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Two issues:  How does one compute gK and HK,Land what  do you do with
 them? 

Assume you have gK available at some starting geometry 


X0 = {X1, Xz, … X3N}. 

One can attempt to move downhill toward a local-minimum by taking small
 displacements  δXK proportional  to,  but  in  opposition to,  the gradient  gK
 along that direction


δXK = - a gK.

The energy E is then expected to change by 


δE = - a ∑K(gK)2
.


This is the most simple algorithm for “stepping” downhill toward a minimum.
 The parameter a can be used to keep the length of the step small. 

A series of such “steps” from X0 to X0 + δX can often lead to a minimum (at
 which all 3N gK values vanish).
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One problem with this approach is that, if one reaches a point where all
 3N gK vanish, one can not be certain it is a minimum; maybe it is a first-,
 second-, or higher-order saddle point. 

Minimum: all  3N gK vanish and 3N-6 eigenvalues of the HK,L matrix are
 positive. 


First-order saddle (transition state TS): all 3N gK vanish and 3N-7 eigenvalues
 of the HK,L matrix are positive; one is negative.  
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So,  one is  usually  forced to  form HK,L and find its  3N eigenvalues  λa  and
 eigenvectors Vk

a


ΣL=1,3N HK,L VL
a = λa Vk

a
.


3 of the λa have to vanish and the 3 corresponding Vk
a
 describe translations of

 the molecule.


3  more  (only  2  for  linear  molecules)  of  the  λa  have  to  vanish  and  the
 corresponding Vk

a
 describe rotations of the molecule.


The remaining 3N-6 (or 3N-5) λa and Vk
a
 contain the information one needs to

 characterize the vibrations and reaction paths of the molecule. 
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If one has the gradient vector and Hessian matrix available at some geometry,

δE = ΣK gK δXK + 1/2 ΣK,L HK,L δXK δXL 


Because the Hessian is symmetric, its eigenvectors are orthogonal

ΣK VK

a VK
b = δa,b


and they form a complete set


Σa VK
a VL

a = δK,L.

This allows one to express the atomic Cartesian displacements δXK in terms of
 displacements δVa along the “eigenmodes”


δXK= ΣL δK,L δXL =  Σa VK
a (ΣL VL

a δXL) = Σa VK
a δVa. 
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Inserting 

δXK= Σa VK

a δVa.

into


δE = ΣK gK δXK + 1/2 ΣK,L HK,L δXK δXL

gives


δΕ = Σa {ga δVa+ 1/2 λa (δVa)2} 

where


ga = ΣL VL
a gL


This  way of  writing  δΕ  allows us  to  consider  independently  maximizing or
 minimizing along each of the 3N-6 eigenmodes. 
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Setting the derivative of 

{ga δVa+ 1/2 λa (δVa)2} 


with respect to the δVa
 displacements equal to zero gives as a suggested “step”


δVa = - ga/λa


Inserting these displacements into 

δΕ = Σa {ga δVa+ 1/2 λa (δVa)2}


gives

δΕ = Σa {- ga

2/λa + 1/2 λa (-ga/λa)2} = -1/2Σa ga
2/λa.


So the energy will go “downhill” along an eigenmode if that mode’s eigenvalue
 λa is positive; it will go uphill along modes with negative λa values.


Once you have a value for δVa, you can compute the Cartesian displacements
 from 


δXK= Σa VK
a δVa




8 

If one wants to find a minimum, one can


a.  Take a displacement δVa = - ga/λa along any mode whose λa is positive. 


b.  Take a  displacement  that  is  small  and of  opposite  sign than  -  ga/λa for
 modes with negative λa values.


The energy will then decrease along all 3N-6 modes. 


What about finding transition states?
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If one is already at a geometry where one λa is negative and the 3N-7 other
 λa values are positive, one should


a.  Visualize the eigenvector Vk
a belonging to the negative λa to make sure

 this displacement “makes sense” (i.e., looks reasonable for motion away
 from the desired transition state).


b.  If the mode having negative eigenvalue makes sense, one then takes 

δVa = - ga/λa for all modes. 


This choice will cause 


δΕ = Σa {- ga
2/λa + 1/2 λa (-ga/λa)2} = -1/2Σa ga

2/λa

to go downhill along 3N-7 modes and uphill along the one mode having
 negative λa. Following a series of such steps may allow one to locate the
 TS at which all ga vanish, 3N-7 λa are positive and one λa is negative.


What about finding transition states?
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At  a  minimum  or  TS,  one  can  evaluate  harmonic  vibrational
 frequencies using the Hessian. The gradient (gL or ga = ΣL VL

a gLvanishes), so
 the local potential energy can be expressed in terms of the Hessian only.


The classical dynamics Hamiltonian for displacements δXK is

H = ΣK,L 1/2 HK,L δXK δXL + 1/2 ΣK mK (dδXK/dt)2


Introducing the mass-weighted Cartesian coordinates


δMWXK = (mK)1/2 δXK

allows the Hamiltonian to become


H = ΣK,L 1/2 MWHK,L δMWXK δMWXL + 1/2 ΣK  (dδMWXK/dt)2


where the mass-weighted Hessian is defined as


MWHK,L = HK,L (mKmL)-1/2 




11 

Expressing the Cartesian displacements in terms of the eigenmode displacements

δXK= Σa VK

a δVa


allows H to become

H = Σa {1/2 λa

 (δVa)2 + 1/2(dδVa/dt)2}.

This is the Hamiltonian for 3N-6 uncoupled harmonic oscillators having force
 constants  λa  and  having  unit  masses  for  all  coordinates.  Thus,  the  harmonic
 vibrational frequencies are given by


ωa = (λa)1/2

so  the  eigenvalues  of  the  mass-weighted  Hessian  provide  the  harmonic
 vibrational frequencies. 

At a TS, one of the λa will be negative. 
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It is worth pointing out that one can use mass-weighted coordinates
 to locate minima and transition states, but the same minima and transition
 states will be found whether one uses Cartesian or mass-weighted Cartesian
 coordinates because whenever the Cartesian gradient vanishes


gL = 0


the mass-weighted gradient will also vanish


ga = ΣL VL
a gL = 0
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To trace out a reaction path starting at a transition state, one first finds
 the Hessian eigenvector {VK

1} belonging to the negative eigenvalue.  One
 takes a very small step along this direction.



Next,  one  re-computes  the  Hessian  and  gradient  (n.b.,  the  gradient
 vanishes at the transition state, but not once begins to move along the reaction
 path) at the new geometry XK + δXK where one finds the eigenvalues and
 eigenvectors  of  the  mass-weighted  Hessian  and  uses  the  local  quadratic
 approximation 


δΕ = Σa {ga δVa+ 1/2 λa (δVa)2}

to  guide  one  downhill.  Along  the  eigenmode  corresponding  to  the  negative
 eigenvalue λ1, the gradient g1 will be non-zero while the components of the
 gradient along the other eigenmodes will be small (if one has taken a small
 initial step). One is attempting to move down a streambed whose direction of
 flow initially lies along VK

1 and perpendicular to which there are harmonic
 sidewalls 1/2 λa (δVa)2.
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One performs a series of displacements by

a)  moving (in small steps) downhill along the eigenmode that begins at VK

1

 and that has a significant gradient component ga, 

b)  while minimizing the energy (to remain in the streambed’s bottom) along

 the 3N-7 other eigenmodes (by taking steps 

δVa = - ga/λa that minimize each {ga δVa+ 1/2 λa (δVa)2}.


As one evolves along this reaction path, one reaches a point where λ1 changes
 sign  from negative  to  positive.  This  signals  that  one  is  approaching  a
 minimum. Continuing onward, one reaches a point where the gradient’s
 component  along  the  step  displacement  vanishes  and  along  all  other
 directions  vanishes.  This  is  the  local  minimum  that  connects  to  the
 transition state at which the reaction path started. 


One needs to also begin at the transition state and follow the other branch of the
 reaction path to be able to connect reactants, transition state, and products.
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When tracing out reaction paths, one uses the mass-weighted
 coordinates because dynamical theories (e.g. the reaction-path Hamiltonian
 theory) are formulated in terms of motions in mass-weighted coordinates.
 The minima and transition states one finds using mass-weighted coordinates
 will be the same as one finds using conventional Cartesian coordinates.
 However, the paths one traces out will differ depending on whether mass
-weighting is or is not employed. 
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So, how does one evaluate the gradient and Hessian analytically?

For methods such as SCF, CI, and MCSCF that compute the energy E as 


E = <ψ|H|ψ>/<ψ|ψ>,

one makes use of the chain rule to write


∂E/∂XK = ΣI ∂E/∂CI ∂CI/∂XK+ Σiµ ∂E/∂Ciµ ∂Ciµ/∂XK 


+ <ψ|∂H/∂XK|ψ>/<ψ|ψ>.

For MCSCF, ∂E/∂CI and ∂E/∂Ciµ  are zero.

For SCF  ∂E/∂Ciµ  are zero and ∂E/∂CI  does not exist.

For CI, ∂E/∂CI  are zero, but  ∂E/∂Ciµ are not. 

So, for some of these methods, one needs to solve “response equations” for 

∂E/∂Ciµ.
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When Cartesian Gaussians

χa,b,c (r,θ,φ) = N'a,b,c,α  xa yb zc exp(-αr2)


are used, the derivatives ∂/∂XK χν(r) can be done because XK appears in 

(x-XK)a and in r2 = (x-XK)2 + (y-YK)2  + (z-ZK)2 

.

These derivatives give functions of one lower 


(from ∂/∂XK (x-XK)a ) 

and one higher 


(from ∂/∂XK exp(-αr2)) 

angular momentum value. 

So, the AO integral list must be extended to higher L-values.


More troublesome are 

< ∂/∂XK χν(r) χη(r’) |(1/|r-r’|) | χµ(r) χγ(r’)>


because there are now 4 times ( the original plus ∂/∂XK, ∂/∂YK, ∂/∂ZK) the
 number of 2-electron integrals.
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When plane wave basis functions are used, the derivatives


∂/∂XK χν(r) = 0


vanish (and thus don’t have to be dealt with) because the basis
 functions do not “sit” on any particular nuclear center. This is a
 substantial benefit to using plane waves.  
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The good news is that the Hellmann-Feynman and integral derivative terms
 can be evaluated and thus the gradients can be computed as


∂E/∂XK = ΣI ∂E/∂CI ∂CI/∂XK+ Σiµ ∂E/∂Ciµ ∂Ciµ/∂XK 


+ <ψ|∂H/∂XK|ψ>/<ψ|ψ> = <ψ|∂H/∂XK|ψ>/<ψ|ψ> 

for SCF or MCSCF wavefunctions.


What about CI, MPn, or CC wave functions? What is different?
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∂E/∂XK = ΣI ∂E/∂CI ∂CI/∂XK+ Σiµ ∂E/∂Ciµ ∂Ciµ/∂XK 


+ <ψ|∂H/∂XK|ψ>/<ψ|ψ>.


•  For CI, the ∂E/∂CI term still vanishes and the


 <ψ|∂H/∂XK|ψ>/<ψ|ψ>

term is handled as in MCSCF, but the ∂E/∂Ciµ terms do not vanish

•  For MPn, one does not have CI parameters; E is given in terms of orbital
 energies εj and 2-electron integrals over the φj . 

•  For CC, one has ti,j

m,n amplitudes as parameters and E is given in terms of
 them and integrals over the φj .



So, in CI, MPn, and CC one needs to have expressions for 

∂Ciµ/∂XK and for ∂ ti,j

m,n /∂XK. 


These are called response equations. 
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The response equations for ∂Ciµ/∂XK are obtained by taking the ∂/∂XK


derivative of the Fock equations that determined the Ci,µ 


∂/∂XK Σµ <χν |he| χµ> CJ,µ = ∂/∂XK εJ Σµ <χν|χµ> CJ,µ

This gives


Σµ [<χν |he| χµ>- εJ<χν|χµ>] {∂/∂XK CJ,µ}=


- Σµ ∂/∂XK[<χν |he| χµ>- εJ Σµ <χν|χµ>] CJ,µ


Because all the machinery to evaluate the terms in 


∂/∂XK[<χν |he| χµ>- εJ Σµ <χν|χµ>]

exists as does the matrix 


<χν |he| χµ>- εJ<χν|χµ>,

 one can solve for ∂/∂XK CJ,µ
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A similar,  but  more  complicated,  strategy  can  be  used  to  derive
 equations for the ∂ ti,j

m,n /∂XK that are needed to achieve gradients in CC
 theory. 



The bottom line is that for MPn, CI, and CC, one can obtain analytical
 expressions for gK= ∂E/∂XK . 



To derive analytical expressions for the Hessian ∂2E/∂XK ∂XL is, of
 course, more difficult. It has been done for HF and MCSCF and CI and may
 exist (?) for CC theory. As you may expect it involves second derivatives of 2
-electron integrals and thus is much more “expensive”.
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So, H is now H + Σk=1,N erkE + Σa=1,M e Za RaE. 


The wavefunction ψ(E) and energy E(E) will now depend on the electric field E.


dE/dE = ΣI∂E/∂CI∂CI/∂E+ Σiµ∂E/∂Ciµ ∂Ciµ/∂E +<ψ|∂H/∂E|ψ>/<ψ|ψ>.


Here, <ψ|∂H/∂E|ψ>/<ψ|ψ> = <ψ| Σk=1,N erk + Σa=1,M e Za Ra |ψ>,


is the dipole moment expectation value. This is the final answer for HF and MCSCF,
 but not for MPn, CI, CC.


For these cases, we also need ∂CI/∂E and ∂Ciµ/∂E response contributions. So, the
 expectation value of the dipole moment operator is not always the correct dipole
 moment!



There are other kinds of responses that one can seek to treat analytically. 

For example, what if one added to the Hamiltonian an electric field term such as

Σk=1,N erkE + Σa=1,M e Za RaE  rather than displacing a nucleus? 


