Charge Transport 101: A Few Major Mechanisms

Prof. Geoffrey Hutchison

Department of Chemistry University of Pittsburgh geoffh@pitt.edu

July 24, 2009

http://hutchison.chem.pitt.edu

Outline

- Superexchange
- Basic Hopping
- Metallic Transport (e.g., Drude Model)
- Coulomb Blockade
- Kondo Effect
- Negative Differential Resistance
- Electron-Vibrational Effects

Landauer Coherent Conduction

At the nanoscale, conductance is scattering...

$$g = \frac{e^2}{h} \sum_i T_{ii}$$

T_{ii}= transition probability in the ith transverse channel

Superexchange

Looks Like Tunneling

(Almost) Everything is Particle-In-A-Box...

- Finite probability of moving through barrier
- Greater probability for E close to V₀.
- Wavefunction falls off e^{-βx}

$$\beta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$$

What are "normal" ß values?

What are "normal" ß values?

- In Vacuum
 ~3−5 Å⁻¹
- Insulating (alkanes, protein, etc.) ~0.8–1.2 Å⁻¹
- Conjugated
 (alkenes, alkynes...)
 ~0.2–0.5 Å⁻¹

Gray, Winkler, PNAS 2005 vol. 102 p. 3534-3539

Outline

- Superexchange
- Basic Hopping
- Metallic Transport (e.g., Drude Model)
- Coulomb Blockade
- Kondo Effect
- Negative Differential Resistance
- Electron-Vibrational Effects

Hopping: Activated Transport

"Pay the Boltzmann Price"

Superexchange to Hopping

PNAS 2005 (102) p. 3540-3545

Marcus Theory

Reaction Coordinate

Marcus Inverted Region

REACTION COORDINATE q

Experimental Proof: Inverted Region Exists

Miller, et. al. JACS **1984** 106 p.3047.

QM Treatment of Marcus Theory

From Rossky lecture:

Reorganization Energies

Dielectric
$$\lambda_s \approx (\Delta e)^2 \left[\frac{1}{2r_d} + \frac{1}{2r_a} - \frac{1}{R}\right] \left[\frac{1}{\epsilon_{\infty}} - \frac{1}{\epsilon_0}\right]$$

Marcus-Hush Charge-Transfer Theory

Consider h⁺ or e⁻ transfer:

- Change in electronic structure (neutral ⇒ charge)
- Change in geometry reorganization of bonds, & environment

 $A^- + B \to A + B^ A^+ + B \to A + B^+$

$$k_{CT} = Ae^{-(\Delta G^0 + \lambda)^2 / 4\lambda k_b T}$$

Reorganization Energies: Geometric Relaxation

Intermolecular Interaction: Orbital Splitting Energies

For self-exchange:

Note: electronic coupling has exponential fall-off

Reaction Coordinate

Outline

- Superexchange
- Basic Hopping
- Metallic Transport (e.g., Drude Model)
- Coulomb Blockade
- Kondo Effect
- Negative Differential Resistance
- Electron-Vibrational Effects

Metallic Transport: "Electron Sea" Model of Metals

+ ++++ ++++ +++++ + + +++ + +÷ ++ +

Evolution of Band Structure

Hutchison, et. al. Phys. Rev. B 2003 68 no.035204.

Interpretation of Band Diagrams

Diagram shows energy as a function of Brillouin zone

- Broad bands: delocalized
- Thin bands: highly localized (e.g. S atom)
- Direct band gap
- Curvature of bands: effective mass of h⁺ or e⁻

3D Band Structure: Possibly Anisotropic

Drude Model

- Limit on e⁻
 conductance is
 scattering
- Treat as "electron gas" of non-interacting electrons
- Collision between e⁻ and positive ions, creates "drag" γ

$$\gamma = m/\tau$$

$$F = ma$$
$$m\frac{d}{dt}\langle \vec{v} \rangle = q\vec{E} - \gamma \langle \vec{v} \rangle$$

steady state:

$$\langle \vec{v} \rangle = \frac{q\tau}{m} \vec{E} = \mu \vec{E}$$

Effective Masses

$$F = ma$$
 from quantum mechanics:
$$a = \frac{1}{\hbar^2} \cdot \frac{d^2 \varepsilon}{dk^2} qE$$

$$F = qE$$

simplifying...

from Drude model...

$$\frac{1}{m^*} = \frac{\left[\frac{d^2\varepsilon}{dk^2}\right]}{\hbar^2}$$

$$\langle \vec{v} \rangle = \frac{q\tau}{m} \vec{E} = \mu \vec{E}$$

Comparisons of Effective Masses

Material	Hole	Electron
Si	0.56	1.08
Ge	0.37	0.55
P(Thio)	0.14	0.15
P(Pyr)	0.21	0.24

(unit is fraction of electron mass)

Hutchison, et. al. Phys. Rev. B 2003 68 no.035204.

Outline

- Superexchange
- Basic Hopping
- Metallic Transport (e.g., Drude Model)
- Coulomb Blockade
- Kondo Effect
- Negative Differential Resistance
- Electron-Vibrational Effects

Coulomb Blockade

We saw this already...

Source

Coulomb Blockade in [Ru₂(tppz)₃]⁺⁴

Charge passes when source, drain and molecule bridge electronic states are aligned

4K Temp. Single-Molecule Coulomb Blockade Transistor

Coulomb Blockade I/V Curves

Be Careful... Multiple Coulomb Blockade?

Nature (2003) 425 p. 698-701

How do you know this is **one** molecule?