May 2009, Lecture #2 Statistical Mechanics: Structure

TSTC Lectures: Theoretical & Computational Chemistry

Rigoberto Hernandez

$S = k_{\rm B} \log W$

- Boltzmann's headstone at the Vienna Zentralfriedhof.
- Photo by Daderot on www.SklogWiki.org
- By the way, SklogWiki's symbol, $\Theta\Delta^{cs}$, is the short-hand used by James Clerk Maxwell for the word thermodynamics.

TSTC Lecture #2 July 09 **Statistical Mechanics**

This Lecture

- Part II, continued:
 - Statistical Mechanics: Ideal
 - Cf. "Introduction to Modern Statistical Mechanics" by D. Chandler, (Oxford University Press, USA, 1987) —The green book ☺
 - Cf. "Statistical Mechanics" by B. Widom
 - Cf. "Basic concepts for simple and complex liquids" by J. L. Barrat & J- P. Hansen
- Part III:
 - Statistical Mechanics: Nonideal
 - Cf. Ibid!
- Part IV:
 - Statistical Mechanics of Liquids

Major Concepts, Part II — Ideal

- Thermodynamics (macroscopic theory)
 - S-conjugate variables
 - Legendre Transforms
- Statistical Mechanics—Fundamentals
 - Ensemble
 - Ensemble Averages & Observables
 - Partition Functions
 - Ergodicity
- Entropy and Probability
- Ensembles
 - Extensive vs. Intensive variables
- Harmonic Oscillator
- Ideal Gas

TSTC Lecture #2 July 09 **Statistical Mechanics**

Sampling by: Monte Carlo Molecular Dynamics

Ensembles: •(*S*, *V*, *N*) μcanonical •(*T*, *V*, *N*) Canonical (or Gibbs) •(*T*, *V*, μ) Grand-Canonical

(T,P,N) Isothermal-Isobaric

Completing the Square

$$\int_{-\infty}^{+\infty} dx \, e^{-2\left(x - \frac{(a+b)}{2}\right)^2 + \frac{1}{2}(a-b)^2} = e^{\frac{1}{2}(a-b)^2} \int_{-\infty}^{+\infty} dx \, e^{-2x^2}$$
$$\int_{-\infty}^{+\infty} dx \, e^{(x-a)^2 + (b-x)^2} = e^{\frac{1}{2}(a-b)^2} \sqrt{\frac{\pi}{2}}$$

$$(x-a)^{2} + (b-x)^{2} = (x^{2} - 2ax + a^{2}) + (b^{2} - 2bx + x^{2})$$

$$= 2x^{2} - 2(a+b)x + a^{2} + b^{2}$$

$$= 2(x^{2} - (a+b)x) + a^{2} + b^{2}$$

$$= 2(x^{2} - (a+b)x + \frac{(a+b)^{2}}{4}) - \frac{(a+b)^{2}}{2} + a^{2} + b^{2}$$

$$= 2(x - \frac{(a+b)}{2})^{2} - \frac{1}{2}(a^{2} + 2ab + b^{2}) + a^{2} + b^{2}$$

$$= 2(x - \frac{(a+b)}{2})^{2} + \frac{1}{2}(a^{2} - 2ab + b^{2})$$

$$= 2(x - \frac{(a+b)}{2})^{2} + \frac{1}{2}(a-b)^{2}$$

Statistical Mechanics

R. Hernandez @ Georgia Tech

TSTC Lecture #2 July 09

Gas

Consider N particles in volume, V

with a generic two-body potential:

$$V(\vec{r}_1, \dots, \vec{r}_N) = \sum_{i < j} V_{ij} \left(\left| \vec{r}_i - \vec{r}_j \right| \right)$$

and kinetic energy:

$$T(\vec{p}_1,...,\vec{p}_N) = \sum_i \frac{\vec{p}_i^2}{2m_i}$$

The Canonical partition function:

$$Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \int d\vec{r} \int d\vec{p} \ e^{-\beta H(\vec{r},\vec{p})}$$

TSTC Lecture #2 July 09 **Statistical Mechanics**

 $d\vec{r} = dr_1 dr_2 \dots dr_N$

Integrating the K.E. Q in a Gas $Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \int d\vec{r} \int d\vec{p} \ e^{-\beta H(\vec{r},\vec{p})}$

May generally be written as: (Warning: this is not separability!)

$$Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \int d\vec{p} \ e^{-\beta \sum_{i}^{N} \frac{p_{i}^{2}}{2m_{i}}} \int d\vec{r} \ e^{-\beta V(\vec{r})}$$

With the generic solution for any system

$$Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \prod_{i}^{N} \left(\frac{2m_{i}\pi}{\beta}\right)^{3/2} \int d\vec{r} \ e^{-\beta V(\vec{r})}$$

TSTC Lecture #2 July 09

No Interactions→Ideal Gas

Assume:

- 1. Ideal Gas $\rightarrow V(r)=0$
- 2. Only one molecule type: $m_i = m$

$$\int d\vec{r} \ e^{-\beta V(\vec{r})} = \int d\vec{r} = V^N$$
$$\prod_i \left(\frac{2m_i\pi}{\beta}\right)^{3/2} = \left(\frac{2m\pi}{\beta}\right)^{3/2}$$

The ideal gas partition function: $Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \left(\frac{2m\pi}{\beta}\right)^{3N/2} V^{N}$

TSTC Lecture #2 July 09 **Statistical Mechanics**

The Ideal Gas Law

Statistical Mechanics

$$Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \left(\frac{2m\pi}{\beta}\right)^{3N/2} V^{N}$$

Recall:

$$dA = -SdT - PdV + \mu dN$$
$$A = -k_{\rm B}T\ln(Q)$$

The Pressure

$$P = -\left(\frac{\partial A}{\partial V}\right)_{T,N}$$
$$P = k_{\rm B}T \frac{\partial \ln(Q)}{\partial V}$$

TSTC Lecture #2 July 09

 $P = k_{\rm B}T\frac{N}{V}$ Ideal Gas Law!

Ideal Gas: Other Observables

 $Q = \left(\frac{1}{2\pi\hbar}\right)^{3N} \left(\frac{2m\pi}{\beta}\right)^{3N/2} V^{N}$ $E(T,V,N) = -\frac{\partial \ln Q}{\partial \beta}$ $A(T,V,N) = -kT \ln Q$ $S(T,V,N) = \frac{E-A}{T}$ Recall: A = E - TS ∞ $\Delta(T,P,N) = \int e^{-\beta PV} Q(T,V,N) dV$ $G(T, p, N) = -kT \ln \Delta$ $S(T, p, N) = k \ln \Delta + kT \left(\frac{\partial \ln \Delta}{\partial T}\right)_{N, P}$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Major Concepts, Part III

- Non-Ideal Systems
- Ising Model
 - H: Applied Field
 - J: Interaction (non-ideality)
 - Isomorphic to Lattice Gas!
 - Geometric vs. Energetic Frustration
- Phase Transitions
 - Spontaneous magnetization & Critical Temperature
 - Exact solution for J=0 (ideal)
 - Nonzero J Ising Solution in 1D (exact, transfer matrix)
 - Nonzero J Ising Solution in 2D (exact, Onsager)
- Mean Field Theory (Approximate)
- Monte Carlo (Numerical)

TSTC Lecture #2 July 09 **Statistical Mechanics**

Non-Ideal Systems

- Ideal systems≡non-interacting systems
 - i.e. ideal gas
- Non-ideal systems≡Most systems
 - Interactions between particles
 - One manifestation of particle interactions is the possibility of phase transitions
 - E.g., Spin Ising System or Lattice Gas:
 - Interactions included only at "nearest neighbors"

TSTC Lecture #2 July 09

Ising Spin (Magnet) Model

- Ising model is lattice of spins.
 - Each square is large enough to hold one spin.
- H: magnetic field
- µ: magnetic moment
- S_i: direction of spin (±1)
- Isomorphic to lattice gas

$$E_{v}({S_i}) = -\sum_{i=1}^{N} H\mu S_i$$
 + interaction energy

TSTC Lecture #2 July 09 **Statistical Mechanics**

Ideal Ising Model: Q

• What if the interaction energy term is 0 (i.e. the system is ideal)?

• the partition function can then be obtained readily:

$$Q(\beta) = \sum_{\{S_i\}} e^{-\beta \sum_{i=1}^N H\mu S_i}$$
$$= \prod_{i=1}^N \sum_{S_i=\pm 1} e^{-\beta H\mu S_i}$$

$$= (e^{-\beta H\mu} + e^{\beta H\mu})^N = (2\cosh(\beta H\mu))^N$$

Using the partition function many observables can be calculated.

TSTC Lecture #2 July 09 **Statistical Mechanics**

Ideal Ising Model: <*E*>

• The average energy of the system is given by:

$$Q(\beta) = (2\cosh(\beta H\mu))^N$$

$$\langle E \rangle = -\frac{\partial \ln Q}{\partial \beta}$$

= $-NH\mu \frac{\sinh(\beta H\mu)}{\cosh(\beta H\mu)} = -NH\mu \tanh(\beta H\mu)$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Interactions in the Ising Model

 In the Ising model, only nearest neighbors interact.

$$-J\sum_{ij} S_i S_j$$

- *J* is the coupling constant
- Why not add terms with s_i squared or higher power?
- J > 0 (ferromagnet)
 - energetically favorable for spins to be aligned
- J < 0 (antiferromagnet)

TSTC Lecture #2 July 09 **Statistical Mechanics**

Frustration

• Frustration occurs when you can't avoid unfavorable contacts. E.g, in a non-rectilinear Ising model:

- J < 0 Antiferromagnetic system
- Frustration arises from unfavorable contacts

TSTC Lecture #2 July 09 **Statistical Mechanics**

Phase Transitions in Ising?

• Through nearest neighbor interactions, spins separated by a macroscopic distance can influence each other.

- Long range correlations lead to long range order
 - For the spin Ising system, *long range order* is indicated by net magnetization of the system even in the absence of a magnetic field.

Phase Transitions in Ising?

$$M = \mu \sum_{i} \left\langle S_{i} \right\rangle = N \mu \left\langle S \right\rangle$$

- Order-disorder (phase) transition occurs at $T_{\rm c}$
- Does a phase transition exist?
 - Does a region with net magnetization exist?

• If *H*=0 when *J*>0 and there is a region of net magnetization then the system shows spontaneous magnetization.

TSTC Lecture #2 July 09 **Statistical Mechanics**

PMF: *F(M)*

- The potential of mean force (PMF) gives rise to a free energy in the net magnetization
- At *T*>*T*_c
 - F(M) is a single well centered at M=0
- At $T=T_c$
 - F(M) is a single well centered at M=0, but the second derivative at 0 is 0
- At *T*<*T*_c
 - *F(M)* is a double well with a saddle at *M*=0, and now giving rise to TWO stable nonzero M's.

1D Ising Model: Find $T_{\rm c}$

How can the critical temperature, T_c, be found?

• Calculate the partition function for the system $Q(\beta,H)$

$$\langle M \rangle = \left(\frac{\partial(\ln Q)}{\partial(\beta H)}\right)_{H=0} [\propto \sinh(\beta \mu H) \text{ in } 1\text{D}]$$

• If $|\langle M \rangle| > 0$ for any β then the system exhibits spontaneous magnetization (an order-disorder transition).

• Peierl's Theorem argues that there is no net magnetization in 1D.

•It also claims that if you have net magnetization at a given T for nD, then you have net magnetization at that same T at all higher dimensionality

TSTC Lecture #2 July 09 **Statistical Mechanics**

$$\begin{aligned} & \text{1D Ising Model: Find Q(\beta,H)} \\ & _{Q(\beta,H)} = \sum_{\{S_i\}} \exp\left[\beta \mu H \sum_{i} S_i + \beta J \sum_{i,j} S_i S_j\right] = \sum_{\{S_i\}} \exp\left[\beta \mu H \sum_{i} \frac{S_i + S_{i+1}}{2} + \beta J \sum_{i} S_i S_{i+1}\right] \\ & = \sum_{\{S_i\}} \prod_{i} \exp[\beta \mu H \frac{S_i + S_{i+1}}{2} + \beta J S_i S_{i+1}] \\ & = \sum_{\{S_i\}} \prod_{i} q_{s_i s_{i+1}} \qquad ; q = \begin{pmatrix} q_{1,1} & q_{1,-1} \\ q_{-1,1} & q_{-1,-1} \end{pmatrix} \qquad \\ & \text{Transfer Matrix} \\ & = Tr(q^N) = \lambda_+^N + \lambda_-^N \approx \lambda_+^N \end{aligned}$$

 $= \exp\{N[\beta J + \ln\{\cosh(\beta \mu H) + [\sinh^2(\beta \mu H) + e^{-4\beta J}]^{1/2}\}]\}$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Two Dimensions and Higher

• Exact (analytic) result obtained by Lars Onsager in the 1940's using a 2D transfer matrix technique,

$$T_C = 2.269 J/k_B$$
$$M \propto (T_C - T)^{\frac{1}{2}} \quad \text{for } T < T_C$$

• Peierl's Theorem guarantees T_c > 0 for the 3D and higher dimensionality Ising models

T _c /(J/k _B)	Numerical (Exact)	Onsager	Net Magnetization?	
1D	0	0	no	
2D	2.3	2.269	yes	
3D	~4		yes	
4D	~8		yes	

TSTC Lecture #2 July 09

Mean Field Theory (MFT)

H: Mean field due to the universe of spins

$$E_{v}(\{S_{i}\}) = -\sum_{i=1}^{N} H\mu S_{i} - \frac{J}{2}\sum_{i,j} S_{i}S_{j}$$

$$\left\langle \frac{\partial E}{\partial S_k} \right\rangle = -\mu H - Jz\overline{S}$$

 $\frac{\partial E}{\partial S_k} = -\mu H - J(\sum_j S_j)_k$

S: Average spin of an equivalent neighbor

R. Hernandez 2 @ Georgia Tech

TSTC Lecture #2 July 09

Mean Field Theory (MFT)

• Consider a single spin system: $E = S_k \cdot \left\langle \frac{\partial E}{\partial S_k} \right\rangle$

$$Q(\beta, 1, H) = \sum_{S_{n=\pm 1}} \exp\{\beta(\mu H + Jz\overline{S})S_k\}$$

 $= 2\cosh\{\beta(\mu H + Jz\overline{S})\}$

$$\left\langle S_k \right\rangle = \left(\frac{\partial \ln Q(\beta, 1, H)}{\partial \beta \mu H} \right)_{H=0}$$
$$= \tanh(\beta J z \overline{S})$$

- But $\overline{S} = \langle S_k \rangle$ since no spin is special
- Obtain spontaneous magnetization at $T_C = \frac{Jz}{k_B} = \frac{2DJ}{k_B}$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Variational MFT

- How do you know to choose the reference Hamiltonian to be that of an ideal system with mean forces?
- Gibbs-Bogoliubov-Feynman Inequality!
- Note also connections to:
 - perturbation theory
 - cumulant expansions
 - Mayer cluster expansion

TSTC Lecture #2 July 09

Sping Ising Model: Summary

T _c /(J/k _B)	Numerical (Exact)	Onsager	MFT
1D	0	0	2
2D	2.3	2.269	4
3D	~4		6
4D	~8		8

• MFT is not always accurate.

Accuracy increases with increasing dimensionality

•Flory-Huggins Theory is a MFT for polymers!

- Sometimes need something better...
 - RG: Renormalization Group Theory

TSTC Lecture #2 July 09

Monte Carlo: Naïve

<u>Problem</u>: $\int dx f(x)P(x) = ?$, with DIM $(x) \gg 1$

<u>Ans. 1</u>: Monte Carlo: Use random (uniform) sampling

Let $\{x_i\}$ be a "random" sequence of N numbers in the domain

$$\Rightarrow \int dx f(x) P(x) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Naïve MC: Calculating π

$$\int dx f(x) P(x) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Area of a square of sides with d:

 $A_{\rm sq} = d^2$

Area of a disk of diameter, d:

$$A_{\rm circ} = \pi d^2/4$$

So the ratio of areas is:

$$\frac{A_{\rm circ}}{A_{\rm sq}} = \frac{\pi}{4}$$

Let P(x) be a constant (viz., uniform in the square), and

$$f(x) = \begin{cases} 1 & \text{if } x \in \text{the disk} \\ 0 & \text{if } x \notin \text{the disk} \end{cases}$$

Let $\{x_i\}$ be a uniform sampling of the square, then

$$\pi \approx 4 \times \frac{1}{N} \times \sum_{i=1}^{N} f(x_i)$$

TSTC Lecture #2 July 09

- $N_{\rm circ}$, $N_{\rm sq}$, $4^*N_{\rm circ}/N_{\rm sq}$
- 72 100 2.88 (1 digit)
- 782 1000 3.128
- 7910 10000 3.164 (2 digits)
- 78520 100000 3.1408
- 785322 1000000 3.141288 (3 digits)
- 7854199 10000000 3.1416796
- 78540520 10000000 3.1416208 (4 digits)
- $\quad 785395951 \ 100000000 \ \ 3.1415838$
- $\quad 1686652227 \ 2147483647 \ \ 3.14163459$
- ..., 3.1415927 (8 digits)

Monte Carlo: Metropolis

• N. Metropolis, A. Rosenbluth, M.Rosenbluth, A. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953)

<u>Problem</u>: $\int dx f(x) P(x) = ?$, with DIM $(x) \gg 1$

<u>Ans. 2</u>: (Metropolis) Use a Markov Walk

<u>Detailed Balance</u>: $P(x)W(x \to x') = P(x')W(x' \to x)$ where W :: Transition Probability

$$\Rightarrow \boxed{W(x \to x') = \text{MIN}\left[1, \frac{P(x')}{P(x)}\right]} = \text{MIN}\left[1, e^{-\beta \Delta E_{x' \to x}}\right]$$

A Metropolis Monte Carlo step from x_i to x_{i+1} consists of N' move attempts with each accepted or rejected according the probability criteria relative to a random numer

The sequence $\{x_i\}$ consists of an initially equilibrated state, x_1 , "propagated" for N-1 steps.

$$\Rightarrow \int dx \, f(x) P(x) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Monte Carlo: Umbrella Sampling

<u>Problem</u>: $\int dx f(x)P(x) = ?$, with DIM $(x) \gg 1$

<u>Ans. 3</u>: (Importance Sampling) Use Loaded Dice!

Suppose
$$\begin{cases} P(x) = P_0(x)P_1(x) \\ W(x \to x') = W_0(x \to x')W_1(x \to x') \end{cases}$$

then
$$W_1(x \to x') = \text{MIN}\left[1, \frac{W_0(x' \to x)P_0(x')P_1(x')}{W_0(x \to x')P_0(x)P_1(x)}\right]$$

<u>So what?</u> Choose x' using $P_0(x')$...

$$\Rightarrow W_1(x \to x') = \text{MIN}\left[1, \frac{P_1(x')}{P_1(x)}\right]$$

The sequence $\{x_i\}$ consists of an initially equilibrated state, x_1 , "propagated" for N-1 steps.

$$\Rightarrow \int dx \, f(x) P(x) \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Parallel Tempering & Replica Exchange

- Problem:
 - How do you sample all of the space on a corrugated energy landscape? (barriers greater than target *T*.)
- Answer:
 - run *N* many replicas using MC at *N* different temperatures, T_i , in parallel
 - Every so often, attempt exchanges between replicas according to

probability = min(1, $\exp([1/kT_i - 1/kT_j][E_i - E_j]))$

- Satisfies detailed balance

RH Swendsen and JS Wang, "Replica Monte Carlo simulation of spin glasses," *Phys. Rev. Lett.* **57**, 2607-2609 (1986)

C. J. Geyer, in Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York, 1991, p. 156.

TSTC Lecture #2 July 09 **Statistical Mechanics**

Wang-Landau

- A Monte Carlo approach for obtaining the density of states, $\rho(E)$, directly
 - Rather than computing g(r) or other observables
 - A random walk through energy space!
- Algorithm:
 - Initialize $\rho(E)=1$ for all E
 - Accept moves according to:
 - probability = min[1, $\rho(E_{\text{initial}})/\rho(E_{\text{trial move}})$]
 - Let *E*' be the energy of the state at the end of the trial
 - Update $\rho(E') = f\rho(E')$ & the histogram H(Set(E'))+=1
 - Stop once the histogram is "flat," [error in $\rho(E) = O\{\ln(f)\}$]
 - Iterate, now using smaller *f*,

F. Wang & D.P. Landau, Phys. Rev. Lett. 86, 205 (2001). [original version for spin Hamiltonian]

TSTC Lecture #2 July 09 **Statistical Mechanics**

Major Concepts, Part IV

- Review:
 - Fluid Structure
 - Gas, liquid, solid, ...
 - Radial distribution function, g(r)
 - Potential of Mean Force
 - Classical Determination of g(r):
 - Integral Equation Theories
 - Molecular Dynamics
 - Monte Carlo
 - Scattering experiments (e.g., x-ray, or SANS)
- Renormalization Group Theory

Quantifying Structure

• The Radial distribution function, g(r)

TSTC Lecture #2 July 09 **Statistical Mechanics**

Liquid Structure, I

Configurational distribution:

$$P(\mathbf{r}^{N}) = \frac{e^{-\beta U(\mathbf{r}^{N})}}{\int d\mathbf{r}'^{N} e^{-\beta U(\mathbf{r}'^{N})}}$$

• Specific joint probability distribution: [Particle 1 (2) at $r_1(r_2)$]

$$P^{(2/N)}(\mathbf{r}_{1},\mathbf{r}_{2}) = \int d\mathbf{r}_{3} \int d\mathbf{r}_{4} \cdots \int d\mathbf{r}_{N} P(\mathbf{r}^{N})$$

$$= \int d\mathbf{r}^{N} \delta(\mathbf{r}_{1} - \mathbf{r}^{\prime}_{1}) \delta(\mathbf{r}_{2} - \mathbf{r}^{\prime}_{2}) P(\mathbf{r}^{N})$$

$$= \langle \delta(\mathbf{r}_{1} - \mathbf{r}^{\prime}_{1}) \delta(\mathbf{r}_{2} - \mathbf{r}^{\prime}_{2}) \rangle$$

• Generic reduced probability distribution function: (Any particle at r_1)

$$\rho^{(2/N)}(\mathbf{r}_1,\mathbf{r}_2) \equiv N(N-1)P^{(2/N)}(\mathbf{r}_1,\mathbf{r}_2)$$

• Generic *n*-point reduced probability distribution function (RPDF)

$$\rho^{(n/N)}\left(\mathbf{r}_{1},\ldots,\mathbf{r}_{n}\right) \equiv \frac{N!}{(N-n)!} \frac{\int d\mathbf{r}^{N-n} e^{-\beta U(\mathbf{r}^{N})}}{\int d\mathbf{r}'^{N} e^{-\beta U(\mathbf{r}'^{N})}}$$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Aside about Dirac vs. Kronecker Delta's

• Kronecker: (Discrete)

$$\delta_{ij} = \delta_{i,j} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

• Dirac: (Continuous)

$$\delta(x) = \lim_{a \to 0} \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx - |ak|} dx$$
$$\delta(x) = \lim_{a \to 0} \frac{1}{a\sqrt{\pi}} e^{-\frac{x^2}{a^2}}$$

TSTC Lecture #2 July 09 **Statistical Mechanics**

Liquid Structure, II

• The 1-point RPDF is the density in an isotropic fluid:

$$\rho^{(1/N)}(\mathbf{r}_{1}) \stackrel{\text{iso}}{=} N \frac{\int d\mathbf{r}^{N-1} e^{-\beta U(\mathbf{r}^{N})}}{\int d\mathbf{r}^{\prime N} e^{-\beta U(\mathbf{r}^{\prime N})}} \\
= N \frac{\int d\delta \mathbf{r}^{N-1} e^{-\beta U(\mathbf{r}_{1},\delta \mathbf{r}^{N-1})}}{\int d\mathbf{r}_{1} \int d\delta \mathbf{r}^{\prime N-1} e^{-\beta U(\mathbf{r}_{1},\delta \mathbf{r}^{\prime N})}} \\
= \frac{N}{\int d\mathbf{r}_{1}} = \frac{N}{V} \qquad = \rho$$

- The 2-point RPDF is also simple in an ideal gas
 - Separability reduces configurational distribution and the *n*-point specific reduced probability distribution: $P(\mathbf{r}^N) = \prod P(\mathbf{r})$

$$P(\mathbf{r}^{n}) = \prod_{i=1}^{n} P(\mathbf{r}_{i})$$

$$\rho^{(n/N)}(\mathbf{r}_{1}, \dots, \mathbf{r}_{n}) = \frac{N!}{(N-n)!} \prod_{i=1}^{n} P(\mathbf{r}_{i})$$

• Hence the 2-point RPDF is:

$$\rho^{(2/N)}(\mathbf{r}_1,\mathbf{r}_2) \stackrel{\text{id}}{=} \frac{N(N-1)}{V^2} \approx \rho^2$$

TSTC Lecture #2 July 09 **Statistical Mechanics**

radial distribution function, g(r)

Measure liquid structure according to how it deviates from the isotropic ideal gas limit:

$$g(\mathbf{r}_1, \mathbf{r}_2) \equiv \frac{\rho^{(2/N)}(\mathbf{r}_1, \mathbf{r}_2)}{\rho^2}$$
$$h(\mathbf{r}_1, \mathbf{r}_2) \equiv \frac{\rho^{(2/N)}(\mathbf{r}_1, \mathbf{r}_2) - \rho^2}{\rho^2}$$

• If the system is isotropic, then these quantities depend only on $r = |r_1 - r_2|$, and this leads to:

 $g(r) = g(\mathbf{r}_1, \mathbf{r}_2)$ the radial distribution function h(r) = g(r) - 1 the pair correlation function

- The challenge is: How does one calculate or measure g(r)?
 - Theory (e.g., integral equations, mode coupling theory, expansions)
 - Simulations
 - Experiment [FT of g(r) is related to the structure factor S(q)]

TSTC Lecture #2 July 09 **Statistical Mechanics**

Potential of Mean Force

- Reversible Work Theorem: $g(r) = e^{-\beta w(r)}$
 - Where *w*(*r*) is the Helmholtz free energy (reversible work) to move a particle from infinity to a distance *r* from a chosen center
 - That is, the force on the particle in the fluid is: $F(r) = -\frac{\partial w}{\partial r}$

• **Proof:**
$$\langle F(r_{12}) \rangle_{r_{12}} = \left\langle -\frac{d}{dr_{12}} U(\vec{r}^N) \right\rangle_{r_{12}},$$
 where $\vec{r}_{12} \equiv \vec{r}_2 - \vec{r}_1$

$$= -\frac{\int d\vec{r}_3 \cdots \int d\vec{r}_N \frac{\partial U}{\partial r_{12}} e^{-\beta U}}{\int d\vec{r}_3 \cdots \int d\vec{r}_N e^{-\beta U}},$$
 for arbitrary \vec{r}_1

$$= \frac{1}{\beta} \frac{\frac{\partial}{\partial r_{12}} \left\{ \int d\vec{r}_3 \cdots \int d\vec{r}_N e^{-\beta U} \right\}}{\int d\vec{r}_3 \cdots \int d\vec{r}_N e^{-\beta U}}$$

$$= \frac{1}{\beta} \frac{\partial}{\partial r_{12}} \ln \left\{ \int d\vec{r}_3 \cdots \int d\vec{r}_N e^{-\beta U} \right\}$$

$$= \frac{1}{\beta} \frac{\partial}{\partial r_{12}} \ln \left\{ \frac{N(N-1) \int d\vec{r}_3 \cdots \int d\vec{r}_N e^{-\beta U}}{\rho^2 \int d\vec{r}^N e^{-\beta U}} \right\},$$
 by adding arb. constant

$$= \frac{1}{\beta} \frac{\partial}{\partial r_{12}} \ln \left\{ g(r_{12}) \right\}$$

$$\Rightarrow w(r) = -\frac{1}{\beta} \ln \{g(r)\}$$

- Take-Home Message:
 - A structural calculation of g(r) can lead to an understanding of forces

TSTC Lecture #2 July 09 **Statistical Mechanics**

Integral Equations

• Ornstein-Zernike Equation:

$$h(r_{12}) = c(r_{12}) + \rho \int d\mathbf{r}_3 c(r_{13}) h(r_{23})$$

- $-h(r_{12})$: total (pair) correlation function [= g(r)-1]
- $-c(r_{12})$: direct correlation function
- Closures:

$$c(r) = g_{\text{total}}(r) - g_{\text{indirect}}(r)$$

- Percus-Yevick:
- Hypernetted Chain (HNC):
- Many others!

$$c(r) \approx e^{-\beta w(r)} - e^{-\beta [w(r) - u(r)]}$$

$$c(r) \approx g(r) - w(r)$$

- Reference Interaction Site Model (RISM)
 - Anderson & Chandler, JCP 57,1918 & 1930 (1972).
- RISM for ring polymers (PRISM)
 - Schweizer & Curro, PRL 58, 246 (1987)

TSTC Lecture #2 July 09

Computer simulations of g(r)

- Need force field, *e.g.*, Lennard-Jones
- Need a SamplingTechnique:
 - Molecular Dynamics
 - Monte Carlo Sampling

Computer simulations of g(r)

Molecular Dynamics

- Integration algorithm
 - Convergence w.r.t. step size
 - Convergence w.r.t. final time (ergodic?)
 - How do you assert convergence?
 - » Conservation of Energy?
 - » Reproducibility with time step?
 - » Conservation of symplectic norm
 - » Other?
- Equilibrium & nonequilibrium averages
- Constant T or S, P or V, μ or N Ensemble?
 - Stochastic forces?
 - Anderson barostats or Nose-Hoover thermostats
 - Langevin dissipation

Computer simulations of g(r)

Monte Carlo Sampling

- No real time averages!
- Use Metropolis Monte Carlo
- Choosing new configurations for the Metropolis step?
 - Pick initial arbitrary step size for particles
 - Optimize step size according to acceptance
 - Other types of moves???
 - REGARDLESS, need to ensure ergodic sampling!
- Constant *T* ensembles
- Constant μ or P ensembles?
 - "charging methods"
 - Widom insertion method

TSTC Lecture #2 July 09 **Statistical Mechanics**

