Simons: Problems#1: If you know how, go ahead and work these on your own to practice and refresh your memory. If you don’t know how, ask other students to help you. In that way, in the discussion/problems/answers session, we can focus on especially tough points. This set of problems would be good to discuss during our first questions/problems/answers session. 
First, let’s review how one determines which term symbols can be associated with a given electronic configuration of an atom or molecule. 
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1. For the given orbital occupations (configurations) of the following systems, determine
all possible states (all possible allowed combinations of spin and space states). There is no
need to form the determinental wavefunctions simply label each state with its proper term
symbol. One method commonly used is Harry Grays "box method" found in Electrons
and Chemical Bonding.
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Here are the solutions.
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1. a. For non-degenerate point groups one can simply multiply the representations
(since only one representation will be obtained):
a; ® by =b;

Constructing a "box" in this case is unnecessary since it would only contain a single row.
Two unpaired electrons will result in a singlet (S=0, Ms=0), and three triplets (S=1,

Ms=1; S=1, Mg=0; S=1, Ms=-1). The states will be: 3B;(Ms=1), 3B1(Ms=0), 3B1(Mg=-
1), and 1B1(Ms=0).




[image: image3.png]1. b. Remember that when coupling non-equivalent linear molecule angular momenta,
one simple adds the individual L, values and vector couples the electron spin. So, in this

case (1my!2m, 1), we have My values of 1+1, 1-1,-1+1, and -1-1 (2,0, 0, and -2). The
term symbol A is used to denote the spatially doubly degenerate level (M =+2) and there

are two distinct spatially non-degenerate levels denoted by the term symbol X (Mp.=0)
Again, two unpaired electrons will result in a singlet (S=0, Mg=0), and three triplets (S=1,
Ms=1;S=1,Mg=0;S=1, Mgs=-1). The states generated are then:

IA (Mp=2); one state (Ms=0),

IA (M =-2); one state (Mg=0),

3A (M =2); three states Mg=1,0, and -1),

3A (M =-2); three states Mg=1,0, and -1),

I3 (Mp.=0); one state (Ms=0),

I3 (Mp.=0); one state (Ms=0),

3% (M =0); three states (Mgs=1,0, and -1), and
3% (M =0); three states Ms=1,0, and -1).




[image: image4.png]1. c. Constructing the "box" for two equivalent 7t electrons one obtains:
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From this "box" one obtains six states:
1A (Mg =2); one state (Ms=0),
1A (Mg =-2); one state (Ms=0),
I3 (M =0); one state (Ms=0),
33 (Mg =0); three states Mg=1,0, and -1).




[image: image5.png]1. d. It is not ﬁecEssélry to construct a "box" when cbupling non-equivalent angular
momenta since the vector coupling results in a range from the sum of the two individual

angular momenta to the absolute value of their difference. In this case, 3d!4d!, L.=4, 3, 2,

1,0, and S=1,0. The term symbols are: 3G, !G, 3F, IF, 3D, 1D, 3P, 1P, 33, and 1S. The
L and S angular momenta can be vector coupled to produce further splitting into levels:
J=L+S..IL-SL

Denoting J as a term symbol subscript one can identify all the levels and subsequent (27 +
1) states:

3Gs (11 states),
3Gy (9 states),
3G3 (7 states),
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3F4 (9 states),
3F5 (7 states),
3F, (5 states),
IF3 (7 states),
3Ds (7 states),
3D, (5 states),
3Dy (3 states),
1D, (5 states),
3P, (5 states),
3P (3 states),
3Pg (1 state),
1P, (3 states),
381 (3 states), and
1S (1 state).




[image: image7.png]e. Construction of a "box" for the two equivalent d electrons generates (note the

"box" has been turned side ways for convenience):
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The term symbols are: !G, 3F, D, 3P, and !S. The L and S angular momenta can be

vector coupled to produce further splitting into levels:
1Gy4 (9 states),
3F4 (9 states),
3F3 (7 states),
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1D, (5 states),
3P, (5 states),
3P (3 states),
3Pg (1 state), and
1Sg (1 state).




Now, let’s try some rather challenging cases and let’s add in the task of writing and manipulating Slater determinants that are associated with these term symbols to practice forming configuration state functions. 

For the 1s22s22p2 configuration of the C atom:
[image: image9.png]a. Write down (first in terms of 2p, , , orbitals and then in terms of 2p

orbitals) the:
i. three Slater determinant (SD) wavefunctions belonging

the 3P state all of which have Mg = 1,
ii. five 1D SD wavefunctions, and
iii. one 1S SD wavefunction.

Xy.z




Here are the solutions.

[image: image10.png]1. a. All the Slater determinants have in common the [1sa1sp2sa2sfl "core" and
hence this component will not be written out explicitly for each case.
SPMr=1Ms=1)  =lIpiapocl

= é(px +ipy) apyal

1 .
ﬁ( Ipxapzal + ilpyap;al)

3P(Mp =0 Ms=1) =lprap-al
1 . 1 .
= ﬁ(Px +1py) a\/—§<px -ipy) al

= 2(Ipxcipsai - ilpxapyal + ilpyapsal + Ipyapyal)
=3(0 - ilpsapyal - ilpxapyal + 0)
= 3(-2ilpsapyal)

= -ilpxapyal
3P(N[LZ—I,NISZI) = |p,10(p00(|




[image: image11.png]= |é(Px - ipy) a(ppal

1 .
ﬁ( Ipxopzal - ilpyopzol)

As you can see, the symmetries of each of these states cannot be labeled with a single
irreducible representation of the Cay point group. For example, Ipxop,al is xz (B1) and

Ipyapzal is yz (Bp) and hence the 3P(Mp =1 Mg=1) state is a combination of B and B>

symmetries. But, the three 3P(My ,Mg=1) functions are degenerate for the C atom and any
combination of these three functions would also be degenerate. Therefore we can choose
new combinations which can be labeled with "pure" Coy point group labels.
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Now we can do likewise for the five degenerate 1D states:
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Analogous to the three 3P states we can also choose combinations of the five degenerate 1D
states which can be labeled with "pure" C,, point group labels:
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Each of the components of this state are Aj and hence this state has
A] symmetry.




