Electronic Structure Theory
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. Born-Oppenheimer approx.- energy surfaces
. Mean-field (Hartree-Fock) theory- orbitals

. Pros and cons of HF- RHF, UHF

. Beyond HF- why?

. First, one usually does HF-how?

. Basis sets and notations

. MPn, MCSCEF, CI, CC, DFT

. Gradients and Hessians

. Special topics: accuracy, metastable states
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To whom are these lectures directed?

Ph. D. level students who have completed first-year graduate classes
in quantum mechanics in a chemistry or physics department and who
wish to learn more about electronic structures.

Research-active experimental chemists who have at least this same
background and who are presently or wish to use electronic structure
calculations to help interpret and guide their scientific studies.

Ph. D. and postdoctoral students specializing in theoretical chemistry
but with emphasis outside electronic structure theory can also benefit.

Faculty at primarily undergraduate institutions who wish to include
more theory in their classes and who have had sufficient background.



Sources of additional information- beyond the tip of the iceberg.
Molecular Electronic Structure Theory, Helgaker, Jgrgensen, Olsen

Second Quantization Based Methods in Quantum Chemistry,
Jgrgensen, Simons

Quantum Mechanics in Chemistry, Stmons, Nichols (http://
simons.hec.utah.edu/TheoryPage/
quantum_mechanics_in_chemi.htm)

My theoretical chemistry web site: http://simons.hec.utah.edu/
TheoryPage

An Introduction to Theoretical Chemistry, Stmons (
http://simons.hec.utah.edu/NewUndergradBook/)

Qutantum Chemistry, 5" Ed., I. N. Levine



Lecture Schedule:

Session 1 (ca. 1 hr.): Born-Oppenheimer approximation: adiabatic and diabatic
surfaces; non-BO couplings; surface crossings; the electronic and vibration-
rotation Schrodigner equations; minima and transition states.

Session 2 (ca. 2 hrs.): Hartree-Fock: atomic units; electron-nuclear and electron-
electron cusps, antisymmetry; Coulomb holes, mean —field potential, Slater
determinants, spin-orbitals, spin functions, Slater-Condon rules, The HF
equations, Coulomb and exchange, Koopmans’ theorem, orbital energies,
problems arising when using single determinant approximations; certain states
require more than one determinant; restricted and unrestricted wave functions.

Session 3 (ca. 1 hr.): Pros and cons of HF: limitations of single determinants,
configuration state functions, homolytic bond cleavage and the need for CI,

dynamical and essential electron correlation; restricted and unrestricted HF
(RHF, UHF),



Session 4 (ca. 1/2 hr.): Beyond HF-Why? Bond breaking, configuration
mixing, polarized orbital pairs for essential and dynamical correlation, how
important correlation is; reminder about cusps and introduction to explicitly
correlated wave functions.

Session 5 (ca. 1/2 hr.): First, one usually does HF-how? LCAO-MO, scaling
with basis size, SCF process, how to start the SCF, meaning of occupied and
virtual orbitals, spin problems in UHF,

Basis notations; complete-basis extrapolation of the Hartree-Fock and
correlation energies.

Session 6*: Basis sets and notations ; STOs and GTOs, nuclear cusps, contracted
GTOs, core, valence, polarization, diffuse, and Rydberg basis functions,
notations, complete basis extrapolation, basis set superposition errors (BSSE).

Session 7 (ca. 2 hrs.): Why beyond HF?MPn, MCSCEF, CI, CC, DFT. MP theory,
E!, E?, !, Brillouin theorem, divergence and why, size-extensivity, multi-
configuration SCF (MCSCF), AO-to-MO integral transformation, configuration
interaction (CI)); coupled-cluster (CC), density functional theory (DFT), Kohn—
Sham equations, strengths and weaknesses, scaling with basis size.



Session 8*: Gradients, Hessians, minima and transition states, reaction paths,
harmonic vibrational frequencies, Hellmann-Feynman theorem, orbital
responses.

Session 9*: Typical error magnitudes for various methods and various basis
sets. Special tricks for studying metastable anions; variational collapse; virtual
orbitals are difficult to identify- examples; long-range potentials and the
centrifugal potential; valence and long-range components of the wave function;
relation to electron scattering; charge stabilization method; the stabilization
method.

*Most of this material will be covered in problem/discussion
sections and its coverage will depend on student interest.



The following several slides contain material I ask you to read
and refresh your memory about prior to the School. I am asking
you to do so because the electronic structure lectures are the first
you will hear at the School, and I would like you to prepare before
hand. During the School, we will provide you with material from
the other Lecturers that you can view prior to those lectures to
similarly prepare.

You should have had this material in your quantum, spectroscopy,
or angular momentum classes. If there 1s something you don’t
know about, please have a friend teach you so you will be versed
in 1t when the School begins. I. N. Levine’s text Quantum
Chemistry 5" Ed. contains much of this material (look under
ladder operators, angular momentum, spin, Slater determinants,
and Condon-Slater rules.



A brief refresher on spin

<ala>=1
S,a=1/2ha cw |@==0
S,p=-1/2np <BlIB>=1

2 22 — :
Sa=n"1/20/2+ Da=3/40"a h\/ G+ D=5 C-Dp=1p
S2B = 1*1/2(1/2+ 1)B = 3/41°B

| SB=0
Special case of Special case of
J2 | .9 = h2 (7 1 | .9
jom>=h"j(j+ 11 jm> I jm =i+ D—mm=1) | jym=1>

For acting on a product of spin-orbitals, one uses
S,=38,() S.=XS()) =58 +S+hS,
- .

S a(Da(2) =1/2ha)a) +1/2ha)a2) = ha()a(2)

Examples:
S.a(Da2) =np)a2) + ha()B(2)



Let’s practice forming triplet and singlet spin functions for 2 e’s.
We always begin with the highest Mg function because it 1s “pure”.

a(a(2) So, Mg =1; has to
S,a()a2)=12na()a2) + 1/2ha()a(2) = ia(l)a(2) be tﬁp]et

§,pBQ2) =-1720DF2) -1/201B2) = -nBDLQ2)  So, Mg =-1; has to
be triplet

1
S a(Da(2) = iB(Ha(2) + ha()BR2) S0, 11,0>= ﬁ[a(l>/3(2) + Ba(2)]

=1+ D -11-DIS=1LMg=0> ..o M =0 triplet

How do we get the singlet? It has to have M = 0 and be orthogonal
— 0 triplet. . : i
to the Mg = 0 triplet. So, the singletis | 0.0 >= : [ (DBQ) - BDa(2)]

=
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Slater determinants (P;;) in several notations. First, for two electrons.

)= ¢, (1n)  @,1)
Y1, f¢(r) @,(1,) Shorthand
1 |eGa) o)A 1) =|e.e,

~L2le)a@) o)BQ)

i Symmetric space;
w(;.1) = == (@) e(;)BR) - e()BME()a?2))  antisymmetric spin
N2 y p

(singlet)
= (1), (1,) f{aa)/s(z) BHa(2)}

1
= —[pa()g,a2) - pa(2 =—[¢,(D$,(2) - $, (D, (D)]la(Da(2
| pad,o ﬁ[¢la( )9,0(2) = pa(2) g, ()] ﬁ[%( )9,(2) =, (D¢ (2)]a(Da(2)

Antisymmetric space; symmetric spin (triplet)
UJ(VI 7"2) = —7,/)(7"2 7"1)

¢, (1) <;0,3(r)
2|, (1) mﬁ(f”)

1 9.(y)  @,(7,)

_ Notice the Pi,j
Vo) o)

antisymmetry

(



More practice with Slater determinants

Y(r,ry,..l,) =

Y(7,Fy,.t)) =

Y (7,1, 7)) =

3 P00, )5

P permutation

@,1) @, 1)
®,2) @, (2)

@,(n) @, (n)

rator

(P)
= ﬁ Z 1) p antisymmetrizer

(_l)p(P)

Shorthand notation for general case

®,5(1)
®,5(2)

®,5(1)

Odd under interchange of
any two rows or columns

The dfn. of the Slater determinant
contains a N2 normalization.

0 {‘pmfpza = @np }

parity ( p(P) least number of
transpositions that brings the indices
back to original order)
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Example : Determinant for 3-electron system

0{% P, (,03} B %/1 B < B] o l%};k) {(pl P, §03}
1 (@,(D9,(2)p,(3) - @,(De,(2)p,(3) |
“ T -0;(De,2)e,(3) - ¢, (D@, (2)p,(3)
+@,(Dp;(2)p, ) + @, (D, (2)9, (3)
permutations 1, Plz’ Pl3’ Pz3’ Pz31’ P312
transpositions O 1 3 1 2 2
parity + - - - + +
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The good news 1s that one does not have to deal with most of these

complications. Consider two Slater determinants (SD).

1 o
W, = Wz('l) Py, ()@, 2)@,(3)..q0 (N)

1 0
=—— -1)? "D, )¢, (3)..0' . (N
W, m§< ) 0@, ()@, Q¢ (3)..90', (N)

Assume that you have taken t permutations' to bring the two SDs into
maximal coincidence. Now, consider evaluating the integral

J did2d3..dNy,[ Y F(+ Y 8G. )y,

j=1,N j<k=1,N

where 1(1) 1s any one-electron operator (e.g., -Z,/Ir;-R,|) and g(1))
1s any two-electron operator (e.g., 1/Ir;-ryl). This looks like a
horrible task (N! x (N + N?) x N! terms).
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1. A factor of (-1)" will then multiply the final integral I



I=[dld2d3.aNy LY fF()+ D gl )y
j=1,N j<k=1,N

1 P 1 qQ ! [ | l
Y, =W2(—l)” Py, (D@, 2)@;5(3)..0,(N) Yy =W§(_D Qp', (Dg', 2)¢'s (3)..9'y (N)

1. The permutation P commutes with the f + g sums, so

1 P .
I= 7= 1l d@(—l)l’ 9% Dp*, Q@*; 3)..p* (LY, F(D+ Y 8NPy,

2. = (- 1)” Y, and 2( )P (1) = SO
!
- f R AURC N N(N)[E Fi+ Ssten

= [dro® p*, Qp*, 3)..9*, LY, f(D+ Y &G, mE( D" 0, ', )¢y (3)..40'y (N)

j=1.N j<k=1,N

Now what?
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I=[drgp* (g*, Qe* 3).p* ML Y, F(+ Y i)Y (D" 0p, g, )¢y (3)..40'y (N)

j=1N j<k=1N 0

Four cases: the Slater-Condon rules (memorize them)
P, and g differ by three or more spin-orbitals: I =0
P, and Py differ by two spin-orbitals-§,, § ;P Pp;

1= [ dkdip*,, (k)@*, (Dgtk,D@sR)Ps (D) - @y (g (D]
P, and Yy differ by one spin-orbital-¢ 5, ;¢g,

1= [dkdip*, (¢*, (Nelk NI@n (@, ()) =@, (D)@ ()]
o + [ dkp* (k) £ ()@, (K)

P, and Py are 1dentical
I'= 2 fdkdjfﬂ * (D)™ (Nek, Nl (e, () - (k)@ ()]

: + Y [ dkp* (k) f ()@, (k)

kEA
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