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Particle in a Conjugated Box

How do electronic properties scale with box length?
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Optical Excitations and Free-Electron Model




Particle-In-A-Box for Conjugated Systems

Conjugated systems are frequently treated like “particle in a box™
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In reality, Peierls distortion implies a nonzero potential energy
(e.g. sine wave): dimerization & finite band gap Vo
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Since N and L both increase with # of units
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How Does Optical Band Gap Scale
with Oligomer Length!?

- Straight lines are 1/N extrapolations from oligomers only
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Full idealized polymer calculations show deviations
from |I/N starting at ~10-20 monomer units

Hutchison, et. al. Phys. Rev. B 2003 68 no.035204.



Improving Bulk Conductivity?
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Organic Conductors and Semiconductors

Conjugated organic materials can be converted
from insulators/semiconductors
e Doping (conductive polymers e.g., doped polyacetylene)
 Bias (electrical switching for field-effect transistors)
* Light (bhotoconductivity/photovoltaics)
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Band Theory and Doping:
Midgap States and Carriers
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Predicting First Excited States
Survey Set: 60 Oligoheterocycles
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Predicting Optical Excitations for
Neutral Oligomers

Set of 60 neutral oligomers
shows high accuracy for
several theoretical methods
relative to experimental AEqq,

e [DDFT most accurate,
consistent method

e Systematic skews
(i.e., slope ~0.8) trom
torsional motion in solution
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To do it right, we need an ensemble of conformers,
take a weighted average of excitation energies

Hutchison, et. al. . Phys. Chem. A 2002 |06 p.10596.
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Evolution of Band Structure

Effective mass: ~0. | 5me
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Hutchison, et. al. Phys. Rev. B 2003 68 no.035204.



Conduction is a 3D Process
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Conjugated materials are intrinsically disordered
e Band structures useful for optical properties
e [ransport certainly not band-type (e.g., hopping)

Multiple factors important
e Intrachain transport (torsional disorder; chain defects)
e Interchain transport (st-stacking, intermolecular interactions)




Back to the Crystal Structure




Temperature Variation
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Using the Einstein relation:
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J. Phys. Chem. B 2004, 108, 8614 J. Phys. Chem. A 2006, 110, 4065




SgatiaIVariation of Charge in Organic
onductive Devices

“Spatially-resolved electroluminescence of
operating organic light-emitting diodes using
conductive atomic force microscopy”
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M. Hersam, T.). Marks, et. al. Appl. Phys. Lett. 2004 85(2) 344-346.




What About Defects?

Defects clearly influential

In experiments

Intermediate length scale  Molecular/ o, 0o
o Bimolecular

is important!

Length Scale

So...let’s do Monte Carlo
dynamics for charge
transport trajectories

Get all parameters from
electronic structure




Our Model:

Energy Landscape
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Trajectories are very linear:
Straight from source to drain




Percolation Theory of Defects
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 With no interactions,
“phase change” occurs
quickly




Coulomb Interactions

1.20 = Coulombic Interactions
1.00

0.80 -
0.60 -
0.40 -

e Electron repulsion coats the 0.20 -
edges of the film: surface traps 0.00
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e BUT... other electrons will
force onto open pathways




Summary

* Electronic structure determines many
properties in organic electronic materials

* BUT... dynamics are important, and
treatment of ensembles is critical

* |deal situation is to combine multiple areas
of theory




