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This Lecture 
•  Part I: (“background”) 

–  Post-Modern Classical Mechanics 
•  Hamiltonian Mechanics 
•  Numerical Considerations 

–  Thermodynamics, Review  
•  Cf. “Thermodynamics and an Introduction to Thermostatistics” by H. Callen, 2nd Ed. 

(Wiley, 1985)  

•  Part II: 
–  Statistical Mechanics: Ideal 

•  Cf.  “Introduction to Modern Statistical Mechanics” by D. Chandler, (Oxford 
University Press, USA, 1987) —The green book  

•  Cf. “Statistical Mechanics” by B. Widom 
•  Cf. “Basic concepts for simple and complex liquids” by J. L. Barrat & J- P. Hansen 
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Major Concepts, Part I —C.M. 
•  Newtonian Mechanics 
•  Hamiltonian Mechanics 

–  Phase Space 
–  Hamilton-Jacobi Equations 

•  Canonical Transformations 
•  Lagrangian (and Legendre Transformations) 
•  The Action 
•  Numerical Integration of Equations of Motion 

–  Velocity-Verlet 
–  Runge-Kutta 
–  Predictor-Corrector, Gear, etc. 

•  Path Integrals (Quantum Mechanics) 
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Newtonian Mechanics, I 

•  Configuration space 
– Position:   x, u 
– Velocity:    v 

•  Equations of Motion: 

•  Force: 
– Note: Potential is U(x) or V(x) 
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Newtonian Mechanics, II 

•  Equations of Motion: 
•  Pedagogical Examples: 

– Free particle: 
(ballistic motion) 

– Harmonic Oscillator 
•  Exactly Solvable 
•  Leading nontrivial potential about a minimum 
•  Approximates pendulum potential; the force is 

proportional to: 
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Hamiltonian Mechanics, I 
•  Phase space 

– Position:   x, u 
– Momentum:   p 

•  Equations of Motion: 
•  Hamilton’s e.o.m.:  

•  Hamiltonian (is the Energy): 
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Hamiltonian Mechanics, II 
•  Key points: 

– Hamiltonian is a constant of the motion 

– Hamiltonian generates system dynamics 
– x and p are on “equivalent” footing 
– Hamiltonian (Operator) is also the 

generator of quantum evolution 
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Canonical Transformations, I 

•  “Quantum mechanics is a theory of transformations”  
        — Dirac 
–  But so is classical mechanics 
–  Unitary transformations are the quantum mechanical analogue 

to canonical transformations in classical mechanics 

•  Implications also on designing MD integrators: 
–  Velocity-Verlet (so as to preserve the Energy) 
–  Symplectic integrators (so as to preserve H-J equations) 
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Algebraic/Passive vs. Geometric/Active 
(Modify observables) (Modify states) 

Propagate the classical 
observables vs. Propagate the phase 

space variables (MD)  
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Canonical Transformations, II 
•  Def: A C.T. of the phase space preserves the H-J 

equations w.r.t. the new Hamiltonian—“The 
Kamiltonian” 
–  The analytic solution of a given H reduces to the discovery of a 

C.T. for which K is trivial. 
•  But it’s not so easy to do in general! 

–  Perturbation theory can be constructed so that successive orders of 
the H are trivialized by a successive C.T.’s : 

•  Lie transform perturbation theory 
•  van Vleck perturbation theory in Quantum Mechanics 

–  A.k.a,. CVPT 
–  Not Raleigh-Ritz perturbation theory 

•  Coupled cluster and MBPT in electronic structure theory 

•  Examples: 
–  Point transformations 
–  Action-Angle Variables for a harmonic oscillator 
–  Propagation/evolution of phase space for some time step, t 
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Lagrangian 
•  The Lagrangian is: 

•  This gives rise to the Euler-Lagrange E.o.M.: 

But C.T.’s don’t preserve the E-L equations!   

•  We need to define the Momentum: 

•  The Hamiltonian is the Legendre Transform of the Lagrangian, 
exchanging the dependence between v and p: 
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Legendre Transforms  
•  Goal: 

–  Replace the independent 
variable with its derivative, 
e.g.: 

•  Method: 
–  Trade the function Y for the 

envelope of a family of tangent 
lines ψ.  € 

∂Y (X)
∂X

 

 
 

 

 
 ≡ y

€ 

ψ(y) =Y (X) − yX     where y ≡ ∂Y
∂X
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Action 

•  The action is a functional of the path. (Note units!) 
–  The usual action as stated above holds the initial and final points fixed 
–  Hamilton’s principal function (sometimes also called the action) looks the 

same but holds the initial point and time fixed (which is sometimes also 
called the initial-value representation.) 

–  Hamilton’s characteristic function, W, (sometimes also called the action) is 
obtained from a Legendre transform between E and t  

•  Least Action Principle or Extremal Action Principle 
–  Classical paths extremize the action 
–  Other paths give rise to interference: 

•  The path integral includes all of them with the appropriate amplitude and phase (which depends 
on the action) 

•  Many semi-classical corrections are formulated on the approximate use of these other paths 
•  E.g., Centroid MD 

•  Stationary Phase Approximation 
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Numerical Integration of E.o.M. 

•  Molecular Dynamics (MD) 
–  In 1D: 

–  The difficulty in treating molecular systems lies in 
•  Knowing the potential 
•  Dealing with many particles in 3D 

•  Integrators: 
–  Runge-Kutta integrators 
–  Verlet or velocity-Verlet 
–  Symplectic integrators 
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Path Integrals, I 
•  C.f., Feynman & Hibbs, “Quantum Mechanics and Path 

Integrals” 
•  The kernel or amplitude for going from a to b in time t:  

(FH Eq. 2-25) 

•  Can be obtained from the infinitessimal kernel: 
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where τ is complex 
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Path Integrals, II 
•  EXAMPLE: The free particle kernel: 

•  But: 

•  For the free particle (V= constant = 0) 
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Polymer Isomorphism 
•  Recognizing the fact that the partition 

function for a quantum system looks just 
like the partition function for a classical 
polymer system 

•  Chandler & Wolynes, JCP 74, 4078 
(1981) 

•  This is not PRISM!  (The latter is an 
approach for solving an integral 
equation theory—more later!) 
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Path Integrals 
•  Isomorphism between Quantum Mechanics and Classical 

Statistical Mechanics of ring polymers: 

where τ=β/p is the imaginary time (Wick’s Theorem)  
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Major Concepts, Part II — Ideal 
•  Thermodynamics (macroscopic theory) 

–  S-conjugate variables 
–  Legendre Transforms 

•  Statistical Mechanics—Fundamentals 
–  Ensemble 
–  Ensemble Averages & Observables 
–  Partition Functions 
–  Ergodicity 

•  Entropy and Probability 
•  Ensembles 

–  Extensive vs. Intensive variables 

•  Harmonic Oscillator 
•  Ideal Gas 

Sampling by: 
 Monte Carlo 
 Molecular Dynamics 

Ensembles: 
 (S,V,N) µcanonical 
 (T,V,N) Canonical (or Gibbs) 
 (T,V,µ) Grand-Canonical 
 (T,P,N) Isothermal-Isobaric 
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Thermodynamics (Review?) 
•  Microscopic variables: 

–  Mostly irrelevant   
•  Macroscopic observables: 

–  Pressure, temperature, 
volume,… 

•  3 Laws of Thermodynamics: 
– Free Energies 
– Entropy 
– Kelvin Temperature 

•  Thermodynamics provides 
consistency between 
representations V,T,N 
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Free Energies 
Internal Energy (E:Microscopic :: U:Macroscopic) 

Other free energies: (connected by Legendre Transforms) 
•  Helmholtz:  A(T,V,N)=E-TS 
•  Enthalpy:  H(S,P,N)=E+PV 
•  Gibbs:   G(T,P,N)=E-TS+PV 

Take-home Message: f & X are “E”-conjugate 
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Entropies 
Recall:  
Entropy:  

Other entropies: (connected by Legendre Transforms) 

Take-home Message: β & E, and βf & X are “S”-conjugate 
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The Fundamental Problem 

•  Problem: 
–  How to arrive at 

thermodynamics 
from microscopic 
considerations? 

•  Answer: 
–  Obviously we need 

averaging, but what 
and how do we  
average? 
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Observables in Stat. Mech. 
•  Definitions: 

–  Ensemble 
•  The set of all possible 

configurations of a system (ξ) 
–  Ensemble Average: 

•  Average over the ensemble 

€ 

A
ξ

=
1
Vξ

A(ζ )P(ζ ) d
ξ

∫ ζ

€ 

A
ξ

=
1
Vξ

A(ζ )P(ζ )
ζ ∈ξ

∑ If Countable 

If Continuous 

–  Partition Function: 
•  Vξ:: “Volume of the ensemble” but more than just normalization 
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Stat. Mech. & Ergodicty 

€ 

A t =
1
t

A(ξ(t')) dt '
0

t
∫

•  Fundamental hypothesis:  
– Ensemble average= Observable 
– Ergodicity: 

•  all accessible states of a given energy are equally 
probable over a long period of time 

•  Poincare Theorem suggests, but does not prove it! 

€ 

A
ξ

= A t
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Time- vs. Ensemble- Averages  
& MD Simulations 

•  Exploring the ensemble 
computationally 
– Molecular dynamics: 

•  Integrate Newton’s equations 
of motion 

•  Configurations are 
“snapshots” of the system at 
different instances in time 

€ 

A =
1
T

dtA(t)
0

T

∫

€ 

KE =
1
χ

pi
2

2mij

N

∑
 

 
  

 

 
  

i

χ

∑
j
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Time- vs. Ensemble- Averages  
& MC Simulations 

•  Exploring the ensemble 
computationally 
– Monte Carlo: 

•  Choose different configurations 
randomly 

•  Accept or reject a new configurations 
based on energy criterion (biased 
sampling, e.g., Metropolis) € 

A =
1
"V"

A(ζ)P(ζ )

ζ

∑

 
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Entropy and Probability 

•  Statistical mechanics thereby connects macroscopic 
and microscopic mechanics (viz., thermo & CM)! 

•  Ω is the microcanonical partition function  
–  number of states available at a given N,V,E 

•  Information theory entropy 
–  Why the log? 

•  Ω is a product of the number of states, but S is an extensive variable 

•  Units!  (Energy/Temperature) 

€ 

S = kBln Ω(N,V ,E)( )
•  Boltzmann Equation: 
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Microcanonical to Canonical 
•  Construct canonical ensemble using a (β,V,N) 

subsystem inside a large microcanonical 
(E,V,N) bath 

•  If the system is in state, ν, the # of states 
accessible to S+B: 

•  The probability to observe the system in state ν:


•  From the probabilities, we obtain the partition 
function:
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Bath: Eb 
System: 

Eν 

€ 

ET = Eb + Ev = const

€ 

Eb >> Eν

€ 

Ω(Eb ) =Ω(E − Ev )

€ 

⇒ Pν ∝e
−βEν

€ 

Pν =
Ω(Eb )
Ω(E)

∝ Ω(E − Ev )

∝ exp ln Ω(E − Eν )( )[ ]
∝ exp ln Ω(E)( ) − Eν

d lnΩ
dE

 

  
 

  

€ 

Q β,N,V( ) = e−βEν
ν

∑
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Q: Observables & Ω 
•  The average energy:


•  Also, the Helmholtz free energy:


•  Q and Ω are Laplace Transforms of each other w.r.t. S-
conjugate variables, β and E! 
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€ 

E =
1
Q

Eνe
−βEν

ν

∑ = −
1
Q

∂Q
∂β

 
 
  

 
 = −

∂ ln(Q)
∂β

€ 

−
∂ ln(Q)
∂β

= E =
∂(βA)
∂β

⇒ βA = −ln(Q)

€ 

Q β,N,V( ) = e−βEν
ν

∑ = Ω(E)e−βEdE∫
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Generalized Ensembles, I 

In general: 

€ 

1
kB
dS E,X( ) = βdE + (βf )dX

€ 

Pν β, Xi{ }, −βf j{ }( ) = e−βEν +βf j Xν , j

Legendre transform the exponent to identify the S-conjugate 
variables with to Laplace transform between ensembles     

€ 

S β, Xi{ }, −βf j{ }( ) = kB Pν ln Pν( )
ν

∑
The Gibb’s entropy formula: 
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Generalized Ensembles, II 

•  Microcanonical:   Ω(N,V,E) or Ω(E,V,N) 
•  Canonical:    Q(N,V,β) or Q(T,V,Ν) 
•  Grand Canonical:  Ξ(βµ,V,β) or Ξ(T,V,µ)  
•  Isothermal-Isobaric:  Δ(N, -βP, β) or Δ(T,P,N)


€ 

Pν β,−βP,N( ) = e−βEν +βPVν

e.g., for constant pressure and N (Isothermal-Isobaric) 
simulations, the probabilities are: 
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Noninteracting Systems 
•  Separable Approximation 

•  Note: lnQ is extensive! 
•  Thus noninteracting (ideal) systems are reduced to 

the calculation of one-particle systems! 
•  Strategy: Given any system, use CT’s to construct 

a non-interacting representation! 
–  Warning: Integrable Hamitonians may not be separable 

€ 

if Η(qa ,qb , pa , pb ) =Η(qa , pa) +Η(qb , pb)
⇒Q =QaQb
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Harmonic Oscillator, I 
In 1-dimension, the H-O potential: 

€ 

V = 1
2 kx 2

€ 

H = T +V =
p2

2m
+
1
2
kx 2 = E

  

€ 

Q =
1
2π
 

 
 

 

 
 dx∫ dp e−βH (x,p )∫ =

1
2π
 

 
 

 

 
 e

−
β
2
kx 2

∫ dx e
−
β p 2

2m∫ dp

€ 

V = 12 kx
2

The Hamiltonian:  

The Canonical partition function:   
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Gaussian Integrals 

€ 

x = r cosθ
y = r sinθ

€ 

r2 = x2 + y2

dxdy = rdrdθ

€ 

e−ax
2

−∞

∞

∫ dx = e−ay
2
dy

−∞

∞

∫ e−ax
2

−∞

∞

∫ dx

 

 

 
 
 

 

 

 
 
 

1
2

= dx

−∞

∞

∫ dy e−a(x2+y2)

−∞

∞

∫
 

 

 
 
 

 

 

 
 
 

1
2

= dθ

0

2π

∫ re−ar
2

0

∞

∫ dr

 

 

 
 
 

 

 

 
 
 

1
2

= 2π × 1
2 e−au

0

∞

∫ du

 

 

 
 
 

 

 

 
 
 

1
2

where   u = r2  and  du = 2rdr

= π 0−
1
a

 

 
 

 

 
 

 

 
 

 

 
 

1
2

=
π
a

 

 
 

 

 
 

1
2

€ 

e−ax
2

−∞

∞

∫ dx =
π
a
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Harmonic Oscillator, II 

  

€ 

Q =
1
2π
 

 
 

 

 
 e

−
β
2
kx 2

∫ dx e
−
β p 2

2m∫ dp

  

€ 

Q =
1
2π
 

 
 

 

 
 

2π
βk

 

 
 

 

 
 

2πm
β

 

 
 

 

 
 =

m

2β 2k

€ 

ω ≡
k
m

  

€ 

⇒Q =
1
βω

€ 

e−ax
2

−∞

∞

∫ dx =
π
a

The Canonical partition function:   

After the Gaussian integrals:   

Where:   
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Harmonic Oscillator, III 

  

€ 

Q =
1
2π
 

 
 

 

 
 e

−
β
2
kx 2

∫ dx e
−
β p 2

2m∫ dp

  

€ 

⇒Q =
1
βω

The Canonical partition function:   

But transforming to action-angle vailables… 

  

€ 

Q =
1
2π

 

 
 

 

 
 dθ

0

2π

∫ e−βωI

0

∞

∫ dI

=
1
2π

 

 
 

 

 
 ×2π ×

1
βω

 

 
 

 

 
 
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Classical Partition Function 
•  Note that we have a factor of Planck’s 

Constant, h, in our classical partition 
functions: 

•  This comes out for two reasons: 
– To ensure that Q is dimensionless 
– To connect to the classical limit of the 

quantum HO partition function… 

  

€ 

Q =
1
2π

 

 
 

 

 
 
N

dxN∫ dpN e−βH (x
N ,pN )∫
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Harmonic Oscillator 

  

€ 

Q =
1
βω

  

€ 

E = −
∂ ln(Q)
∂β

=
∂
∂β

ln βω( )( ) =
1
β

= kBT

€ 

e−ax
2

−∞

∞

∫ dx =
π
a

The Canonical partition function:   

Recall 

€ 

V = 12 kx
2

€ 

K.E. = 1
2 kBT   

Equipartion
Theorem

 
 
 

€ 

V = 12 kBT



R. Hernandez 
@ Georgia Tech 

TSTC Lecture #1   
July 09 

Statistical Mechanics 39 

Gas 
Consider N particles in volume, V 

  

€ 

V ( r 1,...,
 
r N ) = Vij

 
r i −
 
r j( )

i< j
∑

  

€ 

Q =
1
2π
 

 
 

 

 
 
3N

d
 
r ∫ d
 
p ∫ e−βH

 
r ,
 
p ( )

with a generic two-body potential: 

The Canonical partition function: 

  

€ 

d
 
r = dr1dr2...drN

  

€ 

T(  p 1,...,
 
p N ) =

 
p i
2

2mii
∑

and kinetic energy: 
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Integrating the K.E. Q in a Gas 

  

€ 

Q =
1
2π
 

 
 

 

 
 
3N

d
 
p ∫ e

−β
pi
2

2mii

N

∑
d
 
r ∫ e−βV

 
r ( )

  

€ 

Q =
1
2π
 

 
 

 

 
 
3N 2miπ

β

 

 
 

 

 
 

i

N

∏
3
2

d
 
r ∫ e−βV

 
r ( )

May generally be written as: (Warning: 
this is not separability!) 

  

€ 

Q =
1
2π
 

 
 

 

 
 
3N

d
 
r ∫ d
 
p ∫ e−βH

 
r ,
 
p ( )

€ 

e−ax
2

−∞

∞

∫ dx =
π
a

With the generic solution for any system 
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InteractingIdeal Gas 
Assume: 

1.  Ideal Gas  V(r)=0 
2.  Only one molecule type: mi=m


  

€ 

Q =
1
2π
 

 
 

 

 
 
3N 2mπ

β

 

 
 

 

 
 

3N
2

V N

  

€ 

d
 
r ∫ e−βV

 
r ( ) = d

 
r ∫ = V N

€ 

2miπ
β

 

 
 

 

 
 

i

N

∏
3
2

=
2mπ
β

 

 
 

 

 
 

3N
2

The ideal gas partition function: 
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The Ideal Gas Law 

  

€ 

Q =
1
2π
 

 
 

 

 
 
3N 2mπ

β

 

 
 

 

 
 

3N
2

V N

€ 

P = −
∂A
∂V
 

 
 

 

 
 
T ,N

€ 

dA = −SdT − PdV + µdN

€ 

A = −kBT ln Q( )

€ 

P = kBT
∂ ln(Q)
∂V

€ 

P = kBT
N
V Ideal Gas Law! 

Recall: 

The Pressure 
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Ideal Gas: Other Observables  

€ 

E(T ,V ,N) = −
∂ lnQ
∂β

A(T ,V ,N) = −kT lnQ

S(T ,V ,N) =
E − A
T

      Recall :   A = E −TS

€ 

Δ(T ,P,N) = e−βPVQ(T ,V ,N)dV

0

∞

∫
G(T , p,N) = −kT lnΔ

S(T , p,N) = k lnΔ + kT
∂ lnΔ
∂T

 

 
 

 

 
 
N,P

  

€ 

Q =
1
2π
 

 
 

 

 
 
3N 2mπ

β

 

 
 

 

 
 

3N
2

V N


