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Chapter 4
Some important tools of theory

4.1 Perturbation theory and the variational method

In most practical applications of quantum mechanics to molecular problems,
one is faced with the harsh reality that the Schrédinger equation pertinent to
the problem at hand can not be solved exactly. To illustrate how desperate this
situation is, I note that neither of the following two Schrédinger equations have
ever been solved exactly (meaning analytically):

(i) The Schrodinger equation for the two electrons moving about the He nucleus:
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(i) The Schrodinger equation for the two electrons moving in an H> molecule even if

the tocations of the two nuclei (labeled A and Bj are held clamped:
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These two problems are examples of what is called the “three-body problem”,
meaning solving for the behavior of three bodies moving relative to one another.
Motions of the sun, earth, and moon (even neglecting all the other planets and their
moons) constitute another three-body problem. None of these problems, even the
classical Newton equation for the sun, earth, and moon, have ever been solved
exactly. So, what does one do when faced with trying to study real molecules
using quantum mechanics?

There are two very powerful tools that one can use to “sneak up” on the
solutions to the desired equations by first solving an easier “model” problem and
then using the solutions to this problem to approximate the solutions to the real
Schrédinger problem of interest. For example, to solve for the energies and wave
functions of a boron atom, one could use hydrogenic 1s orbitals (but with Z = 5)
and hydrogenic 2s and 2p orbitals with Z = 3 to account for the screening of the
full nuclear charge by the two 1s electrons as a starting point. To solve for the
vibrational energies of a diatomic molecule whose energy vs. bond length E(R)
is known, one could use the Morse oscillator wave functions as starting points.
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But. once one has decided on a reasonable “starting point” model to use, how
does one connect this model to the real system of interest? Perturbation theory
and the variational method are the two tools that are most commonly used for

this purpose.

4.1.1 Perturbation theory

In this method. one has available a set of equations for generating a sequence
of approximations to the true energy £ and true wave function . I will now
briefly outline the derivation of these working equations for you. First, one de-
composes the true Hamiltonian A into a so-called zeroth order part H° (this is
the Hamiltonian of the model problem one has chosen to use to represent the real
system) and the difference (H — H®) which is called the perturbation and often
denoted V:

H=H"+V. (4.3)

The fundamental assumption of perturbation theory is that the wave functions
and energies can be expanded in a Taylor series involving various powers of the
perturbation. That is, one expands the energy £ and the wave function ¥ into
zeroth, first, second, etc.. order pieces which form the unknowns in this method:

E=F"+E'+E+F +..., (4.4
U=yttt (4.5)

Next. one substitutes these expansions for £ of H and of i into Hyr = Ev.
This produces one equation whose right- and left-hand sides both contain terms
of various “powers” in the perturbation. For example, terms of the form £'v2 and
Vr* and £%47 are all of third power (also called third order). Next, one equates
the terms on the left and right sides that are of the same order. This produces a
set of equations, cach containing all the terms of a given order. The zeroth, first,
and second order such equations are given below:

H”l//() — E“l//(). (46)
H“],[/I + Vl//“ — E()w\ + EI'(//O. (47)
H“W: + VWI — E()wl 4 Elwl + Ell//(J. (48)

The zeroth order equation simply instructs us to solve the zeroth order Schrédinger
equation to obtain the zeroth order wave function " and its zeroth order energy
E° In the first order equation. the unknowns are ' and E' (recall that V is
assumed to be known because it is the difference between the Hamiltonian one
wants to solve and the model Hamiltonian A°).

To solve the first order and higher order equations, one expands each of the
corrections to the wave function ¥ X in terms of the complete set of wave functions
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of the zeroth order problem {1//\(,’}, This means that one must be able to solve
HY = E%%Y not just for the zeroth order state one is interested in (denoted
" above) but for all of the other (e.g.. excited states if /" is the ground state)
zeroth order states {1/Y}. For example, expanding v in this manner gives

v'l=) Chyl. (4.9)
J

Now, the unknowns in the first order equation become E' and the €'} expansion
coefficients. Substituting this expansion into H'y! + Vy? = E0y! + F'y°
and solving for these unknowns produces the following final first order working
equations:

E' =y riyhy. (4.10)
vh= D i vt )/ (B0 - BN (@.11)
J

where the index J is restricted such that ¥} not equal the state v/ vou are inter-
ested in. These are the fundamental working equations of first order perturbation
theory. They instruct us to compute the average value of the perturbation taken
over a probability distribution equal to ¥ " to obtain the first order correction
to the energy E£'. They also tell us how to compute the first order correction to
the wave function in terms of coefficients multiplying various other zeroth order
wave functions /.

An analogous approach is used to solve the second and higher order equations.
Although modern quantum mechanics does indeed use high order perturbation
theory in some cases, much of what the student needs to know is contained in the
first and second order results to which I will therefore restrict our attention. The
expression for the second order energy correction is found to be

B =Y (v [ul) [ (0 - EY). (.12)
J
where again, the index J is restricted as noted above. Let’s now consider an
example problem that illustrates how perturbation theory is used.

Example problem for perturbation theory

As we discussed earlier, an electron moving in a conjugated bond framework
can be modeled as a particle-in-a-box. An externally applied electric field of
strength ¢ interacts with the electron in a fashion that can be described by adding
the perturbation V' = eg(x — 2—') to the zeroth order Hamiltonian. Here, x is the
position of the electron in the box, e is the electron’s charge, and L is the length
of the box.

First, we will compute the first order correction to the energy of the n = |
state and the first order wave function for the n = 1 state. In the wave function
calculation, we will only compute the contribution to ¥ made by ¥ (this is
Just an approximation to keep things simple in this example). Let me now do all
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the steps needed to solve this part of the problem. Try to make sure you can do
the algebra but also make sure you understand how we are using the first order
perturbation equations.

£ = (o ) o £ o)
- (2) [ el
= <2Lﬁ> ﬂﬁ sinz(%‘f)xdx - (%) / sin® ( )
ith a

The first integral can be evaluated using the following identity wit

Ly X' xsin(2ax)  cos(2ax) |t L2
sin“(ax)x dx = — — - . = —.
0 4 dq 8a’ 0 4
The second integral can be evaluated using the following identity with 6 = =
and df = Tdx:
Lo L [ .,
/ sin“(z)d.\' = —f sin~ 6 d6
0 L T Jo
/7'2919 l '(79)+0m z
sSin 7 = ——SIn(< by = —.
0 ‘ 4 24, 2
Making all of these appropriate substitutions we obtain:
EWB Zee (£ _LLm =0
"= L 4 272
<\y<m !L’F (v _ L) w0 >qj"”
\y”) _ n=2 “ - 2 n=1 n=2
=l = E9 ET,
2 L . 27x X ”v
W (7) Jy sin(3=) ee(x — £)sin(Zt) dx 23? “in 2y
n=1 h27: L L :
2ml (17 -22)
The two integrals in the numerator need to be evaluated:
L 2. T L 27 .
/ X sin(~2> sin(z—r)dx. and / sin< r)sm( )dx
0 L L 0 L
Using the mtegral /. cos(ax)dx = ;;cos(a x) + 3 sin(ax), and the integral

Jcos(ax)dx = L sm(ar) we obtain the following:
L f2ax\ | smx 1 L TX L 3mx
/0 mn(—L—) sm( )d\ [.[ cos( )dv—/o cos (T)a’,\:l
L L . (37{x> L:’
— ——sin{ — =0,
o 3r L 0
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Making all of these appropriate substitutions we obtain

h
q_/ j—

n=1 7"

(%)(05)( ,% - %(())) (2)% . 27(3‘)
2} sin
L < L

3 =2

2ml-

32mLlee (?_)% ) 2:rx>
=———|>] sin .
27Tt L L

Now, let’s compute the induced dipole moment caused by the polarization of
the electron density due to the electric field effect using the equation inguced =
—e [Wr(x — %)lll dx with W now being the sum of our zeroth and first order
wave functions. In computing this integral, we neglect the term proportional to
&% because we are interested in only the term linear in ¢ because this is what
gives the dipole moment. Again, allow me to do the algebra and see if you

can follow.
L
Minduced = —e/ yr (x - —2—) Wdx, where ¥ = (w;m + W;”).
L
* L
Minduced = ‘“8/ (“I}EO) + \ygl)> <x - E) (W;OJ + ‘-I/;”) dx
0
L L
. L » L
= -e/ L (e W Vdx — e/ i (x = = Jwildx
0 2 0 2
L L
- L . L
—e/ 111;” (x - —> Wi %x - e/ \IJ:“ (x - ——) wildx,
0 2 0 2

The first integral is zero (see the evaluation of this integral for E ‘1“ above). The
fourth integral is neglected since it is proportional to £2. The second and third
integrals are the same and are combined to give

L
> L
Hinduced = "2@/ \11;0) <)( — E) \yi])dXA
4]
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o 0 2 0 s ok (n ’ 200 o2y :
Substituting W, = ()2 sin(F*) and ¥, ' = ———3227”% “f(z): sm(—z’L" ), we obtain
T

32mlL} 2 L L 27
Hinduced = _2‘)—‘]17_7"6_8 (_ / sSin (2) X — — })sin ﬂ dx.
27k \L ) J, L 2 L

These integrals are familiar from what we did to compute W!; doing them we

finally obtain
5 2mLiee (2 8L>
Linduced = —L€————— { — R
Hinduced 777 \L )\ o2

mLiete 210
Frb 35
Now let’s compute the polarizability, «, of the electron in the # = | state of
the box, and try to understand physically why « should depend as it does upon
the length of the box L. To compute the polarizability, we need to know that
o= % le=0. Using our induced moment result above, we then find

de
(8;1) mL*e” 210
a={-— =,
de /oo e 3

Notice that this finding suggests that the larger the box (molecule), the more
polarizable the electron density. This result also suggests that the polarizability
of conjugated polyenes should vary non-linearly with the length of the conjugated

chain.

4.1.2 The variational method

Let us now turn to the other method that is used to solve Schrédinger equations
approximately, the variational method. In this approach, one must again have some
reasonable wave function " that is used to approximate the true wave function.
Within this approximate wave function, one imbeds one or more variables {a}
that one subsequently varies to achieve a minimum in the energy of ! computed
as an expectation value of the true Hamiltonian A:

Etleshy = (" HIW") /(0" 19", (4.13)
The optimal values of the o, parameters are determined by making
dE/da, =0, (4.14)

toachieve the desired energy minimum (n.b., we also should verify that the second
derivative matrix (9°E /0« der; ) has all positive eigenvalues).

The theoretical basis underlying the variational method can be understood
through the following derivation. Suppose that someone knew the exact eigen-
states (i.e.. true Wy and true E¢) of the true Hamiltonian A. These states obey
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Because these true states form a complete set (it can be shown that the eigen-
functions of all the Hamiltonian operators we ever encounter have this property).
our so-called “trial wave function™ ¥/" can. in principle. be expanded in terms of
these Wy :

1//“=ZCA%» (4.16)
:

Before proceeding further. allow me to overcome one likely misconception. What
I'am going through now is only a derivation of the working formula of the
variational method. The final formula will not require us to ever know the exact
Wy or the exact Ex, but we are allowed to use them as tools in our derivation
because we know they exist even if we never know then.

With the above expansion of our trial function in terms of the exact eigen-
functions. let us now substitute this into the quantity ("1 H 1"y /(y°[%") that
the variational method instructs us to compute:

P
E= " HY" /' [y = <ch Ve |H| DG wL>/
I ]
><<ZCA"1’A chl_w,,>. (4.17)
K ;

Using the fact that the W obey HWg = £, Wy and that the W are orthonormal
(I hope you remember this property of solutions to all Schrodinger equations that
we discussed earlier)

(We | W) =8k s, (4.18)

the above expression reduces to

E= Z<Q%|H:qwm/(;wkw Gy w)

.
= Z;CKFEK/}:}CKF. (4.19)
K IS

One of the basic properties of the kind of Hamiltonian we encounter is that they
have a Jowest-energy state. Sometimes we say they are bounded from below.
which means their energy states do not continue all the way to minus infinity.
There are systems for which this is not the case, but we will now assuine that
we are not dealing with such systems. This allows us to introduce the inequality
Ly > Eq which says that all of the energies are higher than or equal to the energy
of the lowest state which we denote Ej. Introducing this inequality into the above
expression gives

E =) |CkIPEy / D ICk I = Eo. (4.20)
K K
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This means that the variational energy, computed as (y| H|y%) /(" | v°) will
lie above the true ground-state energy no matter what trial function ¥ we use.

The significance of the above result that £ > £, is as follows. We are allowed
to imbed into our trial wave function " parameters that we can vary to make E.
computed as (YO H ¥ %) /(4" | ¥, as low as possible because we know that we
can never make (y°] Hll//())/(I//O | %" lower than the true ground-state energy.
The philosophy then is to vary the parameters in ° to render £ as low as possible,
because the closer £ is to £y the “better” is our variational wave function. Let me
now demonstrate how the variational method is used in such a manner by solving
an example problem.

Example variational problem
Suppose you are given a trial wave function of the form

Zc3 —ZCI'I —Zel‘: ’
¢=—exp exp
Tag dy do
to represent a two-electron ion of nuclear charge Z and suppose that you are lucky

enough that I have already evaluated the (v°|H |y /(¢ | %) integral, which
I'll call W, for you and found
el
zc> <
dy

Now, let’s find the optimum value of the variational parameter Z, for an arbitrary

W= (zf —-27Z7Z.+

oo | tn

nuclear charge Z by setting d W /dZ. = 0. After finding the optimal value of

Ze, we'll then find the optimal energy by plugging this Z, into the above W
expression. ['ll do the algebra and see if you can follow.

5 -
(z—-zzz +8z)?

aw (22 2740 )
dz, ~ ¢ i} ag
0.

5
27,27+ =
8

272, =272
¢ 3
5

Zo=7- " =27-03125
16

(n.b., 0.3125 represents the shielding factor of one 1s electron to the other).
Now, using this optimal Z, in our energy expression gives

5\ &
W =2 (Z —27Z + )
8/ ay

~(2-3)[(7-5) 22+ 3]5
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(n.b., since gy is the Bohr radius 0.529 A, ¢ /ay = 27.21 eV).
Is this energy “any good™? The total energies of some two-electron atoms and
ions have been experimentally determined to be:

Z Atom Energy (eV)
1 H- —-14.35

2 He —78.98

3 Liv —198.02

4 Be+? -371.5

5 B+3 -599.3

6 c+ —-881.6

7 N+5 —-1218.3

8 0O+t —-1609.5

Using our optimized expression for W, let’s now calculate the estimated total
energies of each of these atoms and ions as well as the percentage error in our
estimate for each ion.

Z Atom Experimental (eV) Calculated (eV) % Error
1 H- —14.35 —-12.86 10.38
2 He -78.98 —77.46 1.92
3 Lif —-198.02 —196.46 0.79
4 Be*? -371.5 —369.86 0.44
5 B+ —599.3 -597.66 0.27
6 C*+ —881.6 —879.86 0.19
7 N*° -1218.3 —1216.48 0.15
8 0+ -1609.5 —1607.46 0.13

The energy errors are essentially constant over the range of Z, but produce a
larger percentage error at small Z.

In 1928, when quantum mechanics was quite young, it was not known whether
the isolated, gas-phase hydride ion, H™, was stable with respect to dissociation
into a hydrogen atom and an electron. Let’s compare our estimated total energy
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for H™ to the ground-state energy of a hydrogen atom and an isolated electron
(which is known to be —13.60 eV). When we use our expression for /¥ and take
Z =1, we obtain " = —12.86 eV, which is greater than —13.6 ¢V (H+e7),s0
this simple variational calculation erroneously predicts H™ to be unstable. More
complicated variational treatments give a ground state energy of H™ of —14.35¢V,
in agreement with experiment.

4.2 Point group symmetry

It is assumed that the reader has previously learned, in undergraduate inorganic
or physical chemistry classes, how symmetry arises in molecular shapes and
structures and what symmetry elements are (e.g., planes, axes of rotation, cen-
ters of inversion, etc.). For the reader who feels, after reading this section, that
additional background is needed, the texts by Eyring, Walter, and Kimball or
by Atkins and Friedman can be consulted. We review and teach here only that
material that is of direct application to symmetry analysis of molecular orbitals
and vibrations and rotations of molecules. We use a specific example, the am-
monia molecule, to introduce and illustrate the important aspects of point group
symmetry.

4.2.1 The C;, symmetry group of ammonia - an example

The ammonia molecule NH; belongs, in its ground-state equilibrium geometry,
to the C3, point group. Its symmetry operations consist of two (5 rotations, Cs,
C32 (rotations by 120" and 240", respectively. about an axis passing through the
nitrogen atom and lying perpendicular to the plane formed by the three hydrogen
atoms), three vertical reflections, o, 0., ', and the identity operation. Corre-
sponding to these six operations are symmetry elements: the three-fold rotation
axis, C3 ad the three symmetry planes o, o, and o that contain the three NH
bonds and the z-axis (see Fig. 4.1).

Cs-axis (2)

X-AX1§ e \] ..

molecule and its
symmetry elements.
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These six symmetry operations form a mathematical group. A group is defined
as a set of objects satisfying four properties.

(i) A combination rule is defined through which two group elements are combined to
give a result which we call the product. The product of two elements in the group
must also be a member of the group (i.e.. the group is closed under the
combination rule).

(i1)  One special member of the group, when combined with any other member of the
group, must leave the group member unchanged (i.e.. the group contains an
identity element).

(ii1)  Every group member must have a reciprocal in the group. When any group
member 1s combined with its reciprocal, the product is the identity element.

(iv) The associative law must hold when combining three group members (i.e., (AB)C
must equal A(BC)).

The members of symmetry groups are symmetry operations; the combination
rule is a successive operation. The identity element is the operation of doing noth-
ing at all. The group properties can be demonstrated by forming a multiplication
table. Let us label the rows of the table by the first operation and the columns by
the second operation. Note that this order is important because most groups are
not commutative. The Cs, group multiplication table is as follows:

E o8 C? o, ol ol Second operation
E E Cy Cs o, o, o]
s G & E o o o
C? C? E C; o! o, o
o, a, o) o, E C 32 Cs
o, o, o, o) s E C %
o7 o/ o o G G E
First
operation

Note the reflection plane labels do not move. That is, although we start with H;
in the o, plane, H; in ¢, and Hz in o', if H; moves due to the first symmetry
operation, o, remains fixed and a different H atom lies in the o plane.

4.2.2 Matrices as group representations

In using symmetry to help simplify molecular orbital (m.o.) or vibration/rotation
energy level identifications, the following strategy is followed:

(i) A set of M objects belonging to the constituent atoms (or molecular fragments, in a
more general case) is introduced. These objects are the orbitals of the individual
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atoms (or of the fragments) in the m.o. case; they are unit vectors along the x, v,
and = directions located on each of the atoms, and represent displacements along
each of these directions, in the vibration/rotation case.

(iy Symmetry tools are used to combine these M objects into M new objects each of
which belongs to a specific symmetry of the point group. Because the Hamiltonian
{electronic in the m.o. case and vibration/rotation in the latter case) commutes with
the symmetry operations of the point group. the matrix representation of H within
the symmetry adapted basis will be “block diagonal™. That is, objects of different
symmetry will not interact; only interactions among those of the same symmetry
need be considered.

To illustrate such symmetry adaptation, consider symmetry adapting the 2s
orbital of N and the three Is orbitals of the three H atoms. We begin by determining
how these orbitals transform under the symmetry operations of the Cs, point
group. The act of each of the six symmetry operations on the four atomic orbitals
can be denoted as follows:

E

(SN Si S S = (S\ S S, i)
Cs
— (SN.Sj,.SI«SZ)
C3
— (SN.SZsSS~S1)
o,

— (Sx. 81,53, S5)

U\

— (S\]S}S)S])

— (Sn. 52, 810 83) (4.21)

Here we are using the active view that a C; rotation rotates the molecule by 120°.
The equivalent passive view is that the 1s basis functions are rotated —120°. In
the C; rotation, S; ends up where S| began, S; ends up where S, began, and S,
ends up where S; began.

These transformations can be thought of in terms of a matrix multiplying a
vector with elements (Sy, 5. S5, S3). For example, if D™ (C3) is the represen-
tation matrix giving the C; transformation, then the above action of Cy on the
four basis orbitals can be expressed as

Sx 1 0 0 07[Sk Su
s 000 1||s
Dy | > =00 =] (4.22)
A 01 0 0/|]S s,
s, 00 1 0]|S s,
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We can likewise write matrix representations for each of the symmetry operations
of the Cs, point group:

[ o o o (1000‘
) 001 0 01 0 0
D(4i (C‘-) — Df4)(£‘) —
~ 00 0 | 01 0
01 0 0] 00 0 1]
[1000‘ (100 0]
61 0 0 00 0 1
Dm((f\) — ) DM'((T\') —
0 0 0 1 001 0
[0 0 1 0] 01 0 0]
[1 0 0 o
D%y = 0.0 10 (4.23)
01 0 0
00 0 1]

It is easy to verify that a C; rotation followed by a o reflection is equivalent to
a o, reflection alone. In other words

S] S} S]
o.C5 =0, or, & Oy (4.24)
— —
Sg Sj, Sl S: S: S;
Note that this same relationship is carried by the matrices:
1 0 0 0 I 0 00 1 00 0
61 0 0(]0 0 0 1 0 0 0 1
D) D(Cs) = =
0 0 0 1 01 00 001 0
00 1 0J[0 0 1 0 01 00
= D). (4.25)

Likewise we can verify that Cyo, = o directly and we can notice that the matrices
also show the same identity:

100 071 0 0 0 100 0
DH(Cs) D) = 0 0 0 11|01 0 0 _{001 0
‘ 01 0 0[]0 0 0 1 01 00

0 01 0J{0 01 0 0 0 0 1

= Da. (4.26)

In fact, one finds that the six matrices, D¥(R), when multiplied together in all
36 possible ways obey the same multiplication table as did the six Symmetry
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operations. We say the matrices form a representation of the group because the
matrices have all the properties of the group.

Characters of representations
One important property of a matrix is the sum of its diagonal elements which is
called the trace of the matrix D and is denoted Tr(D):

THD) = Du=x. (4.27)

So, x is called the trace or character of the matrix. In the above example

x(E) =4, (4.28)
G =x(Ci) =1 (4.29)
x{ov) = x(a)) = x(o)) = 2. (4.30)

The importance of the characters of the symmetry operations lies in the fact that
they do not depend on the specific basis used to form them. That is. they are
invariant to a unitary or orthogonal transformation of the objects used to define
the matrices. As a result, they contain information about the Symmetry operation
itself and about the space spanned by the set of objects. The significance of this
observation for our symmetry adaptation process will become clear later.

Note that the characters of both rotations are the same as are those of all
three reflections. Collections of operations having identical characters are called
classes. Each operation in a class of operations has the same character as other
members of the class. The character of a class depends on the space spanned by
the basis of functions on which the symmetry operations act.

Another basis and another representation
Above we used (S, Si. S2. 53) as a basis. If, alternatively, we use the one-
dimensional basis consisting of the 1s orbital on the N atom, we obtain different
characters, as we now demonstrate.

The act of the six symmetry operations on this Sy can be represented as
follows:

E Cs C;

SN — SN. S\ —>/ S\[ SN —)” SN, (43])
a, o8 o)

Sy - Sk Sv o= Sw. Sy — Sw.

We can represent this group of operations in this basis by the one-dimensional
set of matrices:
DV(EYy=1. DYCyy =1, DY (C3) =1,

(4.32)
Doy =1, D@ =1, DYy =1.
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Again we have

DM )DM(Cy) =11 = Do),
and D(l*(C3)D{]'(U\) —1.]= D”’(J\’). (4.33)

These six matrices form another representation of the group. In this basis. each
character is equal to unity. The representation formed by allowing the six sym-
metry operations to act on the 1s N-atom orbital is clearly not the same as that
formed when the same six operations acted on the (S, S;. S. S3) basis. We now
need to learn how to further analyze the information content of a specific repre-
sentation of the group formed when the symmetry operations act on any specific
set of objects.

4.2.3 Reducible and irreducible representations

A reducible representation
Note that every matrix in the four-dimensional group representation labeled D'¥
has the so-called block diagonal form

1 0 0 0

0 3 x 3 matrix

This means that these D' matrices are really a combination of two separate
group representations (mathematically, it is called a direcr sum representation).
We say that D'Y is reducible into a one-dimensional representation D! and a
three-dimensional representation formed by the 3 x 3 submatrices that we will
call DY,

[1 0 0] 0 0 1 01 0
DEy=10 1 0 D=1 0 0], DY (CS =10 0 1].
10 0 1] 01 0 100
(1 0 0] 0 0 1 010
Do) =10 0 1]. D¥ey=10 1 0 D¥e)=11 0 of.
101 0] 1 00 00 1
(4.34)

The characters of D® are x(E) =3, x(2C3) = 0, x(30,) = 1. Note that we
would have obtained this D® representation directly if we had originally chosen
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to examine the basis (5. 53, §3): also note that these characters are equal to those
of D'* minus those of DV,

A change in basis

Now let us convert to a new basis that is a linear combination of the original
(S1. $2. 53) basis:

T[ = Sl +S:+S3 (435)
Lh=25-8-S5. (4.36)
=8 -5 (4.37)

(Don’t worry about how we construct 7}. 73, and T 3 yet. As will be demonstrated
later, we form them by using symmetry projection operators defined below.) We
determine how the “T” basis functions behave under the group operations by
allowing the operations to act on the S ;7 and interpreting the resuits in terms of
the 7;. In particular,

(M.T. Ty S (T T ~T).  (T.T.T) 5 (T, 1. Ty).
(1T T3) 5 (S + S5+ 5, 285~ 5 = S1, S — S))

—(T 1T 37 lT—i—lT'
—1-2:23~2:237

(T T 1) 5 (S2 51+ 85, 28 — 51— S, Sy — S)

=1{T lT 3T IT lT
= 1.—5 :+§3.§ 1+§3 .

(Tl- TZv T}) (—; (S3 +Sl ““Sj 25} —S] — Sg, Sl ‘—Sg)
]

| 3 1
=N —sh- . -h- =T ).
2 2 2 2

[y
(N, 1) = (S5 + S5+ 5,25 -5 -5, S -8
I |

I 3
={(7,—-=-T- =LG.—=T-~=-T3y]). 4.38
(1 PRER 2 2) (4.38)

So the matrix representations in the new 7 basis are

FI 0 0 1 0 0
DME)=10 1 0. D¥Cy=|0 -I -1,
[0 0 1 0 +1 1
[ 0 0] 1 0 0
DU =10 =4 +3|.  DYey=]0 1 of.
0 0 -1
10 -3 -3
1 0 o7 M o o
Do)y = -3 D¥e Y= |0 -1 +i. (4.39)
1
[0 -1 +1] 0 +5 +3
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Reduction of the reducible representation

These six matrices can be verified to multiply just as the symmetry operations
do: thus they form another three-dimensional representation of the group. We see
that in the 7; basis the matrices are block diagonal. This means that the space
spanned by the 7; functions, which is the same space as the §; span, forms a
reducible representation that can be decomposed into a one-dimensional space
and a two-dimensional space (via formation of the T; functions). Note that the
characters (traces) of the matrices are not changed by the change in bases.

The one-dimensional part of the above reducible three-dimensional represen-
tation is seen to be the same as the totally symmetric representation we arrived
at before, D'V, The two-dimensional representation that is left can be shown to
be irreducible; it has the following matrix representations:

DI(E) = Lo ‘ DI(Cy) = -
01 N

1 0 -
D(ZJ(U\) = [ ] . D(?)(U\f) - [ >
0 -1 -

The characters can be obtained by summing diagonal elements:

Pote 1t
| I
(=1}
| S
5
—_
A
PRy
o
It
| |
Por—  toj—
P+
o= )
|

rol—

tdp— PO —
+
tab— o)
L —
)
5
Q
I
| |
[T N Y
+
tI ] P
| S |

—

4.40)

X(E)=2, x(2C) = ~1, Xx(3oy) = 0. (4.41)

Rotations as a basis
Another one-dimensional representation of the group can be obtained by taking

rotation about the z-axis (the C axis) as the object on which the symmetry
operations act:

2
R-5R., RSk, RSk,
R -R., R3-rR., RIS _p. (4.42)

In writing these relations, we use the fact that reflection reverses the sense of
a rotation. The matrix representations corresponding to this one-dimensional
basis are

DY(E) =1, DUCy=1,  DY(CH =1,
DY) =~1,  DVo!)=-1,  DU(g))= 1. (4.43)

These one-dimensional matrices can be shown to multiply together just like the
symmetry operations of the Cs, group. They form an irreducible representation
of the group (because it is one-dimensional, it can not be further reduced). Note
that this one-dimensional representation is not identical to that found above for
the 1s N-atom orbital, or the T 1 function.
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Overview
Wwe have found three distinct irreducible representations for the Cy, symmetry

group: two different one-dimensional and one two-dimensional representations.
Are there any more? An important theorem of group theory shows that the number
of irreducible representations of a group is equal to the number of classes. Since
there are three classes of operation (ie., E.C; and oy), we have found all the
irreducible representations of the Cj, point group. There are no more.

The irreducible representations have standard names; the first D' (that arising
from the Ty and Isy orbitals) is called A, the D! arising from R. is called A,
and D' is called E (not to be confused with the identity operation £). We will
see shortly where to find and identify these names.

Thus, our original D' representation was a combination of two A represen-
tations and one E representation. We say that D' is a direct sum representa-
tion: DY =2A, @ E. A consequence is that the characters of the combination
representation D*' can be obtained by adding the characters of its constituent
irreducible representations.

E 20, 3o,

A, I 1 1
A, 1 1 |
E 2 -1 0
-
20/ 8E 4 1 2

How to decompose reducible representations in general

Suppose you were given only the characters (4,1, 2). How can you find out how
many times A, E, and A, appear when you reduce D™ (o its irreducible parts?
You want to find a linear combination of the characters of A1, A, and E that add
up (4.1, 2). You can treat the characters of matrices as vectors and take the dot
product of 4, with D

4 FE
1 G
11111 1
. =4+ 1+14+2+24+2=12. 4.44
[EC; a, J 2 o, ( )
2
2

The vector (LLIL1,1,1.1) is not normalized; hence to obtain the component of
(4.1,1,2,2,2) along a unit vector in the (1,1.1,1,1.1) direction, one must divide

by the norm of (L,1.LI,1,1); this norm is 6. The result is that the reducible
Tepresentation contains 12/6 = 2 A, components. Analogous projections in the
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E and A; directions give components of | and 0. respectively. In general, to
determine the number nr of times irreducible representation I' appears in the
reducible representation with characters x4, one calculates

1
= D ar(R)xeea(R). (4.45)
R

where g is the order of the group and xr(R) are the characters of the I"th irre-
ducible representation.

Commonly used bases

We could take any set of functions as a basis for a group representation. Commonly
used sets include: coordinates (x. y, z) located on the atoms of a polyatomic
molecule (their symmetry treatment is equivalent to that involved in treating
a set of p orbitals on the same atoms), quadratic functions such as d orbitals
—xy. yz. xz, x> — y%. 22, as well as rotations about the x. y and = axes. The
transformation properties of these very commonly used bases are listed in the
character tables shown in the Appendix.

Summary

The basic idea of symmetry analysis is that any basis of orbitals, displacements.
rotations, etc. transforms either as one of the irreducible representations or as
a direct sum (reducible) representation. Symmetry tools are used to first deter-
mine how the basis transforms under action of the symmetry operations. They
are then used to decompose the resultant representations into their irreducible
components.

4.2.4 Another example

The 2p orbitals of nitrogen
For a function to transform according to a specific irreducible representation
means that the function, when operated upon by a point-group symmetry operator,
yields a linear combination of the functions that transform according to that
irreducible representation. For example, a 2p. orbital (z is the C; axis of NH3) on
the nitrogen atom belongs to the A; representation because it yields unity times
itself when Cs, C32, oy, 0,, 0, or the identity operation act on it. The factor of 1
means that 2p; has A; symmetry since the characters (the numbers listed opposite
A; and below £, 2C3, and 30, in the Cs, character table shown in the Appendix)
of all six symmetry operations are 1 for the A; irreducible representation.

The 2p, and 2p, orbitals on the nitrogen atom transform as the E representation
since C3, C3, 0y, 0, 0 and the identity operation map 2p, and 2p, among one
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another. Specifically,

)

o
—
[

P2
(DA
il

€0S 1207 —sin 1207} 2p | (4.46)
sin 120" cos 120 2p,

,:00524()‘ —sin240° | [ 2p. (447,

sin 240°  cos 240° 2p.

[1 O} [ZP‘] (4.48)
0 1]]|2p,
[ 2p
. 4.49
_ . (4.49)
1 N}
- Fﬂ,- : J [ZP“:’, (4.50)
+2 -1 |2

rot N
0. +; — 5=
e S N T (4.51)
2p, - 1 |i2p,

The 2 x 2 matrices. which indicate how each symmetry operation maps 2p, and
2p, into some combinations of 2p, and 2p,., are the representation matrices (DR
for that particular operation and for this particular irreducible representation (IR).
For example,

~ = D%(o)). (4.52)

;M3 {
+= =3

This set of matrices have the same characters as the D matrices obtained
earlier when the 7; displacement vectors were analyzed, but the individual matrix
elements are different because we used a different basis set (here 2p, and 2py;
above it was 73 and 73). This illustrates the invariance of the trace to the specific
representation; the trace only depends on the space spanned, not on the specific
manner in which it is spanned.

A short-cut

A short-cut device exists for evaluating the trace of such representation matrices
(that is, for computing the characters). The diagonal elements of the representa-
tion matrices are the projections along each orbital of the effect of the symme-
try operation acting on that orbital. For example, a diagonal element of the C;
matrix is the component of 2p, along the 2p,, direction. More rigorously, it is
f 2p} C3 2p, dt. Thus, the character of the C3 matrix is the sum ofj' 2p;Ci2p, dt
and f 2piCs 2p, dt. In general, the character x of any symmetry dperation S
can be computed by allowing S to operate on each orbital ¢;, then projecting S¢;
along ¢; (i.e., forming f @] S¢; dr), and summing these terms,

Z/@*Scb[ dr = x(S). (4.53)
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[f these rules are applied to the 2p, and 2p,. orbitals of nitrogen within the Cj,
point group, one obtains

X(Ey=2. XC=x(C3)=—1. xlon=xlc])=x6))=0.  (4.54)

This set of characters is the same as D'* above and agrees with those of the E
representation for the C3, point group. Hence, 2p, and 2p, belong to or transform
as the E representation. This is why (x. v) is to the right of the row of characters
for the E representation in the C, character table shown in the Appendix. In
similar fashion, the C5, character table (please refer to this table now) states that
d.>_,» and d,, orbitals on nitrogen transform as E, as do dy, and d,-. but d.:
transforms as Aj.

Earlier, we considered in some detail how the three 1sy orbitals on the hydrogen
atoms transform. Repeating this analysis using the short-cut rule just described.
the traces (characters) of the 3 x 3 representation matrices are computed by
allowing £, 2Cs, and 30, to operate on sy, Isy,, and sy, and then computing
the component of the resulting function along the original function. The resulting
characters are y(E) =3, x((C3) = x(Cg) =0. and (o) = x(o)) = x(o/) =
1, in agreement with what we calculated before.

Using the orthogonality of characters taken as vectors we can reduce the above
set of characters to A;+ E. Hence, we say that our orbital set of three 1syy orbitals
forms a reducible representation consisting of the sum of A| and E IRs. This
means that the three 1sy orbitals can be combined to yield one orbital of A,
symmetry and a pair that transform according to the E representation.

4.2.5 Projection operators: symmetry-adapted linear
combinations of atomic orbitals

To generate the above A| and E symmetry-adapted orbitals, we make use of so-
called symmetry projection operators Pz and P,,. These operators are given in
terms of linear combinations of products of characters times elementary symme-
try operations as follows:

Py, = xalS)S, 4.55)
8

Pe=)  xe(5)S. (4.56)
N

where S ranges over C3, C3. 0. 0, and 0/ and the identity operation. The result
of applying Pa, to say lsy, is

PA] IsHl = ISH[ + ]SH2 + ISH_‘ + ]SH: —+ ISH3 + lSH‘
2(15”1 + 1st + ]SH3) = ¢A1- (457)

Il
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which is an (unnormalized) orbital having A, symmetry. Clearly, this same ¢,,
would be generated by Py, acting on sy, or Isyy;. Hence, only one A, orbital

exists. Likewise,
P Isigy =2 x Isy, — Usp, ~ Isp, = ¢ ). (4.58)

which is one of the symmetry-adapted orbitals having E symmetry. The other E
orbital can be obtained by allowing P; to act on Isy, or lsy,:

PE lSHZ =2. ISHz — ISHj — ISH3 = ¢E.Z~ (459)
PE IS”3 =2. ]S”3 - ISH1 - ISH2 = d)E‘}. (460)

It might seem as though three orbitals having E symmetry were generated, but
only two of these are really independent functions. For example, ¢ 3 is related
to ¢e.1 and @ > as follows:

Ges3 = — (e + Pr2). (4.61)

Thus, only ¢¢ | and ¢ » are needed to span the two-dimensional space of the E
representation. If we include ¢r | in our set of orbitals and require our orbitals to
be orthogonal, then we must find numbers ¢ and b such that g = agp.a + b 5 is
orthogonal to ¢¢ ;: [ drde 1 dTt =0.A straightforward calculation givesa = —p
or ¢¢ = a(lsy, — Isy,) which agrees with what we used earlier to construct the
I; functions in terms of the S; functions.

4.2.6 Summary

Letus now summarize what we have learned. Any given set of atomic orbitals {¢; ],
atom-centered displacements or rotations can be used as a basis for the symmetry
operations of the point group of the molecule. The characters x(S) belonging
to the operations S of this point group within any such space can be found by
summing the integrals [ ®; S¢: dt over all the atomic orbitals (or corresponding
unit vector atomic displacements). The resultant characters will, in general, be
reducible to a combination of the characters of the irreducible representations
Xi(5). To decompose the characters x(S) of the reducible representation to a
sum of characters y,(S) of the irreducible representation

XY= nix(S). (4.62)

i

itis necessary to determine how many times, n;, the ith irreducible representation
occurs in the reducible representation. The expression for n; 1s

I
np = 5 E X(S)XI(S). (4.63)

in which g is the order of the point group — the total number of Ssymmetry
operations in the group (e.g., g = 6 for Cy,).
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For example, the reducible representation y (£) = 3. x(C3) = 0.and x(oy) =
1 formed by the three 1sy orbitals discussed above can be decomposed as follows:

1

n,\;22(3-1—0-2-0-1—&—3-1-]):]. (4.64)
)
]
”A;:‘6(3'1+2'O'I+3'1'(—1)):0~ (4.65)
]
111::6(3-2+2'()'(~1)+3-l-()):l. (4.66)

These equations state that the three 1sy orbitals can be combined to give one A,
orbital and, since E 1s degenerate. one pair of E orbitals, as established above. With
knowledge of the i, the symmetry-adapted orbitals can be formed by allowing
the projectors

Pr=Y"x(S5)S (4.67)

to operate on each of the primitive atomic orbitals. How this is carried out was
illustrated for the lsy orbitals in our earlier discussion. These tools allow a
symmetry decomposition of any set of atomic orbitals into appropriate symmetry-
adapted orbitals.

Before considering other concepts and group-theoretical machinery, it should
once again be stressed that these same tools can be used in symmetry analy-
sis of the translational. vibrational and rotational motions of a molecule. The
twelve motions of NH; (three translations, three rotations, six vibrations) can be
described in terms of combinations of displacements of each of the four atoms
in each of three (x, v. o) directions. Hence. unit vectors placed on each atom
directed in the x. y. and = directions form a basis for action by the operations
{S} of the point group. In the case of NHj, the characters of the resultant 12 x
12 representation matrices form a reducible representation in the C», point group:
X(E) =12, x(C3) = x(C3) = 0. x(0,) = x(0)) = x(0") = 2.Forexampleun-
der oy, the H, and Hj atoms are interchanged, so unit vectors on either one will
not contribute to the trace. Unit z-vectors on N and H; remain unchanged as well
as the corresponding y-vectors. However, the x-vectors on N and H, are reversed
in sign. The total character for o of the H, and Hj atoms are interchanged, so
unit vectors on either one will not contribute to the trace. Unit z-vectors on N
and H; remain unchanged as well as the corresponding y-vectors. However, the
x-vectors on N and H,; are reversed in sign. The total character for o, is thus
4 — 2 = 2. This representation can be decomposed as follows:

1

nm:6[1.1.12+2.1.0+3.1.2]=3_ (4.68)
]

nAZ=6[1-1-12+2-1-0+3'(—1)-2]=1, (4.69)
1

nE=6[1-2-12+2~(—1)-0+3~0-2]=4. 4.70)
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From the information on the right side of the Cs, character table. translations of all
fouratoms inthe =, x and y directions transform as Aj(z)and E(x, y), respectively,
whereas rotations about the z(R.), X(Ry). and v(R,) axes transform as As and
E. Hence. of the twelve motions, three translations have A; and E symmetry and
three rotations have A> and E symmetry. This leaves six vibrations, of which two
have A symmetry, none have A, symmetry, and two (pairs) have E symmetry.
We could obtain symmetry-adapted vibrational and rotational bases by allowing
symmetry projection operators of the irreducible representation symmetries to
operate on various elementary Cartesian (. Y. z) atomic displacement vectors.

4.2.7 Direct product representations

Direct products in N-electron wave functions

We now turn to the symmetry analysis of orbital products. Such knowledge is
important because one is routinely faced with constructing symmetry-adapted
N-electron configurations that consist of products of N individual spin orbitals,
one for each electron. A point-group symmetry operator S. when acting on such a
product of orbitals, gives the product of S acting on each of'the individual orbitals

S@1P203 - ) = (SH NS U S3) - - (S ). 4.71)

For example. reflection of an N-orbital product through the o, plane in NH;
applies the reflection operation to all V electrons.

Just as the individual orbitals formed a basis for action of the point-group
operators, the configurations (NV-orbital products) form a basis for the action of
these same point-group operators. Hence. the various electronic configurations
can be treated as functions on which § operates, and the machinery illustrated ear-
lier for decomposing orbital symmetry can then be used to carry out a symmetry
analysis of configurations.

Another short-cut makes this task easier. Since the symmetry-adapted indi-
vidual orbitals {¢;. i = 1.... . W} transform according to irreducible represen-
tations, the representation matrices for the V-term products shown above consist
of products of the matrices belonging to cach ¢;. This matrix product is not a
simple product but what is called a direct product. To compute the characters of
the direct product matrices, one multiplies the characters of the individual matri-
ces of the irreducible representations of the N orbitals that appear in the electron
configuration. The direct-product representation formed by the orbital products
can therefore be symmetry analyzed (reduced) using the same tools as we used
earlier.

Forexample, if one is interested in knowing the symmetry of an orbital product
of the form ataie? (note: lower case letters are used to denote the symmetry
of electronic orbitals, whereas capital letters are reserved to label the overall
configuration’s symmetry) in Cs, symmetry, the following procedure is used. For

139



140

Some important tools of theory

each of the six symmetry operations in the (>, point group, the product of the
characters associated with each of the six spin orbitals (orbital multiplied by « or
B spin) is formed:

2

1S =TT = (24, (9) (st ) (S (4.72)
In the specific case considered here, x(E) =4, x(2C;) = 1. and x(30,) = 0.
Notice that the contributions of any doubly occupied non-degenerate orbitals
(e.g.. a7 and a3) to these direct product characters x (') are unity because for al/
operators (x;(5))> = 1 for any one-dimensional irreducible representation. As
a result, only the singly occupied or degenerate orbitals need to be considered
when forming the characters of the reducible direct-product representation y ().
For this example this means that the direct-product characters can be determined
from the characters Xe(S) of the two active (i.e.. non-closed-shell) orbitals — the
e’ orbitals. That is, X(S8) = xe(S) - xe(S).

From the direct-product characters x(S) belonging to a particular electronic
configuration (e.g., afa%ez), one must still decompose this list of characters into a
sum of irreducible characters. For the example at hand, the direct-product charac-
ters x(S) decompose into one A; . one As, and one E representation. This means
that the e? configuration contains Aj, Az, and E symmetry elements. Projection
operators analogous to those introduced earlier for orbitals can be used to form
symmetry-adapted orbital products from the individual basis orbital products
of the form ajaze”e” | where m and m’ denote the occupation (1 or 0) of the
two degenerate orbitals e, and e,. When dealing with indistinguishable parti-
cles such as electrons. it is also necessary to further project the resulting orbital
products to make them antisymmetric (for fermions) or symmetric {for bosons)
with respect to interchange of any pair of particles. This step reduces the set of
N-electron states that can arise. For example, in the above e configuration case,
only *A,, 'Ay, and 'E states arise: the ’E, *Ay. and ' A, possibilities disappear
when the antisymmetry projector is applied. In contrast, for an e'e’! configura-
tion, all states arise even after the wave function has been made antisymmetric.
The steps involved in combining the point-group symmetry with permutational
antisymmetry are illustrated in Chapter 10 of my QOMIC text. In Appendix I
of Electronic Spectra and Electronic Structure of Polvatomic Molecules,
G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. (1966), the resolu-
tion of direct products among various representations within many point groups
are tabulated.

Direct products in selection rules

Two states , and v, that are eigenfunctions of a Hamiltonian Hy in the absence
of some external perturbation (e.g., electromagnetic field or static electric field or
potential due to surrounding ligands) can be “coupled” by the perturbation V only
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if the symmetries of V and of the two wave functions obey a so-called selection
rule. In particular, only if the coupling integral

/I//le//th =V, (4.73)

is non-vanishing will the two states be coupled by V.

The role of symmetry in determining whether such integrals are non-zero can
be demonstrated by noting that the integrand, considered as a whole, must contain
a component that is invariant under all of the group operations (i.e., belongs to
the totally symmetric representation of the group) if the integral is to not vanish.
In terms of the projectors introduced above we must have

D xalS) Sy vV, (4.74)
N

not vanish. Here the subscript 4 denotes the totally symmetric representation of
whatever point group applies. The symmetry of the product YV, is, according
to what was covered earlier, given by the direct product of the symmetries of
¥r of V and of ¥, So, the conclusion is that the integral will vanish unless this
triple direct product contains, when it is reduced to its irreducible components, a
component of the totally symmetric representation.

To see how this resultis used, consider the integral that arises in formulating the
interaction of electromagnetic radiation with a molecule within the electric-dipole
approximation:

/ YIryd. (4.75)

Here, r is the vector giving, together with e, the unit charge, the quantum me-
chanical dipole moment operator

r:eZZ,,R”—le,. (4.76)
4 J

where Z, and R, are the charge and position of the nth nucleus and r; is the
position of the jth electron. Now, consider evaluating this integral for the singlet
n — " transition in formaldehyde. Here. the closed-shell ground state is of ' A,
symmetry and the singlet excited state, which involves promoting an electron
from the non-bonding b, lone pair orbital on the oxygen into the 7*b; orbital on
the CO moiety, is of ' Ay symmetry (b; x bs = a»). The direct product of the two
wave function symmetries thus contains only a» symmetry. The three components
{x.y, and =) of the dipole operator have, respectively, by, by, and a; symmetry.
Thus, the triple direct products give rise to the following possibilities:

dy X b| = b:. (477)

aZ X b: == b], (478)
dy; X a; = 4. (479)
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There is no component of a; symmetry in the triple direct product, so the integral
vanishes. This allows us to conclude that the n — 7™ excitation in formaldehyde
is electric dipole forbidden.

4.2.8 Overview

We have shown how to make a symmetry decomposition of a basis of atomic
orbitals (or Cartesian displacements or orbital products) into irreducible rep-
resentation components. This tool is very helpful when studying spectroscopy
and when constructing the orbital correlation diagrams that form the basis of
the Woodward—Hoffimann rules. We also learned how to form the direct-product
symmetries that arise when considering configurations consisting of products of
symmetry-adapted spin orbitals. Finally. we learned how the direct product analy-
sis allows one to determine whether or not integrals of products of wave functions
with operators between them vanish. This tool is of utmost importance in deter-
mining selection rules in spectroscopy and for determining the effects of external
perturbations on the states of the species under investigation.



