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Problems

The following are some problems that will help you refresh your

memory about material you should have learned in undergraduate

chemistry classes and that allow you to exercise the material taught in

this text.

Suggestions about what you should be able to do relative to the background

material in the Chapters of Part 1

1. You should be able to set up and solve the one- and two-dimensional particle in a box

Schrödinger equations. I suggest you now try this and make sure you see:

a. How the second order differential equations have two independent solutions, so the

most general solution is a sum of these two.

b. How the two boundary conditions reduce the number of acceptable solutions from

two to one and limit the values of E that can be “allowed”.

c. How the wave function is continuous even at the box boundaries, but dΨ/dx is not. In

general dΨ/dx, which relates to the momentum because – i h d/dx is the momentum

operator, is continuous except at points where the potential V(x) undergoes an infinite

jump as it does at the box boundaries. The infinite jump in V, when viewed

classically, means that the particle would undergo an instantaneous reversal in
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momentum at this point, so its momentum would not be continuous. Of course, in any

realistic system, V does not have infinite jumps, so momentum will vary smoothly

and thus dΨ/dx will be continuous.

d. How the energy levels grow with quantum number n as n2.

e. What the wave functions look like when plotted.

2. You should go through the various wave functions treated in the Part 1 (e.g., particles

in boxes, rigid rotor, harmonic oscillator) and make sure you see how the |Ψ|2 probability

plots of such functions are not at all like the classical probability distributions except

when the quantum number is very large.

3. You should make sure you understand how the time evolution of an eigenstate Ψ

produces a simple exp(-i tE/ h) multiple of Ψ so that |Ψ|2 does not depend on time.

However, when Ψ is not an eigenstate (e.g., when it is a combination of such states), its

time propagation produces a Ψ whose |Ψ|2 probability distribution changes with time.

4. You should notice that the densities of states appropriate to the 1-, 2-, and 3-

dimensional particle in a box problem (which relate to translations in these dimensions)

depend of different powers of E for the different dimensions.

5. You should be able to solve 2x2 and 3x3 Hückel matrix eigenvalue problems both to

obtain the orbital energies and the normalized eigenvectors. For practice, try to do so for
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a. the allyl radical’s three π orbitals

b. the cyclopropenly radical’s three π orbitals.

Do you see that the algebra needed to find the above sets of orbitals is exactly the same as

was needed when we treat the linear and triangular sodium trimer?

6. You should be able to follow the derivation of the tunneling probability. Doing this

offers a good test of your ability to apply the boundary conditions properly, so I suggest

you do this task. You should appreciate how the tunneling probability decays

exponentially with the “thickness” of the tunneling barrier and with the “height” of this
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barrier and that tunneling for heavier particles is less likely than for light particles. This is

why tunneling usually is considered only for electrons, protons, and neutrons.

7. I do not expect that you could carry off a full solution to the Schrödinger equation for

the hydrogenic atom. However, I think you need to pay attention to

a. How separations of variables leads to a radial and two angular second order

differential equations.

b. How the boundary condition that φ and φ + 2π are equivalent points in space

produces the m quantum number.

c. How the l quantum number arises from the θ equation.

d. How the condition that the radial wave function not “explode” (i.e., go to infinity) as

the coordinate r becomes large gives rise to the equation for the energy E.

e. The fact that the angular parts of the wave functions are spherical harmonics, and that

these are exactly the same wave functions for the rotational motion of a linear

molecule.

f. How the energy E depends on the n quantum number as n-2 and on the nuclear charge

Z as Z2, and that the bound state energies are negative (do you understand what this

means? That is, what is the zero or reference point of energy?).

8. You should make sure that you are familiar with how the rigid-rotor and harmonic

oscillator energies vary with quantum numbers (J, M in the former case, v in the latter).

You should also know how these energies depend on the molecular geometry (in the
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former) and on the force constant and reduced mass (in the latter).  You should note that

E depends quadratically on J but linearly on v.

9. You should know what the Morse potential is and what its parameters mean. You

should understand that the Morse potential displays anharmonicity but the harmonic

potential does not.

10. You should be able to follow how the mass-weighted Hessian matrix can be used to

approximate the vibrational motions of a polyatomic molecule. And, you should

understand how the eigenvalues of this matrix produce the harmonic vibrational

frequencies and the corresponding eigenvectors describe the motions of the molecule

associated with these frequencies.
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Practice with matrices and operators.

1. Find the eigenvalues and corresponding normalized eigenvectors of the following

matrices:





-1  2

 2  2  





-2  0  0

 0 -1  2
 0  2  2

 

2. Replace the following classical mechanical expressions with their corresponding

quantum mechanical operators:

K.E. = 
mv2

2     in three-dimensional space.
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p = mv, a three-dimensional Cartesian vector.

y-component of angular momentum: Ly = zpx - xpz.

3. Transform the following operators into the specified coordinates:

Lx = 
h−
i  








 y 
∂
∂z - z 

∂
∂y   from Cartesian to spherical polar coordinates.

Lz = 
h-

i  
∂
∂φ  from spherical polar to Cartesian coordinates.

4. Match the eigenfunctions in column B to their operators in column A.  What is the

eigenvalue for each eigenfunction?

Column A Column B

i. (1-x2) 
d2

dx2  - x 
d
dx 4x4 - 12x2 + 3

ii. 
d2

dx2 5x4

iii. x 
d
dx e3x + e-3x
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iv.
d2

dx2  - 2x 
d
dx x2 - 4x + 2

v. x 
d2

dx2  + (1-x) 
d
dx 4x3 - 3x

Review of shapes of orbitals

5. Draw qualitative shapes of the (1) s, (3) p and (5) d  atomic orbitals (note that these

orbitals represent only the angular portion and do not contain the radial portion of the

hydrogen like atomic wave functions)  Indicate with ± the relative signs of the wave

functions and the position(s) (if any) of any nodes.

6. Plot the radial portions of the 4s, 4p, 4d, and 4f hydrogen like atomic wave functions.

7. Plot the radial portions of the 1s, 2s, 2p, 3s, and 3p hydrogen like atomic wave

functions for the Si atom using screening concepts for any inner electrons.
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Labeling orbitals using point group symmetry

8.  Define the symmetry adapted "core" and "valence" atomic orbitals of the following

systems:

NH3 in the C3v point group,

H2O in the C2v point group,

H2O2 (cis) in the C2 point group

N in D∞h, D2h, C2v, and Cs point groups

N2 in D∞h, D2h, C2v, and Cs point groups.

A problem to practice the basic tools of the Schrödinger equation.

9. A particle of mass m moves in a one-dimensional box of length L, with boundaries at x

= 0 and x = L.  Thus, V(x) = 0 for 0 ≤ x ≤ L, and V(x) = ∞ elsewhere.  The normalized
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eigenfunctions of the Hamiltonian for this system are given by Ψn(x) = 



2

L  
1/2

 Sin
nπx
L  ,

with En = 
n2π2h−2

2mL2  , where the quantum number n can take on the values n=1,2,3,....

a. Assuming that the particle is in an eigenstate, Ψn(x), calculate the probability that the

particle is found somewhere in the region 0 ≤ x ≤ 
L
4 .  Show how this probability

depends on n.

b. For what value of n is there the largest probability of finding the particle in

0 ≤ x ≤ 
L
4  ?

c. Now assume that Ψ is a superposition of two eigenstates,

Ψ = aΨn + bΨm, at time t = 0.

What is Ψ at time t?  What energy expectation value does Ψ have at time t and how does

this relate to its value at t = 0?

d. For an experimental measurement which is capable of distinguishing systems in state

Ψn from those in Ψm, what fraction of a large number of systems each described by
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Ψ will be observed to be in Ψn?  What energies will these experimental

measurements find and with what probabilities?

e. For those systems originally in Ψ = aΨn + bΨm which were observed to be in Ψn at

time t, what state (Ψn, Ψm, or whatever) will they be found in if a second

experimental measurement is made at a time t' later than t?

f. Suppose by some method (which need not concern us at this time) the system has

been prepared in a nonstationary state (that is, it is not an eigenfunction of H).  At the

time of a measurement of the particle's energy, this state is specified by the

normalized wave function Ψ = 



30

L5  
1/2

x(L-x) for 0 ≤ x ≤ L, and Ψ = 0 elsewhere.

What is the probability that a measurement of the energy of the particle will give the

value En = 
n2π2h−2

2mL2   for any given value of n?

g. What is the expectation value of H, i.e. the average energy of the system, for the

wave function Ψ given in part f?

A problem on the properties of non-stationary states



12

10. Show that for a system in a non-stationary state,

Ψ = ∑
j

CjΨje
-iEjt/h

-
 , the average value of the energy does not vary with time but the

expectation values of other properties do vary with time.

A problem about Jahn-Teller distortion

11. The energy states and wave functions for a particle in a 3-dimensional box whose

lengths are L1, L2, and L3 are given by

E(n1,n2,n3) = 
h2

8m 













n1

L1

2
 + 






n2

L2

2
 + 






n3

L3

2 
  and

Ψ(n1,n2,n3) = 



2

L1

1
2 





2

L2

1
2 



2

L3

1
2 

 Sin





n1πx

L1
 Sin






n2πy

L2
 Sin






n3πz

L3
 .

These wave functions and energy levels are sometimes used to model the motion of

electrons in a central metal atom (or ion) which is surrounded by six ligands in an

octahedral manner.
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a. Show that the lowest energy level is nondegenerate and the second energy level is

triply degenerate if L1 = L2 = L3.  What values of n1, n2, and n3 characterize the states

belonging to the triply degenerate level?

b. For a box of volume V = L1L2L3, show that for three electrons in the box (two in the

nondegenerate lowest "orbital", and one in the next), a lower total energy will result if

the box undergoes a rectangular distortion (L1 = L2 ≠ L3). which preserves the total

volume than if the box remains undistorted (hint: if V is fixed and L1 = L2, then L3 =

V
L12  and L1 is the only "variable").

c. Show that the degree of distortion (ratio of L3 to L1) which will minimize the total

energy is L3 = 2 L1.  How does this problem relate to Jahn-Teller distortions?  Why

(in terms of the property of the central atom or ion) do we do the calculation with

fixed volume?

d. By how much (in eV) will distortion lower the energy (from its value for a cube, L1 =

L2 = L3) if V = 8 Å3 and 
h2

8m  = 6.01 x 10-27 erg cm2.  1 eV = 1.6 x 10-12 erg
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A particle on a ring model for electrons moving in cyclic compounds

12. The π-orbitals of benzene, C6H6, may be modeled very crudely using the wave

functions and energies of a particle on a ring.  Lets first treat the particle on a ring

problem and then extend it to the benzene system.

a. Suppose that a particle of mass m is constrained to move on a circle (of radius r) in

the xy plane.  Further assume that the particle's potential energy is constant (choose

zero as this value).  Write down the Schrödinger equation in the normal Cartesian

coordinate representation.  Transform this Schrödinger equation to cylindrical

coordinates where x = rcosφ, y = rsinφ, and z = z (z = 0 in this case).  Taking r to be

held constant, write down the general solution, Φ(φ), to this Schrödinger equation.

The "boundary" conditions for this problem require that Φ(φ) = Φ(φ + 2π).  Apply

this boundary condition to the general solution.  This results in the quantization of the

energy levels of this system.  Write down the final expression for the normalized

wave functions and quantized energies.  What is the physical significance of these

quantum numbers that can have both positive and negative values?  Draw an energy

diagram representing the first five energy levels.

b. Treat the six π-electrons of benzene as particles free to move on a ring of radius 1.40

Å, and calculate the energy of the lowest electronic transition.  Make sure the Pauli
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principle is satisfied!  What wavelength does this transition correspond to?  Suggest

some reasons why this differs from the wavelength of the lowest observed transition

in benzene, which is 2600 Å.

A non-stationary state wave function

13. A diatomic molecule constrained to rotate on a flat surface can be modeled as a

planar rigid rotor (with eigenfunctions, Φ(φ), analogous to those of the particle on a ring

of problem 12) with fixed bond length r.  At t = 0, the rotational (orientational)

probability distribution is observed to be described by a wave function Ψ(φ,0) = 
4

3π  

Cos2φ.  What values, and with what probabilities, of the rotational angular momentum,







-ih−
∂
∂φ  , could be observed in this system?  Explain whether these probabilities would be

time dependent as Ψ(φ,0) evolves into Ψ(φ,t).

A problem about Franck-Condon factors

14. Consider an N2 molecule, in the ground vibrational level of the ground electronic

state, which is bombarded by 100 eV electrons.  This leads to ionization of the N2
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molecule to form N
2
+ .  In this problem we will attempt to calculate the vibrational

distribution of the newly-formed N
2
+  ions, using a somewhat simplified approach.

a. Calculate (according to classical mechanics) the velocity (in cm/sec) of a 100 eV

electron, ignoring any relativistic effects.  Also calculate the amount of time required

for a 100 eV electron to pass an N2 molecule, which you may estimate as having a

length of 2Å.

b. The radial Schrödinger equation for a diatomic molecule treating vibration as a

harmonic oscillator can be written as:

-
h−2

2µr2 



∂

∂r 
 


r2

∂Ψ
∂r

  + 
k
2(r - re) 2Ψ = E Ψ ,

Substituting Ψ(r) = 
F(r)

r  , this equation can be rewritten as:

-
h−2

2µ 
∂2

∂r2 F(r) + 
k
2(r - re) 2F(r) = E F(r) .

The vibrational Hamiltonian for the ground electronic state of the N2 molecule within this

approximation is given by:

H(N2) = -
h−2

2µ 
d2

dr2  + 
kN2
2 (r - rN2) 2 ,

where rN2  and kN2 have been measured experimentally to be:

rN2 = 1.09769 Å; kN2 = 2.294 x 106 
g

sec2 .
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The vibrational Hamiltonian for the N2+ ion , however, is given by :

H(N2) = -
h−2

2µ 
d2

dr2  + 
kN2

+

2 (r - rN2
+) 2 ,

where rN2
+  and kN2

+ have been measured experimentally to be:

rN2
+  = 1.11642 Å; kN2

+  = 2.009 x 106 
g

sec2 .

In both systems the reduced mass is µ = 1.1624 x 10-23 g.  Use the above

information to write out the ground state vibrational wave functions of the N2 and

N
2
+  molecules, giving explicit values for any constants which appear in them.

The v = 0 harmonic oscillator function is Ψ0  = (α/π)1/4 exp(-αx2/2).

c. During the time scale of the ionization event (which you calculated in part a),

the vibrational wave function of the N2 molecule has effectively no time to

change.  As a result, the newly-formed N
2
+  ion finds itself in a vibrational state

which is not an eigenfunction of the new vibrational Hamiltonian, H(N
2
+ ).

Assuming that the N2 molecule was originally in its v=0 vibrational state,

calculate the probability that the N
2
+  ion will be produced in its v=0 vibrational

state.
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Vibration of a diatomic molecule

15. The force constant, k, of the C-O bond in carbon monoxide is 1.87 x 106 g/sec2.

Assume that the vibrational motion of CO is purely harmonic and use the reduced

mass µ = 6.857 amu.

Calculate the spacing between vibrational energy levels in this molecule,

in units of ergs and cm-1.

Calculate the uncertainty in the internuclear distance in this molecule,

assuming it is in its ground vibrational level.  Use the ground state

vibrational wave function (Ψv=0; recall that I gave you this function in

problem 14), and calculate <x>, <x2>, and ∆x = (<x2> - <x>2)1/2.

Under what circumstances (i.e. large or small values of k; large or small

values of µ) is the uncertainty in internuclear distance large?  Can you

think of any relationship between this observation and the fact that helium

remains a liquid down to absolute zero?

A Variational Method Problem
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16. A particle of mass m moves in a one-dimensional potential whose Hamiltonian is

given by

H = -
h−2

2m 
d2

dx2  + a|x| ,

where the absolute value function is defined by |x| = x if x ≥ 0 and |x| = -x if x ≤ 0.

a. Use the normalized trial wavefunction φ = 



2b

π

1
4
  e

-bx2
  to estimate the energy

of the ground state of this system, using the variational principle to evaluate W(b), the

variational expectation value of H.

b. Optimize b to obtain the best approximation to the ground state energy of this

system, using a trial function of the form of φ, as given above.  The numerically

calculated exact ground state energy is 0.808616 h−
2
3
  m

-
1
3
  a

-
2
3
 .  What is the percent error

in your value?

Another Variational Method Problem

17. The harmonic oscillator is specified by the Hamiltonian:

H = -
h−2

2m 
d2

dx2  + 
1
2 kx2.
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Suppose the ground state solution to this problem were unknown, and that you wish to

approximate it using the variational theorem.  Choose as your trial wavefunction,

φ = 
15
16  a

-
5
2
 (a2 - x2)  for -a < x < a

φ = 0 for |x| ≥ a

where a is an arbitrary parameter which specifies the range of the wavefunction.  Note

that φ is properly normalized as given.

a. Calculate ⌡⌠
-∞

+∞
φ*Hφdx  and show it to be given by:

⌡⌠
-∞

+∞
φ*Hφdx  = 

5
4 

h−2

ma2  + 
ka2

14  .

b. Calculate ⌡⌠
-∞

+∞
φ*Hφdx  for a = b



h−2

km

1
4
  .

c. To find the best approximation to the true wavefunction and its energy, find the

minimum of ⌡⌠
-∞

+∞
φ*Hφdx  by setting 

d
da ⌡⌠

-∞

+∞
φ*Hφdx  = 0 and solving for a.  Substitute this
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value into the expression for  ⌡⌠
-∞

+∞
φ*Hφdx  given in part a. to obtain the best approximation

for the energy of the ground state of the harmonic oscillator.

d. What is the percent error in your calculated energy of part c.?

A Perturbation Theory Problem

18. Consider an electron constrained to move on the surface of a sphere of radius r0. The

Hamiltonian for such motion consists of a kinetic energy term only H0 = 
L2

2mer02  , where

L is the orbital angular momentum operator involving derivatives with respect to the

spherical polar coordinates (θ,φ).  H0 has the complete set of eigenfunctions ψ
(0)
lm  =

Yl,m(θ,φ).

a. Compute the zeroth order energy levels of this system.

b. A uniform electric field is applied along the z-axis, introducing a perturbation

V = -eεz = -eεr0Cosθ , where ε is the strength of the field.  Evaluate the correction to the

energy of the lowest level through second order in perturbation theory, using the identity

Cosθ Yl,m(θ,φ) = 
(l+m+1)(l-m+1)

(2l+1)(2l+3)   Yl+1,m(θ,φ) +



22

(l+m)(l-m)
(2l+1)(2l-1)  Yl-1,m(θ,φ) .

Note that this identity enables you to utilize the orthonormality of the spherical

harmonics.

c. The electric polarizability α gives the response of a molecule to an externally

applied electric field, and is defined by α = -
∂2E
∂2ε  





ε=0

 
  where E is the energy in the

presence of the field and ε is the strength of the field.  Calculate α for this system.

d. Use this problem as a model to estimate the polarizability of a hydrogen atom,

where r0 = a0 = 0.529 Å, and a cesium atom, which has a single 6s electron with r0 ≈ 2.60

Å.  The corresponding experimental values are αH = 0.6668 Å3 and αCs = 59.6 Å3.

A Hartree-Fock problem you can do by hand

19. Given the following orbital energies (in hartrees) for the N atom and the coupling

elements between two like atoms (these coupling elements are the Fock matrix

elements from standard ab-initio minimum-basis SCF calculations), calculate the

molecular orbital energy levels and orbitals.  Draw the orbital correlation diagram

for formation of the N2 molecule.  Indicate the symmetry of each atomic and each
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molecular orbital.  Designate each of the molecular orbitals as bonding, non-

bonding, or antibonding.

N1s = -15.31*

N2s = -0.86*

N2p = -0.48*

N2 σg Fock matrix*





-6.52

-6.22 -7.06
3.61 4.00 -3.92

 

N2 πg Fock matrix*

[ ]0.28  

N2 σu Fock matrix*





1.02

-0.60 -7.59
0.02 7.42 -8.53

 

N2 πu Fock matrix*

[ ]-0.58  

*The Fock matrices (and orbital energies) were generated using standard minimum basis

set SCF calculations.  The Fock matrices are in the orthogonal basis formed from these

orbitals.
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An orbital correlation diagram problem

20. Given the following valence orbital energies for the C atom and H2 molecule, draw

the orbital correlation diagram for formation of the CH2 molecule (via a C2v insertion of

C into H2 resulting in bent CH2).  Designate the symmetry of each atomic and molecular

orbital in both their highest point group symmetry and in that of the reaction path (C2v).

C1s = -10.91* H2 σg = -0.58*

C2s = -0.60* H2 σu = 0.67*

C2p = -0.33*

*The orbital energies were generated using standard STO3G minimum basis set SCF

calculations.

Practice using point group symmetry

21. Qualitatively analyze the electronic structure (orbital energies and orbitals) of

PF5.  Analyze only the 3s and 3p electrons of P and the one 2p bonding electron of

each F.  Proceed with a D3h analysis in the following manner:

a. Symmetry adapt the top and bottom F atomic orbitals.
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b. Symmetry adapt the three (trigonal) F atomic orbitals.

c. Symmetry adapt the P 3s and 3p atomic orbitals.

d. Allow these three sets of D3h orbitals to interact and draw the resultant

orbital energy diagram.

e. Symmetry label each of these molecular energy levels.  Fill this energy

diagram with 10  "valence" electrons.

Practice with term symbols and determinental wave functions for atoms

and molecules

22. For the given orbital occupations (configurations) of the following systems,

determine all possible states (all possible allowed combinations of spin and space states).

There is no need to form the determinental wave functions, simply label each state with

its proper term symbol.

a.) CH21a122a121b223a111b11
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b.) B2 1σg21σu22σg22σu21πu12πu1

c.) O2 1σg21σu22σg22σu21πu43σg21πg2

d.) Ti 1s22s22p63s23p64s23d14d1

e.) Ti 1s22s22p63s23p64s23d2

23. Construct Slater determinant wave functions for each of the following states of CH2:

a.) 1B1 (1a122a121b223a111b11)

b.) 3B1 (1a122a121b223a111b11)

c.) 1A1 (1a122a121b223a12)

A Woodward-Hoffmann rules problem

24. Let us investigate the reactions:
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 i. CH2(1A1)  →  H2 + C , and

ii. CH2(3B1)  →  H2 + C ,

under an assumed C2v reaction pathway utilizing the following information:

C atom: 3P →
29.2 kcal/mole

  1D →
32.7 kcal/mole

  1S

C(3P) + H2  →  CH2(3B1)   ∆E = -78.8 kcal/mole

C(1D) + H2  →  CH2(1A1)   ∆E = -97.0 kcal/mole

IP (H2) > IP (2s carbon).

a. Write down (first in terms of 2p1,0,-1 orbitals and then in terms of 2px,y,z

orbitals) the:

i. three Slater determinant (SD) wave functions belonging to the 3P state

all of which have MS = 1,

 ii. five 1D SD wave functions, and

iii. one 1S SD wave function.

b. Using the coordinate system shown below, label the hydrogen orbitals σg, σu

and the carbon 2s, 2px, 2py, 2pz, orbitals as a1, b1(x), b2(y), or a2.  Do the same

for the σ, σ, σ*, σ*, n, and pπ orbitals of CH2.
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C

H

H

z

y

x

c. Draw an orbital correlation diagram for the CH2  →  H2 + C reactions.  Try to

represent the relative energy orderings of the orbitals correctly.

d. Draw  a configuration correlation diagram for CH2(3B1)  →  H2 + C showing

all configurations which arise from the C(3P) + H2 products.  You can assume

that doubly excited configurations lie much (~100 kcal/mole) above their parent

configurations.

e. Repeat step d. for CH2(1A1)  →  H2 + C again showing all configurations

which arise from the C(1D) + H2 products.

f. Do you expect the reaction C(3P) + H2  →  CH2 to have a large activation

barrier?  About how large?  What state of CH2 is produced in this reaction?
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Would distortions away from C2v symmetry be expected to raise or lower the

activation barrier?  Show how one could estimate where along the reaction path

the barrier top occurs.

g. Would C(1D) + H2  →  CH2 be expected to have a larger or smaller barrier

than you found for the 3P C reaction?

Another Woodward-Hoffmann rule problem

25. The decomposition of the ground-state singlet carbene,

..

to produce acetylene and 1D carbon is known to occur with an activation energy

equal to the reaction endothermicity.  However, when the corresponding triplet

carbene decomposes to acetylene and ground-state (triplet) carbon, the activation

energy exceeds this reaction's endothermicity.  Construct orbital, configuration,

and state correlation diagrams that permit you to explain the above observations.

Indicate whether single configuration or configuration interaction wave functions

would be required to describe the above singlet and triplet decomposition

processes.
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Practice with rotational spectrocopy and its relation to molecular

structure

26. Consider the molecules CCl4, CHCl3, and CH2Cl2.

What kind of rotor are they (symmetric top, etc; do not bother with oblate, or near-

prolate, etc.)

Will they show pure rotational (i.e., microwave) spectra?

27. Assume that ammonia shows a pure rotational spectrum.  If the rotational constants

are 9.44 and 6.20 cm-1, use the energy expression:

E = (A - B) K2 + B J(J + 1),

to calculate the energies (in cm-1) of the first three lines (i.e., those with lowest K, J

quantum number for the absorbing level) in the absorption spectrum (ignoring higher

order terms in the energy expression).

A problem on vibration-rotation spectroscopy
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28. The molecule 11B 16O has a vibrational frequency ωe = 1885 cm-1, a rotational

constant Be = 1.78 cm-1, and a bond energy from the bottom of the potential well of D0
e  =

8.28 eV.  Use integral atomic masses in the following:

In the approximation that the molecule can be represented as a Morse oscillator,

calculate the bond length, Re in angstroms, the centrifugal distortion constant, De in

cm-1, the anharmonicity constant, ωexe in cm-1, the zero-point corrected bond energy,

D0
0  in eV, the vibration rotation interaction constant, αe in cm-1, and the vibrational

state specific rotation constants, B0 and B1 in cm-1.  Use the vibration-rotation energy

expression for a Morse oscillator:

E = h
_
 ωe(v + 1/2) - h

_
 ωexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2, where

Bv = Be - αe(v + 1/2), αe = 
-6Be2

h
_ωe

  + 
6 Be3h

_ωexe

h
_ωe

 , and De = 
4Be3

h
_ωe2

 .

Will this molecule show a pure rotation spectrum?  A vibration-rotation

spectrum?  Assuming that it does, what are the energies (in cm-1) of the first three

lines in the P branch (∆v = +1, ∆J = -1) of the fundamental absorption?

A problem labeling vibrational modes by symmetry
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29. Consider trans-C2H2Cl2.  The vibrational normal modes of this molecule are shown

below.  What is the symmetry of the molecule?  Label each of the modes with the

appropriate irreducible representation.

A problem in rotational spectroscopy

30. Suppose you are given two molecules (one is CH2 and the other is  CH2
- but you
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don't know which is which).  Both molecules have C2v symmetry.  The CH bond

length of molecule I is 1.121 Å and for  molecule II it is 1.076 Å.  The bond angle of

molecule I is 104° and for molecule II it is 136°.

R

θ HH

y

z

C

a.  Using a coordinate system centered on the C nucleus as shown above (the molecule is

in the YZ plane), compute the moment of inertia tensors of both species (I and II).  The

definitions of the components of the tensor are, for example:

Ixx = ∑
j

mj(yj2 + zj2)  - M(Y2 + Z2)

Ixy = -∑
j

mjxjyj  - MXY

Here, mj is the mass of the nucleus j, M is the mass of the entire molecule, and X, Y, Z

are the coordinates of the center of mass of the molecule.  Use Å for distances and amu's

for masses.
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b. Find the principal moments of inertia Ia < Ib < Ic for both compounds ( in amu Å2

units) and convert these values into rotational constants A, B, and C in cm-1 using, for

example,

A = h(8π2cIa)-1.

c.  Both compounds are "nearly prolate tops" whose energy levels can be well

approximated using the prolate top formula:

E = (A - B) K2 + B J(J + 1),

if one uses for the B constant the average of the B and C valued determined earlier.

Thus, take the B and C values (for each compound) and average them to produce an

effective B constant to use in the above energy formula.  Write down (in cm-1 units) the

energy formula for both species.  What values are J and K allowed to assume?  What is

the degeneracy of the level labeled by a given J and K?

d. Draw a picture of both compounds and show the directions of the three principle

axes (a,b,c).  On these pictures, show the kind of rotational motion associated with the

quantum number K.



35

e. Suppose you are given the photoelectron spectrum of CH2
-.  In this spectrum Jj = Ji + 1

transitions are called R-branch absorptions and those obeying Jj = Ji - 1 are called P-

branch transitions.  The spacing between lines can increase or decrease as functions of Ji

depending on the changes in the moment of inertia for the transition.  If spacings grow

closer and closer, we say that the spectrum exhibits a so-called band head formation.  In

the photoelectron spectrum that you are given, a rotational analysis of the vibrational

lines in this spectrum is carried out and it is found that the R-branches show band head

formation but the P-branches do not.  Based on this information, determine which

compound I or II is the CH2
- anion.  Explain you reasoning.

f. At what J value (of the absorbing species) does the band head occur and at what

rotational energy difference?

Using point group symmetry in vibrational spectroscopy

31. Let us consider the vibrational motions of benzene.  To consider all of the vibrational

modes of benzene we should attach a set of displacement vectors in the x, y, and z

directions to each atom in the molecule (giving 36 vectors in all), and evaluate how these

transform under the symmetry operations of D6h.  For this problem, however, let's only

inquire about the C-H stretching vibrations.
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a.  Represent the C-H stretching motion on each C-H bond by an outward-directed vector

on each H atom, designated ri:

H

H

H

H

H

H

r2

r3

r4

r5

r6

r1

b. These vectors form the basis for a reducible representation.  Evaluate the characters for

this reducible representation under the symmetry operations of the D6h group.

c. Decompose the reducible representation you obtained in part b. into its irreducible

components.  These are the symmetries of the various C-H stretching vibrational modes

in benzene.

d. The vibrational state with zero quanta in each of the vibrational modes (the ground

vibrational state) of any molecule always belongs to the totally symmetric representation.

For benzene, the ground vibrational state is therefore of A1g symmetry.  An excited state

which has one quantum of vibrational excitation in a mode which is of a given symmetry
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species has the same symmetry species as the mode which is excited (because the

vibrational wave functions are given as Hermite polynomials in the stretching

coordinate).  Thus, for example, excitation (by one quantum) of a vibrational mode of

A2u symmetry gives a wave function of A2u symmetry.  To resolve the question of what

vibrational modes may be excited by the absorption of infrared radiation we must

examine the x, y, and z components of the transition dipole integral for initial and final

state wave functions ψi and ψf, respectively:

|< ψf | x | ψi >| , |< ψf | y | ψi >| , and |< ψf | z | ψi >| .

Using the information provided above, which of the C-H vibrational modes of benzene

will be infrared-active, and how will the transitions be polarized?  How many C-H

vibrations will you observe in the infrared spectrum of benzene?

e. A vibrational mode will be active in Raman spectroscopy only if one or more of the

following integrals is nonzero:

|< ψf | xy | ψi >| , |< ψf | xz | ψi >| , |< ψf | yz | ψi >| ,

|< ψf | x2 | ψi >| , |< ψf | y2 | ψi >| , and |< ψf | z2 | ψi >| .
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Using the fact that the quadratic operators transform according to the irreducible

representations:

(x2 + y2, z2) ⇒ A1g

(xz, yz) ⇒ E1g

(x2 - y2, xy) ⇒ E2g

Determine which of the C-H vibrational modes will be Raman-active.

f. Are there any of the C-H stretching vibrational motions of benzene which cannot be

observed in either infrared of Raman spectroscopy?  Give the irreducible representation

label for these unobservable modes.

A problem on electronic spectra and lifetimes

32. Time dependent perturbation theory provides an expression for the radiative lifetime

of an excited electronic state, given by τR:

τR = 
3h-4c3

4(Ei - Ef)3|µfi|2
  ,

where i refers to the excited state, f refers to the lower state, and µfi is the transition

dipole.
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a.  Evaluate the z-component of the transition dipole for the  2pz → 1s transition in a

hydrogenic atom of nuclear charge Z, given:

ψ1s = 
1
π 



Z

a0

3
2  e 

-Zr
a0   , and ψ2pz = 

1

4 2π
 



Z

a0

5
2  r Cosθ e 

-Zr
2a0  .

Express your answer in units of ea0.

b. Use symmetry to demonstrate that the x- and y-components of µfi are zero, i.e.

<2pz| e x |1s> = <2pz| e y |1s> = 0.

c. Calculate the radiative lifetime τR of a hydrogenlike atom in its 2pz state. Use the

relation e2 = 
h-2

mea0
  to simplify your results.

The difference between slowly and quickly turning on a perturbation

33. Consider a case in which the complete set of states {φk} for a Hamiltonian is known.

a. If the system is initially in the state m at time t=0 when a constant perturbation V is

suddenly turned on, find the probability amplitudes Ck(2)(t) and Cm(2)(t), to second order

in V, that describe the system being in a different state k or the same state m at time t.
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b. If the perturbation is turned on adiabatically (i.e., very slowly), what are Ck(2)(t) and

Cm(2)(t)?  Here, consider that the initial time is t0 → -∞, and the potential is V eηt, where

the positive parameter η is allowed to approach zero η→ 0 in order to describe the

adiabatically turned on perturbation.

c. Compare the results of parts a. and b. and explain any differences.

d. Ignore first order contributions (assume they vanish) and evaluate the transition rates

 
d
dt |Ck(2)(t)|2 for the results of part b. by taking the limit η → 0+, to obtain the adiabatic

results.

An example of quickly turning on a perturbation- the sudden

approximation

34. Consider an interaction or perturbation which is carried out suddenly

(instantaneously, e.g., within an interval of time ∆t which is small compared to the

natural period ωnm-1 corresponding to the transition from state m to state n), and after

that is turned off adiabatically (i.e., extremely slowly as V eηt).  The transition

probability in this case is given as:
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Tnm ≈ 
|<n|V|m>|2

h-2ωnm2  

where V corresponds to the maximum value of the interaction when it is turned on.  This

formula allows one to calculate the transition probabilities under the action of sudden

perturbations which are small in absolute value whenever perturbation theory is

applicable.

Let's use this "sudden approximation" to calculate the probability of excitation of

an electron under a sudden change of the charge of the nucleus.  Consider the reaction:

1
3 H → 

2
3 He+ + e-,

and assume the tritium atom has its electron initially in a 1s orbital.  

a. Calculate the transition probability for the transition 1s → 2s for this reaction using the

above formula for the transition probability.

b. Suppose that at time t = 0 the system is in a state which corresponds to the

wave function ϕm, which is an eigenfunction of the operator H0.  At t = 0, the sudden

change of the Hamiltonian occurs (now denoted as H and remains unchanged).  Calculate

the same 1s → 2s transition probability as in part a., only this time as the square of the

magnitude of the coefficient, A1s,2s using the expansion:
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Ψ(r,0) = ϕm(r) = ∑
n

Anmψn(r) , where Anm = ⌡⌠ϕm(r)ψn(r)d3r 

Note, that the eigenfunctions of H are ψn with eigenvalues En.  Compare this  value with

that obtained by perturbation theory in part a.

A symmetric top rotational spectrum problem

35. The methyl iodide molecule is studied using microwave (pure rotational)

spectroscopy.  The following integral governs the rotational selection rules for transitions

labeled J, M, K → J', M', K':

I = <D
M'K'
J'    | ε→ . µ→ |D

MK
J   >.

The dipole moment µ→  lies along the molecule's C3 symmetry axis.  Let the electric field

of the light ε→  define the lab-fixed Z-direction.

a. Using the fact that Cosβ = D
00
1*  , show that

I = 8π2µε(-1)(M+K) M 0 M
J' 1 J   K 0 K

J' 1 J   δM'MδK'K

b. What restrictions does this result place on ∆J = J' - J? Explain physically why the K

quantum number can not change.
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A problem in electronic and photo-electron spectroscopy

36. Consider the molecule BO.

a. What are the total number of possible electronic states that can be formed by

combination of ground-state B and O atoms?

b. What electron configurations of the molecule are likely to be low in energy?

Consider all reasonable orderings of the molecular orbitals.  What are the states

corresponding to these configurations?

c. What are the bond orders in each of these states?

d. The true ground state of BO is 2Σ.  Specify the +/- and u/g symmetries for this

state.

e. Which of the excited states you derived above will radiate to the 2Σ ground state?

Consider electric dipole radiation only.

f. Does ionization of the molecule to form a cation lead to a stronger, weaker, or

equivalent bond strength?



44

g. Assuming that the energies of the molecular orbitals do not change upon

ionization, what are the ground state, the first excited state, and the second excited

state of the positive ion?

h. Considering only these states, predict the structure of the photoelectron spectrum

you would obtain for ionization of BO.

A problem on vibration-rotation spectroscopy

37.

-1600 cm                       800 cm                          1300 cm               1500 cm         3200 cm       3600 cm-1 -1 -1 -1 -1

2ν    (HCN)  2

ν     (HCN)3

3317 cm-1

ν   (HCN)
2

712 cm -1
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The above figure shows part of the infrared absorption spectrum of HCN gas.  The

molecule has a CH stretching vibration, a bending vibration, and a CN stretching

vibration.

a. Are any of the vibrations of linear HCN degenerate?

b. To which vibration does the group of peaks between 600 cm-1 and 800 cm-1 belong?

c. To which vibration does the group of peaks between 3200 cm-1 and 3400 cm-1 belong?

d. What are the symmetries (σ, π, δ) of the CH stretch, CN stretch, and bending

vibrational motions?

e. Starting with HCN in its 0,0,0 vibrational level, which fundamental transitions would

be infrared active under parallel polarized light (i.e., z-axis polarization):

 000 → 001?

000 → 100?

000 →010?

f. Why does the 712 cm-1 transition have a Q-branch, whereas that near 3317  cm-1 has

only P- and R-branches?
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A Problem in Which You Can Practice Deriving Equations

This is Important Because a Theory Scientist Does Derivations as Part

of Her/His Job

38.

By expanding the molecular orbitals {φk} as linear combinations of atomic orbitals {χµ},

φk = ∑
µ

cµkχµ 

show how the canonical Hartree-Fock (HF) equations:

F φi = εi φj

reduce to the matrix eigenvalue-type equation of the form:

∑
ν

FµνCνi  = εi∑
ν

SµνCνi 

where:

Fµν = < >χµ| |h χν   + ∑
δ κ

 



γ

δκ< >χµχδ| |g χνχκ  - γδκ
ex< >χµχδ| |g χκχν  ,

Sµν = < >χµ|χν  , γδκ = ∑
i=occ

CδiCκi ,

and
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γ
δκ

ex = ∑
i= occ and

same spin

CδiCκi .

Note that the sum over i in γδκ and γδκ
ex is a sum over spin orbitals.  In addition, show

that this Fock matrix can be further reduced for the closed shell case to:

Fµν = < >χµ| |h χν   + ∑
δ κ

  Pδκ



< >χµχδ| |g χνχκ  - 

1
2 < >χµχδ| |g χκχν   ,

where the charge bond order matrix, P, is defined to be:

Pδκ = ∑
i=occ

2CδiCκi  ,

where the sum over i here is a sum over orbitals not spin orbitals.

Another Derivation Practice Problem

39. Show that the HF total energy for a closed-shell system may be written in terms of

integrals over the orthonormal HF orbitals as:

E(SCF) = 2 ∑
k

occ
 < >φk| |h φk   + ∑

kl

occ
  





2< >kl| |g kl  - < >kl| |g lk   +

 ∑
µ>ν

 
ZµZν
Rµν  .
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One More Derivation Problem

40. Show that the HF total energy may alternatively be expressed as:

E(SCF) = ∑
k

occ
 





εk + < >φk| |h φk   + ∑
µ>ν

 
ZµZν
Rµν  ,

where the εk refer to the HF orbital energies.

A Molecular Hartree-Fock SCF Problem

41. This problem will be concerned with carrying out an SCF calculation for the HeH+

molecule in the 1Σg+(1σ2) ground state.  The one- and two-electron integrals (in atomic

units) needed to carry out this SCF calculation at R = 1.4 a.u. using Slater type orbitals

with orbital exponents of 1.6875 and 1.0 for the He and H, respectively are:

S11 = 1.0, S22 = 1.0, S12 = 0.5784,

h11 = -2.6442, h22 = -1.7201, h12 = -1.5113,

g1111 = 1.0547, g1121 = 0.4744, g1212 = 0.5664,

g2211 = 0.2469, g2221 = 0.3504, g2222 = 0.6250,
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where 1 refers to 1sHe and 2 to 1sH.  The two-electron integrals are given in Dirac

notation.  Parts a. – d should be done by hand.  Any subsequent parts can make use of the

QMIC software that can be found at

http://www.emsl.pnl.gov:2080/people/bionames/ja_nichols.html.

a. Using φ1 ≈ 1sHe for the initial guess of the occupied molecular orbital, form a

2x2 Fock matrix.  Use the equation derived above in problem 38 for Fµν.

b. Solve the Fock matrix eigenvalue equations given above to obtain the orbital

energies and an improved occupied molecular orbital.  In so doing, note that < >φ1|φ1   =

1 = C1TSC1 gives the needed normalization condition for the expansion coefficients of

the φ1 in the atomic orbital basis.

c. Determine the total SCF energy using the expression of problem 39 at this step

of the iterative procedure.  When will this energy agree with that obtained by using the

alternative expression for E(SCF) given in problem 40?

d. Obtain the new molecular orbital, φ1, from the solution of the matrix

eigenvalue problem (part b).

e. A new Fock matrix and related total energy can be obtained with this improved

choice of molecular orbital, φ1.  This process can be continued until a convergence

criterion has been satisfied.  Typical convergence criteria include: no significant change

in the molecular orbitals or the total energy (or both) from one iteration to the next.

Perform this iterative procedure for the HeH+ system until the difference in total energy

between two successive iterations is less than 10-5 a.u.
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f. Show, by comparing the difference between the SCF total energy at one

iteration and the converged SCF total energy, that the convergence of the above SCF

approach is primarily linear (or first order).

g. Is the SCF total energy calculated at each iteration of the above SCF procedure

as in problem 39 an upper bound to the exact ground-state total energy?

h. Does this SCF wave function give rise (at R→∞) to proper dissociation

products?

A Configuration Interaction Problem

42. This problem will continue to address the same HeH+ molecular system as above,

extending the analysis to include correlation effects.  We will use the one- and two-

electron integrals (same geometry) in the converged (to 10-5 au) SCF molecular orbital

basis which we would have obtained after 7 iterations above.  The converged mos you

should have obtained in problem 1 are:

φ1 = 




-0.89997792

-0.15843012
 φ2 = 





-0.83233180

1.21558030
 

a. Carry out a two configuration CI calculation using the 1σ2 and 2σ2

configurations first by obtaining an expression for the CI matrix elements HI,J (I,J = 1σ2,

2σ2) in terms of one- and two-electron integrals, and secondly by showing that the

resultant CI matrix is (ignoring the nuclear repulsion energy):
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



-4.2720 0.1261

0.1261 -2.0149
 

b. Obtain the two CI energies and eigenvectors for the matrix found in part a.

c. Show that the lowest energy CI wave function is equivalent to the following

two-determinant (single configuration) wave function:

1
2 

 














a

1
2
φ1 + b

1
2
φ2 α





a

1
2
φ1 - b

1
2
φ2 β  + 

 








a

1
2
φ1 - b

1
2
φ2 α





a

1
2
φ1 + b

1
2
φ2 β  

involving the polarized orbitals:  a

1
2
 φ1 ± b

1
2
 φ2 , where a = 0.9984 and b = 0.0556.

d. Expand the CI list to 3 configurations by adding1σ2σ to the original 1σ2 and

2σ2 configurations of part a above.  First, express the proper singlet spin-coupled 1σ2σ

configuration as a combination of Slater determinants and then compute all elements of

this 3x3 matrix.

e. Obtain all eigenenergies and corresponding normalized eigenvectors for this CI

problem.

f. Determine the excitation energies and transition moments for HeH+ using the

full CI result of part e above.  The nonvanishing matrix elements of the dipole operator

r(x,y,z) in the atomic basis are:

< >1sH| |z 1sHe   = 0.2854 and < >1sH| |z 1sH   = 1.4.

First determine the matrix elements of r in the SCF orbital basis then determine the

excitation energies and transition moments from the ground state to the two excited

singlet states of HeH+.
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g. Now turning to perturbation theory, carry out a perturbation theory calculation

of the first-order wave function |1σ2>(1) for the case in which the zeroth-order wave

function is taken to be the 1σ2 Slater determinant.  Show that the first-order wave

function is given by:

|1σ2>(1) = -0.0442|2σ2>.

h. Why does the |1σ2σ> configuration not enter into the first-order wave

function?

i. Normalize the resultant wave function that contains zeroth- plus first-order parts

and compare it to the wave function obtained in the two-configuration CI study of part b.

j. Show that the second-order RSPT correlation energy, E(2), of HeH+ is -0.0056

a.u.  How does this compare with the correlation energy obtained from the two-

configuration CI study of part b?

Repeating the SCF Problem but With a Computer Program

43.  Using either programs that are available to you or the QMIC programs that you can

find at the web site

http://www.emsl.pnl.gov:2080/people/bionames/nichols_ja.html

calculate the SCF energy of HeH+ using the same geometry as in problem 42 and the

STO3G basis set provided in the QMIC basis set library.  How does this energy compare
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to that found in problem 42?  Run the calculation again with the 3-21G basis basis

provided.  How does this energy compare to the STO3G and the energy found using

STOs in problem 42?

A Series of SCF Calculations to Produce a Potential Energy Curve

44.  Generate SCF potential energy surfaces for HeH+ and H2 using the QMIC software

or your own programs.  Use the 3-21G basis set and generate points for geometries of R =

1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, and 10.0 a0.  Plot the energies vs. geometry for each

system.  Which system dissociates properly?

Configuration Interaction Potential Curves for Several States

45. Generate CI potential energy surfaces for the 4 states of H2 resulting from a

calculation with 2 electrons occupying the lowest 2 SCF orbitals (1σg and 1σu) in all

possible ways.  Use the same geometries and basis set as in problem 44.  Plot the energies

vs. geometry for each system.  Properly label and characterize each of the states (e.g.,

repulsive, dissociate properly, etc.).

A Problem on Partition Functions and Thermodynamic Properties
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46. F atoms have 1s22s22p5   2P ground electronic states that are split by spin-orbit

coupling into 2P3/2 and 2P1/2 states that differ by only 0.05 eV in energy.

a. Write the electronic partition function (take the energy of the 2P3/2 state to be zero and

that of the 2P1/2 state to be 0.05eV and ignore all other states) for each F atom.

b. Using 
    
E = kT 2 ∂ lnQ

∂T
 
 
  

 
N ,V

, derive an expression for the average electronic energy

  E  of N gaseous F atoms.

c. Using the fact that kT=0.03eV at T=300°K, make a (qualitative) graph of   E /N vs T for

T ranging from 100°K to 3000°K.

A Problem Using Transition State Theory

47. Suppose that we used transition state theory to study the reaction

NO(g) + Cl2(g) →  NOCl(g) + Cl(g) assuming it to proceed through a bent transition

state, and we obtained an expression for the rate coefficient

    

kbent =
kT
h

e−E ≠ /kT
q≠ / v( )

qNO( )
v

qCl2( )
v
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a. Now, let us consider what differences would occur if the transition state structure were

linear rather than bent.  Assuming that the activation energy E≠ and electronic state

degeneracies are not altered, derive an expression for the ratio of the rate coefficients for

the linear and bent transition state cases

    

klinear
kbent

=

b. Using the following order of magnitude estimates of translational, rotational, and

vibrational partition functions per degree of freedom at 300°K

qt ~ 108, qr ~ 102, qv ~ 1,

what ratio would you expect for klinear/kbent?

A Problem With Slater Determinants

48.  Show that the configuration (determinant) corresponding to the Li+ 1s(α)1s(α) state

vanishes.
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Another Problem With Slater Determinants and Angular Momenta

49.  Construct the 3 triplet and 1 singlet wave functions for the Li+ 1s12s1 configuration.

Show that each state is a proper eigenfunction of S2 and Sz (use raising and lowering

operators for S2)

A Problem With Slater Determinants for a Linear Molecule

50.  Construct determinant wave functions for each state of the 1σ22σ23σ21π2

configuration of NH.

A Problem With Slater Determinants for an Atom

51.  Construct determinant wave functions for each state of the 1s12s13s1 configuration

of Li.

A Problem on Angular Momentum of an Atom

52. Determine all term symbols that arise from the 1s22s22p23d1 configuration of the

excited N atom.

Practice With the Slater Condon Rules

53. Calculate the energy (using Slater Condon rules) associated with the 2p valence

electrons for the following states of the C atom.

  i. 3P(ML=1,MS=1),
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 ii. 3P(ML=0,MS=0),

iii. 1S(ML=0,MS=0), and

iv. 1D(ML=0,MS=0).

More Practice With the Slater Condon Rules

54.  Calculate the energy (using Slater Condon rules) associated with the π valence

electrons for the following states of the NH molecule.

  i. 1∆ (ML=2, MS=0),

 ii. 1Σ (ML=0, MS=0), and

iii. 3Σ (ML=0, MS=0).

Practice With The Equations of Statistical Mechanics

55. Match each of the equations below with the proper phrase A-K
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B2 = −2π r2

o

∞

∫ e−u(r)/ kT − 1( )dr

   

    
E 2 − E ( )2

= kT 2 ∂E
∂T

 
 
  

 
N ,V              

    

2πmkT
h2

 
 

 
 

                                         

    
Q = e

−
Nφ

2kT e−θ /2T

1 − e− θ /T

 
 
  

 
 

3N

                

    g ν( ) = αν2

                                       

    
Q =

M !
N !(M − N)!

qN

                      

      
Θ =

qeµ o/kT p
1 + qeµ o /kT p

                            

  pA = pA
oXA
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cω
kT

= −4

                                           

W=WAANAA+WBBNBB+WABNAB           

  
NAB ≅

NA c NB

NA + N B

                               

A. Raoult's law

B. Debye solid

C. Critical Point

D. Ideal adsorption

E. Langmuir isotherm

F. Bragg-Williams

G. Partition function for surface translation

H. Concentrated solution

I. Fluctuation

J. Virial coefficient
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K. Einstein solid

A Problem Dealing With the Second Virial Coefficient

56. The Van der Waals equation of state is

    
p +

N
V

 
 
  

 

2

a
 

 
 

 

 
 V − Nb( ) = NkT

solve this equation for p, and then obtain an expression for 
  

pV
NkT

.  Finally, expand 
  

pV

NkT

in powers of 
  

N
V

 
 
  

 
 and obtain an expression for the second virial coefficient of this Van

der Waals gas in terms of b, a, and T.

A Problem to Make You Think About Carrying Out Monte-Carlo and

Molecular Dynamics Simulations

57. Briefly answer each of the following:
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For which of the following would you be wisest to use Monte-Carlo (MC) simulation and

for which should you use molecular dynamics (MD)

a. Determining the rate of diffusion of CH4 in liquid Kr.

b. Determining the equilibrium radial distribution of Kr atoms relative to the CH4 in the

above example

c. Determining the mean square end-to-end distance for a floppy hydrocarbon chain in

the liquid state

Suppose you are carrying out a Monte-Carlo simulation involving 1000 Ar atoms.

Further suppose that the potentials are pair wise additive and that your computer requires

approximately 50 floating point operations (FPO's) (e.g. multiply, add, divide, etc.) to

compute the interaction potential between any pair of atoms
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d. For each M-C trial move, how many FPO's are required?  Assuming your computer

has a speed of 100 MFlops (i.e., 100 million FPO's per sec), how long will it take you to

carry out 1,000,000 M-C moves?

e. If the fluctuations observed in the calculation of question d are too large, and you wish

to make a longer M-C calculation to reduce the statistical "noise", how long will your

new calculation require if you wish to cut the noise in half?

f. How long would the calculation of question d require if you were to use 1,000,000 Ar

atoms (with the same potential and the same computer)?

g. Assuming that the evaluation of the forces between pairs of Ar atoms (∂V/∂r;) requires

approximately the same number of FPO's (50) as for computing the pair potential, how

long (in sec) would it take to carry out a molecular dynamics simulation involving 1000

Ar atoms using a time step (Dt) of 10-15 sec and persisting for a total time duration of

one nanosecond (10-9 sec) using the 100 MFlop computer?

h. How long would a 10-6 MFlop (i.e., 1 FPO per sec) Ph.D. student take to do the

calculation in part d?

A Problem to Practice Using Partition Functions
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58. In this problem, you will compute the pressure-unit equilibrium constant Kp for the

equilibrium

2 Na Ö Na2

in the gas phase at a temperature of 1000 K. Your final answer should be expressed in

units of atm-1. In doing so, you need to consider the electronic term symbols of Na and of

Na2, and you will need to use the following data:

i. Na has no excited electronic states that you need to consider.

ii. (h2/8π2Ik) = 0.221 K for Na2

iii. (hν/k) = 229 K for Na2

iv. 1 atm = 1.01 x106 dynes cm-2

v. The dissociation energy of Na2 from the v = 0 to dissociation is D0 = 17.3 kcal mol-1.

a. First, write the expressions for the Na and Na2 partition functions showing their

translational, rotational, vibrational and electronic contributions.

b. Next, substitute the data and compute Kp, and change units to atm-1.

A Problem Using Transition State Theory
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59.  Looking back at the NO + Cl2 reaction treated using transition state theory in

Problem 47, let us assume that this same reaction (via. the bent transition state) were to

occur while to reagents NO and Cl2 were adsorbed to a surface in the following manner:

a. both NO and Cl2 lie flat against the surface with both of their atoms touching the

surface.

b. both NO and Cl2 move freely along the surface (i.e., they can translate parallel to the

surface).

c. both NO and Cl2 are tightly bound to the surface in a manner that causes their

movements perpendicular to the surface to become high-frequency vibrations.

Given this information, and again assuming the following order of magnitude estimates

of

partition functions

qt ~ 108, qr ~ 102, qv ~ 1

calculate the ratio of the TS rate constants for this reaction occurring in the surface

adsorbed state and in the gas phase. In doing so, you may assume that the activation

energy and all properties of the transition state are identical in the gas and adsorbed state,

except that the TS species is constrained to lie flat on the surface just as are NO and Cl2
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