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This Lecture

Part |l, continued:

— Statistical Mechanics: Ideal

« Cf. “Introduction to Modern Statistical Mechanics” by D. Chandler, (Oxford
University Press, USA, 1987) —The green book ©

» Cf. “Statistical Mechanics” by B. Widom
» Cf. “Basic concepts for simple and complex liquids” by J. L. Barrat & J- P. Hansen

Part Il

— Statistical Mechanics: Nonideal
« Cf. Ibid!

Part IV:

— Statistical Mechanics of Liquids
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Major Concepts, Part || — Ideal

|deal Gas
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Statistical Mechanics

Sampling by:
*Monte Carlo
=*Molecular Dynamics

Ensembles:

*"(S,V,N) ucanonical

=(7,V,N) Canonical (or Gibbs)

(T,V,u) Grand-Canonical
(T,P.N) Isothermal-Isobaric

.
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Completing the Square

— 0

+00 " 5
/ dp e~2(==5%) +5(a-b)’

1 2 00 2
e§(a—b) / dx 6—2:1:
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400
/ dy er=a + =) _
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(z—a)’+ (-2 =
= 222 —2(a+b)x + a® + b
= 2(z®—(a+b)z)+a*+b”
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Gas

Consider N particles in volume, V

\

with a generic two-body potential:

V(o Ty ) = EVU(Z _ fj\)

<]

and kinetic energy:
p;
l 2mi

T(p,s..-sPy) =

The Canonical partition function:

(2@) Jdrfdpe dr = drdr,...dr,
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Integrating the K E. Qina Gas
(Znh) fff

May generally be written as: (\WWarning:
this is not separability!)

N 2

By )
dpe 7" [dF eV
(2Jl’h) f P f
With the generic solution for any system

o~(oa) I sre

i
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No Interactions—Ildeal Gas

Assume:
1. ldeal Gas — V(r)=0
2. Only one molecule type: m.=m

[dar e = [dF=V"
3

) (5
p p

i

The ideal gas partition function:

3N 3N/
1 2mit N
0~ (3] ( B ) '
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The Ideal Gas Law

ol

o) \ B

Recall:

dA =-8dT - PdV + udN

A =-k,Tn(Q)

The Pressure

a0

WV )rn
’ P=k TE |deal Gas Law!
p_ kBTf?ln(Q) BL .

dV

TSTC Lecture #2 Statistical Mechanics
July 09




ldeal Gas: Other Observables

o A
T

AT V,N)=-kTInQ

S(T,V,N)=T Recall: A=E-TS

A(T .P.N)= f e PPY ot v Nyav

0
G(T,p,N)=—kTIn A

Jdln A

S(T,p,N)=klnA+kT( )
T Jyp
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Major Concepts, Part ll|

Non-ldeal Systems
Ising Model

» H: Applied Field

 J: Interaction (non-ideality)
— Isomorphic to Lattice Gas!

— Geometric vs. Energetic Frustration

Phase Transitions

— Spontaneous magnetization & Critical Temperature

— Exact solution for J=0 (ideal)

— Nonzero J Ising Solution in 1D (exact, transfer matrix)
— Nonzero J Ising Solution in 2D (exact, Onsager)

Mean Field Theory (Approximate)
* Monte Carlo (Numerical)
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Non-ldeal Systems

* ldeal systems=non-interacting systems
— i.e. ideal gas

* Non-ideal systems=Most systems
— Interactions between particles

— One manifestation of particle interactions is
the possibility of phase transitions

— E.g., Spin Ising System or Lattice Gas:

* Interactions included only at “nearest
neighbors”
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Ising Spin (Magnet) Model

Ising model is lattice of

spins. r AT A AT A AT AT A
A 4 A 4

— Each square is large A KD A A A
enough to hold one spin. x AT T4 Ak

H: magnetic field T4 AT AT A
: v v v
M: magnetic moment I WY A A | AAT A
S;: direction of spin (1) UYL
. . Al A Al A A

Isomorphic to lattice v vl v v
A Al AN AN A Al A

gas \ 4 \ 4

N
E ({S.}) = —E HusS,; + interaction energy
i=l1
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Ideal Ising Model: Q

 What if the interaction energy term is 0 (i.e. the system is
ideal)?

* the partition function can then be obtained readily:
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Ideal Ising Model: <E>

 The average energy of the system is given by:

O(B) = (2cosh(BHuW))"

_ dInQ
(£)--22
sinh( SHu)

=-NH = —NHu tanh(pH
‘ucosh(ﬁHu) utanh(fSHu)
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Interactions in the Ising Model

* In the Ising model, only nearest neighbors
interact. 0\

—JE S;S
7

« Jis the coupling constant

 Why not add terms with s;squared or higher
power?

 J> 0 (ferromagnet)
- energetically favorable for spins to be aligned
« J<0 (antiferromagnet)

e O e O O O -
P P
s R I <

> o P
> | b |

R e
Sl

222 T21€ >

A
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Frustration

* Frustration occurs when you can’t avoid unfavorable
contacts. E.g, in a non-rectilinear Ising model:

* The spins are located

NN/ o the vertices.
NANAVAVAVAVAV

\

/ /W\ \\ p or i)

* J < 0 Antiferromagnetic - Frustration arises from

system unfavorable contacts
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Phase Transitions in Ising?

* Through nearest neighbor interactions, spins separated by a
macroscopic distance can influence each other.

* Long range correlations lead to long range order

* For the spin Ising system, /Jong range order is indicated by net
magnetization of the system even in the absence of a magnetic
field.

Ny |
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Phase Transitions in Ising?

M) { * Order-disorder (phase)
transition occurs at T,

NY
\ * Does a phase transition
Te . exist?
T
J * Does a region with net
| magnetization exist?

NH « If H=0 when J>0 and there is
a region of net magnetization
M = ,uz <Si> = NM<S> then the system shows

spontaneous magnetization.
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PMF: F(M)

The potential of mean force (PMF) gives rise
to a free energy in the net magnetization

At T>T,
— F(M) is a single well centered at M=0
At T=T,

— F(M) is a single well centered at M=0, but the
second derivative at 0 is O

At T<T,

— F(M) is a double well with a saddle at M=0, and
now giving rise to TWO stable nonzero M'’s.
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1D Ising Model: Find T

How can the critical temperature, T_, be found?

 Calculate the partition function for the system Q(B,H)

<M> _ (G(In Q) )
ABH) |

o If KM>‘ >0 for any 3 then the system exhibits spontaneous
magnetization (an order-disorder transition).

[oc sinh(BuH) 1n 1D]

* Peierl’'s Theorem argues that there is no net magnetization
in 1D.

*It also claims that if you have net magnetization at a given T
for nD, then you have net magnetization at that same T at all
higher dimensionality
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1D Ising Model: Find Q(f8,H)
Q(B.H)= ) exp b’MHESi +/5]E 'SiSj = EeXp ﬁuHE%WJESiSm

S ] i [, I iy | l [
- E | | explutl 2L 4 sy
{S;} i
_ H g g = 91 9 Transfer
S i o 91 Y41 Matrix

=7r(q") =A, +A) =A;

= exp {N[BJ +In{cosh(BuH) +[sinh*(BuH ) + e 1"} ]}
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Two Dimensions and Higher

« Exact (analytic) result obtained by Lars Onsager in
the 1940’s using a 2D transfer matrix technique,

T, =2.269J/k,
1
M x((T.-T)* forT <T,

* Peierl’s Theorem guarantees T_> 0 for the 3D and
higher dimensionality Ising models

T /(J/kg) Numerical (Exact) Onsager | Net Magnetization?
1D 0 0 no
2D 2.3 2.269 yes
3D ~4 yes
4D ~8 yes
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Mean Field Theory (MFT)

Universe of spins

!

Tagged spin

E((S1) =~ Y Hus, -2 D 'S5,
=1 oy

A

Sk

7 !

H: Mean field due to the universe of spins

<£> = —uH - JzS

S,
oF z=2D
o =uH=J(YS), <
aSk ki S: Average spin of an
equivalent neighbor
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Mean Field Theory (MFT)

. . . 23
- Consider a single spin system: £ =5, <g>
k

Q(ﬁalaH) = Eexp{[g’(MH + JZE)Sk}

=2 cosh{B(uH + JzS)}
<Sk> _ ( 0 an([J’,l,H))

opuH
= tanh(8JzS)
+But S = <Sk> since no spin is special

- Obtain spontaneous magnetization at 7. =
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Variational MFT

 How do you know to choose the
reference Hamiltonian to be that of an
ideal system with mean forces?

* Gibbs-Bogoliubov-Feynman Inequality!

* Note also connections to:
— perturbation theory
— cumulant expansions
— Mayer cluster expansion
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Sping Ising Model: Summary

T_/(J/kg) | Numerical (Exact) Onsager | MFT
1D 0 0 2
2D 2.3 2.269 4
3D ~4 6
4D ~8 8

 MFT is not always accurate.
*Accuracy increases with increasing dimensionality
*Flory-Huggins Theory is a MFT for polymers!

* Sometimes need something better...

* RG: Renormalization Group Theory
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Monte Carlo: Nalve

Problem: [dx f(x)P(x) =7, with DIM(z) > 1

Ans. 1: Monte Carlo: Use random (uniform) sampling

Let {z;} be a “random” sequence of N numbers in the domain

N
1
= | [ dz f(@)P@) = 5 Y fla)
1=1
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Naive MC: Calculating m

1 N
dz f(z)P(z) ~ > f(w)
1=1
Area of a square of sides with d:
Ay = 2 . Numerlcs of .
Neires Nsq» 4" Niire/ Noq
Area of a disk of diameter, d: oire’ aire
72100 2.8 (1 dlglt)
Agire = md? /4 ~ 7821000 3.128
— 7910 10000 3.164 (2 digits)
So the ratio of areas is: — 78520 100000 3.1408
Acire _ 7 _ 785322 1000000 3.141288 (3 digits)
ASq 4 — 7854199 10000000 3.1416796
Let P(x) be a constant (viz., uniform in the square), and — 78540520 100000000 3.1416208 (4 digits)
— 785395951 1000000000 3.1415838
fz) = 1 if z € the disk — 1686652227 2147483647 3.14163459
0 if z ¢ the disk s, 3.1415927 (8 digits)

Let {x;} be a uniform sampling of the square, then

] N
77%4><N><;f(xi)
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Monte Carlo: Metropolis

N. Metropolis, A. Rosenbluth, M.Rosenbluth, A. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953)

Problem: [dx f(x)P(x) =7, with DIM(x) > 1

Ans. 2:  (Metropolis) Use a Markov Walk

Detailed Balance: P(x)W(x — ') = P(2")W (2’ — x)
where W :: Transition Probability

P /
= | W(z — 2/) = MIN [1, (')

P(z)

|

= MIN [1,e 2P~

A Metropolis Monte Carlo step from x; to x;41 consists of N/ move
attempts with each accepted or rejected according the probability
criteria relative to a random numer

The sequence {z;} consists of an initially equilibrated state, x1,
“propagated” for N — 1 steps.

1 N

i=1

= | [def@)P@) ~ 5 3 fa
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Monte Carlo: Umbrella Sampling

Problem: [dx f(xz)P(x) =7, with DIM(z) > 1

Ans. 3: (Importance Sampling) Use Loaded Dice!

Suppose
W(x — ') = Wo(z — 2" )Wi(x — 1)

Wo(z' — x)Py(x") Py (")
" Wo(x — ') Py(x) Py ()

then Wi (z — ') = MIN [1

So what? Choose z’ using Py(z')...

= | Wi(z — /) = MIN [1, ];11((21))]

The sequence {z;} consists of an initially equilibrated state, z1,
“propagated” for N — 1 steps.

1=1
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 Problem:

— How do you sample all of the space on a corrugated
energy landscape? (barriers greater than target T.)

« Answer:

— run N many replicas using MC at N different
temperatures, T, in parallel

— Every so often, attempt exchanges between replicas
according to

probability = min( 1, exp([1/KT; - 1/ij][E,-- Ej]))
— Satisfies detailed balance

RH Swendsen and JS Wang, “Replica Monte Carlo simulation of spin glasses,” Phys. Rev. Lett.

57, 2607-2609 (1986)
C. J. Geyer, in Computing Science and Statistics Proceedings of the 23rd Symposium on the

Interface, American Statistical Association, New York, 1991, p. 156.
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* A Monte Carlo approach for obtaining the density of states,
p(E), directly

— Rather than computing g(r) or other observables
— A random walk through energy space!

« Algorithm:
— Initialize p(E)=1 for all E

— Accept moves according to:
* probability = min[ 1, o(Ej,iia)//P(Etial move) |
» Let E’ be the energy of the state at the end of the trial
— Update p(E’)= fp(E’) & the histogram H( Set(E’) )+=1
— Stop once the histogram is “flat,” [error in p(E) = O{In(f)} ]

— lterate, now using smaller f,

F. Wang & D.P. Landau, Phys. Rev. Lett. 86, 205 (2001). [original version for spin Hamiltonian]
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Major Concepts, Part IV

« Review:
— Fluid Structure

» Gas, liquid, solid, ...
« Radial distribution function, g(r)

— Potential of Mean Force

— Classical Determination of g(r):
 Integral Equation Theories
* Molecular Dynamics
* Monte Carlo
» Scattering experiments (e.g., x-ray, or SANS)

« Renormalization Group Theory
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Quantifying Structure

« The Radial distribution function, g(r)

0000 o9 09 °
eo0o0o00 o ®0 0°
0000 ® 060 00
0 000 0 000
0000 90 0o
solid liquid
3.0 r BLELLEE ideal gas
e OAS
liquid
Az.O solid
| Rresneass
i
I
ninn
0.0
0 1 2 3 4
r/'c
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Liquid Structure, |

Configurational distribution:

—BU(x™)
P(eN) = — .
[ dr'™ e=BUET)

Specific joint probability distribution: [Particle 1 (2) at r, (r,)]

pQ2/N) (ri,re) = /dr3/dr4 /drNP
— / I‘1—I‘1 5(1‘2—1‘2)P(I'/N)

= <5(I‘1—I‘1)5(I‘2—I‘2)>
Generic reduced probability distribution function: (Any particle at r,)

/0(2/N) (rlv I‘2) = N(N T 1)P(2/N) (r17 1‘2)

Generic n-point reduced probability distribution function (RPDF)

NI drN—ne—BU (")
(N—n)! [deNe p0G™)

p/N) (r1,...,Tp) =
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» Kronecker: (Discrete)

S s 1, ifi=j
Um0, if i

 Dirac: (Continuous)

. +°
6(x)= lim 1 eikx—|ak|dx

a—02m

—00

5(x)= o e_x%2
a—0 a'\/;
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Liquid Structure, |

 The 1-point RPDF is the density in an isotropic fluid:

(/N) (py) 0 NfdrN‘le_BU(”N)
P 1 — fdr/Ne—BU(r/N)
fd(er_le_BU(rl’6rN_l)

fdrlfd5r/N—1e—BU(r1,6r/N)
_ N _ N _
~ TJdr, V =P

 The 2-point RPDF is also simple in an ideal gas

Separability reduces configurational distribution agd the n-point specific reduced
probability distribution: P(rN) _ H P(r;)
i=1

P (ke = =T P

Hence the 2-point RPDF is:

id —
/M) (r1rp) £ MG &7
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radial distribution function, g(r)

* Measure liquid structure according to how it deviates from the

Isotropic ideal gas limit: 5 /N

_ M) (ry, 1)
g (r].? r2) — p2

2/N 2

pPN) (r1,19) — p
02

» |f the system is isotropic, then these quantities depend only on

r = |r, — r,|, and this leads to:

h(ry,rg) =

g(r) = g(ry,ry) the radial distribution function
h(r) = g(r)—1 the pair correlation function

« The challenge is: How does one calculate or measure g(r)?
— Theory (e.g., integral equations, mode coupling theory, expansions)
— Simulations
— Experiment [FT of g(r) is related to the structure factor S(q)]
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Potential of Mean Force
« Reversible Work Theorem: ‘g(fr) — e_ﬁw(r)‘

*  Where w(r) is the Helmholtz free energy (reversible work) to move
a particle from infinity to a distance r from a chosen center

- That s, the force on the partlcle in the fluid is: F(r) = E;w
-
e Proof: (F(r2))r., = < dm T where 719 = 7 — 7
/drg /drN e PV
= (97“12 for arbitrary

dry e~ BU

r12 {fd’r’g---fd'r’Ne BU }
[dis- [ diy e PU
82 In{[drs-- [diye PV}
N(N-1) [ ds-- [ diy e PY
pQIdFNe_BU

®

Q
3
=

=

} , by adding arb. constant

Q

N

foy e Lo e Loy
Q
—_

%
S,
N
f_A_\
)
—~~
~—
——

|~ Q
3
o
[ V)

= 0 1n{—%g(7’12)}
— w(r) = 5 (7
 Take-Home Message:

* A structural calculation of g(r) can lead to an understanding of
forces

p—
-
-]

A

K
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Integral Equations

* Ornstein-Zernike Equation:
h(rys) =clryp) + p/drgc( ri3)h(ra3)
— h(r,,) : total (pair) correlation function [ = g(r)-1 ]
— ¢(r,,) : direct correlation function

¢ Closures: (?(‘I‘) — gtot‘;tl(r) o giu(lircct.(r)
— Percus-Yevick:
— Hypernetted Chain (HNC):
— Many others! c(r) ~ g(r) —w(r)

* Reference Interaction Site Model (RISM)

— Anderson & Chandler, JCP 57,1918 & 1930 (1972).

* RISM for ring polymers (PRISM)

— Schweizer & Curro, PRL 58, 246 (1987)
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Computer simulations of g(r)

* Need force field, e.g., Lennard-Jones

 Need a SamplingTechnique:
* Molecular Dynamics
* Monte Carlo Sampling
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Computer simulations of g(r)

— Molecular Dynamics
* Integration algorithm
— Convergence w.r.t. step size
— Convergence w.r.t. final time (ergodic?)
— How do you assert convergence?
» Conservation of Energy?
» Reproducibility with time step?
» Conservation of symplectic norm
» Other?
« Equilibrium & nonequilibrium averages
« Constant Tor S, Por V, yuor NEnsemble?

— Stochastic forces?
— Anderson barostats or Nose-Hoover thermostats
— Langevin dissipation
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Computer simulations of g(r)

— Monte Carlo Sampling

* No real time averages!
« Use Metropolis Monte Carlo

« Choosing new configurations for the Metropolis
step?
— Pick initial arbitrary step size for particles
— Optimize step size according to acceptance
— Other types of moves???
— REGARDLESS, need to ensure ergodic sampling!

« Constant T ensembles

 Constant y or P ensembles?
— “charging methods”
— Widom insertion method
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