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Going beyond the single Slater determinant. When and Why?

Configuration State Functions (CSFs)
Some single-configuration functions can not be single determinants.
Although the determinant |1sα 1sβ 2sα 2sβ 2pzα 2pyα| is an acceptable 
approximation to the carbon 3P state if the 1s and 2s spin-orbitals are restricted to 
be  equal  for  α  and  β  spins,  the  1S  state  arising  in  this  same  1s22s22p2 
configuration can not be represented as a single determinant. 

ψ(1S)  = 3-1/2 [1sα 1sβ 2sα 2sβ 2pzα 2pzβ|  

- 1sα 1sβ 2sα 2sβ 2pxα 2pxβ|  - 1sα 1sβ 2sα 2sβ 2pyα 2pyβ| ] 

For  proper  singlet  homolytic  bond  breaking,  one  may  need  more  than  one 
determinant:   

 2-1/2{|πα(1) πβ(2)| - |π*α(1) π*β(2)|} 
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The most common way to improve beyond the single determinant   
    |φ1 φ2 φ3 ...φN| 

is to use trial wave functions of the so-called configuration interaction (CI) form 

ψ = ΣL CL1,L2,...LN |φL1 φL2 φL3 ...φLN|.

This makes mathematical sense because the determinants 
|φL1 φL2 φL3 ... φLN|

 form orthonormal complete sets <|φL1 φL2 φL3 ... φLN||φL1 φL2 φL3 ... φLN|> = δK,L

You have already seen CI wave functions with 2 or 3 determinants (to handle the
static (sometimes called essential) correlation in olefins, H2, HF, and 1S carbon.

But, when and why should one use more determinants, and physically, what
does it mean? 
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Here is a useful identity for two determinants that one can use to interpret such CI 
wave functions:

Ψ = C1 | ..φα φβ..| - C2 | ..φ'α φ'β..|
= C1/2 { | ..( φ - xφ')α ( φ + xφ')β..| - | ..( φ - xφ')β ( φ + xφ')α..| }

with      x = (C2/C1)1/2 

For example π2  → π*2 CI in olefins or 2s2 → 2p2 CI in alkaline earth atoms
produce the following polarized orbital pairs: 

left polarized       right polarized
π −xπ∗π + xπ∗

π∗

π

 
2s and 2p z

2s + a 2pz

2s - a 2pz
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π∗
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In the case of the two π electrons in an olefin, the polarized 
orbital pairs play qualitatively different roles at 0° and 90° twist 
angles. At the fully twisted geometry, the two determinants had to 
be mixed with equal amplitudes

2-1/2{|πα(1) πβ(2)| - |π*α(1) π*β(2)|}

to achieve the correct diradical bond cleavage products. In this 
case, x = 1 and the two polarized orbitals φ - xφ' and  φ + xφ’
are 2-1/2(π – π*) = R and 2-1/2(π + π*) = L.  
Howerver, at 0 °, the two determinants still mix (but with much 
smaller x) to produce polarized orbital 
pairs that allow (to some extent) the
two electrons to avoid one another. 
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So, placing electron pairs into different polarized orbitals allows them to avoid 
one another and thus correlate their motions (memorize this).

Ψ = C1 | ..φα φβ..| - C2 | ..φ'α φ'β..|
= C1/2 { | ..( φ - xφ')α ( φ + xφ')β..| - | ..( φ - xφ')β ( φ + xφ')α..| }. 

Sometimes the CI is essential- for example, to adequately describe breaking the 
π bond in the singlet state of an olefin. One must combine 

2-1/2{|πα(1) πβ(2)| - |π*α(1) π*β(2)|}
to obtain a diradical state. This is static or essential correlation.
Sometimes even one CSF requires more than one determinant

Ψ 1S  = 3-1/2 [1sα 1sβ 2sα 2sβ 2pzα 2pzβ|  
- 1sα 1sβ 2sα 2sβ 2pxα 2pxβ|  - 1sα 1sβ 2sα 2sβ 2pyα 2pyβ| ].
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So,  if  a  state  cannot  be  represented  by  a  single  determinant,  one 
should  not  use  theoretical  methods  that  are  based  on  a  single  determinant 
(RHF, UHF, MPn, CC).  

How big an effect is dynamical electron correlation?
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We know Vee makes the SE non-separable and that ψ has cusps.
 We replaced Vee by VMF to form H0 which introduced orbitals φJ. We 
used CI to correlate electron pairs, but does this adequately allow for the e-e 
cusps and how big an effect is the electron correlation? 

For a Be atom, this is  J1s(r),  and this is  e2/r1,2  -  J1s(r) with one 
electron held at 0.13 Å.  The fluctuation potential Vee-VMF is shorter-range 
than Vee, but is still very “strong”.
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So, the electron-electron interactions are large quantities and the errors 
made in describing them in terms of the HF mean-field picture are also large. 

This  makes  it  difficult  for  a  perturbative  (MPn)  or  a  variational  (CI) 
approach that assumes HF to be a dominant factor to give accurate energies or ψs. 

Sometimes we incorporate cusps into trial functions (explicitly correlated wave 
functions are used in so-called r-12 methods),  but this results in very difficult 
theories to implement and very computer-intensive calculations.

A  single  determinant  function  has  no 
electron-electron  cusps,  so  it  can  not  describe 
electron  “avoidance”  (dynamical  correlation).  CI 
attempts to include cusps, but does so only crudely. 

The coulomb hole for He in cc-pVXZ 
(X=D,T,Q,5) basis set with one electron 
fixed at 0.5 a0 carried out at full CI 
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Earlier, we saw the e-e cusp condition 

∂/∂rk,l ψ = 1/2 mee2/ 2ψ(as rk,l→0)

The most straightforward way to introduce this condition into CI is to take a

trial function of the form (in au’s so the me, e, and  go away)

ψ = ΣL CL1,L2,...LN |φL1 φL2 φL3 ...φLN| (1+1/2 Σk,l rk,l)
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So, the most common and practical ways to introduce electron correlation is to

use functions of the CI form

ψ = ΣL CL1,L2,...LN |φL1 φL2 φL3 ...φLN|

The  various  methods  (e.g.,  Møller-Plesset  perturbation  theory  (MPn),  the 
configuration interaction method (CI), multi-configuration self-consistent field 
(MCSCF),  etc.) differ in how they determine the CL1,L2,...LN coefficients, how 
the determine the spin-orbitals φLk, and how they determine the final energy E. 

Let’s look a bit deeper at how one usually determines the spin-orbitals φJ and 
the coefficients CL1,L2, ...LN, beginning with the spin-orbitals. 


