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Møller-Plesset perturbation (MPPT) 


One uses a single-determinant SCF process to determine a set of orthonormal
 spin-orbitals {φi}. 


Then, using H0 equal to the sum of the N electrons’ Fock operators 


H0 = Σi=1,N F(i), 


perturbation theory is used to determine the CI amplitudes for the CSFs. 


The amplitude for the reference determinant ψ0 is taken as unity and the other
 determinants' amplitudes are determined by Rayleigh-Schrödinger perturbation
 using H-H0  (the fluctuation potential) as the perturbation. 
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The first (and higher) order corrections to the wave function are then

expanded in terms of Slater determinants. For example, 


ψ1 = ΣL1,L2,L2,…LN  CL1,L2,…LN |φL1 φL2 φL3 … φLN |


 (H0 -E0) ψ1 = (E1 -V) ψ0 

and Rayleigh-Schrödinger perturbation theoryis used to solve for 


E1 = ∫ ψ0* V ψ0 dτ = ∫ ψ0* (H-H0) ψ0 dτ = -1/2 Σk,l=occ. 


[< φk(1) φl(2)|1/r1,2| φk(1) φl(2)> - < φk(1) φl(2)|1/r1,2| φl(1) φk(2)>]


which corrects for the double counting that is wrong in E0


H0 = Σi=1,N F(i) ψ0 = |φ1 φ2 φL3 … φN | E0 = Σi=1,N εi 

(H0 -E0) ψn = Σk=1,n Ek ψn-k -V ψn-1 
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ψ1 = Σi<j(occ) Σm<n(virt)  


[< φiφj | 1/r1,2 | φmφn > -< φiφj | 1/r1,2 | φnφm >]


[ εm-εi +εn-εj]-1|ψi,j
m,n >


where ψi,j
m,n is a Slater determinant formed by replacing φi by φm


and φj by φn in the zeroth-order Slater determinant. 


Notice that double excitations

appear in the first-order wave function. 


= 0 !
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The fact that there are no singly excited determinants in ψ1 is called the Brillouin
 theorem. But, why are the singly exited determinants not there (i.e., why are they
 less important than doubly excited determinants)?


Consider the zeroth-order HF determinant:  |φ1 φ2 φ3 ...φN|. Now, think about
 taking say the jth spin-orbital φj and adding to it a sum of coefficients times virtual
 spin-orbitals: Σm=N+1,M Cm φm to form a new jth spin-orbital 

φ’j = φj + Σm=N+1,M Cm φm . 


A Slater determinant which is the same as the original HF determinant except that
 φj is replaced by φ’j , |φ1 φ2 φ’j ...φN| can be written as 

|φ1 φ2 φ’j ...φN| = |φ1 φ2 φj ...φN| + Σm=N+1,M Cm |φ1 φ2 φm ...φN|


so singly excited determinants do nothing but allow the occupied spin-orbitals
 {φj} to be changed (i.e., have their LCAO-MO coefficients changed) into
 different spin-orbitals {φ’j}. But the HF occupied spin-orbitals were
 variationally optimized, so they don’t need to be changed.  
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There are no singly excited determinants ψi
m in ψ1 because 


∫ ψi
m*(H-H0) ψ0 dτ = 0 


according to Brillouin’s theorem (if HF spin-orbitals are used to form ψ0 and
 to define H0).


So,  E1  just  corrects  E0  for  the  double-counting  error  that  summing  the
 occupied orbital energies gives. 

 ψ1 contains no singly excited Slater determinants, but has only doubly excited
 determinants.  
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The second order energy correction from RSPT is obtained from

(H0-E0) ψ2 = (E1-V)ψ1 + E2ψ0. 


Multiplying this on the left by ψ0*

and integrating over all of the N electrons’s coordinates gives


E2 = ∫ ψ0* V ψ1 dτ. 


Using the earlier result for ψ1 gives: 


E2 = Σi<j(occ) Σm<n(virt)[< φiφj | 1/r1,2 | φmφn > -< φiφj | 1/r1,2 | φnφm >]2


[ εm-εi +εn-εj]-1


Thus  at  the  MP2 level,  the  correlation  energy  is  a  sum of  spin-orbital  pair
 correlation energies. Higher order corrections (MP3, MP4, etc.) are obtained by
 using the RSPT approach.  
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MPn has strengths and weaknesses.  

1. Should not use if more than one determinant is important because it assumes
 the reference determinant is dominant.


2. The MPn energies often do not converge  

Energies of HF molecule as a function of n in MPn. 
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€ 

E n =<ψ 0 |V |ψ n−1 >

Writing the n-th order perturbation equations as


(H0 -E0) ψn = Σk=1,n Ek ψn-k -V ψn-1 


and multiplying by < ψ0| gives


One can see from these expressions that each higher order ψn will have one more
 power of V in its numerator and one more energy difference in its denominator
 (arising from (H0 – E0)-1 ). So, if the magnitudes of the V matrix elements (i.e.,
 the 

< φiφj | 1/r1,2 | φlφk >) become larger or comparable to the εm + εn – εi –εj

denominators, the series may blow up. 


The problem can be worse with larger more diffuse basis sets (more finely spaced
 virtual orbital energies and orbital energies that are close to the higher occupied
 orbital energies). 

Why does it not converge?
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3. Advantage: the MPn energies are size extensive.

4.  No choices  of  “important”  determinants  beyond  ψ0  needed,  and  decent
 scaling at low order (M5 for MP2).


The lack of convergence can give rise to “crazy” potential curves
 (this is the energy of H2 as a function of R)
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System A

A AH A E A=

What is size-extensivity?


System B

B BH B E B=

( ) ( )
If system A and B do not interact

A B A BH H AB E E AB+ = +

Size extensivity is achieved by 
Exact theory 
Coupled cluster theory (CC) 
MP perturbation theory (PT) 
But, these are single-determinant based methods. 

And not achieved by 
Configuration interaction theory (CI). 
But, this method can handle more than one dominant determinant. 
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A single H2 system 

gσ
uσ

1Two determinants have  

all (singles and) doubles give FCI result 
g

A
FCIE

∑

HF determinant 

Two H2 systems A and B at infinite separation:  

gσ
uσ

A B A B A B A B 

HF determinant 
Up to all quadruples required to get FCI 

• A singles and doubles calculation on A and B separately gives the FCI answer for the separated molecules 

 EAB = EFCI
A + EFCI

B

However, a singles and doubles calculation on the compound system A+B does not give  
A B

AB FCI FCIE E E= +

since a FCI calculation requires the inclusion of the quadruple configuration. 

Consequently, the singles and doubles CI model (CISD) is not size-extensive. 

Example of non size extensivity 
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5. MPn includes dispersion (van der Waals) energies.


€ 

E 2has
|< m(1)n(2) | 1

r1,2
| i(1) j(2) > − < m(1)n(2) | 1

r1,2
| j(1)i(2) >|2

εi + ε j −εm −εn

Consider two He atoms R apart, and consider the terms j = 1sR, n = 2pR, i = 1sL, m
 = 2pL. The integral                                             is larger than the
 integral                                           , so we only need to consider the first.


To evaluate how this integral depends on the distance R between the L and R He
 atoms, we introduce this coordinate system and use it to express r1,2 in terms of R. 

€ 

2pL (1)1sL (1)
1
r1,2

∫ 2pR (2)1sR (2)d2d1

€ 

2pL (1)1sR (1)
1
r1,2

∫ 2pR (2)1sL (2)d2d1

Z
X

Y

r1

R

r2 τ
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The Cartesian coordinates of electrons 1 and 2 can be denoted 

x1, y1, and z1 


x2, y2, and z2 or x2 = τx, y2 = τy and z2 = R + τz


The distance r1.2 between the two electrons can be written as


r1,2 = [(τx-x1)2 + (τy –y1)2 + (R+τz -z1)2]1/2 


= [(τx-x1)2 + (τy –y1)2 + R2 + 2(τz -z1)R+ (τz -z1)2]1/2 


So, 1/r1,2 = R-1[1-1/2{(τx-x1)2/R2 + (τy –y1)2/R2 + (τz -z1)2/R2 + 2(τz -z1)/R }+…]


In the integral                                           the orbital products 2p(1)1s(1) and
 2p(2)1s(2) have the symmetry that the 2p orbital has (x, y, or z). So, only terms in  
 1/r1,2 that have the same symmetries will contribute to this integral. These are terms
 like τxx1 τyy1 or τzz1. Note that all of these terms scale as R-3. 


This causes the integral to scale as R-3 and this the energy to scale as R-6 as
 expected for dispersion.


Recall ∫ |φ(r)|2 1/|r-r’| |φ’(r’)|2 dr dr’ scales as 1/R and ∫ φ(r) φ’(r) 1/|r-r’| φ’(r’)
 φ(r’) dr dr’ scales as exp(-aR). 

€ 

2pL (1)1sL (1)
1
r1,2

∫ 2pR (2)1sR (2)d2d1
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Multiconfigurational self-consistent field (MCSCF): 

the expectation value 


< ψ | H | ψ > / < ψ | ψ >, 

with


ψ = ΣL=1,NC
 CL1,L2,...LN |φL1 φL2 φL3 ...φLN|


is treated variationally and made stationary with respect to variations in both
 the  CI  and  the  LCAO-MO  Cν,i  coefficients  giving  a  matrix  eigenvalue
 problem of dimension NC 


ΣJ=1, NC HI,J CJ  = E CI : with 

HI,J = < |φI1 φI2 φI3 ...φIN|H| |φJ1 φJ2 φJ3 ...φJN|>


and a set of HF-like equations for the Cν,i (but with more complicated density
 matrix appearing in the Coulomb and exchange terms). 


Slater-Condon rules are used to evaluate the Hamiltonian matrix elements HI,J
 between pairs of Slater determinants in terms of the < φk(1) φl(2)|1/r1,2| φl(1) φk(2)> . 

Iterative SCF-like equations are solved to determine the Cµ,j  coefficients of all
 the spin-orbitals appearing in any Slater determinant. 
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On complication is that you must specify what determinants to include
 in the MCSCF wave function. Generally, one includes all determinants needed
 to  form a  spin-  and  spatial-  symmetry-correct  configuration  state  function
 (CSF) or to allow for qualitatively correct  bond dissociation: recall  the 1S
 function for carbon atom and the need for π2 and π*2 determinants in olefins.
 This set of determinants form what is called a “reference space”. 


One then usually adds determinants that are doubly excited relative to
 any  of  the  determinants  in  the  reference  space.  The  doubly  excited
 determinants  we  know  will  be  the  most  crucial  for  handling  dynamical
 electron correlation. 


One  can  then  add  determinants  that  are  singly,  triply,  etc.  excited
 relative to those in the reference space. 


Given M orbitals and N electrons, there are of the order of N(M-N)
 singly excited, N2(M-N)2 doubly excited, etc. determinants. So, the number of
 determinants can quickly get out of hand. 
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The HI,J matrix elements and the elements of the Fock-like matrix are expressed
 in terms of two-electron integrals


< φiφj | 1/r1,2 | φkφl > 

that are more general than the Coulomb and exchange integrals.

These integrals must be generated by “transforming” the AO-based integrals


 < χiχj | 1/r1,2 | χkχl > 

using φj = Σµ Cj,µ χµ four times:


< χiχj | 1/r1,2 | χkφm> = Σl Cm,l < χiχj | 1/r1,2 | χkχl >


< χiχj | 1/r1,2 | φnφmz> = Σk Cn,k < χiχj | 1/r1,2 | χkφm>


< χiφa | 1/r1,2 | φnφm > = Σj Ca,j < χiχj | 1/r1,2 | φmφm> 


< φbφa | 1/r1,2 | φnφm > = Σi Cb,i < χiφa | 1/r1,2 | φmφm>

This integral transformation step requires of the order of 4 M5 steps and disk
 space to store the 


< φbφa | 1/r1,2 | φnφm >.
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The solution of the matrix eigenvalue problem  
ΣJ=1,NC HI,J CJ  = E CI 


of dimension NC requires of the order of NC
2 operations for each eigenvalue

 (i.e., state whose energy one wants).

The solution of the Fock-like SCF equations of dimension M requires of the
 order of M3 operations because one needs to obtain most, if not all, orbitals and
 orbital energies. 



18 

Configuration interaction (CI):

The LCAO-MO coefficients of all the spin-orbitals are determined first via a
 single-configuration SCF calculation or an MCSCF calculation using a small
 number of CSFs. 

The  CI  coefficients  are  subsequently  determined  by  making  stationary  the
 energy expectation value  


< Ψ | H | Ψ > / < Ψ | Ψ > 

which gives a matrix eigenvalue problem: 


ΣJ=1,NC HI,J CJ  = E CI  of dimension NC.
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Coupled-Cluster Theory (CC):

Instead of writing the wave function as 


ψ = ΣL=1,NC
 CL1,L2,...LN |φL1 φL2 φL3 ...φLN|


ψ one expresses it as

ψ = exp(T) Φ,


where Φ is a single CSF (usually a single determinant) used in the SCF process
 to generate a set of spin-orbitals.


The  operator  T  is  given  in  terms  of  operators  that  generate  spin-orbital
 excitations:


T = Σi,m  ti
m  m+ i   +    Σi,j,m,n  ti,j

m,n    m+ n+ j i  + ...,

Here m+ i  denotes creation of an electron in spin-orbital φm and  removal of an
 electron from spin-orbital φi to generate a single excitation. 


The operation m+ n+ j i represents a double excitation from φi φj to φm φn.  
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Note that if one includes in T only double excitations { m+ n+ j i}, the CC 
wave  function  exp(T)  Φ  contains  contributions  from  double,  quadruple, 
sextuple, etc. excited determinants: 


exp(T) Φ = {1 + Σm,n,Iij  tm,n,i,j m+ n+ j i + 1/2 (Σm,n,ij  tm,n,i,j m+ n+ j i)

( Σm,n,ij  tm,n,i,j m+ n+ j i) 


+ 1/6 (Σm,n,ij  tm,n,i,j m+ n+ j i) (Σm,n,ij  tm,n,i,j m+ n+ j i) 

(Σm,n,ij  tm,n,i,j m+ n+ j i) + …}Φ.


But note that the amplitudes of the higher excitations are given as products of
 amplitudes of lower excitations (unlinked).
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( )1 2

2 3
1 2 1 2 1 2

2 3
1 1 2 1 2 1

2 2 4
2 2 1 1

Coupled cluster singles and doubles model

CCSD exp

1 11 ( ) ( ) ( ) ...
2! 3!

1 1
2 6

1 1 1 ...
2 2 24

Note that the exponen

T T HF

T T T T T T HF

HF T HF T T HF TT T HF

T T T T HF

= +

 = + + + + + + + 
 

   = + + + + +   
   

 + + + + 
 

tial function automatically truncateat NT

If one were to include single T1 and double T2 excitations in T, again there
 are higher excitations in exp(T)|HF>:
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To obtain the equations of CC theory, one writes: 
H exp(T) Φ = Ε exp(T) Φ, then 
exp(-T) H exp(T) Φ = Ε Φ, then 

uses the Baker-Campbell-Hausdorf expansion: 
exp(-T) H exp(T) = H -[T,H] + 1/2 [[T,T,H]] - 1/6 [[[T,T,T,T,H]]] +…


The equations one must solve for the t amplitudes are quartic:

< Φi

m | H + [H,T] + 1/2  [[H,T],T] + 1/6 [[[H,T],T],T] + 1/24 
[[[[H,T],T],T],T] | Φ > = 0;


< Φi,j
m,n |H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T] + 1/24 

[[[[H,T],T],T],T] |Φ> =0;

< Φi,j,k

m,n,p|H + [H,T] + 1/2[[H,T],T] + 1/6 [[[H,T],T],T] + 1/24 
[[[[H,T],T],T],T] |Φ> = 0,


The amplitudes of the double excitations that arise in the lowest approximation 
are identical to those of MP2 

ti,j
m,n = - < i,j | 1/r1,2 | m,n >'/ [ εm-εi +εn -εj ].
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CC theory can give high accuracy (if the wave function is single
-determinant dominant) and is size-extensive. 


Here are some potential curves and energy errors (vs. FCI) for H2O with
 both bonds stretched.


FCI 

CCSD 

UCCSD 
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Density functional theory (DFT)  

It is “fast” (scales like SCF), includes dynamical correlation,
 and does not “need” wave functions. WOW! 



25 

∂/∂rρ(r)  = -2meZAe2/2 ρ(r) (as r→RA)  

Recall when we discussed nuclear cusps of the wave function, we saw that the
 corresponding ground-state density ρ(r) also has cusps at the nuclei:


This means that, given the true ground-state ρ, one can evaluate N by integrating ρ
 over all space, one can find where the nuclei sit {RK}, but locating the cusps in ρ,
 and one can know the charges {ZK}  of the nuclei by calculating the strengths of
 the cusps. Thus, the true ground-state ρ(r) is enough information to determine the
 full electronic Hamiltonian of the molecule which, in principle, can be used to find
 all electronic states and all their properties. 


What is the “catch”? Let’s say one had the true ρ(r) for the ground state of the OH
 radical. Let me multiply this ρ(r) by 10/9 to form a new ρ’(r) = 10/9 ρ(r). This new
 ρ’(r) would, upon integration, give N = 10, and would have cusps at the H and O
 nuclei just as ρ(r) did. Moreover, the strengths of its cusps would tell me Z1 = 8 and
 Z2  = 1 (i.e., that there is an O and an H nucleus).


DFT says you can evaluate E if you just know 

ρ(r1) = ∫ψ*(r1,r2, …rN)ψ(r1,r2, …rN)dr2dr3dr4…drN. 
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However, ρ’(r) is not the true ground-state density of the OH- anion; it is just 10/9
 the density of the OH radical. 


So, the true densities have the nice properties (integrating to N, having cusps at the
 nuclei and having cusps whose strengths tell the nuclear charges), but there are
 also other densities that have these same properties. So, one can not use an
 arbitrary density that has the right N, RK and ZK as a reasonable approximation to
 the true density.
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In  density  functional  theory  (DFT),  we  are  going  to  see  equations  for
 determining spin-orbitals that look like


[ - 2/2m∇2 - ΣA ZAe2/|r-RA|  +e2∫ ρ (r’) 1/|r-r’|dr’ + U(r)] φi(r) = εi φi(r)  

Compare this to what we saw in Hartree-Fock theory


[ - 2/2m∇2 - ΣA ZAe2/|r-RA|  +Σj=occ (Jj-Kj)  ] φi = εi φi 

Σj=occ Jj can be written as 

Σj=occ Jj = ∫ ρ (r’) e2/|r-r’|dr’


if the term j = i is included (this is called the self-interaction term). 

But, then in the exchange term 


Σj=occ -Kj   φi ,

the j = i (self-interaction) term must also be included. 

This is difficult to do in DFT because DFT expresses the Coulomb interaction as
 above in terms of the density but it does not express the exchange term in a way
 that allows one to make sure the self-interaction term is exactly accounted for.
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What is the functional relation between ρ and H? That is the big problem.  
Also, it is easy to see that  

∫ρ (r) VeN(r) d3r = V[ρ]  
gives the average value of the electron-nuclear interaction, but how are
 the kinetic energy T[ρ] and the electron-electron interaction Vee[ρ]
 energy expressed in terms of ρ?  

Careful! If you write the Coulomb e-e energy as 

e2/2 ∫ρ (r’) ρ (r) 1/|r-r’| dr’dr 
the exchange energy better cancel the self-interaction. 
But, how can the kinetic, exchange, and correlation energies be written
 in terms of ρ (r)? 
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Consider the kinetic energy for non-interacting electrons in a box 

E  = (h2/8m L2) (nx
2 + ny

2 +nz
2) 

Within a 1/8 sphere in nx,ny,nz space of radius R, 

Φ(E) = 1/8 (4π/3) R3  = (π/6) (8mL2E/h2)3/2  

is the number of quantum states. Between E and E + dE, there are  

g(E) = dΦ/dE = (π/4) (8mL2/h2)3/2 E1/2 states. 

The energy of the ground state with two electrons in each of the lowest
 orbitals (up to the Fermi energy EF ) is 

E0 = 2∫g(E) E dE = (8π/5) (2m/h2)3/2 L3 EF
5/2 

 

And the number of electrons N is 

N = 2 ∫ g(E) dE = (8π/3) (2m/h2)3/2 L3 EF
3/2. 

Solving for EF in terms of N, one can express E0 in terms of N. 
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E0 = (3h2/10m) (3/8π)2/3 L3 (N/L3)5/3    

or in terms of the density  ρ = N/L3 (which, in this case, is spatially
 uniform). 

This suggests that the kinetic energy for non-interacting electrons be
 computed in the local density approximation (LDA) by using this form of
 the kinetic energy functional locally, but then integrated over all points
 in space: 

TTF[ρ] =  (3h2/10m) (3/8π)2/3 ∫ [ρ(r)]5/3 d3r = CF  ∫ [ρ(r)]5/3 d3r  
(CF = 2.8712 atomic units) and the total energy could then be expressed
 in terms of ρ as 

E0,TF [ρ] = CF ∫ [ρ(r)]5/3 d3r + ∫ V(r) ρ(r) d3r  

+ e2/2 ∫ ρ(r) ρ(r’)/|r-r’|d3r d3r’ 
in this so-called Thomas-Fermi model; it is the most elementary LDA
 within DFT. 



31 

Within this TF theory, the total energy is given as 
E0,TF [ρ] = CF ∫ [ρ(r)]5/3 d3r + ∫ V(r) ρ(r) d3r + e2/2 ∫ ρ(r) ρ(r’)/|r-r’| 
exchange does not occur. By analyzing the uniform electron gas, Dirac
 arrived at a local approximation to the exchange energy 

Eex,Dirac[ρ] = - Cx ∫[ρ(r)]4/3 d3r 
(Cx = (3/4) (3/π)1/3 = 0.7386 au). 
To account for the fact that ρ(r) varies strongly in some regions (i.e., near
 nuclei), Becke introduced a gradient-correction to Dirac exchange 

Eex(Becke88) = Eex,Dirac[ρ] -γ ∫ x2 ρ4/3  (1+6 γ x sinh-1(x))-1 dr 
where x =ρ-4/3 ∇|ρ| and γ = 0.0042 
and Weizsacker came up with a gradient correction to the kinetic energy 

δTWeizsacker = (1/72)(/m) ∫ |∇ρ(r)|2/ρ(r) dr 
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Again, by analyzing the uniform electron gas, it was found that the
 correlation energy could be solved for analytically in the low-ρ and high
-ρ limits. For interpolating between these limits, people have suggested
 various approximate local correlation functionals such as 

EC[ρ] = ∫ ρ(r) εc(ρ) dr 
εc(ρ) = A/2{ln(x/X) + 2b/Q tan-1(Q/(2x+b)) -bx0/X0 [ln((x-x0)2/X)  

+2(b+2x0)/Q tan-1(Q/(2x+b))] 
Where x = rs

1/2 , X=x2 +bx+c, X0 =x0
2 +bx0+c and Q=(4c - b2)1/2, A =

 0.0621814,  x0= -0.409286, b = 13.0720, and c = 42.7198.  
The parameter rs is how ρ enters since 4/3 πrs

3 is equal to 1/ρ.  The
 numerical values of the parameters are determined by fitting to a data
 base of atomic energies. 
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So, one can write each of the pieces in the total energy (kinetic, nuclear
 attraction, Coulomb, exchange, correlation) in terms of ρ(r) as, for
 example, 

E0,TF [ρ] = CF ∫ [ρ(r)]5/3 d3r + ∫ V(r) ρ(r) d3r + e2/2 ∫ ρ(r) ρ(r’)/|r-r’| 
Eex,Dirac[ρ] = - Cx ∫[ρ(r)]4/3 d3r 

Eex(Becke88) = Eex,Dirac[ρ] -γ ∫ x2 ρ4/3  (1+6 γ x sinh-1(x))-1 dr 
δTWeizsacker = (1/72)(/m) ∫ |∇ρ(r)|2/ρ(r) dr 

EC[ρ] = ∫ ρ(r) εc(ρ) dr 
εc(ρ) = A/2{ln(x/X) + 2b/Q tan-1(Q/(2x+b)) -bx0/X0 [ln((x-x0)2/X)  

+2(b+2x0)/Q tan-1(Q/(2x+b))] 
But, how do you get ρ(r)? 



34 

Kohn and Sham realized one could introduce an orbital-like equation 

{-2/2m2 + V(r)  + e2∫ ρ(r’)/|r-r’| dr’ + Uxc(r) }φj  = εj φj  

by defining a one-electron potential Uxc(r), to handle the exchange and
 correlation, as the derivative of Exc with respect to ρ(r). 

Uxc (r) = δExc[ρ]/δρ(r). 
For example, for the term  Eex,Dirac[ρ] = - Cx ∫[ρ(r)]4/3 d3r , 

δExc[ρ]/δρ(r) = - 4/3 Cx [ρ(r)]1/3 .  
Of course, Uxc(r) is more complicated for more complicated Exc(ρ). 
But, how does this help determine ρ(r)?  
The K-S process allows you to solve such orbital equations to get φj‘s  
whose density  

ρ(r) = Σj=occ nj |φj(r)|2  

K-S showed gives the same density as would minimization of Exc[ρ]
 directly with respect to ρ(r). 



35 

The K-S procedure is followed: 
1.  An atomic orbital basis is chosen.  
2.  An initial guess is made for the LCAO-KS expansion coefficients  

Cj,a: φj = Σa Cj,a χa. 
3.  The density is computed as ρ(r) = Σj=occ nj |φj(r)|2 . {What are the

 nj when, for example, one has a mixed π2 π*2

 wavefuntion?} 
5.  This density is used in the KS equations 

{- 2/2m2 + V(r)  + e2∫ ρ(r’)/|r-r’| dr’ + Uxc(r) } φj = εj φj 
to find new eigenfunctions {φj} and eigenvalues {εj}.  

5.  These new φj are used to compute a new density, which is used to
 solve a new set of KS equations. This process is continued until
 convergence is reached  

7.  Once the converged ρ(r) is determined, the energy can be computed
 using 

E [ρ]= Σj nj <φj(r)|- 2/2m∇2 |φj(r)> + ∫ V(r) ρ(r) dr  
+ e2/2 ∫ ρ(r)ρ(r’)/|r-r’|dr dr’+  Exc[ρ] 
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Pros and cons: 
Solving the K-S equations scales like HF (M3), so DFT is “cheap”. 

Current functionals seem to be pretty good, so results can be good. 

Unlike variational and perturbative wavefunction methods, there is no
 agreed-upon systematic scheme for improving functionals.  

Most current functionals do not include terms to describe dispersion
 interactions between electrons. 

Most current functionals do not contain exchange terms that properly
 cancel the self-interaction contained in the Coulomb term. 

How do you specify the nj to “represent” the fact that you have a mixed π2

 π*2 wavefuntion?  
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Summary of correlated methods:

1.  Basis sets should be used that 

(i)  are flexible in the valence region to allow for the different radial extents of the 

neutral and anion’s orbitals, 

(ii)  include polarization functions to allow for good treatment of geometrical distortion 

(e.g., ring strain) and dynamical electron correlations, and, 

(iii)  include extra diffuse functions if very weak electron binding is anticipated. For 

high precision, it is useful to carry out CBS basis set extrapolations using results 
calculated with a range of basis sets (e.g., VDZ, VTZ, VQZ). 

2.  Electron correlation should be included because correlation energies are significant 
 (e.g.,  0.5  eV per  electron pair).  Correlation allows the electrons to  avoid one
 another  by  forming  polarized  orbital  pairs.  There  are  many  ways  to  handle
 electron correlation (e.g., CI, MPn, CC, DFT, MCSCF).


3.  Single determinant zeroth order wave functions may not be adequate if the spin and
 space  symmetry  adapted  wave  function  requires  more  than  one  determinant.
 Open-shell singlet wave functions (e.g., as in homolytic cleavage) are the most
 common examples for which a single determinant can not be employed. In such
 cases, methods that assume dominance of a single determinant should be avoided.


4.  The computational cost involved in various electronic structure calculations scales
 in a highly non-linear fashion with the size (M)  of the AO basis, so careful basis
 set choices must be made.




38 

5. 
Some methods are size-extensive, some are not. Generally, those who obtain the
 energy E as an expectation value <ψ|H|ψ>/<ψ|ψ> are not;  those that use <ψ0

|H|ψ> to evaluate E are. CAS MCSCF and FCI are.


5.  DFT is “computationally cheap” and treats dynamical correlation, but it is
 still undergoing qualitative development (i.e., be careful), it is not clear
 how it handles essential correlation, and it still needs to have a better
 framework for systematic improvements.
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Integral calculation: <χaχb|g|χcχd>-  M4/8 to be calculated and
 stored- linear scaling is being pursued to reduce this.


HF: Σν=1,Μ Fµ,ν Ci,µ = εi Σν Sµ,ν Ci,µ Μ3 operations to find all M εi and
 Ci,µ , but M4 because of integral evaluation.


Integral transformation: <φiφj|g|φkφl> - M4 of them each needing M5

 steps.


Configuration interaction: ΣJ=1,NC HI,J CJ = E CI -requires NC
2

 operations to get one E


MP2- scales as M5


CCSD- M6


CCSD(T)- M7


CCSDT- M8


DFT- M3-4



