0+λV,



perturbation theory begins by expressing ψk and Ek as power series in the perturbation

strength λ:

ψk = Σn=0,∞ λn ψk(n)

Ek = Σn=0,∞ λn Ek(n).

Moreover, it is assumed that, as the strength of the perturbation is reduced to zero, ψk

reduces to one of the unperturbed states Φk and that the full content of Φk in ψk is

contained in the first term ψk(0).

This means that ψk(0) = Φk and Ek(0) = Ek0, and so

ψk = Φk + Σn=1,∞ λn ψk(n) = Φk + ψk'

Ek = Ek0 + Σn=1,∞ λn Ek(n)  = Ek0 + Ek' .

In the above expressions, λ would be proportional to the strength of the electric or
magnetic field if one is dealing with an external-field case. When dealing with the situation
for which V is the imperfection in the model H0, λ is equal to unity; in this case, one thinks

of formulating and solving for the perturbation expansion for variable λ after which λ is set
equal to unity.

B. The Order-by-Order Energy Equations

Equations for the order-by-order corrections to the wavefunctions and energies are
obtained by using these power series expressions in the full Schrödinger equation:

(H-Ek) ψk = 0.

Multiplying through by Φk* and integrating gives the expression in terms of which the total
energy is obtained:

<Φk| H | ψk> = Ek <Φk| ψk> = Ek .

Using the fact that Φk is an eigenfunction of H0 and employing the power series expansion

of ψk allows one to generate the fundamental relationships among the energies Ek(n) and the

wavefunctions ψk(n):

Ek = <Φk| H0 | ψk> + <Φk| V | ψk> = Ek0 + <Φk| λV | Σn=0,∞ λn ψk(n)>.

The lowest few orders in this expansion read as follows:

Ek = Ek0 +λ <Φk| V | Φk> +λ2 <Φk | V | ψk(1)> +λ3 <Φk | V | ψk(2)>+...



If the various ψk(n) can be found, then this equation can be used to compute the order-by-
order energy expansion.

Notice that the first-order energy correction is given in terms of the zeroth-order
(i.e., unperturbed) wavefunction as:

Ek(1) = <Φk| V | Φk>,

the average value of the perturbation taken over Φk.

C. The Order-by-Order Wavefunction Equations

To obtain workable expressions for the perturbative corrections to the wavefunction
ψk, the full Schrödinger equation is first projected against all of the unperturbed eigenstates

{|Φj>}     other than     the state Φk whose perturbative corrections are sought:

<Φj| H | ψk> = Ek  <Φj| ψk>, or

<Φj| H0 | ψk> + λ <Φj| V | ψk> = Ek  <Φj| ψk>, or

<Φj| ψk> Ej0 + λ <Φj| V | ψk> = Ek  <Φj| ψk>, or finally

λ <Φj| V | ψk> = [ Ek - Ej0] <Φj| ψk>.

Next, each component ψk(n) of the eigenstate ψk is expanded in terms of the

unperturbed eigenstates (as they can be because the {Φk} form a complete set of functions):

ψk = Φk + Σ j≠k Σn=1,∞ λn <Φj|ψk(n)>  |Φj> .

Substituting this expansion for ψk into the preceeding equation gives

λ <Φj| V | Φk> + Σ l≠k Σn=1,∞ λn+1 <Φl|ψk(n)> <Φj| V | Φl>

= [ Ek - Ej0] Σn=1,∞ λn <Φj|ψk(n)>.

To extract from this set of    coupled     equations relations that can be solved for the coefficients
<Φj|ψk(n)>, which embodies the desired wavefunction perturbations ψk(n), one collects

together all terms with like power of λ in the above general equation (in doing so, it is

important to keep in mind that Ek itself is given as a power series in λ).

The λ0 terms vanish, and the first-order terms reduce to:

<Φj| V | Φk> = [ Ek0 - Ej0 ] <Φj|ψk(1)>,

which can be solved for the expansion coefficients of the so-called    first-order wavefunction    
ψk(1):



ψk(1) = Σ j <Φj| V | Φk>/[ Ek0 - Ej0 ]  |Φj> .

When this result is used in the earlier expression for the    second-order energy     correction,
one obtains:

Ek(2) = Σ j |<Φj| V | Φk>|2/[ Ek0 - Ej0 ] .

The terms proportional to λ2 are as follows:

Σ l≠k  <Φl|ψk(1)> <Φj| V | Φl>

= [ Ek0 - Ej0]  <Φj|ψk(2)> + Ek(1) <Φj|ψk(1)> .

The solution to this equation can be written as:

<Φj|ψk(2)> = [ Ek0 - Ej0]-1Σ l≠k  <Φl|ψk(1)> {<Φj| V | Φl> -δj,l  Ek(1)}.

Because the expansion coefficients <Φl|ψk(1)> of ψk(1) are already known, they can be

used to finally express the expansion coefficients of ψk(2) totally in terms of zeroth-order
quantities:

 <Φj|ψk(2)> = [ Ek0 - Ej0]-1Σ l≠k {<Φj| V | Φl> -δj,l  Ek(1)}

<Φl| V | Φk> [ Ek0 - El0 ]-1,

which then gives

ψk(2) = Σ j≠k [ Ek0 - Ej0]-1Σ l≠k {<Φj| V | Φl> -δj,l  Ek(1)}

<Φl| V | Φk> [ Ek0 - El0 ]-1 |Φj> .

D. Summary

An essential thing to stress concerning the above development of so-called
Rayleigh-Schrödinger perturbation theory (RSPT) is that each of the energy corrections
Ek(n) and wavefunction corrections ψk(n) are expressed in terms of integrals over the

unperturbed wavefunctions Φk involving the perturbation (i.e., <Φj|V|Φl>) and the

unperturbed energies Ej0. As such, these corrections can be symmetry-analyzed to
determine, for example, whether perturbations of a given symmetry will or will not affect
particular states. For example, if the state under study belongs to a non-degenerate
representation in the absence of the perturbation V, then its first-order energy correction
<Φk|V|Φk> will be non-zero only if V contains a totally symmetric component (because the

direct product of the symmetry of Φk with itself is the totally symmetric representation).
Such an analysis predicts, for example, that the energy of an s orbital of an atom will be
unchanged, in first-order, by the application of an external electric field because the
perturbation



V =  e E .  r

is odd under the inversion operation (and hence can not be totally symmetric). This same
analysis, when applied to Ek(2) shows that contributions to the second-order energy of an s

orbital arise only from unperturbed orbitals φj that are odd under inversion because only in

such cases will the integrals <s | e E .  r | φj > be non-zero.

II. The Møller-Plesset Perturbation Series

A. The Choice of H0

Let us assume that an SCF calculation has been carried out using the set of N spin-
orbitals {φa} that are occupied in the reference configuration Φk to define the corresponding
Fock operator:

F = h  + Σa(occupied) [Ja - Ka] .

Further, we assume that all of the occupied {φa} and virtual {φm} spin-orbitals and orbital
energies have been determined and are available.

This Fock operator is used to define the unperturbed Hamiltonian of Møller-Plesset
perturbation theory (MPPT):

H0 = Σ i F(ri).

This particular Hamiltonian, when acting on    any     Slater determinant formed by placing N
electrons into the SCF spin-orbitals, yields a zeroth order eigenvalue equal to the sum of
the orbital energies of the spin-orbitals appearing in that determinant:

H0 | φj1φj2φj3φj4. . .φjN| = (εj1+εj2+εj3+εj4+...+εjN) | φj1φj2φj3φj4. . .φjN|

because the spin-orbitals obey

F φj = εj φj,

where j runs over all (occupied (a, b, ...) and virtual (m, n, ...)) spin-orbitals. This result
is the MPPT embodiment of H0 Φk = Ek0 Φk.

B. The Perturbation V

The perturbation V appropriate to this MPPT case is the difference between the full
N-electronic Hamiltonian and this H0:

V = H - H0.

Matrix elements of V among determinental wavefunctions constructed from the SCF spin-
orbitals <Φl | V | Φk> can be expressed, using the Slater-Condon rules, in terms of matrix
elements over the full Hamiltonian H



<Φl | V | Φk> = <Φl | H | Φk> - δk,l Ek0,

because each such determinant is an eigenfunction of H0.

C. The MPPT Energy Corrections

Given this particular choice of H0, it is possible to apply the general RSPT energy
and wavefunction correction formulas developed above to generate explicit results in terms
of spin-orbital energies and one- and two-electron integrals, <φi|h|φj> and <φiφj|g|φkφl> =
<ij|kl>, over these spin-orbitals. In particular, the first-order energy correction is given as
follows:

Ek(1) = <Φk|V|Φk> = <Φk|H|Φk> - Σa εa

= Σa εa - Σa<b [Ja,b - Ka,b] - Σa εa

= - Σa<b [Ja,b - Ka,b] = - Σa<b[<ab|ab> - <ab|ba>].

Thus Ek0 (the sum of orbital energies) and Ek(1) (the correction for double counting) add up
to produce the proper expectation value energy.

The second-order energy correction can be evaluated in like fashion by noting that
<Φk| H | Φl> = 0 according to the Brillouin theorem for all singly excited Φl, and that <Φk|

H | Φl> = <ab|mn>- <ab|nm> for doubly excited Φl in which excitations from φa and φb

into φm and φn are involved:

Ek(2)  = Σ j |<Φj| V | Φk>|2/[ Ek0 - Ej0 ]

= Σa<b;m<n |<ab|mn>- <ab|nm>|2/(εa+εb-εm-εn).

D. The Wavefunction Corrections

The first-order MPPT wavefunction can be evaluated in terms of Slater
determinants that are excited relative to the SCF reference function Φk. Realizing again that

the perturbation coupling matrix elements <Φk| H | Φl> are non-zero only for doubly

excited CSF's, and denoting such doubly excited Φl by Φa,b;m,n , the first-order
wavefunction can be written as:

ψk(1) = Σ j <Φj| V | Φk>/[ Ek0 - Ej0 ]  |Φj>

= Σa<b;m<n Φa,b;m,n [<ab|mn>-<ab|nm>]/(εa+εb-εm-εn).

III. Conceptual Use of Perturbation Theory

The first- and second- order RSPT energy and first-order RSPT wavefunction
correction expressions form not only a useful computational tool but are also of great use in
understanding how strongly a perturbation will affect a particular state of the system. By



examining the symmetries of the state of interest Φk (this can be an orbital of an atom or
molecule, an electronic state of same, or a vibrational/rotational wavefunction of a
molecule) and of the perturbation V, one can say whether V will have a significant effect on
the energy Ek of Φk; if <Φk|V|Φk> is non-zero, the effect can be expected to be significant.

Sometimes the perturbation is of the wrong symmetry to directly (i.e., in a first-
order manner) affect Ek. In such cases, one considers whether nearby states {Φj, Ej} exist

which could couple through V with Φk; the second-order energy expression, which

contains Σ j |<Φj| V | Φk>|2/[ Ek0 - Ej0 ] directs one to seek states

whose symmetries are contained in the direct product of the symmetries of V and of Φk    and    
which are close to Ek in energy.

It is through such symmetry and 'coupling matrix element' considerations that one
can often 'guess' whether  a given perturbation will have an appreciable effect on the state
of interest.
The nature of the perturbation is not important to such considerations. It could be the
physical interaction that arises as two previously non-interacting atoms are brought together
(in which case V would have axial point group symmetry) or it could describe the presence
of surrounding ligands on a central transition metal ion (in which case V would carry the
symmetry of the 'ligand field'). Alternatively, the perturbation might describe the electric
dipole interaction of the electrons and nuclei of the atom or molecule with and externally
applied electric field E, in which case V=-Σ j erj. E + Σa Za e Ra. E contains components
that transform as x, y, and z in the point group appropriate to the system (because the
electronic rj and nuclear Ra coordinate vectors so transform).


