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Extensions of traditional molecular dynamics to excited electronic states and non-Born—-Oppenheimer
dynamics are reviewed focusing on applicability to chemical reactions of large molecules, possibly in
condensed phases. The latterimposes restrictions on both the level of accuracy of the underlying electronic
structure theory and the treatment of nonadiabaticity. This review, therefore, exclusively deals with
ab initio “on the Ay” molecular dynamics methods. For the same reason, mainly mixed quantum-classical
approaches to nonadiabatic dynamics are considered.
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1. Why do Excited State Molecular
Dynamics?

Traditional molecular dynamics simulations rely on a
few simple but crucial assumptions. Among the most
important ones is the treatment of the atomic nuclei
as classical point particles that evolve adiabatically in
a single electronic state, which is often taken to be
the ground state. In addition, the interaction poten-
tial has,to be known prior to the simulation in or-
der to be able to evaluate the nuclear forces at each
step of the numerical propagation. Within the associ-
ated approximations such simulations are a well estab-
lished and powerful tool for investigating the structure
and dynamics of many-body systems — mostly in the
framework of condensed matter physics and chemistry.
The broadness, diversity, and high level of sophistica-
tion of this technique is documented in several ex-
cellent monographs, reviews, proceedings, and lecture
notes.!?

One of the most powerful extensions of tradi-
tional molecular dynamics has been achieved by
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circumventing the need to know' in advance the in-
teratomic interaction potentials. Such techniques are
now widely known as the “Car—Parrinello scheme”!°
or “on the fly propagation”; other notions such as
“ab initio”, “first principles”, or “direct molecular
dynamics” are also in use.!! It is interesting to
note that the 1985 paper by Car and Parrinello’®

the very last one in the concluding section “Trends
and Prospects” in the 1987 reprint collection of
“key papers” from the field of atomistic computer
simulations.? Moreover, since 1997 the Physics and

Astronomy Classification Scheme'? (PACS) includes .

the special classification number 71.15.Pd “Electronic
Structure: Molecular dynamics calculations (Car-
Parrinello) and other numerical simulations” in order
to classify such techniques.

The basic idea underlying any first principles
molecular dynamics method is to compute the forces
acting on the nuclei from electronic structure cal-
culations that are performed “on the fly” as the
molecular dynamics trajectory is generated. In this
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way, the electronic variables are not integrated out
beforehand, but are considered as active degrees of
freedom. A fair number of review articles dealing
with ab initio molecular dynamics have appeared over
the past decade*3~23 and the interested reader is re-
ferred to them for various complementary viewpoints.
In the mid-1990s, the original ab initio molecular dy-
namics scheme was extended by lifting the approxima-
tion of using classical nuclei. The resulting so-called
ab indtio path integral technique?4~2?7 is a combina-
tion of ab initio molecular dynamics'® and path in-
tegral molecular dynamics.?8-30 Similar to traditional
molecular dynamics, it was assumed in first principles
molecular dynamics that the adiabatic time evolution
of the electronic degrees of freedom takes place in the
instantaneous ground state,

The present review article focuses on approaches
that cross this remaining frontier, i.e. it deals with
molecular dynamics simulations beyond the Born-
Oppenheimer approximation. This requires that not
only the electronic ground state is treated, but, in ad-
dition, at least one excited state. Furthermore, the
focus of this review is on dynamical simulation tech-
niques that allow to analyse the time evolution of
molecular systems with many coupled degrees of free-
dom possibly in condensed phases®' such as liquids,
solids, glasses, or biomatrices.?? In addition, chemi-
cal reactions, i.e. the breaking and making of cova-
lent bonds should be accessible with these methods.
Generic problems in this class are strongly excited li-
quids or solids (induced by laser irradiation or extreme
temperatures), photoinduced reactions of impurities
or molecules that are solvated in liquids or embed-
ded in solids, or phenomena such as excited-state pro-
ton transfer occurring in solvated molecules in the gas
or liquid phases. The development of nonadiabatic
ab initio molecular dynamics methods is further moti-
vated by organic photochemistry®® and the recent ex-
perimental advances in ultrafast photochemistry,34:35
Many photochemical processes take place on a fem-
tosecond time scale driven by conical intersections or
avoided crossings®336-38 of different potential energy
surfaces causing the Born-Oppenheimer approxima-
tion to break down. ’

All these requirements preclude from the outset
methods that rely crucially on an a priori parameteri-
zation of the interatomic interactions (leading either
to a global “potential energy surface” or to a “force

field” composed of few-body interactions such as pair
potentials). An appealing solution is the Diatomics-
in-Molecules (DIM)*®~%! method which cheaply pro-
vides electronic eigenvalues and atomic forces for
a multitude of molecular valence states. However,
although the DIM method works remarkably well
for some simple systems such as cationic rare-gas
clusters®?=%5 and isoelectronic systems®6-59 it is not
generally applicable to more complex systems. In or-
der to maximize the range of applicability, excited
state molecular dynamics methods must therefore be
based on “on the fly” electronic structure calculations.
Furthermore, typical molecular dynamics runs have
to include at least of the order of 10,000 to 100,000
time steps to allow for a meaningful statistics or rea-
sonable correlations in time to be analyzed. This
implies that of the order of 10,000 to 100,000 elec-
tronic structure calculations have to be performed in
order to produce a single useful trajectory! Bear-
ing this in mind, it is clear that computationally
demanding (“expensive”), highest-accuracy methods
cannot be employed beyond a few interacting elec-
trons. Thus, quantum-chemical approaches that take
into account electron correlation {such as, for instance,
many-body perturbation theory, configuration inter-
action, or coupled cluster theories) are currently at
the borderline of being useful within the present con-
text. However, it should be kept in mind that this
might change in the near future due to advances in
(approximate) linear-scaling methods®® also for such
correlated methods.f1-% An alternative might be
the vast fleld of semiempirical methods (see for
instance®®), but there the problem is that they
often appear less general, flexible or suited to de-

scribe chemical reactions. .However, such methods .

have been a useful tool for optimizations of conical
intersections.®® Since this review focuses on meth-
ods where the entire system is treated on an equal
footing, the so-called quantum-classical hybrid meth-
ods (now often abbreviated as “QM/MM” methods)
will not be covered, although impressive progress has
been achieved in‘recent years in treating local ex-
citations. A MM-VB approach, for example, has
been applied with great success to study organic
photochemistry.88:67 Hybrid ab initio/interpolation
schemes have been proposed recently®®%® in an
attempt to reduce the computational demand of
first principles molecular dynamics simulations. A




valuable alternative to these traditional quantum
chemistry methods is presented by density func-
tional theory”®" as based on the papers by Hohen-
berg, Xohn, and Sham.™7™ It is appealing since the
cost/performance ratio is favorable, Furthermore,
there is a continued effort to describe also excited elec-
tronic states within this approach and generalizations
thereof. The main part of this overview will concen-
trate on such methods excluding, however, sophisti-
cated techniques such as the GW or Bethe—-Salpeter
approaches that can currently only be used for static
calculations.

First principles molecular dynamics “involving ex-
cited states and nonadiabatic transitions” clearly has
two aspects associated with it. First of all, it is nec-
essary to be able to propagate nuclei using forces
derived from an excited state potential energy sur-
face. Secondly, interactions hetween two, several, or
many electronic states are required due to the nonadi-
abatic couplings that arise if the Born—Oppenheimer
approximation is not invoked. This imposes the fol-
lowing structure upon this review. Based on the
Born—Oppenheimer approximation to the full (non-
relativistic) Schrodinger equation for electrons and
nuclei (Sec. 2.1.1), we derive the fundamental equa-
tions of molecular dynamics with classical nuclei in
Sec. 2.1.2 in order to set the stage. Important first
principles molecular dynamic methods for adiabatic
ground state propagation are concisely reviewed in
Sec. 2.2 and we refer to Ref. 11 for a more compre-
hensive presentation. In the following section, Sec. 3,
practical techniques are presented allowing adiabatic
propagation of a molecular system of the sort dis-
cussed above. At the heart of this review is Sec. 4. In
its first part, Sec. 4.1, fundamental aspects of nona-
diabatic dynamics are presented without, however,
detailed reference to any specific electronic structure
approach. Practical nonadiabatic ab initio molecular
dynamics methods are then obtained by combining a
particular approach to deal with nonadiabaticity with
a particular electronic structure method. Several such
combinations that have already been implemented in
computer codes and applied to study the type of sys-
tem specified above are discussed in Sec. 4.2. We
close with a critical, however not entirely unbiased,
discussion (Sec. 5) of the current state of research and
offer some personal thoughts about the future in this
“exciting” fleld.
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2. Adiabatic Molecular Dynamics
2.1. Theoretical background
2.1.1. Born—-Oppenheimer approzimation

Let us begin by introducing our nomenclature
and by reviewing some well-known basic relations
within the Schrédinger formulation of quantum me-
chanics. A complete, nonrelativistic, description of
a system of N atoms having the positions R =
(R1,Ra,...,Ry,...,Ry) with n electrons located at
r = (r1,re,...,b,...,ry) is provided by the time-
dependent Schrédinger equation

HD(r, R t) = ih%(b(r, R;1) 1)
with the total Hamiltonian
H(r,R) = TR)+T(r)+VR)+V(r,R)+V(r) (2)

being the sum of kinetic energy of the atomic nuclei,

hz
= Z 7 (3)

kinetic energy of the electrons,

- 2me Z; v? (4)

internuclear repulsion,

V(R) = & NE_:I }N: e (5)
T 4dwe R;~Ry
I=1 J>I

electronic — nuclear attraction,

V(r,R) = 47r60221r1—m| (6)

I=11i=
and interelectronic repulsion,

271.1’!1.

d7req Z Z |rz — rJI ()

=1 j>i

V(r) =

Here, M; and Z; denote the mass and atomic num-
ber of nucleus I; m. and e are the electronic mass
and elementary charge, and €p is the permittivity of
vacuum. The nabla operators V; and V; act on the
coordinates of nucleus I and electron 4, respectively.
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Defining the partial electronic Hamiltonian for
fixed nuclei (i.e. the clamped-nuclei part of ) as

Ha(r, R) = T(r) + V(R) + V(r,R) + V(r)  (8)
we rewrite the total Hamiltonian as
H(r,R) = TR) + Ha(r,R). (9)

Let us suppose the solutions of the time-independent
(electronic) Schrédinger equation,

Ha(r, R)4(r,R) = Ey(R)T4(r,R)  (10)

are known for clamped nuclei. Furthermore, the spec-
trum of Hei(r,R) is assumed to be discrete and the
eigenfunctions orthonormalized

B .
/ T, R) W, (r, R)dr = (Up|0)) = 6. (11)
—00
The total wavefunction ® can be expanded in terms of
the eigenfunctions of He since these form a complete
set

®(r,R;t) = Z Ty(r, R)x:(R, ). (12) |

!
Insertion of this so-called Born—Oppenheimer ansatz
into the time-dependent Schrédinger Eq. (1) followed
"by multiplication from the left by ¥}(r,R) and inte-
gration over the electronic coordinates leads to a set
of coupled differential equations

., 0
[T(R) + Ex(R))xx + zl:Clel =ihzxe  (13)
where the coupling operator Cy; is defined as

2
Cr = (T TR 91~ ]\Z—@MVH‘I’!)VI - (14)
T M

The diagonal term Cgy, represents a correction to the

(adiabatic) eigenvalue Fy, of the electronic Schrédinger

Eq. (10). The well-known adiabatic approximation is

obtained by taking into account only these diagonal

terms, Cpr, = (Pk|7T(R)|¥), which results in com-
plete decoupling

(T(R)+ Bu(R) + Cun(R)ce = b (19)

of the exact set of” differential Eqs. (13). This, in
turn, implies that nuclear motion proceeds without

changing the quantum state of the electronic subsys-
tem during time evolution and, correspondingly, the
wavefunction (12) is reduced to a single term

(I)(I',R; t) ~ \I’k(r) R)X/c(Ra t) (16)

being the direct product of an electronic and a nuclear
wavefunction. The ultimate simplification consists in
neglecting also the diagonal coupling terms

TR+ B®xe =ihox (1)

which defines the Born—Oppenheimer (or clamped
nuclel) approximation, see Refs. 74 and 75 for more
in-depth discussions. Let us stress that we have ig-
nored in our simple presentation possible complica-
tions through the geometric (“Berry”) phase and we
refer the reader to Ref. 76 for an excellent review on
the subtleties of this subject.

For & great number of physical situations the
Born—-Oppenheimer approximation can be safely ap-
plied. On the other hand, there are many important
chemical phenomena like, for instance, charge trans-
fer and photoisomerization reactions, whose very ex-
istence is due to the inseparability of electronic and
nuclear motion. Inclusion of nonadiabatic effects will
be the subject of Sec. 4.

2.1.2.  Classical nuclei and trajectories

In principle, solving (17) yields a complete descrip-
tion of nuclear (quantum) dynamics within the Born—
Oppenheimer approximation. However, for a system
with many degrees of freedom, quantum mechanical
treatment of the nuclei becomes computationally pro-
hibitive. For this reason, the classical approximation
is often imposed. Separating the modulus and the
phase of the nuclear wavefunction in the kth electronic
state, )

X(Rot) = Ap(R, 1)en ) (18)
where Ay and Sy are real, one obtains from (17) for
all real terms

88, = B Vi (V15,)?
W_zzM, A -2 oM ~ B (19)

and for all imaginary terms

94k~ (ViAR)(ViSk) _ x— A(V1Sk)
8t ; My Z 2M; .

(20)

I




Multiplying by 2A4; from the left, (20) may be
rewritten as

BA,% VI(A,%VIS/C) _
D Dy - =0 (21)
which is easily identified as the continuity equation,
where P = A2 and Jy = A2(V1S,)/M; are the prob-
ability density and the current density in the kth elec-
tronic state, respectively.

In the classical limit (5 = 0), (21) remains
unchanged, whereas (19) becomes

88k~ (V1Sk)?
e S

Recognizing that the nuclear velocities are given by

. _JI_VIS;C
Ri=%="7

(23)

one obtains the well-known Hamilton—-Jacobi equation
of classical mechanics

25

= —(T, + Eg) = —E™" = const. (24)

where 1
- 32
Ty, = ZI: SMR} (25)

is the classical kinetic energy of the nuclei and E'o*
is the (constant) total energy. Taking the gradient of
(24) finally yields Newton’s equation of motion

J\IIR[ = -~V FE (26)

for classical nuclear motion in the kth electronic state.

2.2. Ground state methods

The approximations presented in the previous two
subsections form the basis of conventional molecular
dynamics. Thus, in principle, a classical trajectory
calculation merely amounts to integrating Newton’s
equations of motion (26). In practice, however, this
deceptively simple task is complicated by the fact
that the stationary Schrédinger Eq. (10) cannot be
solved exactly for any many-electron system. The po-
tential energy surface therefore has to be approxi-
mated using ab initio electronic structure methods or
empirical interaction potentials (so-called force-field
molecular dynamics, Refs. 1 and 77). The latter is
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problematic, because empirical parameters obtained
for a specific system under certain environmental con-
ditions are not generally transferable to other systems
under different conditions. Moreover, the use of pair
potentials is dangerous, since many-body effects are
not properly taken into account. Many-body interac-
tion potentials for systems with many different chemi-
cal elements, on the other hand, cannot be determined
accurately. The most serious limitation of empirical
potentials, however, is their inability to account for
chemical reactions, i.e. bond breaking and formation.,
When it comes to computing a global potential en-
ergy surface by ab nitio calculations an additional
difficulty is the “dimensionality bottleneck”, i.e. the
strong increase of the number of points needed in order
to span the surface as the number of nuclei increases,
see Ref, 11 for further discussion.

In the following, we shall focus on first principles
molecular dynamics methods. Due to the high com-
putational cost associated with ab initio electronic
structure calculations of large molecules, computa-
tion of the entire potential energy surface prior to
the molecular dynamics simulation is best avoided.
A more efficient alternative is the evaluation of elec-
tronic energy and nuclear forces “on the fly” at each
step along the trajectory. In the so-called Born-
Oppenheimer implementation of such a scheme, the
nuclei are propagated by integration of (26), where the
exact energy Fy is replaced with the eigenvalue, By, of
some approximate electronic Hamiltonian, He, which
is calculated at each time step. For the electronic
ground state, i.e. k = 0, the use of Kohn—Sham (KS)
density functional theory”®7! has become increasingly
popular.

In order to further increase computational effi-
ciency, Car and Parrinello have introduced a technique
to bypass the need for wavefunction optimization at
each molecular dynamics step.!®!! Instead, the mole-
cular wavefunction is dynamically propagated along
with the atomic nuclei according to the equations of
motion

Al]RI = '_VI<\III;;|?:Zel|\I’k;> (27)
" ) ~
piths = 0 (Ue|He|¥r) + 2; Nigh; (28)

where the KS one-electron orbitals 1; are kept
orthonormal by the Lagrange multipliers A;;. These
are the Euler—Lagrange equations
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doc_oc
dt 8¢ = dq’

for the Car-Parrinello Lagrangian®

1 : 1 ..
L= ; SMIRE+ ) Slyulih)

(=R, %}) (29)

]

— (Ui[Hal k) + > g ((thileh) — 8i5)  (30)
if
that is formulated here for an arbitrary electronic
state Uy, an arbitrary electronic Hamiltonian He,
and an arbitrary basis (i.e. without invoking the
Hellmann—Feynman theorem).

3. Excited State Molecular Dynamics
3.1. Wavefunction-based methods

Extending adiabatic ab initio molecular dynamics to
the propagation of classical nuclei in a single non-in-
teracting excited state is straightforward in the frame-
work of wavefunction-based methods such as Har-
tree-Fock,”88 generalized valence bond (GVB),89-93
multi-configuration self-consistent field (MCSCF),”
complete active space SCF (CASSCF),82:94.95 or
full configuration interaction (FCI)%® approaches.
However, these methods are computationally rather
demanding — even given present-day methods, al-
gorithms, and hardware. Recently, an approximate
Hartree—Fock treatment was implemented in order
to propagate a seven-atom cluster in its first excited
state.7

3.2. Energy penalty functional method

Owing to their favorable scaling and low compu-
tational demand, density functional methods may
be applied to considerably larger systems than
the wavefunction-based approaches discussed in the
previous subsection. However, Hohenberg—Kohn—
Sham™73 density functional theory in its original
form only provides the electronic ground state.”®7!
The pioneering paper extending Car—Parrinello-type
simulations to selected excited states was based on
adding a suitable “dispersion functional” to the usual
Kohn-Sham functional.?®~1% This energy penalty
contribution “stabilizes” some electronic state by
converting a saddle point of the original Kohn-Sham
functional into a local minimum. The basic idea of this

approach®®190 is best motivated by first discussing the
generic problem

EW] = (Y|H|¥) (31)

where ¥, Is the ground-state wavefunction obtained
from the absolute minimum of the energy functional
E|¥] satisfying (¥|¥) = 1, and for simplicity it is
agssumed that ¥ is a real function. However, F is sta-
tionary at all eigenstates Wy, i.e. excited states k > 0
are saddle points of F and thus cannot be obtained
by its minimization. Considering instead of the first
moment (31) of the Hamiltonian its variance

A[P) = {{ZA*]T) — (T|H|T)*} (32)

it is observed that this functional is non-negative and
vanishes at all elgenstates, which implies that ex-
cited states are local minima of A[¥]. Thus, the
modification

B[0) = B[¥] + A{(W[H?|¥) — (T[H|T)*}  (33)

with A > 0 leads to a functional that remains sta-

tionary for all eigenstates ¥r. In addition, any ex-
cited state Wy is a local ‘minimum of Eif A >
(BE[¥] - E[¥p))~1. Thus, the dispersion contribution
A can be viewed as some sort of a “harmonic confining
potential” that causes an (additional) energy penalty
if the system is not in one of its eigenstates. The bar-
rier height separating the various local minima and
thus the different excited states is controlled by A.
Thus, the closer the energy levels the larger A has to
be chosen in order to create a sufficient separation.
The generalization of this idea within the frame-
work of density functional theory leads to the follow-
ing ad hoc modification of the Kohn—-Sham functional

oce

Bl{}) = E°[{wi}] + f\{ > (il (Misli)

7

occ
—Z(%WKSl%)(%WKSl%)} (34)
i,J

which is now an orbital-dependent density functional
that can be minimized for various states; the sum-
mation is over all occupied Kohn-Sham orbitals ;.
Having defined a suitable functional (34), the respec-
tive Car—Parrinello equations of motion
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(35)

paps = 5¢* b Z Xigthy = —Hxsthi + Y igthy — K{”H%(SIW -2 ZHI<S|¢1)<¢jIHI(SI¢i>} (36)
J J

for both electrons and nuclei can be derived as usual,
see for instance (29). For the latter, one can make use
of the Hellmann—Feynman theorem within a plane-
wave Car—Parrinello approach including, of course,
the penalty term, see Sec. 2.5 of Ref, 11 for a detailed
discussion of this issue. For this approach to work the
penalty term oc A has to be sufficiently large in order
to stabilize a given excited state sufficiently with re-
spect to neighboring (local) minimea in the presence of
fluctuations.

This idea seems closely related to the modified Ritz
variational principle for excited states'® and its ex-
tension to density functional theory.'®2 However, one
should keep in mind Lieb’s theorem (1985) that there
exists no universal variational density functional pro-
cedure yielding an individual excited state, see Sec. 9.2
in Ref. 70 for a more detailed discussion of these issues.

This penalty functional approach to performing
first principles simulations in a particular excited state
was used successfully to study the self-trapping of
a valence biexciton in diamond within LDA;'0® see
Sec. 4 of Ref. 99 for more methodological details. In
general it might be a practical problem to deliberately
select a particular excited state. This was achieved in
Ref. 99 by constructing trial initial states that were
“close” to a particular excitonic state. Furthermore,
fixing the strength A of the confining potential might
turn out to be a delicate task. If it is too weak the
resulting local minimum is too shallow and thus the
system might easily switch from one state to another.
In particular, it might relax from the first excited
state into the ground state due to fluctuations oc-
curing during a dynamical simulation. On the other
hand, in real applications the limit of large A might
lead to artificial distortions of the Kohn-Sham po-
tential energy surface, X%, as generated by the new
density functional E, which could easily produce un-
physical states. Finally, it should be kept in mind
that available local or semilocal density functionals are
not expected to lead to “correct” excited states, but
they might yield reasonable approximations in some
cases.’

3.3. Restricted open-shell Kohn—-Sham
Sfunctional

A class of alternative approaches to excited states in
the spirit of density functional theory in its Kohn-
Sham formulation™7™ is based on imposing addi-
tional symmetry restrictions. Several extensions for
computing atomic and molecular multiplet structures
by incorporating spatial or/and spin symmetry have
been proposed.!®* 15 We shall expand here on the
restricted open-shell Kohn-Sham (ROKS) method
introduced by Frank and coworkers,''® since it is
the only approach that has already been used in
adiabatic!10:116:117 and nonadiabatic!'® excited state
molecular dynamics simulations.

Similar to restricted open-shell Hartree—Fock
theory, the central idea of the ROKS approach is to
impose symmetry constraints on the many-electron
wavefunction by constructing a symmetry—adapted
multi-determinantal wavefunction,

5= % an® (37)

from spin-restricted single Slater determinants
(“microstates”), ® . Following Roothaan,!*® the ex-
pansion coefficients, aps, are chosen to be the Clebsch~
Gordon coefficients for a given symmetry. The energy
is then given by (Refs. 113-115)

$=> " cmE(@m) (38)
M

where

ZCM =1. (39)

The ROKS method has been formulated explicitly
in Ref. 110 for the lowest excited singlet state, Si,
but generalizations to arbitrary multiplets have been
proposed in the literature, 11115

Suppose we are dealing with a closed-shell ground
state system with n electrons occupying [ = n/2
spin-restricted orbitals (having the same spatial part
for both spin up (@) and spin down () electrons).
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Fig. 1. Four possible determinants [t1), [¢2), jm1) and jma)
as a result of the promotion of a single electron from the
HOMO to the LUMO of a closed shell ground state system,
see text for further details. Adapted from Ref, 110.

Promotion of one electron from the HOMO to the
LUMO gives rise to four possible spin configurations
(see Fig. 1 for a sketch) of the two unpaired electrons.
The two determinants with parallel unpaired spins,
|¢1) and [¢2), are energetically degenerate triplets, t,
whereas the two antiparallel spin configurations, |'m;l)l

and |msy), are not eigenfunctions of the total spin
operator, S%. In fact, they are energetically degen-
erate, equal mixtures, m, of the spin-adapted two-
configurational singlet,

ls1) = %{Imﬁ +Ima)} (40)
and triplet, '
ftg) = %{lmﬂ — ma)} (41)

wavefunctions (“spin contamination”). By inverting
the energy expression for the mixed state, m,

Bm) = £ (Bs1) + B(2) (42)
one obtains the energy of the 51 state [cf. Eq. (38)]
E(s1) =2E(m) — E(t). (43)

In terms of Kohn—Sham density functional theory the
energies of the mixed and ftriplet determinants can be
written as!1®

B(m) = BSS(e)) = Tl + [ dr Vo onle) + 5 [ de Va@nte) + Biclns, nf) (44

B(O) = BS({}) = Tln] + [ drVess(e)n) + 5 [ dr VaonGe) + B f) (45

where a single set of restricted KS orbitals {1); } is used
for both determinants, m and ¢. As a consequence, the
total density,

n(r) = np(r) +nfy(r) = ng(x) +nf(r)  (46)

is, of course, identical for both the m and the ¢ deter-
minants whereas their spin densities clearly differ (see
Fig. 2). Thus, in the energy functionals (44) and (45),
kinetic, external, and Hartree energies are identical
by construction. Therefore, the exchange-correlation
functional F, is solely responsible for any differences.

Having defined a density functional for the first
excited singlet state the corresponding Kohn—Sham
equations are obtained by varying (43) using (44)
and {45) subject to the orthonormality constraint
Zi:;l:l Aij ((¥il9;) — 6i;). Following this procedure
the equation for the doubly occupied orbitals ¢ =
1,...,01—1reads

Fig. 2. Four patterns of spin densities ng, nf , ne, and
nf, corresponding to the two spin-restricted determinants
[t) and |m) sketched in Fig. 1, see text for further details.
Adapted from Ref. 110.
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{ — SV Vi) o+ Vo (5) + Vil (2), 06, (6)] + V[ (1), mba )

2 xc[n (r)intﬁ( )] - "Z“V;gz

41
[ng'(r),n }"/’z (r) = Z Xijtpi(r (47)

whereas
1 1 , or o p 1 . p 1
{-2-[_5\7 b VR(E) + Vons(s)| + V2 @), m ()] — 2V (), mE)] }«pa D=y hnt) @
and
{1[—1v2+vﬁ<r>+vext<r> + VIS @), nf () ~ SVaing ), nf()] }«pb = l‘fjlwg (19)
2 2 2

are two different equations for the two singly-occupied
open-shell orbitals a and b, respectively (see Fig. 1).
Note that these Kohn—Sham-like equations feature
orbital-dependent exchange-correlation potentials,

VEnSy, niyg] = 6 Brclny, nlag) /0, (50)

where 0 = @, and M = m,t.

The set of Egs. (47)—(49) could be solved by di-
agonalization of the corresponding “restricted open-
shell Kohn—Sham Hamiltonian” or alternatively by
direct minimization of the associated total energy
functional. The algorithm proposed in Ref. 120,
which allows to properly and efficiently minimize
such orbital-dependent functionals including the or-
thonormality constraints, has been implemented in
the CPMD package.’?' Based on this minimization
technique Born—Oppenheimer molecular dynamics
simulations can be performed in the first excited
singlet state.l1%116 The ROKS method has also
been employed in Car—Parrinello molecular dynamics
calculations'!!8 according to the general equations
of motion (27) and (28) from Sec. 2.2.

Excitation energies and excited state optimized
molecular structures obtained using the ROKS
method have been found to be quite accurate (on the
scale given by typical time-dependent density func-
tional results or ground-state density functional cal-
culations for the structures) in the case of n — #*
transitions.''® The ROKS results generally appear to
be less reliable for electronic states that are energeti-
cally not well isolated.!!” This observation has been
made in particular for many = — 7* excitations. 7

In summary, the ROKS method takes care of the
spin symmetry of the molecular wavefunction through
the two-determinantal ansatz for the S; wavefunc-
tion. In a single determinant, unrestricted Kohn-
Sham ansatz, the symmetry restriction would have
to be built into the exchange-correlation functional.
Therefore, the ROKS method puts less strain on the
functional. In addition, we would like to stress again
the fact that the ROKS energy functional is indeed
an orbital functional (akin to the OEP/OPM!22:123
family of functionals) and does not merely depend on
the local density and its derivatives.

3.4. Time-dependent density functional
response theory

Time-dependent density functional theory (TDD-
FT)7124~126 Jinear response calculations*?"12% of
molecular properties such as excitation spectra and
dynamic polarizabilities have become a standard tool
in quantum chemistry over the past few years.}30-133
It has been demonstrated®?133 that mean errors of
a fraction of an electron Volt can be achieved for
TDDFT molecular excitation energies when accurate
exchange-correlation potentials, Vg, are used. Cor-
rect asymptotic long-range behavior of V., in parti-
cular, has been shown to be crucial for a high quality
description of Rydberg transitions.

Extensions of the TDDFT method to adiabatic
excited state and multi-state nonadiabatic dynamics
are highly desirable, because practically the entire
electronic spectrum of a given molecule is reliably
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obtained from a single calculation at comparatively
low computational expense. Calculation of excited
state nuclear gradients in TDDFT, however, is not
straightforward. Nevertheless, the progress currently
made in this field'34-136 promises to have a massive
impact on ab initio excited state MD,

A formalism that makes it possible to perform
Car—Parrinello MD simulations on excited state po-
tential energy surfaces obtained by TDDFT has been
presented recently.'3” In the following, we shall briefly
summarize the central ideas.

In the framework of TDDFT the excitation
energies w = wy = E,Ifs — EX3 are the poles of the|

Kiaogor = / dr / i 5o () =7

density response function; in practice they can be
calculated by solving the non-Hermitian eigenvalue

problem
A B X X
B D)) e

Aiao‘,jb’r = 50'7'5ij(sa,b(5aor - 671(1') + Kiaa’,jb’r (52)

Biaa,jb'r = Kiaa,bj'r . (53)

with

The coupling matrix K is given by

Pir (v Yty (x)

r’|

/dr/dr 'l,bw r)¢ao(r) (r r' w)@bJT(r )"/)br( ) _ (54)

;> denoting the ith KS orbital (occupied orbitals
are labeled 4,7, unoccupied ones a,b) with spin o
(o = a,B) and the exchange-correlation kernel being
defined as

52 (1, )
onT(x', )"
Using the adiabatic local density approximation
(ALDA),!?5 the exchange-correlation potential V.2
can be replaced by the derivative of the exchange—]

e (Tt 1) = (55)

I
correlation energy, Fy., with respect to the spin

density n?

5Exc

VMR = 5y

(56)

In the spirit of Car—Parrinello MD one can write
down a Lagrangian'®” describing the classical motion
of XS orbitals {t,}, response amplitudes X,Y, and
atomic nuclei R,

L= Z MIR?’""Z oM 7/)z|7pz +ZZ V| malz'l'zz 'La.alz

- E5° —wk+Z)\”( (Wil) —

z - (_’i}) - (i‘:) (58

v is a fictitious mass associated with the response am-
plitudes, and the I'y; are Lagrange multipliers con-
straining the excited states to be orthonormal (for all
other symbols see Sec. 2.2). From the Euler-Lagrange
Eqgs. (29), one obtains the equations of motions!3” for
the one-electron orbitals,

where

k iaoc k. iao
8ij +ZTM (Z}|Z%) — 6m) (57)
l 5EKS
piths = — 5 O+ Nigts (59)
v

for the response amplitudes

()2 D)-+(%)

and for the nuclei

MIR[ = —VIE(I)(S - V]wk;. (61)




In the usual Car—Parrinello procedure, these equations
would have to be solved using periodic boundary con-
ditions in combination with a plane-wave basis set
and pseudopotentials.’* As a first step, it has been
demonstrated'3® that static TDDFT calculations in
this setup faithfully reproduce previous results ob-
tained using atom centered hasis sets.

4. Nonadiabatic Molecular Dynamics
4.1. Approaches to nonadiabatic dynamics
4,1.1.  Introduction

The simplest and computationally least expensive
way of incorporating nonadiabatic effects is by de-
scribing nuclear motion by classical mechanics and
only the electrons quantum mechanically. In these
so-called mixed quantum-classical approaches (often
also referred to as semiclassical approaches),!39-148
the atomic nuclei follow some trajectory R(t) while
the electronic motion is captured by some time-
dependent total wavefunction ¥(r;t) satisfying the
time-dependent electronic Schrédinger equation

Hea(r, R(£))¥(r;t) = ihgz\I/(r;t). (62)

Again, the total wavefunction is written as a linear
combination of adiabatic eigenfunctions ¥g(r, R)

U(ryt) = 3 () Ty(r, R)e~H S BOIE (g3)
I

that are solutions of the time-independent Schrd-
dinger Eq. (10) for nuclei at positions R at time 2.
Insertion of this ansatz into the time-dependent elec-
tronic Schrodinger Eq. (62) followed by multiplication
from the left by ¥ (r, R) and integration over the elec-
tronic coordinates leads to a set of coupled differential
equations

ak = — Z @Chie”F J s (64)
1

where

Cu = <‘I’/c P ‘I’z> (65)

are the nonadiabatic coupling elements. Making use
of the chain rule, we can rewrite (65) as

C = R{¥|V|¥;) = Rdy (66)

where dg; is the nonadiabatic coupling vector.
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Fig. 3. Avoided crossing between the covalent and ionic
adiabatic potential curves (solid lines) of NaCl (thin lines:
crossing of diabatic states).

Integration of (64) yields the expansion coeflicients
ax(t) whose square modulus, |a(t)|?, can be inter-
preted as the probability of finding the system in the
adiabatic state k at time .

We now want to develop a condition for the va-
lidity of the Born—Oppenheimer approximation based
on qualitative arguments. For this purpose, we shall
consider a two-state system. To illustrate the prob-
lem, Fig. 3 shows schematically the avoided crossing
between the covalent and ionic potential energy curves
of NaCL4%350 Ag we can see, the adiabatic wave-
functions ¥, and Wy change their character as the
bond length is varied. The characteristic length, [,
over which ¥, and ¥4 change significantly clearly de-
pends on the nuclear configuration R; in the vicinity
of the NaCl avoided crossing, for instance, the char-
acter of the wavefunctions varies rapidly, whereas at
large separations it remains more or less constant.

Division of the characteristic length { by the
velocity of the nuclei, R = |RJ, at a particular con-
figuration R defines the passage time, 7, the system
needs to travel the distance [ around R

o = B (67)
In order for the Born—Oppenheimer (or the adia-
batic) approximation to be valid, the electron cloud
has to adjust instantly to the nuclear changes. The
time scale characteristic of electronic motion can be
obtained from the relation

AE = |By — By| = hw (68)
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by taking the inverse transition frequency

1 h

The ratio AR
Tp
6 Te hR ( )

is the so-called Massey parameter,!39140,151,152 By

values £ > 1, ie. large energy gaps AFE and small
velocities R, nonadiabatic effects are negligible, In
this case, if the system is prepared in some pure adi-
abatic state k at time ¢t = 0 (i.e. |ag(0)[> = 1), the
right hand side of (64) will be zero at all times and
the wavefunction expansion (63) can be replaced by a
single term

U(r;t) = Up(r, R)e™F J Be®ME ()

The atomic nuclei are then propagated by solving
Newton'’s Egs. (26).

4.1.2.  Mean-field (Ehrenfest) method

As we have discussed in the previous section, non-
adiabaticity involves changes in the adiabatic state
populations |ag|? with changing nuclear configuration.
Clearly, such a distortion of the electron cloud will, in
turn, influence the nuclear trajectory. Although there
are situations in which the impact of electronic non-
adiabaticity on nuclear motion is negligible (e.g. for
high energy collisions or small energy separations
between adiabatic states where the so-called “Mott
classical path method” works well), for many chemical
systems it is of prime importance to properly incorpo-
rate electronic-nuclear feedback.'4145 The simplest
way of doing this is to replace the adiabatic potential
energy surface Ey in (26) by the energy expectation
value

Bogp = (U Hal¥) = |ax)* By (72)
k

where we have used (63). Thus, the atoms evolve on
an effective potential representing an average over the
adiabatic states weighted by their state populations
lak|? as illustrated in Fig. 4. The method is therefore
referred to as mean-field (also known as Ehrenfest)
approach.

It is instructive to derive an expression for the
nuclear forces either from the gradient of (72) or using
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Fig. 4. Top: avoided crossing between two adiabatic po-
tential energy surfaces, Fi and Fs, and effective potential,
Eew, on which the nuclei are propagated in the Ehren-
fest method. In the asymptotic region (right) Ees con-
tains contributions from classically forbidden regions of
FE,. Bottom: corresponding adiabatic state populations
la1|*> and Jaz|?. The system is prepared in state ¥y ini-
tially with zero kinetic energy. Upon entering the coupling
region state W3 is increasingly populated.

the Hellmann-Feynman theorem
F;r=—(U|ViHa|T). (73)

Opting for the latter, we start by writing down the
relation

V(| Het|Ty)

= V1 Edu (74)
= (Vs Ha| V1) + (V1| VIHa [T1)

+ (V| Hat [V 1 T1) (75)
= (U |V rHal¥1) + (By — Ex)d, (76)

where we have defined the nonadiabatic coupling
vectors, di,, as

dfy = (01| V1| Tg) (77)
and used (10) together with the hermiticity of He)
(Ug|Ha |V 1)
= (VY| Ha|Pr)* = (VT B T)*
= Ep(dfy)* = —Exdy . (78)




Note that
(df)* = —diy (79)
because
V{(‘I’k|\I’l>
=V =0 (80)

= (V0| W) + (W] VrTy) = (dfe)* +dig . (81)

Equating the right hand sides of (74) and (76) one
obtains after rearranging

(Up|V Hel V1) =V Eypbygy — (By — Bg)djy,.  (82)
The nuclear forces (73) are thus given by

Fr=-Y_|as*ViEx + Y  ata(E — Ey)djy.
k kil

(83)
Equation (83) illustrates the two contributions to the
nuclear forces; the first term is simply the population-
weighted average force over the adiabatic states, while
the second term takes into account nonadiabatic
changes of the adiabatic state occupations. We would
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like to point out here that the nonadiabatic contribu-
tions to the nuclear forces are in the direction of the
nonadiabatic coupling vectors df,.

The Ehrenfest method has been applied with great
success to a number of chemical problems including
energy transfer at metal surfaces'%® and the study of
excited state lifetimes and decay properties of organic
molecules.'5 However, due to its mean-field charac-
ter the method has some serious limitations. A sys-
tem that was initially prepared in a pure adiabatic
state will be in a mixed state when leaving the re-
gion of strong nonadiabatic coupling. In general, the
pure adiabatic character of the wavefunction cannot
be recovered even in the asymptotic regions of con-
figuration space. In cases where the differences in the
adiabatic potential energy landscapes are pronounced,
it is clear that an average potential will be unable to
describe all reaction channels adequately. In partic-
ular, if one is interested in a reaction branch whose
occupation number is very small, the average path is
likely to diverge from the “true trajectory”. Further-
more, the total wavefunction may contain significant
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Fig. 5. Top left: forward path effective potential, Eug, for two weakly coupled adiabatic potential energy surfaces, By and
E». Bottom left: state occupations for a system initially prepared in state ¥i. The final value of laz)® is equal to the
transition probability Pio. Top right: backward path effective potential, Feg, for two weakly coupled adiabatic potential
energy surfaces, B and Eo. Bottomfd’[: state occupations for a system initially prepared in state 2. The final value of

la1|* is equal to the transition probapility Pai.
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contributions from adiabatic states that are energeti-
cally inaccessible in classical mechanics, see Fig. 4.

Another severe drawback of the mean-field ap-
proach is illustrated in Fig. 5. The principle of
microscopic reversibility demands that the forward
“path probability, Pfg' = |af"2!|? for a system that
was initially prepared in state ¥, to end up in state
¥y must be equal to the backward path probability,
PPpok = |afmal|2 for a system that was initially pre-
pared in state ¥y to end up in state ¥1. One can easily
think of situations, like the one depicted in Fig. 5,
for which the effective potentials for the forward and
backward paths are very different, resulting also in
different populations, |ax/?. The Ehrenfest method,
therefore, violates microscopic reversibility,

It should be noted that the expansion of the
total wavefunction in terms of (e.g. adiabatic) basis
functions (63) is not a necessary requirement for the
Ehrenfest method. The wavepacket ¥ could also
be propagated numerically using directly the time-
dependent Schrédinger Eq. (62). However, projection
of ¥ onto the adiabatic states facilitates interpreta-
tion. Knowledge of the expansion coefficients, ag, is
also the key to refinements of the method such as the
surface hopping technique, see the following Sec. 4.1.3.

4.1.3. Surface hopping

We have argued above that after exiting a well
localized nonadiabatic coupling region it is unphysi-
cal for nuclear motion to be governed by a mixture
of adiabatic states. Rather it would be desirable that
in asymptotic regions the system evolves on a pure
adiabatic potential energy surface. This idea is fun-
damental to the surface hopping approach. Instead of
calculating “the best” (i.e. state-averaged) path like
in the Ehrenfest method, the surface hopping tech-
nique involves an ensemble of trajectories (i.e. many
different paths). At any moment in time, the sys-
tem is propagated on some pure adiabatic state Wy,
which is selected according to its state population
lak|?. Changing adiabatic state occupations can thus
result in nonadiabatic transitions between different
adiabatic potential energy surfaces, see Fig. 6. The
ensemble averaged number of trajectories evolving on
adiabatic state k at any time is equal to its occupation
number |ag|?.

In the original formulation of the surface hopping
method by Tully and Preston,’*! switches between
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Fig. 6. Top: avoided crossing between two adiabatic po-
tential energy surfaces, F1 and Fy, and two typical forward
surface hopping trajectories (dashed and dotted lines).
Nonadiabatic transitions are most likely to occur in the
coupling region. Bottom: corresponding adiabatic state
populations Ja1|? and |az|®. The system is prepared to be
in state ¥y initially with zero kinetic energy. Upon enter-
ing the coupling region state ¥y is increasingly populated.

adiabatic states were allowed only at certain locations
defined prior to the simulation. Tully*? later general-
ized the method in such a way that nonadiabatic tran-
sitions can occur at any point in configuration space.
At the same time, an algorithm — the so-called fewest
switches criterion — was proposed which minimizes
the number of surface hops per trajectory whilst guar-
anteeing the correct ensemble averaged state popula-
tions at all times. The latter is important because ex-
cessive surface switching effectively results in weighted
averaging over the adiabatic states much like in the
case of the Ehrenfest method.

We shall now derive the fewest switches criterion.
Out of a total of N trajectories, N will be in state
Ty, at time ¢,

Ni(t) = per(t)N (84)
where we have introduced the density matrix notation
pri(t) = ag(t)au(t) . (85)

~ At alater time ¢’ = -6t the new occupation numbers

are
Ni(t') = pru(t)NV . (86)
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Fig. 7. A two-state system with each state being equally
(50%) populated at time ¢. At time ¢ + At the lower and
the upper state are populated by 40% and 60% of ensem-
ble members, respectively. The top panel shows how this
distribution can be achieved with the minimum number of
transitions, whereas the bottom panel shows one alterna-
tive route involving a larger number of transitions.

Let us suppose that Nj(t') < Ni(t) or 6Ny = Ni(t) —
Ni(t') > 0. Then the minimum number of transitions
required to go from Ni(t) to Ni(¢') is dNp, hops from
state ¥y to any other state and zero hops from any
other state to state Wy, see Fig. 7. The probability
Py(t,dt) for a transition out of state ¥y to any other
state during the time interval [¢,t -+ 6¢] is then given
by
SNk _ pri(t) — pik(t’)
Py (t,6t) = Ne ok
R0 (87)
Pkk

where we have used

, () — paie(t
Phie %&Q ) (88)

The left hand side of (88) can be written as

. d : .
pie = 3 (ahar) = afok + akai

= (akap)* +akae = 2R(alak)  (89)

and inserting (64) into (89), we obtain

pik = —2R (Z plch/cle_% f(Elek)dt) . (90)

l
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Substituting expression (90) into (87), the probability
Py, can be rewritten as follows
2% <Zl /ﬁ’lch’meh%I f(E‘—E*‘)dt) ot

Py(t, 6t) = P

. (91)

Since the probability, Pk, for a switch from state ¥y
to any other state must be the sum over all states
of the probabilities, Py, for a transition from state
¥, to a specific state ¥,

Py(t, 6t) = _ Pult, o) (92)
!

it follows from (91) that

2% (/)klckleh%f(El—Ek)dt> 5t

Py (t,6t) = P

(93)

A transition from state ¥y, to state ¥, is now invoked
if

P < ¢ < P™ (94)
where ¢ (0 < ¢ < 1) is a uniform random number and
P,gm) is the sum of the transition probabilities for the
first m states,

m
P = > Py ' (95)
1

In order to conserve total energy after a surface
hop has been carried out, the atomic velocities have
to be rescaled. The usual procedure!4?1%% is to ad-
just only the velocity components in the direction of
the nonadiabatic coupling vector dgn,(R), see (77).
We can qualitatively justify this practice by our ear-
lier observation that the nonadiabatic contribution to
the Ehrenfest forces also are in the direction of the
nonadiabatic coupling vector dj.,(R), see (83). Cer-
tainly, such discontinuities in nuclear velocities must
be regarded as a flaw of the surface hopping ap-
proach. In most physical scenarios, however, non-
adiabatic surface switches take place only at relatively
small potential energy separations so that the neces-
sary adjustment to the nuclear velocities is reason-
ably small. Nevertheless, a severe limitation of the
method is presented by its inability to properly deal
with situations in which the amount of kinetic en-
ergy is insufficient to compensate for the difference
in potential energy (so-called classically forbidden
transitions). Tully’s original suggestion not to carry
out a surface hop while retaining the nuclear velocities
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Fig. 8. Top: avoided crossing between two adiabatic po-
tential energy surfaces, E1 and By, and two typical forward
surface hopping trajectories. Nonadiabatic transitions are
most likely to occur in the coupling region. The cross
indicates a classically forbidden transition; no switch is
carried out in this case. Bottom: corresponding adiabatic
state populations |a1|® and |as|®. The system is prepared
in state ¥y initially with zero kinetic energy. Upon enter-
ing the coupling region state ¥ is increasingly populated.
Upon exiting the coupling region, the state population of
¥, decreases. For configurations R for which Ep is in
the classsically forbidden region, the percentages of tra-
jectories in state Wy, Ny, are unequal to |ax|?; N3 is zero
whereas Ni remains constant.

in such cases has been demonstrated'®® to be more
accurate than later proposals'®1%7 to reverse the
velocity components in the direction of the non-
adiabatic coupling vector dgm,(R). The example pre-
sented in Fig. 8 illuminates how classically forbidden
transitions cause divergence between the target occu-
pation numbers, |ak|?, and the actual percentages of
trajectories evolving in state k, NJ.

Like the Ehrenfest method, surface hopping in
the formulation presented here does not satisfy
microscopic reversibility. This means that transition
state theory for treating rare events cannot be applied
rigorously,'®8 since half-trajectories have to be inte-
grated forward and backward in time starting at the
transition state.

In contrast to the Ehrenfest approach, however,
surface hopping is not representation-independent; it

has been demonstrated'® that the adiabatic represen-
tation chosen here is best suited for surface hopping
simulations.

It should be noted that surface hopping ex-
hibits a large degree of electronic coherence through
continuous integration of (64) along the entire
trajectory. On the one hand, this enables the method
to reproduce quantum interference effects'4? such
as Stiickelberg oscillations.!3® On the other hand,
due to treating nuclei classically, dephasing of the
electronic degrees of freedom may be too slow, a
shortcoming shared by the surface hopping and the
Ehrenfest method alike. A number of semiclassical
approaches incorporating decoherence have, therefore,
been proposed.!39-165 To some extent, recurrences are
suppressed naturally, however, with increasing num-
ber of degrees of freedom (for example in condensed
phases). This has been demonstrated even for rather
small molecules in the gas phase.35:166,167

Some of these alternative methods attempt to
combine the advantages of surface hopping (mainly,
pure adiabatic states in asymptotic regions) with
those of the mean-field method (no discontinuities in
potential energy, no disallowed transitions) by em-
ploying an effective potential whilst enforcing gradual
demixing of the total wavefunction away from the cou-
pling regions.'83-165 Comparisons of surface hopping
with other, very different methods can be found in the
literature, e.g. Refs. 168 and 169.

4.1.4. Towards ezact quantum dynamics

The methods discussed so far assume that the nuclei
can be treated as classical point particles so that
straightforward classical molecular dynamics tech-
niques can be used in order to propagate them.
It is certainly desirable to go beyond this approxi-
mation, in particular since nonadiabatic transitions
are genuine quantum-mechanical events that call, in
principle, for a quantum treatment of the nuclei as
well. It is clear that a straightforward implemen-
tation of propagating the total Schrodinger Egs. (1)
and (2) is not possible except for very small systems
due to the exponential complexity of the problem;
see for instance, Ref. 170 for a recent study of an
HD molecule subject of a strong laser pulse. Many
systematic approaches to a coupled quantum dyna-
mics of electrons and nuclei can be derived by using




a time-dependent (Dirac, Frenkel, McLachlan etc.)
variational principle!™ 17 in conjunction with an
(certain restricted) ansatz for the wavefunction (which
is often represented by Gaussian wavepackets'™) in
order to derive suitable equations of motion. For
instance, the so-called “electron-nuclear dynamics”
(END) method and its extensions are mainly used
in order to study scattering processes involving a
few atoms or small molecules.!”7® The so-called
“fermionic molecular dynamics” (FMD) method was
developed in order to cope with the antisymmetry of
fermions in general, but it was mostly applied in the
framework of nuclear physics.!7®

A very powerful algorithm to propagate wavepack-
ets for nuclei is the multiconfiguration time-dependent
Hartree (MCTDH) method.}”"17® Currently this ap-
proach is used to treat of the order of 10-100 coupled
nuclear degrees of freedom — including several elec-
tronic states! However, it is required that the Hamil-
tonian can be expanded as a sum of products of
one-particle operators, which implies that the inter-
action potential has to be transformed according to
this constraint. In view of this prerequisite is seems
difficult to compute the interactions “on the fly” as
the nuclei are propagated, so that the bottleneck is
the availability of potential energy surfaces in 10-100
dimensions.

Finally, a promising approach to both large sys-
tems and nonadiabatic dynamics is the so-called “full
multiple spawning method” (FMS) in its ab nitio
extension (AIMS); see Ref. 179 for a review article.
It relies on expanding the nuclear wavefunction in
terms of Gaussian wavepackets, with the possibility
of increasing their number as needed, together with
the evaluation of energies, gradients and nonadiabatic
couplings not in advance, but as the Gaussians move
in time. This idea will be presented in more detail in
Sec. 4.2.5.

4.2. First principles implementation of
nonadiabatic dynamics

4.2.1.  Wavefunction-based methods

A nonadiabatic ab initio molecular dynamics ap-
proach based on an approximate Hartree—Fock
scheme using the fewest-switches surface hopping
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algorithm®? to couple the first excited state to the
ground state was introduced recently.'®0 The notion
“ab initio Wigner distribution approach to nonadia-
batic dynamics” was coined in Ref, 180 since a Wigner
expansion was used for the vibronic density matrix in
order to establish the canonical ensemble., The cal-
culation of electronic structure and in particular the
evaluation of the nonadiabatic couplings is performed
in the so-called “frozen ionic bonds” approximation.?”
This simplification implies that the only allowed elec-
tronic excitations are those that arise from promoting
an unpaired electron in the HOMO of the molecule
while keeping the underlying doubly occupied orbitals
frozen. In addition, effective core potentials or pseudo
potentials were used in order to reduce the number
of active electronic degrees of freedom. Using this
method the evaluation of both gradients and couplings
is considerably less ‘demanding as compared to us-
ing other suitable approaches such as RPA, CASSCF,
or CI without sacrificing too much accuracy because
of the favorable energy-level structure underlying the
“frozen ionic bonds” scheme.

The time-dependent electronic wavefunction is
expanded in terms of an adiabatic basis set

T(r;t) = ay(t)Tu(r,R) (96)
)

stemming from the one-electron Hamiltonian in the
“frozen ionic bonds” formulation at the instantanous
configuration R(¢) of the nuclei. This leads to the
usual Schrédinger equations

10 (t) = (—:kak(t) — 1 Z R[dilal (t) (97)
It

diy = (4| V1] Ty) (98)

for the time-dependent expansion coefficients in this
particular orthogonal basis (atomic units are used
throughout this subsection). An analytical expression
of an explicit evaluation of the nonadiabatic coupling
vectors df, is derived in Ref. 180 within the “frozen
ionic bonds” approximation. The corresponding New-
tonian equations of motion for the classical nuclei
moving in the kth electronic state are given by

MiR; = -~V (EUF(R) — (R) + ex(R))  (99)
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where E°HF and ey/e; denote the SCF energy of
the frozen ionic core and the eigenvalues of the sin-
gle electron in the field of the core, respectively, see
Ref. 97. Together with the fewest-switches hopping
probability, see (87),

26t . .
Py = W (S‘[a,’;alekém] -x {a,ﬁalz[:RId,ﬂl]>
(100)

this completes the presented approach to performing
nonadiabatic molecular dynamics “on the fly”.

This method was used in order to study in great
detail the femtosecond photoisomerization process
due to a radiationless decay from the first excited
state through a conical intersection in a five-atom
cluster.'80

* An important contribution to the ab instio explo-
ration of excited state potential energy surfaces has
been made by applying quantum chemistry methods
in order to characterize conical intersection funnels.38
For a variety of organic molecules, the decay paths
from the excited state to the ground state via a coni-
cal intersection3%36:37 have been determined by com-
puting the minimium energy path (MEP)!®! using the
intrinsic reaction coordinate (IRC) method.'®? Such
an approach, however, does not provide a full dynam-
ical picture in the sense of proper evolution in real
time, since the atomic nuclei have infinitesimal kinetic
energy.

The photoisomerization dynamics of a retinal
chromophore model has recently been described using
a CASSCF based surface hopping approach. '8

4.2.2. Time-dependent density functional theory
in the time domain

In principle, time-dependent density functional
theory”1s124-126 can be used in order to describe the
fully coupled time evolution of quantum systems.
Presently, this theory and in particular its linear re-
sponse formulation is extensively used for the cal-
culation of excited state energies, optical spectra,
hyperpolarizabilities etc. given a set of space-fized
classical nuclei. Most often, it is used in the frequency
domain since there the poles of the linear density
response directly yield the excitation energies.!?®

Compared to such studies only few implementa~
tions of a propagation of these equations directly in
real time exist. However, most of the approaches
within this class are restricted to adiabatic time
evolution which is justified in many situations, see for
instance, Refs. 183-189.

A notable exception is the explicit real-time
formulation of a nonadiabatic quantum molecular dy-
namics scheme based on time-dependent Kohn—Sham
theory.'90:191 Ag ysual for such approaches, the first
step consists in separating the classical nuclear degrees
of freedom from the electronic ones according to (16).
In a second step, a coupled set of equations of mo-
tion for nuclei and electrons are obtained from requir-
ing that the total energy is conserved. The electronic
subsystem is described within time-dependent density
functional theory (atomic units are used throughout
this subsection)

ot

where ; are the occupied time-dependent Kohn-

O0t) [M%V2 + VKS] Pi(r;t) (101)

Sham orbitals, n is the corresponding density

occ

n(r;t) = > [ (r;8)[? (102)
J
and V%3 is the Kohn-Sham potential
A
VS — _Z_——h—lel + Vi1 + Vie (103)
T

with Vg = [dr'n(x')/|r — 1’| denoting the Hartree
potential and Vi, denoting the (true) time-dependent
exchange-correlation potential; see for instance,
Ref. 71 for more details. Being a one-determinantal
single-particle representation of the total density, the
Kohn—Sham orbitals can be expanded in terms of an
arbitary single-particle basis

hi(r;t) = Z oi(t)a(r,R) (104)

that depends parametrically on the time-dependent
nuclear positions R(t). This leads to the follow-
ing formulation of the time-dependent Kohn-Sham
equations

i0i(t) = Y (S Vap {Hﬂv —1i Zerfgﬂ,} aryi(t)
By I
(105)




with the nonadiabatic coupling vector matrix

dag = (PalVil¢e) (106)

the overlap matrix
Sap = {(baldp) (107)
_ 1

MszmZ'_Zlﬂz{

i

afvyd

in terms of the various matrix elements introduced
above. The coupled set of electronic and nuclear
equations of motion (105) and (109) define what
could be called Ehrenfest molecular dynamics based
on time-dependent Kohn—Sham density functional
theory (note that the more general notion “non-
adiabatic quantum molecular dynamics” or NA-QMD
was coined in Ref. 190). It can be shown that in
the absence of electronic transitions these equations

reduce to the well-known adiabatic equations with

trivial stationary-state time evolution.!%%19! It should
be noted that electronic excitations are achieved via
coupling to external perturbation, such as for exam-
ple an external electromagnetic field which in general,
does not produce a dynamical evolution starting in a
particular preselected pure state.

Using the collision of a proton with a hydro-
gen atom as an example this approach was used in
Refs. 190 and 191 to demonstrate the effects of nona-
diabatic transitions on the motion of the nuclei within
the above framework. Shortly later, this approach
was applied to complex many-body atom/cluster and
jon/fullerene collision processes.'9271%% A formula-
tion including an external laser field was given most
recently.!% A very similar approach was developed in
Ref. 197 and applied to investigate the laser-response
of Cgo and carbon chains within an approximate
(tight-binding) density functional scheme.'%®

4.2.3.  Car-Parrinello surface hopping

In the case of ground state calculations, density func-
tional theory™~73 based ab initio molecular dynamics
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and the Hamiltonian matrix

_ ivz + VKS
2

Hop = (4 b). (0

The corresponding equations of motion for the classi-
cal nuclei can be written as

Za’:zj [ViHap — (| Vi(Va + Vio)ldp)lag;

— ) @k [Hap(S™h) pydls + (d)ep(S ~l)ﬁvaﬂGLaJ’} (109)

simulations in the spirit of Car and Parrinello'® have
become the method of choice to study large molecules
and condensed phase systems (see Sec. 2.2). As we
have discussed in Sec. 3.3, Car-Parrinello simulations
have become possible also in the first excited state
using a restricted open-shell Kohn-Sham (ROKS)
approach.}® A nonadiabatic extension of the Car—
Parrinello method coupling the ROKS S excited state
to the Sy ground state using a Tully-style'? trajec-
tory surface hopping algorithm has been presented in
Ref. 118 and will be outlined in this subsection, see
also Ref. 148.

As we have shown in Sec. 3.3, the Sy restricted
open-shell singlet wavefunction is constructed by lin-
early combining the mixed determinants, m, and mg
(see Fig. 1),

W = %{Iml) T Irma)}
1 - - _
= 75{@%%9’ PP Pty

+ gD gyl (110)

where the “ket” notation signifies Slater determinants
made up of Kohn-Sham orbitals, 1/)1.(1) (spin up) and
1/;1(1) (spin down); ! = n/2 is half the number of
electrons.

We recall (Sec. 8.3) that the Sy energy, £(S1), can
be written as the difference between twice the energy
of the mixed determinant, E(m), and the energy of

the triplet determinant, E(t),
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E(S1) =2B(m) — E(t). (111)
Within the ROKS scheme, a single set of orbitals

{1[;1.(1> } is determined that minimizes the energy
functional

BlpMY] = 2(m|H5S Im) — (t|HES|t)

141
= > {wP) -5y (112)
i,5=1
where HX® is the Kohn-Sham Hamiltonian™ and the
Xi; are Lagrange multipliers taking care of the or-
thonormality of the orbitals. Due to this optimization
the entire set of orbitals {'z[)i(l)} will, in general, differ
from the set of orbitals {1/)50)} that define the ground
state wavefunction, ¥y,

To = OGOy @y (113)

As a consequence the two state functions, ¥p and ¥y,
are nonorthogonal giving rise to the overlap matrix
elements, Sk,

So1=5816=8, Sk =1. (114)

Inserting ansatz (63) using the above basis func-
tions, ¥o and ¥y, into (62) and replacing He with
7¥S we obtain after integration over the electronic
coordinates following multiplication by ¥} from the

left
J

> wpi(Hy — EiSu)
Z

= ifi {dezskz + ZGLPLCM} (115)
1 7

where the Hamiltonian matrix elements are given by
Hy = (V| H|04) = By, (116)
Hy, = Hyp = EpS (117)

~ and the phase factor has been abbreviated as

pr= e S Bt (118)
For k = 0, (115) becomes

arp1S(Eo — Ey) = ih{aopo + a1p1S + a1p1Cor }
(119)

and for k=1
0 = GopoS + aip1 + aopoCio . (120)

We should stress here that the discrepancy between
(115) and (64) arises purely because ¥y is not an
eigenfunction of H¥S. In the limit S = 0, however,
we recover (64).

Solving Egs. (119) and (120) for 4o and a; one
finds

N l . pl pl

521 |"My, - — — aoC 121
o= g5 7 [zalp()S(Eo Ey) +a1001p0 ag 108’] (121)
a1 = . a'OcllO@ ~a1Cp1 8 — ia152(E0 R (122)

We integrate these two coupled differential equa-
tions numerically using a fourth order Runge-Kutta
scheme.' Tt is computationally attractive to work
with the nonadiabatic coupling elements, Cy;, see
(65), instead of the monadiabatic coupling vectors,
dy, see (77), since the orbital velocities are readily
available within the Car-Parrinello method. A Born-
Oppenheimer implementation is also possible, in
which case the nonadiabatic couplings have to be
computed using a finite difference scheme.

If both electronic state functions were eigenfunc-
tions of the Kohn—Sham Hamiltonian, |ag|? and |aq|?

[
would be their respective occupation numbers. A

look at the normalization integral of the total wave-
function, ¥,

(B|T) = |ao)?® + |a1|* + 25 R <a5a11~;i) =1 (123)
0

shows that the definition of state populations in this
basis is ambiguous. We therefore expand the total
wavefunction ¥ in terms of an orthonormal set of
auxiliary wavefunctions, ¥}, and ¥}

U= do\Ila + dl\Ifll = boWo + b1 (124)




where
(W3] 91) = Ou (125)

and
= QL. (126)

Since ¥ is normalized, the squares of our new expan-
sion coefficients add up to unity and thus have the
meaning of state populations in the orthogonal basis

|dof* -+ |da |* = 1. (127)

The orthonormal wavefunctions ¥4 and ¥} can be ex-
pressed in terms of Yo and ¥y as

‘I’:) = ¢cgoWq + c10¥1 (128)
\Illl = cg1 ¥ + c11 ¥y (129)
cp = (2‘;2) and ¢y = (c‘“) being solutions of the eigen-

value problem "
HC =SCE. (130)

Using the Hamiltonian matrix elements of (116) and
(117) and the overlap matrix of (114), one obtains the

eigenvalues
eq = Fyo (131)

and

By — S*F, .
61:—‘11_70 (> By, if E()<E1)- (132)

The corresponding eigenvectors are

co = <(1)> (133)
¢ = <_15) (134)

leading to the orthonormal wavefunctions

and

W) = W, (135)

- [-STo + ¥4]. (136)

1
AR
Inserting (135) and (136) into (124), we determine the
expansion coefficients to be

dg = by + 0,18 (137)

dy =byy/1- 52, (138)
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The state occupation numbers are thus
|do|* = [bo|? + 5%[ba]* + 25 R(UGb1) (139)
ld1|* = (1 - 52)|baf* (140)

or alternatively
|do|? = a0l + S?|a1|? + 28 R a*alp—l- 141
p
0

di|” = (1 — 5)]aa|?. (142)

We are now in a position to apply Tully’s fewest
switches criterion (93) using the coefficients dy, to con-
struct the density matrix (85).

For many applications the overlap S is sufficiently
small so that nuclear gradients may be obtained from
the uncorrected excited state energy, F4. In the case
of formaldimine,''® §% = 4.9 x 1072 for ground state
optimized geometry — corresponding to a correction
to the 9y energy of 0.02 eV according to (132) — and
5% = 1.3 x 107* for S optimized geometry.

4.2.4. Incoherent thermal ezcitations via free
energy functionals

The free energy functional or ensemble density func-
tional theory approaches to excited-state molecular
dynamics?%9-292 are mean-field approaches that are
similar in spirit to Ehrenfest molecular dynamics, see
Sec. 4.1.2. The total wavefunction is first factorized
into a nuclear and an electronic wavefunction (16)
followed by taking the classical limit for the nuclear
subsystem, see Sec. 2.1.2. Thus, classical nuclei move
in the average field as obtained from appropriately
weighting all electronic states similar to (72). A
difference is that according to Ehrenfest molecular
dynamics the electrons are propagated in real time
and can perform nonadiabatic transitions by virtue
of direct coupling terms o dy; between all states ¥y
subject to energy conservation, see Sec. 4.1.2. The
average force or Ehrenfest force (83) is obtained by
weighting the different states k& according to their
diagonal density matrix elements, that is o< |ag(£)|*.
In addition, coherent transitions between the excited
states are driven by the off-diagonal contributions to
the density matrix which are given by a}a; in (83).
In the free energy ensemble approaches,200-202
the excited states are populated instead according to
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the Fermi-Dirac finite-temperature equilibrium distri-
bution. This is based on the assumption that the
electrons always “equilibrate” instantaneously given
a new nuclear configuration, i.e. the electrons move
very rapidly on the timescale of the nuclear motion.
This means that the set of electronic states evolves
at a given temperature “isothermally” (rather than
adiabatically) under the inclusion of dncoherent
electronic transitions as the nuclei move. Thus,
instead of computing the force acting on the nu-
clei from some state-averaged energy (72) it is ob-
tained from the electronic free energy as defined in
the canonical ensemble at a certain nonzero tem-
perature. By allowing the population of excited
electronic states including changes of these popula-
tions to occur, the free energy approach clearly goes
beyond the usual Born—-Oppenheimer and adiabatic
approximations. However, the approximation of an in-
stantaneous (thermal) equilibration of the electronic
subsystem implies that the electronic structure at a
given nuclear configuration R(¢) is completely inde-
pendent from previous configurations R(¢') along a
molecular dynamics trajectory. This type of nonadi-
abaticity clearly is very different from other nonadia-
batic molecular dynamics methods such as the ones
by Ehrenfest and Tully, see Secs. 4.1.2 and 4.1.3,
respectively. Due to the underlying assumption of
still using a product ansatz (16) the notion “free en-
ergy Born—Oppenheimer approximation” was coined
in Ref. 203 in a similar context. Within this philo-
sophy certain nonequilibrium situations can also be
modeled within the free energy approach. This can
be achieved by starting off with an initial orbital
occupation pattern that does not correspond to any
temperature in its thermodynamic meaning, see for
example Refs. 204-207 for such applications.

The particular free energy functional as introduced
in Ref. 200 is derived most elegantly?°208 by starting
the discussion for the special case of noninteracting
fermions (atomic units are used throughout this
subsection)

. 21
He =—5V z,:le—rl (143)

in a fized external potential due to a collection of
nuclei at positions R. The associated grand partition
function and its thermodynamic potential (“grand free
energy”) are given by

Bs(uVT) = det*(1 + exp[-B(Hs — p)])  (144)
Qo(UVT) = —kpT In By (uVT) (145)

respectively, where p is the chemical potential acting
on the electrons and the square of the determinant
stems from considering the spin-unpolarized special
case only; B = 1/kpT’ as usual. 'This reduces to the
well-known grand potential expression

Qu(uV'T) = ~2ksT Indet(1 + exp[—B(Hs — p)])
- mszTZm(l + exp[—B(ef — w)])
(146)

for noninteracting spin-i fermions where {e§} are
the eigenvalues of a one-particle Hamiltonian such as
(143); here the standard identity Indet M = Tr InM
was invoked for positive definite operator M and its
matrix representation M.

According to standard thermodynamics the Helm-
holtz free energy F(NVT) associated to (145) can be
obtained from an appropriate Legendre transforma-
tion of the grand free energy Q(uVT)

12y

I<J
(147)

by fixing the average number of electrons N and
determining g from the conventional thermodynamic

condition 50
N=-— (—) . (148)
O ) vy

In addition, the internuclear Coulomb interactions
between the classical nuclei were included at this
stage in (147). Thus, derivatives of the free en-
ergy (147) with respect to ionic positions —V Fg
define forces on the nuclei that could be used in a
(hypothetical) molecular dynamics scheme using non-
interacting electrons.

The interactions between the electrons can be
“switched on” by resorting to Kohn-Sham density
functional theory and the concept of a noninteracting
reference system. Thus, instead of using the sim-
ple one-particle Hamiltonian (143), the Kohn-Sham
Hamiltonian™7! has to be utilized. As a result, the
grand free energy (144) can be written as
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QXS (UVT) = —2kgT In[det(1 4 exp[—BHS® — p)])] (149)
HO =59 Ry i+ Vo) + T (150)
HES o, = eanhy (151)

where Q. is the exchange-correlation functional at
finite temperature. By virtue of (146) one can im-
mediately see that QX% is nothing else than the
“Fermi-Dirac weighted sum” of the bare Kohn—-Sham
eigenvalues {¢;}. Whence, this term is the extension
to finite temperatures of the so-called “band-structure
energy” (or of the “sum of orbital energies” in the
analogous Hartree-Fock case209219) contribution to
the total electronic energy.

In order to obtain the correct total electronic
free emergy of the interacting electrons the corres-
ponding extra terms (properly generalized to finite
temperatures) have to be included in %5, This
finally allows one to write down the generalization of
the Helmholtz free energy of the interacting many-
electron case

FES(NVT) = QS (uVT) + / drn(x)

Z12,
+ 1;] Ry /dr Vu(r)n(r)
+ Qe — / dr 5?;(1[7)7’] n(r) (152)

in the framework of a Kohn-Sham-like formulation.
The corresponding one-particle density at the I'-point
is given by

= Zﬁl?/)i(r)Iz (153)

fi = (L+exp[B(e — )™ (154)

where the fractional occupation numbers {f;} are
‘obtained from the Fermi-Dirac distribution at tem-
perature T' in terms of the Kohn-Sham eigenvalues
{ei}.

By construction, the total free energy (152)
reduces to that of the noninteracting toy model (147)
once the electron-electron interaction is switched off.
Another useful limit is the ground-state limit 8 — co

where the free energy FXS(N VT) yields the standard
Kohn-Sham total energy expression EX5 (sce for in-
stance Refs. 70 and 71) after invoking the appropriate
limit Q. — Eye as T — 0. Most importantly, stabil-
ity analysis?0%20! of (152) shows that this functional
shares the same stationary point as the exact finite-
temperature functional due to Mermin,?!! see for
example the monographs Refs. 70 and 71 for introduc-
tions to density functional formalisms at finite temper-
atures. This implies that the self-consistent density, -
which defines the stationary point of FX5, is identical
to the exact one. This analysis reveals furthermore
that, unfortunately, this stationary point is not an
extremum but a saddle point so that no variational
principle and, numerically speaking, no direct mini-
mization algorithms can be applied. For the same
reason a Car-Parrinello fictitious dynamics approach
to molecular dynamics is not a straightforward option,
whereas Born—Oppenheimer dynamics based on diag-
onalization can be used directly. Thus, an iterative
molecular dynamics scheme

MR, = -V FX(R) (155)

is introduced by computing the ab initio forces from
the nuclear gradient of the free energy functional FXS
taking advantage of the Hellmann-Feynman theorem.

As a method, molecular dynamics with the free
energy functional is most appropriate to use when
the electronic excitation gap is either small or when
the gap might close during a chemical transformation.
In the latter case no instabilities are encountered
with this approach, which is not always true for
ground-state ab indtio molecular dynamics methods.
The price to pay is the quite demanding itera-
tive computation of well-converged forces. Besides
allowing such applications with physically relevant ex-
citations this method can also be straightforwardly
combined with k-point sampling and applied to met-
als at “zero” temperature. In this case, the electronic
“temperature” is only used as a smearing parameter
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of the Fermi edge by introducing fractional occupa-
tion numbers, which is known to improve greatly the
convergence of these ground-state electronic structure
calculations,60:202,212-219

Finite-temperature expressions for the exchange-
correlation functional Q. are available in the litera-
ture. However, for most temperatures of interest
the corrections to the ground-state expression are
small and it seems justified to use one of the various
well-established parameterizations of the exchange-
correlation energy Ey. at zero temperature,’%7!

This particular approach to finite electronic tem-
perature molecular dynamics has been used in order
to investigate for instance the sound velocity of dense
hydrogen at conditions on jupiter,??° laser heating of
silicon?%2% and graphite,?°® and laser-induced trans-
formations in fullerite.?°” In all cases the electronic
subsystem was highly excited, either by imposing a
very high equilibrium temperature for both (classical)
nuclei and electrons,?® or by creating a pronounced
nonequilibrium initial population of the excited elec-
tronic states in order to model the influence of an
irradiating laser pulse. '

An alternative variational formulation and im-
plemention of ensemble density functional theory
directly in the framework of the Mermin—Kohn—Sham
approach starts by adopting a matrix representation
of the Fermi operator

n(r) = fis} (£);(r) (156)
ij

in the basis of single-particle Kohn—Sham orbitals
which yields a (fractional) occupation number matrix
f, see Ref. 202. In order to make this definition of oc-
cupation numbers meaningful the constraint Tr f = N
that the trace of the occupation number matrix yields
the total number of electrons in the system has to be
imposed in addition to requiring that its eigenvalues
are the usual occupation numbers, i.e. f; = diag f €
[0,1]. The free energy functional A to be minimized
is defined as

Alp, 1] = Zfij <¢i

1_, Zr
A W oy

+ Vialn] + Vie[n] — TS[f] (157)
where the entropy term is given by

Sf] = —~ksTx{fInf + (1 — f)In(1 —£)}.  (158)

Now the free energy (157) obtained from traces of op-
erators is covariant under both orbital and occupation
number unitary transformations. This allows to intro-
duce a new auxiliary functional

Alp) = min Al, (159)

that is minimized wrt the occupation number matrix
and thus depends only on the orbitals; it is also in-
variant under unitary transformations of the orbitals.
This opens up the possibility of a two-step itera-
tive minimization of A by decoupling the orbital and
occupation number evolution. In an outer loop the
orbitals get updated by seaching the minimum of fl,
whereas the occupation number matrix gets updated
by minimizing the corresponding functional A while
keeping the orbitals fixed; the orthogonality of the or-
bitals has to be imposed. The detailed algorithm that
implements these ideas is discussed in Ref. 202.

This particular implementation of the Mermin-
Kohn-Sham functional has been used to study the
behavior of the Al(110) surface for temperatures up
to 900 K via ab initio molecular dynamics.??* Most
recently, a full Car-Parrinello formulation in terms
of a coupled fictitious dynamics of orbitals, occupa-
tion matrix, and unitary rotations was given as well
as a hybrid scheme where the {f;;} get iteratively
minimized during the fictitious time evolution of the
orbitals, 222223

The two methods presented so far both yield the
correct ensemble density functional theory formula-
tion for electronic systems at finite temperatures and
thus require a self-consistent calculation of the occu-
pation numbers. A similar but simplified approach
to include finite electronic temperatures relies on
total energy calculations where only the (fractional)
occupation numbers of the Kohn—-Sham single-particle
states are chosen according to the Fermi-Dirac distri-
bution for a certain temperature and chemical poten-
tial according to (154). Recently, such an ansatz was
chosen in order to investigate the phonon response in
photoexcited solid tellurium.?24

All methods discussed so far allow for thermal ex-
citations within Mermin’s version of ensemble density
functional theory. In addition, it is also possible to
create athermal initial distributions, which is however
a slightly uncontrolled approach to generate electronic
excitations. The intricacies of devising a density func-
tional formulation for a particular excited state as




for instance defined by its symmetry within the frame-
work of an ensemble Kohn—Sham scheme are discussed
in Ref. 225. Unfortunately, this formulation relies cru-
cially on the calculation of (nonlocal) optimized effec-
tive potentials (i.e. an orbital-dependent functional),
which will prevent its use for ab initio molecular dy-
namics in the near future,

4,2,5. Traveling frozen Gaussians and
multiple spawning

After having discussed several density-functional-
based approaches to nonadiabatic molecular dynamics
we finally discuss a promising approach that relies
on ideas of both wavepacket dynamics and quan-
tum chemistry. The so-called “full multiple spawning
method” (FMS)?26:227 ig basically a nonadiabatic ex-
tension of wave packet dynamics based on frozen
Gaussians.174228-230 The Jatter can be defined for the

one-dimensional case as

9(R; R(t), P(t),7(t), @)

o\ 14 _ _ _
- <2?> exp|—a(R — R)* +iP(R — R) + 1%

(160)

where R(t), P(t), and 4(t) denote the explicitly time-
dependent position, momentum and phase of each in-
dividual basis function. The width « of each Gaussian
is fixed, i.e. it is treated as a time-independent para-
meter in any frozen Gaussian calculation according to
which (R — R(t))? describes harmonic quantum fluc-
tuations with respect to the average position R(t) at
time ¢. In its ab instio variant (dubbed AIMS)?31-233
the potential energy surfaces and the nonadiabatic
couplings between the different states are computed
“on the fly” from concurrent electronic structure cal-
culations, see Ref. 179 for a review article. Thus, at
variance with most other methods presented in our re-
view, the FMS/AIMS approach includes also quantum
effects of the nuclei to some extent; an extension in
order to treat nuclear tunneling (on a single pre-cal-
culated electronic surface) was presented in Ref. 234.

The total time-dependent wavefunction of the sys-
tem is expanded in a multiconfigurational product
form (12)

B(r,R;t) = > Up(r, R)xk(R; 1) (161)
k
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where the adiabatic electronic wavefunctions Uy
(which are not explicitly time-dependent but depend
parametrically on all nuclear coordinates R.(¢) at time
t) form an orthonormal basis (¥;|¥;) = dy for any
configuration R. Furthermore, the normalized but
nonorthogonal time-dependent nuclear wavefunction
in a specific electronic state k is expanded

xe(Rit) =Y CHO AR RE(E), PL(2), 7 (1), k)
(162)

in terms of a linear combination of multidimensional
traveling Gaussians g,Ic. The latter are represented
as products of the time-dependent one-dimensional
frozen Gaussians as defined in (160) separately for
each nuclear degree of freedom.

Based on this overall ansatz the classical
(Hamiltonian) equations of motion for the time-
dependent variables associated to the nuclei moving
on the kth potential energy surface Vi read

MRy, = B,
. Vi
- (3)
OR ) 5
X P2 —2ay =
A = ot b o Vi(Ry) (163)

in Heller’s local harmonic approximation;?3® here only
the electronic state index k& is shown for simplicity and
note that the widths a) do not change. The time-
dependent expansion coefficients in (162) evolve ac-
cording to the following nuclear Schrodinger equation

iCl, = (Sg)~* {(chlc —iSk)Cy, + Z Hklcl}
[
(164)

where the various matrices are defined as follows
(Co) =Y
(Se)”" = (gilgk)
(Se)’ = (giIgx)
(Hi)"" = (o8| Hulgl) (165)

in terms of the frozen Gaussian basis set (160). .
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However, a global expansion of the kind (161), even
using a time- and space-local basis set such as travel-
ing Gaussians (160), is still computationally very de-
manding for coupled many-dimensional systems. An
important ingredient in the FMS/AIMS approach is
to “add in” nuclear basis functions “on demand”,
i.e. only when they are needed according to some crite-
rion. The latter is the magnitude of the nonadiabatic
coupling for each nuclear basis function, which will
be one of the parameters that define the accuracy of
such calculations. This implies that additional frozen
Gaussians are generated (or “spawned off”) as the sys-
tem evolves from an adiabatic region into a regime
of strong mixing of electronic states. The new basis
functions are chosen to have maximum overlap with
their parents according to the Franck—Condon prin-
ciple. After having created new basis functions the
Schrédinger equation is propagated further in time.
Despite these savings, the scaling of AIMS/FMS is
formally still exponential in the number of degrees
of freedom, see however Ref. 179 for a more detailed
discussion.

The electronic structure theory used in conjunc-
tion with the nonadiabatic AIMS approach is based on
appropriate ab initio multireference quantum chemi-
cal methods such as for instance CI, CASSCF, or GVB
theories. Since such correlated methods are quite de-
manding concerning computational effort several fur-
ther approximations have to be invoked. First of all,
the basis sets used in applications are typically the
smallest ones that are able to describe ground and ex-
cited states (double-zeta quality such as, for example,
the aug-cc-pVDZ basis), although very diffuse func-
tions such as Rydberg basis functions would be desir-
able. Furthermore, the Hamiltonian matrix elements
(165} are evaluated in the saddle point approximation.
In evaluating the nonadiabatic coupling vectors

dfy = (Wi V1| T (166)

the dependence of the orbitals (in which the adiabatic
wavefunctions {¥,} are expanded) on the nuclear co-
ordinates is neglected, i.e. the gradient is taken with
respect to wavefunction expansion coefficients only;
here the brackets denote integrating over electronic
degrees of freedom only.

In summary, what is achieved in the AIMS/FMS
approach is to exploit the “local character” of elec-
tronic structure calculations both in space and time.

A detailed assessment of FMS in comparison to Tully’s
surface hopping and converged quantum dynamics
is presented in Ref. 168 for three triatomic model
systems using various parameterizations. For most
recent applications of the AIMS method we refer, for
instance, to Refs. 235 and 236.

5. Achievements, Problems, and Outlook

The field of first principles nonadiabatic molecular
dynamics simulations of large systems has certainly
received a significant boost in the last decade or so
by the practical implemention of numerical meth-
ods going beyond the purely theoretical (not to say
academic) stage. However, compared to ground state
molecular dynamics methods the nonadiabatic exten-
sions are still in their infancy.

Grossly speaking, theoretical treatment of non-
adiabatic dynamics can be separated into two main
parts, dealing with nonadiabaticity and solving the
multi-state electronic structure problem. For both
aspects computational methods are in place, that al-
low one, in principle, to treat nonadiabatic processes
at an arbitrarily high level of accuracy. Non-Born-
Oppenheimer molecular dynamics simulations of com-
plex systems with many degrees of freedom, however,
only become feasible when the simplest and numer-
ically most efficient schemes to treat both nonadi-
abaticity and electronic structure are used. With
regard to nonadiabatic approaches, this means that,
in the near future, it will remain all but impossi-
ble to use anything beyond mixed quantum-classical
methods. As far as electronic structure methods are
concerned, we observe that all methods that have been
applied to systems consisting of say 50 to 100 atoms
are exclusively based on density functional theory if
the entire system is treated on an equal footing. In
that case, however, the problem of treating excited
states within density functional theory is immediately
imminent. As it stands right now the number of prac-
tical approaches to excited states within density func-
tional is very limited, as the present review has made
apparent, but there is a lot of activity and progress
in this field. Once there is larger number of den-
sity functional-based methods available it is expected
that they will greatly extend the range of applicabi-
lity of nonadiabatic molecular dynamics just like the
successes of gradient-corrected ground state density




functional theory made first principles or ab dnilio
molecular dynamics successful and thus popular.

If improved accuracy is traded against system size
it is certainly possible, today, to use fairly reliable
quantum chemical methods beyond the Hartree-Fock
or self-consistent field approximation in order to treat
excited states. On the other hand this implies either
focusing on small systems per se, reducing the dimen-
sionality, or treating only part of the system with a
sophisticated correlated method. Currently it seems
that a commonly used (although less elegant, cer-
tainly less faithful and more cumbersome) way along
these lines consists in using hybrid ansatzes. Thus,
only the part of the system where excitations are lo-
calized is treated by “high-level quantum chemistry”
whereas the remainder is coupled to it using sim-
pler methods. Such ideas are in widespread use in
the field of biomolecular simulations where excitations
are typically localized at well-defined chromophores.
However, practical hybrids using different system de-
scriptions always have some ad hoc flavor or engineer-
ing aspects attached to them so that “equal footing
approaches” have their own special appeal. In addi-
tion, implementing “proper” (in the sense of strictly
energy conserving) molecular dynamics schemes that
are stable for “long” propagation times (say of the
order of several picoseconds) is a nontrivial task.

In conclusion, the main hurdle seems to be the
availability of accurate but nevertheless computation-
ally efficient electronic structure methods that allow
the efficient evaluation of both gradients and nonadi-
abatic couplings for excited electronic states. In view
of this the field of first principles nonadiabatic molecu-

lar dynamics simulations is a rapidly evolving research.

area with quite some recent successes but a lot of room
for future improvements.
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