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This Lecture
« Partl: (“background”)

— Post-Modern Classical Mechanics
« Hamiltonian Mechanics
* Numerical Considerations

— Thermodynamics, Review

« Cf. “Thermodynamics and an Introduction to Thermostatistics” by H. Callen, 2" Ed.
(Wiley, 1985)

o Partll:

— Statistical Mechanics: Ideal

« Cf. “Introduction to Modern Statistical Mechanics” by D. Chandler, (Oxford
University Press, USA, 1987) —The green book ©

» Cf. “Statistical Mechanics” by B. Widom
» Cf. “Basic concepts for simple and complex liquids” by J. L. Barrat & J- P. Hansen
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Major Concepts, Part | —C.M.

Newtonian Mechanics

Hamiltonian Mechanics
— Phase Space
— Hamilton-Jacobi Equations

Canonical Transformations
Lagrangian (and Legendre Transformations)
The Action

Numerical Integration of Equations of Motion
— Velocity-Verlet

— Runge-Kutta

— Predictor-Corrector, Gear, etc.

Path Integrals (Quantum Mechanics)
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Newtonian Mechanics, |

« Configuration space

— Position: X, U
— Velocity: V |
. . r = U
» Equations of Motion: {@ _ F/m
0%
» Force: F(r) = - d;x) =—VV

— Note: Potential is U(x) or V(x)
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Newtonian Mechanics, |l

U

« Equations of Motion: — F/m

* Pedagogical Examples:

— Free particle: V' (x) = constant
(ballistic motion)

. . 1
— Harmonic Oscillator ~ V(z) = =kz?
« Exactly Solvable 2
« Leading nontrivial potential about a minimum

« Approximates pendulum potential; the force is

proportional to: sinkr ~ kr
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Hamiltonian Mechanics, |

* Phase space

— Position: X, U
— Momentum: p
» Equations of Motion:{ - b/ Ei Q;;/;”;) )
« Hamilton’s e.o.m.:
d p? d
x:%% = |z = d—pH {x _ ng}
= V@) = |h=—a v
« Hamiltonian (is the Energy):
H = Kinetic + Potential = Total Energy = E
_r
B 2m+v(x)
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Hamiltonian Mechanics, ||

_ { r = V,H }
» Key points: p o= —V.H
— Hamiltonian is a constant of the motion
T = a(rve) () ()
pdp  dV du = dt B m dx dx | m
_ bdp  dVax = 0
m dt dx dt

— Hamiltonian generates system dynamics
— x and p are on “equivalent” footing

— Hamiltonian (Operator) is also the
generator of quantum evolution
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Canonical Transformations, |

Algebraic/Passive VS. Geometric/Active
(Modify observables) (Modify states)
Propagate the classical Vs Propagate the phase
observables " space variables (MD)

« “Quantum mechanics is a theory of transformations”
— Dirac
— But so is classical mechanics

— Unitary transformations are the quantum mechanical analogue
to canonical transformations in classical mechanics

* Implications also on designing MD integrators:
— Velocity-Verlet (so as to preserve the Energy)
— Symplectic integrators (so as to preserve H-J equations)

TSTC Lecture #1 Statistical Mechanics
July 09




Canonical Transformations, I

« Def: AC.T. of the phase space preserves the H-J
equations w.r.t. the new Hamiltonian—"The
Kamiltonian”

— The analytic solution of a given JH reduces to the discovery of a
C.T. for which K is trivial.

« Butit’'s not so easy to do in general!

— Perturbation theory can be constructed so that successive orders of
the JH are trivialized by a successive C.T.’s :
+ Lie transform perturbation theory

» van Vleck perturbation theory in Quantum Mechanics
—~ Aka,. CVPT
— Not Raleigh-Ritz perturbation theory

» Coupled cluster and MBPT in electronic structure theory
« Examples:
— Point transformations
— Action-Angle Variables for a harmonic oscillator
— Propagation/evolution of phase space for some time step, ¢
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Lagrangian

1
« The Lagrangian is: £(U, (]) — 5777/02 — V(Q)

« This gives rise to the Euler-Lagrange E.o.M.:

oL 0 OL
Oqg Ot Ov
But C.T.’s don'’t preserve the E-L equations! ®

« We need to define the Momentum: P = BN

 The Hamiltonian is the Legendre Transform of the Lagrangian,
exchanging the dependence between v and p:

H(p,q) = pv — L(v, q)
—H(p,q) = L(v,q) — pv
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Legendre Transforms

* Goal:

— Replace the independent
variable with its derivative,

e.g..

150) F

() ¥

(X)) Z
( oX )=y

YiX)

 Method:

— Trade the function Y for the
envelope of a family of tangent -
lines .

-Y(X)-yX wh =
Y(y)=Y(X)-yX wherey X
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Action

t1

Slp(-),z()] = [ Llp(t), z(t)]dt
t
* The action is a functional of theopath. (Note units!)

— The usual action as stated above holds the initial and final points fixed

— Hamilton’s principal function (sometimes also called the action) looks the
same but holds the initial point and time fixed (which is sometimes also
called the initial-value representation.)

— Hamilton’s characteristic function, W, (sometimes also called the action) is
obtained from a Legendre transform between E and t

| east Action Principle or Extremal Action Principle
— Classical paths extremize the action

— Other paths give rise to interference:

The path integral includes all of them with the appropriate amplitude and phase (which depends
on the action)

Many semi-classical corrections are formulated on the approximate use of these other paths
E.g., Centroid MD

« Stationary Phase Approximation
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Numerical Integration of E.o.M.

* Molecular Dynamics (MD)
— In1D:

x(t+71) ~ x(t)+ TV
v(it+71) = v(t)+T7F/m

— The difficulty in treating molecular systems lies in
* Knowing the potential
* Dealing with many particles in 3D

* Integrators:
— Runge-Kutta integrators
— Verlet or velocity-Verlet
— Symplectic integrators
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Path Integrals, |

C.f., Feynman & Hibbs, “Quantum Mechanics and Path
Integrals”

The kernel or amplitude for going from a to b in time .
(FH Eq. 2-25)

K(b,a) = (ble”/Ma)

b
_ /px ;i51b.al/ :/D;C(.)eis{w(-),p(-)}/h

Can be obtained from the infinitessimal kernel:

plz,y;7) = (x|e” HT\y} where 7 is complex
~ (xle V2e TTe V2 |y) (Trotter)
1 e—)? .
,O(CE,y,T) = (271‘Q ) (QQ?{r) ——[V(m)—i—V(y)] , Where Q —= ?j
1 Th?2 —2 T _
N (gar) P e mma? TEVEHVWL L where p e (p(x), p(y))
- )% —TL(ps,x) /20 —TL(Py Y) /2
27T
TSTC Lecture #1 Statistical Mechanics R. Hernandez

July 09 @ Georgia Tech



Path Integrals, |

« EXAMPLE: The free particle kernel:
K(ba) = (b= "/ a)

= hm dxq - /da:N 1Hp Ti, Ti_1;9€/h) ,

let zo =a,zny =

where N = E

— 1 i (py—xi_1)?
N 21_r)r(1)/d:131 /dCEN_lzl:[l 27rh6i) “

 But:
1
m im 2 m 2 im o N2
d <—) ke (Tj—Tj—1) — ( ) m(%ﬂ*ﬂ?gfl)
/ Y\ 2rhei « orhoci)
1 m (ZE — )2
— K(b,a) = (gop%=)?2ezvaivmo by recursion
1
_m o (b— a)
(%hm‘) esh

» For the free particle (V= constant = 0)
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Polymer Isomorphism

» Recognizing the fact that the partition
function for a quantum system looks just
like the partition function for a classical
polymer system

» Chandler & Wolynes, JCP 74, 4078
(1981)

* This is not PRISM! (The latter is an
approach for solving an integral
equation theory—more later!)
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Path Integrals

* |Isomorphism between Quantum Mechanics and Classical
Statistical Mechanics of ring polymers:

Q = Tr [e_ﬁﬂ]
- e[

p
= lim [day---doy, [[ (2, wig1;7)

pP— 00
where 7=/(/p is the imaginary time (Wick’s Theorem)

T _ L\ T T
e 2T6 TVe 5T

Primitive (Trotter): p(x,y;7) = <:I;

2 )

ployir) x (o) e { - Ty + v}

where Q = h*/m
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Major Concepts, Part || — Ideal

Thermodynamics (macroscopic theory)
— S-conjugate variables
— Legendre Transforms

Statistical Mechanics—Fundamentals
— Ensemble

— Ensemble Averages & Observables
— Partition Functions

— Ergodicity

Entropy and Probability

Ensembles
— Extensive vs. Intensive variables

Harmonic Oscillator
|deal Gas

Sampling by:
*Monte Carlo
=*Molecular Dynamics

Ensembles:

*(S,V,N) ucanonical

(T,V,N) Canonical (or Gibbs)
(T,V,u) Grand-Canonical
(T,P.N) Isothermal-Isobaric
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Thermodynamics (Review?)

Microscopic variables:
— Mostly irrelevant ©
Macroscopic observables:

— Pressure, temperature,
volume, ...

3 Laws of Thermodynamics:
— =>Free Energies

— =>Entropy

— =»Kelvin Temperature

Thermodynamics provides
consistency between
representations

V,T,N
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Free Energies

Internal Energy (E:Microscopic :: U:Macroscopic)
ES,X)=TS - fX

where f intensive e.g.,p, —u
: extensive e.g.,V, N

dE — TdS — fdX

e.g.,dll =TdS — PdV + Z p;dN; for an n-component system

Other free energies: (connectea by Legendre Transforms)
. Helmholtz:.  A(T,V,N)=E-TS

. Enthalpy: H(S,PN)=E+PV

. Gibbs: G(T,PN)=E-TS+PV

Take-home Message: f & X are “E”-conjugate
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Entropies

Recal: F(S,X)=TS - fX
Entropy:

k' 'dS(E, X) = BdE + ffdX

kg|= R/N,| is Boltzmann’s Constant
where 1 . .
6 = T is the inverse temperature

Other entropies: (connected by Legendre Transforms)

Take-home Message: B & E, and Bf & X are “S"-conjugate

ks'S(8,X)=k;'S(E,X)— BE
but S(T,X) = S(3, X)
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The Fundamental Problem

 Problem:

— How to arrive at
thermodynamics
from microscopic
considerations?

e Answer:

— Obviously we need
averaging, but what
and how do we
average?
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Observables in Stat. Mech.

 Definitions:

— Ensemble

* The set of all possible
configurations of a system (€)

— Ensemble Average:
* Average over the ensemble

(4), - Vi S AQPE@  If Countable

§Cet

(A), =é ! AEPE) dc  If Continuous

— Partition Function:
V. "Volume of the ensemble” but more than just normalization
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Stat. Mech. & Ergodlcty
f AE()) dr '

 Fundamental hypothesis:
— Ensemble average= Observabl
— Ergodicity:

« all accessible states of a given energy are equally
probable over a long period of time

(A)e =(A),

* Poincare Theorem suggests, but does not prove it!

TSTC Lecture #1 Statistical Mechanics
July 09




Time- vs. Ensemble- Averages
& MD Simulations

* Exploring the ensemble

computationally F R
. e o 0o o &® °
— Molecular dynamics: P
- Integrate Newton’s equations ~ _° XL
of motion '.'. o, _° ]
- Configurations are © e ©8o

“snapshots” of the system at ol SRR Y
different instances in time

(4)= 1 farac (KE)
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Time- vs. Ensemble- Averages
& MC Simulations

* Exploring the ensemble |
computationally LA
— Monte Carlo: MU ‘ '

- Choose different configurations - e o ¢ °
randomly %, .."" e o %
I "t oy i
P R R
c

» Accept or reject a new configurations
based on energy criterion (biased
sampling, e.g., Metropolis)
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Entropy and Probability

* Boltzmann Equation:
S = kBln(Q(N,V,E))

« Statistical mechanics thereby connects macroscopic
and microscopic mechanics (viz., thermo & CM)!

* Qs the microcanonical partition function
— number of states available at a given N,V,E

 Information theory entropy
— Why the log?

e Qs a product of the number of states, but S is an extensive variable

* Units! (Energy/Temperature)
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Microcanonical to Canonical

Construct canonical ensemble using a (,V,N) | Bath: E,
subsystem inside a large microcanonical System:
(E,V,N) bath E,
If the system is in state, v, the # of states
accessibleto S+B: Q(E,)=Q(E -E )

E,=E, + E =const

o _ E,>>E,
The probability to observe the system in state v:
S CTV QE-E,)
Q(E) T
x exp[ln(Q(E -E, ))] = Pv Xe "
o explln(Q(E)) _E, d;;g]
From the probabilities, we obtain the partition
function: Q(/B,N,V) _ Ee—ﬁEv
TSTC Lecture #1 Statistical Mechan‘i/cs
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Q: Observables & Q)

* The average energy:.

« Also, the Helmholtz free energy:

dIn(Q) d(pA)
- =(E)= pA) _ BA = -1n(Q)
op op
 Qand Q are Laplace Transforms of each other w.r.t. S-
conjugate variables, 8 and E!

QB.NV)= Y e = [QE)"dE
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Generalized Ensembles, |

LdS(E,X)=BdE + (Bf )X

kB
In general:

P, (ﬁ’{Xi}’{_ﬁfj}) = o P

Legendre transform the exponent to identify the S-conjugate
variables with to Laplace transform between ensembles

The Gibb’s entropy formula:

S(BAX - }) = ks X P, In(P,)
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Generalized Ensembles, Il

Microcanonical: N,V.E) or &E,V,N)
Canonical: O(N,V,B) or Q(T,V,N)
Grand Canonical: =(pu,V,B) or E(T,V,u)
Isothermal-Isobaric:  A(N, -pP, p) or A(T,P,N)

e.g., for constant pressure and N (Isothermal-Isobaric)
simulations, the probabilities are:

Pv (ﬁa_ﬁP,N) — e‘ﬁEv +BPV,
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Noninteracting Systems

Separable Approximation

it H(q,.49p.Pa>Pp)=H(q,.p,) +H (g}, pp)

= 0=0,0,
Note: InQ is extensive!
Thus noninteracting (ideal) systems are reduced to
the calculation of one-particle systems!

Strategy: Given any system, use CT's to construct
a non-interacting representation!
— Warning: Integrable Hamitonians may not be separable
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Harmonic Oscillator, |

In 1-dimension, the H-O potential:
V = %kx2
The Hamiltonian:

2
H-T+v-L_ sl _E
2m 2

The Canonical partition function:

Q= (2ﬂh)fdxfdp e PHoP) = (mih)fe_gkx dxfe_ 2m dp

TSTC Lecture #1 Statistical Mechanics
July 09




- ¢ ¢ Gaussian Integrals .-
e R : y=rsinf
e
. 2 2.2
2 2 2 2 2 dxdy = rdrd0
fe—ax dx = fe_ay dyfe_ax de| = fdxfdy ~ax+Y")
—00 —00 —00 —00 —00 w').
2r % \
= fd@fre_arzdr z
0 0 ‘ _
P
2 “»3' 1 3

=27 X

D [—

o0
fe_a”du where u=r2 and du =2rdr
0

e R
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Harmonic Oscillator, |

The Canonical partition function:

1 B2 _Bp’
Q=( )fez dxfe 2m dp

27 h

After the Gaussian integrals:

e~[ama V|5 -

Where: k 1
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Harmonic Oscillator, |l

The Canonical partition function:

Q= (%)fe dxfe dp

But transforming to action-angle vailables...

2
1 _
0= —fdefe pol 4y
27h
0 0
1 1
= X2 X|—
(Znh) (ﬁw)
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Classical Partition Function

Note that we have a factor of Planck’s
Constant, h, in our classical partition

functions:

N
Q=(L) f N f N o BHE )
27h

 This comes out for two reasons:

— To ensure that Q is dimensionless

— To connect to the classical limit of the
quantum HO partition function...
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fe"“xzdx =

Harmonic Oscillator ! J%

The Canonical partition function:

1
Q= h/j’—a)
__&ln(Q)=i =l=
Recall (E)= TRy (In(7pw)) 5 kT
Equipartion
Theorem
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Gas

Consider N particles in volume, V

\

with a generic two-body potential:

V(o Ty ) = EVU(Z _ fj\)

<]

and kinetic energy:
p;
l 2mi

T(p,s..-sPy) =

The Canonical partition function:

(2@) Jdrfdpe dr = drdr,...dr,
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Integrating the K E. Qina Gas
(Znh) fff

May generally be written as: (\WWarning:
this is not separability!)

N 2

By )
dpe 7" [dF eV
(2Jl’h) f P f
With the generic solution for any system

o~(oa) I sre

i
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Interacting—ldeal Gas

Assume:
1. ldeal Gas — V(r)=0
2. Only one molecule type: m.=m

[dar e = [dF=V"
3

) (5
p p

i

The ideal gas partition function:

3N 3N/
1 2mit N
0~ (3] ( B ) '
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The Ideal Gas Law

ol

o) \ B

Recall:

dA =-8dT - PdV + udN

A =-k,Tn(Q)

The Pressure

a0

WV )rn
’ P=k TE |deal Gas Law!
p_ kBTf?ln(Q) BL .

dV
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ldeal Gas: Other Observables

o A
T

AT V,N)=-kTInQ

S(T,V,N)=T Recall: A=E-TS

A(T .P.N)= f e PPY ot v Nyav

0
G(T,p,N)=—kTIn A

Jdln A

S(T,p,N)=klnA+kT( )
T Jyp
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