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Major Concepts, Part IV 
•! Review: 

–! Fluid Structure 

•! Gas, liquid, solid, … 

•! Radial distribution function, g(r) 

–! Potential of Mean Force 

–! Classical Determination of g(r): 

•! Integral Equation Theories 

•! Molecular Dynamics 

•! Monte Carlo 

•! Scattering experiments (e.g., x-ray, or SANS) 

•! Renormalization Group Theory 

•! Coarse Graining 
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Renormalization Group (RG) Theory, I 

–! Ken G. Wilson, 1982 Nobel Prize 

–! Ising Model as example… 

•! Each transformation consists of two steps: 
–! Decimate (remove particles) 

–! Renormalize (rescale distances) 

•! Group structure: 
–! When transformations are exact (e.g., in 1D Ising), 

obtain an exact group, and an exact theory 

–! When transformations are approximate (e.g. in 2D 
Ising), obtain a semigroup, and the predicted Tc is only 
as good as the approximation. 

•! RG also gives critical exponents, and some 
observables 
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Renormalization Group Theory, II 
•! The transformation involves two steps: 

–! Decimate e-!H/Q (integrate/sum over chosen variables) 
!! In Ising Model, this means remove alternating spins 

"! Rescale N/2 to N (i.e., L/2 to L) 

–! So H (R, !; {p}) " F(2)(R, !(2); {p(2)}) 

•! At each iteration, you do the same transformation 
–! F(n)(R, !(n); {p(n)}) " F(n+1)(R, !(n+1); {p(n+1)})  

–! If F(n) and F(n+1) have the same structure,  
•! RG is then exact, and you have a group (with invertability) 

•! The system is the same (at all length scales) at fixed points of 
the map, i.e. when !(n) = !(n+1) and  {p(n)} = {p(n+1)} 

–! If not, then you must approximate   
•! F(n+1)(R, !(n+1); {p(n+1)}) ! F(n)(R, !(n+1); {p(n+1)})  

–! And hope for the best ?! 
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Renormalization Group Theory, III 
•! In 1D Spin Ising System: 

–! F(2)(R, !(2); {p(2)}) = H (R, !(2); {p(2)})  

–! So you get an exact group 

–! The only fixed point is at !=# (T=0) 

–! Hence RG correctly predicts no Critical point! 

•! In 2D Spin Ising System, Zeroth Order Semigroup: 
–! F(2)(R, !(2); {p(2)}) " H (R, !(2); {p(2)})  

–! What if you just leave out the terms that are not nearest 
neighbor? 

•! The structure of F(n)(R, !(n); {p(n)}) is exactly that of a 
separable product of two 1D Spin Ising systems 

•! Incorrectly predicts no Tc! 
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Renormalization Group Theory, IV 
•! In 2D Spin Ising System, Next Order Semigroup: 

–! F(2)(R, !(2); {p(2)}) " H (R, !(2); {p(2)})  

–! Now recognize that F(2)(R, !(2); {p(2)}) has terms 
involving: (Migdal-Kadanoff Transformation) 

•! Nearest neighbor, next-nearest neighbor and a 4-point term  

•! Let F(2)(R, !(2); {p(2)}) ! F’(2)(R, !(2); {p(2)}), where the latter 
includes only NN and next-NN terms 

–! Repeat the renormalization, i.e., 
!! Decimate 

"! Rescale 

#! Migdal-Kadanoff (removing everything but NN and next NN) 

–! Critical point(s) at the fixed points of:  

•! F(n)(R, !(n); {p(n)}) " F(n+1)(R, !(n+1); {p(n+1)}) for n>2 

•! There now exists a nontrivial fixed point, Tc, but it’s 
not exact…   WHY? 
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Tc/(J/kB) Numerical (Exact) Onsager MFT RG 

1D 0 0 2 0 

2D 2.3 2.269 4 1.97 

3D ~4 6 ~4 

4D ~8 8 

•! MFT is not always accurate. 

Accuracy increases with increasing dimensionality because higher 

dimension means more neighbors, and hence mean field 

appoximation is better 

•! RG: Renormalization Group Theory 

Exact in 1D, but gets worse with increasing dimensionality 

because of the increasing error in ignoring higher order terms in 

the construction of the semigroup 

Ising Spin: Summary 
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E.g., Random Walk Model 

•! What is P(R,N)? 
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Gaussian Chains 
•! Take P(R,N) from RW model to describe a 

segment… 
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Radius of Gyration 
•! A measure of “size” or “volume” 

! 
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Rg Using Renormalization 

•! Suppose that N=2n segments 

•! Decimate half the monomers, so now N’=2n-1 

•! What is the value of the ratio,  

            Rg(N)/Rg(N/2)=Rg(n)/Rg(n-1)? 

•! Let r denote the value of this ratio 

•! Then Rg(n)/Rg(1)=rn 

•! But Rg
2 (1)=b2/6       ! Rg

2 (n)=r2nb2/6 

•! If, r=21/2,                  ! Rg
2(N) = 2n b2/6 = N b2/6 
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E.g., Coarse-Graining 

•! Strategy:  
–! Remove (decimate) some number of degrees of freedom (the 

fine-grained variables) by integrating out the others 

–! This leads to a reversible work function 

–! Use this PMF as the potential in the e.o.m. for the coarse-grained 

variables 

•! Implications?   
–! Timescales are too fast! 

•! Add dissipation  

•! Rescale times 

–! Lose information about fine-grained variables 

–! Is the PMF reducible to a sum of two-body terms? 

–! Can one construct transferable coarse-grained potentials? 
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“Coarse-Graining of Condensed Phase and Biomolecular Systems,” G. A. Voth, Editor (CRC Press/Taylor and 

Francis Group, Boca Raton, FL, 2009).  
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Major Concepts, Part V 
•! Nonequilibrium Dynamics 

–! Correlation Functions 

–! Langevin & Fokker-Planck Equations 

•! Chemical Kinetics & Rates 

–! Kramers Turnover 

–! Transition Path Ensemble (Chandler & others) 

–! Moving TST (Uzer, Hernandez & others) 
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Nonequilibrium Dynamics 
•! Far-from-equilibrium, systems are different! 

–! Doesn’t the solvent average it all out??? 

•! Zwanzig’s Topics: 

–! Brownian Motion & Langevin Equations 

–! Fokker-Planck Equations 

–! Master Equations 

–! Reaction Rates & Kinetics 

–! Classical vs. Quantum Dynamics 

–! Linear Response Theory 

•! Use thermodynamic quantities to predict Non-Eq 

–! Nonlinearity 
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See, e.g., R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001) 
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Time Dependent Correlation Functions 

•! Time-correlation function of a dynamical variables A and B is 

given by 

•! We can also exclude the average values of the dynamical 

variables and define the correlation function as: 

–! Written in this way,                       as  

•! The Fourier transform of the time correlation function is the 

power spectrum 

•! And the Laplace transform is defined as: 

•! Autocorrelation functions are real even functions of t and ! 
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Louisville Operator and Dynamical Variables 

•! A is some dynamical variable dependent upon coordinates and 
momenta 

•! Following equation propagates A in time: 

–! where L is the Louisville operator [note {A,B} is the Poisson Bracket] 

•! For two dynamical variables A and B, inner product give correlation 
function. 
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Time Dependent Correlation Functions 

•! Provide a quantitative description of the dynamics in 

liquids 

•! Power spectrum is what is measured by many 

spectroscopic techniques. 

•! Linear transport coefficients of hydrodynamics are 

related to time integrals of time dependent correlation 

functions. 

Why are time dependent correlations functions important? 
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•! Suppose: 

•! Then: 

•! Why does linear response work? 

•! When does linear response not work? 

•! What does <A(t)> mean? 
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Linear Response Theory 

! 

 A(t,x,") :: observable, 

x ::  internal variable

" :: external variable

! 

A(t,x,"#) = "A(t,x,#) for small #

! 

A(t,x + "x,#) = A(t,x,#) + $A(t,x,#) % "x for small "x

! 

"A(t,#) $ #% &A(t)&A(0)



R. Hernandez 
@ Georgia Tech 

Correlation Functions 
•!   

•! The time correlation function is: 

•! The diffusion equation: 

•! The diffusion constant is: 
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Chemical Kinetics 

•! Simple Kinetics—Phenomenology 

–!Master Equation 

–!Detailed Balance 

–!   

•! Microscopic Rate Formula 

–!Relaxation time 

–!Plateau or saddle time (Chandler) 
! 

E.g. :  apparent rate for isomerization :   " rxn
#1

= kAB + kBA
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Rates 

•! The rate is: 

–! k(0) is the transition state theory rate 

–! After an initial relaxation, k(t) plateaus (Chandler): 

•! the plateau or saddle time: ts 

•! k(ts) is the rate (and it satisfies the TST Variational Principle) 

–! After a further relaxation, k(t) relaxes to 0 

•! Other rate formulas: 

–! Miller’s flux-flux correlation function 

–! Langer’s Im F 
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! 

E.g., in the apparent rate for isomerization :   "
rxn

#1
= k

AB
+ k

BA
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(Marcus: Science 256 (1992) 
1523) 

Transition State Theory 
•!Objective: 
•! Calculate reaction rates 

•! Obtain insight on reaction mechanism 

•!Eyring, Wigner, Others.. 
1.!Existence of Born-Oppenheimer  V(x) 

2.!Classical nuclear motions 

3.!No dynamical recrossings of TST  

•!Keck,Marcus,Miller,Truhlar, Others... 
•! Extend to phase space 

•! Variational Transition State Theory 

•! Formal reaction rate formulas 

•!Pechukas, Pollak... 
•! PODS—2-Dimensional non-recrossing DS 

•!Full-Dimensional Non-Recrossing Surfaces 
•! Miller, Hernandez developed good action-angle variables at 

the TS using CVPT/Lie PT to construct semiclassical rates 

•! Jaffé, Uzer, Wiggins, Berry, Others... extended to NHIM’s, 

etc 
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Langevin Dynamics (open systems) 

•! Langevin Equation: 

•! Identify a Reaction/Dynamic Variable 

(Order Parameter?) 

•! The “bath coordinates” are subsumed 

by the Friction and Random Force 

•! Kramers Turnover Rates 

•! Mel’nikov-Pollak-Grabert-Hänggi (PGH) 

Theory & Rates 

Shepherd and Hernandez; J. Chem. Phys. 117, 9227-9233 (2002). (variational MFPT) 
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•!  Calculate exact Rates: 

–! Reactive Flux as a 

function of pressure 

–! Convert abscissa to 

microscopic friction 

•! PGH (TST-like) Rates 

–! Construct Langevin Eq. 

–! Need PMF 

–! Need Friction Kernel 

•! Compare Rates 
García-Müller, Borondo, Hernandez and Benito; Phys. Rev. Let. 101, 178302 (2008) 

LiCN in Ar bath 

(low P and high T) 
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Kramer’s Turnover in LiCN 
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•! Comparing forward and 

backward isomerization 

rates 

•! Agreement is nearly 

quantitative (despite 

ohmic friction 

assumption) 

•! Observation of energy-
diffusion regime (rates 

increasing with 

increasing friction) 

Kramer’s Turnover in LiCN 

García-Müller, Borondo, Hernandez and Benito; Phys. Rev. Let. 101, 178302 (2008) 

LiCN in Ar bath (low P and high T) 
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Reactions with noise 
Langevin equation: 

We will find a time-dependent non-recrossing dividing surface. 

deterministic 

potential mean 
force 

(PMF) 

damping white noise 
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Decoupling from the noise 

Choose trajectory 

that never leaves the transition region 

as the “moving saddle point” 

! w.r.t, Relative coordinate: 

the E.o.M are noiseless 

! unique stochastic Transition State Trajectory 
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Construction of the TS trajectory 
Rewrite Langevin equation in phase space,  

Scalar equations decouple when A is diagonalized  

(eigenvalues !"#): 

General solution: 

! TS trajectory                is given as an explicit function of the noise. 

Set c!j=0 so as to keep x!j(t) finite for t"±!"
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The TS Trajectory 

•! Remains near col for all time 

•! It gives rise to an associated 

moving dividing surface 

•! Fixed dividing surface is 

crossed many times, but 

moving dividing surface is not 

•! TS trajectory is defined for 

each manifestation of the 

noise.... 
** But can still average over 

IC’s of the particle/subsystem 

Bartsch, Hernandez and Uzer: Phys. Rev. Lett. 95 058301 (2005) 

in unstable phase space 
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An arbitrary trajectory 
in configuration space 

TS trajectory reactive trajectory 

Bartsch, Hernandez and Uzer: Phys. Rev. Lett. 95 058301 (2005) 
Bartsch, Uzer and Hernandez: J. Chem. Phys. 123  204102 (2005) 
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Statistics of the TS Trajectory 
•! The distribution of the TS trajectory is stationary. 

•! Components are Gaussian distributed with zero mean. 

•! Time-correlation functions are known explicitly, e.g. 
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Great, you have a  non-

recrossing (moving TS) 

dividing surface,  

So WHAT? 

!! Dynamics can be replaced by GEOMETRY 

!! Calculate Rates 

!! Obtain Mechanisms 
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 Phase Space View of Reaction 

In the harmonic approximation, 
the reaction coordinate and 
transverse degrees of freedom  
decouple. 

The geometric structures persist even in strongly coupled systems:  
Normally Hyperbolic Invariant manifolds (NHIM) 
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The barrier ensemble 

Sample trajectories in the Transition State region 

•! located at fixed “TS” qreact=0 

•! Boltzmann-distributed in 

bath coordinates and in velocities 

Reactive part of the ensemble  

is known a priori. 

For each trajectory, a unique reaction 

time (or “First Passage time” to reach 

the moving TS) can be defined. 

Averaging over many trajectories 
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Reaction probabilities 
(Committors) 

Reaction probabilities for each 

point in phase space: 

In particular: The Stochastic Separatrices have been identified 

TSTC Lecture #3   

July '09 

36 Statistical Mechanics 



R. Hernandez 
@ Georgia Tech 

Identifying Reactive Trajectories 
For a fixed instance of the noise 

•! sample initial conditions from the Barrier Ensemble 

•! propagate forward and backward in time for a time Tint 

•! identify reactive trajectories 

Reaction probablilities obtained 

from moving surface converge 

•! monotonically 

•! faster than with fixed surface 

a priori probabilities are 

reproduced asymptotically. 

Bartsch, Uzer, Moix and Hernandez;  J. Chem. Phys. 124, 244310 (2006). 
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Anharmonic barriers 

anharmonic potential energy surface 

use moving TST dividing surface 

obtained at the  harmonic limit, k=0 

! moving surface is approximately 

     free of recrossings 

!! advantages of moving surface 

     persist for k not too large: 

     # fast convergence 

     # monotonic approach to limit 

Bartsch, Uzer, Moix and Hernandez;  J. Chem. Phys. 124, 244310 (2006). 
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Anharmonic Barriers 

•! Identifying non-recrossing 

trajectories vs. time at 

increasing anharmonicity 

•! Fixed surface does poorly 

even for small 

anharmonicity 

•! Moving surface (obtained 

from harmonic reference!) 

does well up to very large 

anharmonicity 

Moving  

Surface 

Fixed  

Surface 

Is the approximate moving TS DS recrossing free? 
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Harmonic Rates 

•! Compute using fixed 

surface 

•! Compute using moving 

TST surface 

•! Average over the known 

critical velocity from the 
NHIM: 

Standard TST 

Moving TST 

Analytic NHIM Estimate 

Bartsch, Uzer, Moix and Hernandez;  J. Phys. Chem. B 112, 206-212 (2008) 
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Anharmonic Rates 

•! Compute 

using fixed 

surface 

•! Compute 

using moving 

TST surface Standard TST 

Moving TST 
Note: Change of Lines! 

Bartsch, Uzer, Moix and Hernandez;  J. Phys. Chem. B 112, 206-212 (2008) 
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•! “Finding Transition Pathways in 

Complex Systems: Throwing 

Ropes Over Rough Mountain 

Passes, In The Dark” 

•! Strategy: 

–! Find a path between A & B 

–! Each trial path is a perturbation of 

given path 

–! Accept, if it connects A &B 

–! Sample over the Path Ensemble! 

TSTC Lecture #3   

July '09 

Statistical Mechanics 42 

From Chandler: 

http://gold.cchem.berkeley.edu/

research_path.html 

Bolhuis, P. G., D. Chandler, C. Dellago, and P. Geissler, Ann. Rev. of Phys. Chem., 59, 291-318 (2002) 

C. Dellago, P. G. Bolhuis and P. L. Geissler, "Transition Path Sampling", Advances in Chemical Physics, 

123, 1-78 (2002) 

Transition Path Ensemble 
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Other Topics, Part VI 
•! Mode Coupling Theory 

–! Wolfgang Götze 

–! Matthias Fuchs 

–! David Reichmann 

•! Fluctuation Theorems 

–! Giovanni Gallavotti & E. G. D. Cohen 

–! Denis Evans 

–! Christopher Jarzynski 

–! Jorge Kurchan 

•! Accelerated Dynamics 

–! Art Voter: hyperdynamics, temperature acceleration, parallel replicas 

–! Vijay Pande’s parallel replicas 

–! Ron Elber’s Milestone Approach 


