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Chapter 2

Model problems that form important
starting points

The model problems discussed in this chapter form the basis for chemists’
understanding of the electronic states of atoms, molecules, clusters, and
solids as well as the rotational and vibrational motions of molecules.

2.1 Free electron model of polyenes

The particle-in-a-box problem provides an important model for several
relevant chemical situations.

The “particle-in-a-box” model for motion in two dimensions discussed earlier
can obviously be extended to three dimensions or to one. For two and three
dimensions, it provides a crude but useful picture for electronic states on surfaces
or in metallic crystals, respectively. I say metallic crystals because it is in such
systems that the outermost valence electrons are reasonably well treated as movin g
freely. Free motion within a spherical volume gives rise to eigenfunctions that are
used in nuclear physics to describe the motions of neutrons and protons in nuclei.
In the so-called shell model of nuclei, the neutrons and protons fill separate s,
p. d, etc. orbitals with each type of nucleon forced to obey the Pauli principle
(i.e.. to have no more than two nucleons in each orbital because protons and
neutrons are fermions). To remind you, I display in Fig. 2.1 the angular shapes
that characterize s, p, and d orbitals.

This same spherical box model has also been used to describe the orbitals
of valence electrons in clusters of metal atoms such as Cs,, Cu,. Na, and their
positive and negative ions. Because of the metallic nature of these species, their
valence electrons are essentially free to roam over the entire spherical volume of
the cluster, which renders this simple model rather effective. In this model. one
thinks of each electron being free to roam within a sphere of radius R (i.e.., having
a potential that is uniform within the sphere and infinite outside the sphere).
Finally, as noted above, this same spherical box model forms the basis of the
so-called shell model of nuclear structure. In this model. one assumes that the
protons and neutrons that make up a nucleus, both of which are fermions. occupy
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"d orbital

spherical-box orbitals (one set of orbitals for protons, another set for neutrons
because they are distinguishable from one another). By placing the protons and
neutrons into these orbitals, two to an orbital, one achieves a description of the
energy levels of the nucleus. Excited states are achieved by promoting a neutron
or proton from an occupied orbital to a virtual (i.c.. previously unoccupied)
orbital. In such a model. especially stable nuclei are achieved when “closed-
shell configurations such as 1s° or [s725%2p" are realized (e.g., *He has both
neutrons and protons in 1s? configurations).

The orbitals that solve the Schrédinger equation inside such a spherical box are
not the same in their radial *“shapes” as the s, p. d, etc. orbitals of atoms because, in
atoms, there is an additional radial potential V() = ~Zez/r present. However,
their angular shapes are the same as in atomic structure because. in both cases, the
potential is independent ot @ and ¢. As the orbital plots shown above indicate. the
angular shapes of's, p. and d orbitals display varying numbers of nodal surfaces.
The sorbitals have none. p orbitals have one. and d orbitals have two. Analogous to
how the number of nodes related to the total energy of the particle constrained
to the v, v plane, the number of nodes in the angular wave functions indicates
the amount of angular or rotational energy. Orbitals of s shape have no angular
energy, those of p shape have less then do d orbitals, etc.
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One-dimensional free particle motion provides a qualitatively correct picture
for 7-electron motion along the p, orbitals of delocalized polvenes. The one
Cartesian dimension then corresponds to motion along the delocalized chain. In
such a model, the box length L is related to the carbon—carbon bond length
R and the number N of carbon centers involved in the delocalized network
L =(N —DR. In Fig. 2.2, such a conjugated network involving nine centers
is depicted. In this example, the box length would be eight times the C—C bond
length. The eigenstates y,(x ) and their energies £, represent orbitals into which
electrons are placed. In the example case. if nine 7 electrons are present (e.g.. as
in the 1.3,5.7-nonatetraene radical), the ground electronic state would be repre-
sented by a total wave function consisting of a product in which the lowest four
¥s are doubly occupied and the fifth ¥ is singly occupied:

V = ¥y Bynays Bynays Busa, Bisa. (2.1

The =-component angular momentum states of the electrons are labeled o and A
as discussed earlier.

A product wave function is appropriate because the total Hamiltonian involves
the kinetic plus potential energies of nine electrons. To the extent that this total
energy can be represented as the sum of nine separate energies, one for each
electron, the Hamiltonian allows a separation of variables

H =" H(j) (2.2)
J

in which each H(;) describes the kinetic and potential energy of an individual
electron. Recall that when a partial differential equation has no operators that
couple its different independent variables (i.e., when it is separable), one can
use separation of variables methods to decompose its solutions into products.
Thus, the (approximate) additivity of H implies that solutions of H¥ = EW are
products of solutions to

H(W(r;) = E¥(r)). (2.3)

The two lowest 7 -excited states would correspond to states of the form
V= Yhav By Bvsas faas Bsa, (2.4)
and V™ = Yoy Bunay: BYsa s BYaa s S, (2.5)
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where the spin-orbitals (orbitals multiplied by « or B) appearing in the above
products depend on the coordinates of the various electrons. For example,

Vi Bynayn Bsays Bynays Birsa (2.0)

denotes

Yia(r Wlﬂ(rz)ll’:a(rsW:ﬂ(h)'/fﬂ(rs)l//sﬂ(rs)Wﬂ(ﬁ)lﬁsﬂ(l’x)‘ﬁsa(r«))- (2.7)

The electronic excitation energies from the ground state to each of the above
excited states within this model would be

P8 4
i 2m | L2 L2

LE 6 82
A or— - — —|.
2m | L* L2

[t turns out that this simple model of 7 -¢clectron energies provides a qualitatively
correct picture of such excitation energies. Its simplicity allows one, for example.
to easily suggest how a molecule’s color (as reflected in the complementary
color of the light the molecule absorbs) varies as the conjugation length L of
the molecule varies. That is, longer conjugated molecules have lower-energy
orbitals because L? appears in the denominator of the energy expression. As a
result, longer conjugated molecules absorb light of lower energy than do shorter

AE”

and AE” = (2.8)

molecules.

This simple particle-in-a-box model does not yield orbital energies that relate
to ionization energies unless the potential “inside the box” is specified. Choosing
the value of this potential ¥} such that ¥, + [rrzﬁz/Zm][Sz/L:] is equal to minus
the lowest ionization energy of the 1,3,5,7-nonatetraene radical, gives energy lev-
els (as £ = ¥y + [/ /2m][n?/ L*]) which can then be used as approximations
to ionization energies.

The individual 7 -molecular orbitals

0= (7) sn ()

are depicted in Fig. 2.3 for a model of the 1.3,5-hexatriene 7-orbital system
for which the “box length™ L is five times the distance R¢c between neighboring
pairs of carbon atoms. The magnitude of the kth C-atom centered atomic orbital in
the nth m-molecular orbital is given by (2/L)!/? sin(nwkRec/L). In this figure,
positive amplitude is denoted by the clear spheres, and negative amplitude is
shown by the darkened spheres. Where two spheres of like shading overlap, the
wave function has enhanced amplitude; where two spheres of different shading
overlap. a node occurs. Once again, we note that the number of nodes increases as
one ranges from the lowest energy orbital to higher energy orbitals. The reader is
once again encouraged to keep in mind this ubiquitous characteristic of quantum
mechanical wave functions.

(2.9)
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The nodal
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This simple model allows one to estimate spin densities at each carbon center
and provides insight into which centers should be most amenable to electrophilic
or nucleophilic attack. For example, radical attack at the Cs carbon of the nine-
atom nonatetraene system described earlier would be more facile for the ground
state W than for either W* or W™ In the former, the unpaired spin density resides
in ¥s, which has non-zero amplitude at the Cs site x = L/2. In W* and W™, the
unpaired density is in ¥4 and v, respectively, both of which have zero density at
Cs. These densities reflect the values (2/L)"? sin(nmk Rec /L) of the amplitudes
for this case in which L = 8 x R¢¢ forn = 5,4, and 6, respectively. Plots of the
wave functions for # ranging from 1 to 7 are shown in another format in F ig. 2.4
where the nodal pattern is emphasized. | hope that by now the student is not
tempted to ask how the electron “gets” from one region of high amplitude, through
a node, to another high-amplitude region. Remember, such questions are cast in
classical Newtonian language and are not appropriate when addressing the wave-
like properties of quantum mechanics.

2.2 Bands of orbitals in solids

Notonly does the particle-in-a-box model offer a useful conceptual representation
of electrons moving in polyenes, but it also is the zeroth-order model of band
structures in solids. Let us consider a simple one-dimensional “crystal” consisting
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of a large number of atoms or molecules, each with a single orbital (the spheres
shown) that it contributes to the bonding. Let us arrange these building blocks in
aregular “lattice™ as shown in Fig. 2.5. In the top four rows of this figure we show
the case with 1. 2.3, and 4 building blocks. To the left of each row, we display the
energy splitting pattern into which the building blocks’ orbitals evolve as they
overlap and form delocalized molecular orbitals. Not surprisingly. for n = 2, one
finds a bonding and an antibonding orbital. For # = 3. one has one bonding, one
non-bonding. and one antibonding orbital. Finally. in the bottom row. we attempt
to show what happens for an infinitely long chain. The key point is that the
discrete number of molecular orbitals appearing in the 1-4 orbital cases evolves
into a continuum of orbitals called a band. This band of orbital energies ranges
from its bottom (whose orbital consists of a fully in-phase bonding combination
of the building block orbitals) to its top (whose orbital is a fully out-of-phase
antibonding combination). In Fig. 2.6 we illustrate these fully bonding and fully
antibonding band orbitals for two cases — the bottom involving s-type building
block orbitals. and the top involving p-type orbitals. Notice that when the energy
gap between the building block s and p orbitals is larger than is the dispersion
(spread) in energy within the band of s or band of p orbitals, a band gap occurs
between the highest member of the s band and the lowest member of the p band.
The splitting between the s and p orbitals is a property of the individual atoms
comprising the solid and varies among the elements of the periodic table. The
dispersion in energies that a given band of orbitals is split into as these atomic
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orbitals combine to form a band is determined by how strongly the orbitals on
neighboring atoms overlap. Small overlap produces small dispersion. and large
overlap yields a broad band.

Depending on how many valence electrons each building block contributes, the
various bands formed by overlapping the building block orbitals of the constituent
atoms will be filled to various levels. For example, if each orbital shown above has
a single valence electron in an s orbital (e.g.. as in the case of the alkali metals),
the s-band will be half filled in the ground state with o and 8 paired electrons.
Such systems produce very good conductors because their partially filled bands
allow electrons to move with very little (e.g., only thermal) excitation among
other orbitals in this same band. On the other hand, for alkaline earth systems
with two s electrons per atom, the s band will be completely filled. In such cases,
conduction requires excitation to the lowest members of the nearby p-orbital band.
Finally, if each building block were an Al (3s® 3p') atom, the s band would be
full and the p band would be half-filled. Systems whose highest energy occupied
band is completely filled and for which the gap in energy to the lowest unfilled
band is large are called insulators because they have no way to easily (i.e., with
little energy requirement) promote some of their higher energy electrons from
orbital to orbital and thus effect conduction. If the band gap between a filled
band and an unfilled band is small, it may be possible for thermal excitation (i.e.,
collisions with neighboring atoms or molecules) to cause excitation of electrons
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The valence
and conduction bands
and the band gap.

from the former to the latter thereby inducing conductive behavior. An example
of such a case is illustrated in Fig. 2.7. In contrast, systems whose highest energy
occupied band is partially filled are conductors because they have little spacing
among their occupied and unoccupied orbitals.

To form a semiconductor, one starts with an insulator as shown in Fig. 2.8 with
its filled (dark) band and a band gap between this band and its empty (clear) upper
band. If this insulator material were synthesized with a small amount of “dopant”
whose valence orbitals have energies between the filled and empty bands of the
insulator, one may generate a semiconductor. [f the dopant species has no valence
electrons (i.c.. has an empty valence orbital), it gives rise to an empty band lying
between the filled and empty bands of the insulator as shown in Fig. 2.8a. In this
case, the dopant band can act as an electron acceptor for electrons excited (either
thermally or by light) from the filled band into the dopant band. Once electrons
enter the dopant band. charge can flow and the system becomes a conductor.
Another case is illustrated in Fig. 2.8b. Here, the dopant has its own band filled
but lies close to the empty band of the insulator. Hence excitation of electrons
from the dopant band to the empty band can induce current to flow.

2.3 Densities of states in one, two, and three dimensions

When a large number of neighboring orbitals overlap, bands are
formed. However, the nature of these bands is very different in different
dimensions.
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Before leaving our discussion of bands of orbitals and orbital energies in solids.
I want to address the issue of the density of electronic states and the issue of what
determines the energy range into which orbitals of a given band wil} split. First,
let’s recall the energy expression for the one- and two-dimensional electron in a
box case, and let’s generalize it to three dimensions. The general result is

E= annzhl/ (2mL%), (2.10)
g

where the sum over j runs over the number of dimensions (one, two, or three),
and L; is the Jength of the box along the jth direction. For one dimension,
one observes a pattern of energy levels that grows with increasing », and whose
spacing between neighboring energy levels also grows. However, in two and three
dimensions, the pattern of energy level spacing displays a qualitatively different
character at high quantum number.

Consider first the three-dimensional case and, for simplicity, let’s use a “box”
that has equal length sides L. In this case, the total energy E is (#°72/2mL?)
times (n2 + n? + n?). The latter quantity can be thought of as the square of the
length of a vector R having three components n,, n,, n-. Now think of three
Cartesian axes labeled 1y, n,, and n. and view a sphere of radius R in this space.
The volume of the 1/8 sphere having positive values of ., n,, and n; and having
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radius R is 1/8(4/37 R®). Because each cube having unit length along the 7., Ry,
and n- axes corresponds to a single quantum wave function and its energy, the
total number Ni(E) of quantum states with positive ny, n,, and n. and with
energy between zero and £ = (A°72/2m L*)R? is

/4 . 1 {4 [2mEL*T?
Vo= = | -7R ) = = | =1 | == : 2.11
Nrot 8(3—[ ) 8<3’T[ PR ] ) ( )

The number of quantum states with energies between £ and £ + dE is
(d Nio/d EYAE, which is the density Q(E) of states near energy E:

{4 [a2mL*7%3
QUEY=-|-n| =] ZEY2}. 2.12
(£) 8(3”[};-/72} 2 > (2.12)

Notice that this state density increases as £ increases. This means that, in the
three-dimensional case. the number of quantum states per unit energy grows;
in other words, the spacing between neighboring state energies decreases, very
unlike the one-dimensional case where the spacing between neighboring states
grows as # and thus £ grows. This growth in state density in the three-dimensional
case is aresult of the degeneracies and near-degeneracies that occur. For example,
the states with ny, .. n. =2, 1. L and 1, 1, 2, and 1, 2, 1 are degenerate, and
those withn, . n, n. =53, Tor5. [.30r1,3,50r[,5,30r3,1,50r3.5, | are
degenerate and nearly degenerate to those having quantum numbers 4, 4, 1 or 1,
4.4,0r4. 1. 4.

In the two-dimensional case. degereracies also occur and cause the density
of states to possess an interesting £ dependence. In this case, we think of states
having energy £ = (77%/2m L*)R", but with R* = n? + n>. The total number
of states having energy between zero and £ is .

) 2ml*
Nowl =47 R" =41 E ( — ) . (2.13)
Wit
So, the density of states between £ and E + dE is
1 N 2mL?
QE)= “ 2 gy ('"— . (2.14)
dE fror*

That is, in this two-dimensional case, the number of states per unit energy is
constant for high E values (where the analysis above applies best).
This kind of analysis for the one-dimensional case gives

2mELN”
Nvmml =R= ( ’nw 3 ) . (215)
i
so the state density between £ and £ + dE is
2mLN"
QE) = 1/2( et ) E-2, (2.16)
b

which clearly shows the widening spacing, and thus lower density, as one goes
to higher energies.
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These findings about densities of states in one. two, and three dimensions are
important because. in various problems one encounters in studying electronic
states of extended systems such as solids and surfaces. one needs to know how
the number of states available at a given total energy E varies with £. Clearly, the
answer to this question depends upon the dimensionality of the problem, and this
fact is what I want the students reading this text to keep in mind.

2.4 The most elementary model of orbital energy splittings:
Huckel or tight-binding theory

Now let’s examine what determines the energy range into which orbitals (e.g., p,
orbitals in polyenes or metal s or p orbitals in a solid) split. To begin. consider two
orbitals, one on an atom labeled A and another on a neighboring atom labeled
B: these orbitals could be, for example, the 1s orbitals of two hydrogen atoms,
such as Fig. 2.9 illustrates. However, the two orbitals could instead be two p,
orbitals on neighboring carbon atoms such as are shown in Fig. 2.10 as they
form bonding and 7* antibonding orbitals. In both of these cases, we think of
forming the molecular orbitals (MOs) ¢« as linear combinations of the atomic
orbitals (AOs) x, on the constituent atoms, and we express this mathematically
as follows:

¢k =) Chauka: 2.17)
where the C'y , are called linear combination of atomic orbitals to form molecular
orbital (LCAO-MO) coefficients. The MOs are supposed to be solutions to the
Schrodinger equation in which the Hamiltonian / involves the kinetic energy of
the electron as well as the potentials /| and V detailing its attraction to the left
and right atomic centers:

H = —12mV:+ 1+ k. (2.18)
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In contrast, the AOs centered on the left atom A are supposed to be solutions of the
Schrodinger equation whose Hamiltonian is H = —%>/2mV? + ¥;, and the AOs
on the right atom B have H = —hz/Zm V2 + Vp. Substituting px = Y Cx.ua
into the MO’s Schrédinger equation Heg = exdx and then multiplying on the
left by the complex conjugate of x; and integrating over the », 6 and ¢ coordinates
of the electron produces

DI 2mV A4 el xa)Cra = 6 Y 0t | X)Crae (219)

u a

Recall that the Dirac notation (a | b) denotes the integral of a* and b, and (a lop}h)
denotes the integral of ¢™ and the operator op acting on b.

In what is known as the Hiickel model in organic chemistry or the tight-binding
model in solid-state theory, one approximates the integrals entering into the above
set of linear equations as follows:

(i) The diagonal integral (y,]—h/2mV* + ¥, + Velxs) involving the AQ centered
on the right atom and labeled y, is assumed to be equivalent to
(Ap| =1 /2m V2 + Frlxn). which means that net attraction of this orbital to the left
atomic center is neglected. Moreover, this integral is approximated in terms of the
binding energy (denoted a. not to be confused with the electron spin function o)
for an electron that occupies the x;, orbital: {xs|—h"/2m V> + Vrlxs) = s The
physical meaning of e, is the kinetic energy of the electron in x, plus the
attraction of this electron to the right atomic center while it resides in x5 Of
course, an anatogous approximation is made for the diagonal integral involving
Xt ol =0 /2mV + Vilxa) = ag.

(ii) The off-diagonal integrals (x,| — /°/2mV? + b, + Vrlx,) are expressed in
terms of a parameter 8, , which relates to the kinetic and potential energy of the
electron while it resides in the “overlap region™ in which both x, and y, are
non-vanishing. This region is shown pictorially in Fig. 2.10 as the region where the
left and right orbitals touch or overlap. The magnitude of A is assumed to be
proportional to the overlap S, ,, between the two AOs: S, , = (X4 | xp). It turns out
that 8 is usually a negative quantity, which can be seen by writing it as
(ol =1 /2m V7 + Vixa) + (o) Vilxa). Since Xa 1 an eigenfunction of
-hz/2mV3 + Vk having the eigenvalue «,,. the first term is equal to o, (a negative
quantity) times {x, | x.). the overlap S. The second quantity (x,| ¥ |x.) is equal to
the integral of the overlap density x(r)x,(r) multiplied by the (negative)
Coulomb potential for attractive interaction of the electron with the left atomic
center. So. whenever x, () and y,(r) have positive overlap, 8 will turn out
negative.

(iif)  Finally, in the most elementary Hiickel or tight-binding model, the overlap
integrals (x, | x») = S,.» are neglected and set equal to zero on the right side of
the matrix eigenvalue equation. However, in some Hiickel models, overlap
between neighboring orbitals is explictly treated, so in some of the discussion
below we will retain S, .
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With these Hiickel approximations, the set of equations that determine the
orbital energies £« and the corresponding LCAO-MO coefficients C , are writ-
ten for the two-orbital case at hand as in the first 2 x 2 matrix equations shown

F [ R

which is sometimes written as

{a—g ﬂ—sS}{CL}:[()] 2.21)
B—eS a-—c¢ Cr 0

These equations reduce with the assumption of zero overlap to

L

The « parameters are identical if the two AOs x, and yx;, are identical. as would
be the case for bonding between the two 1s orbitals of two H atoms or two 2p,
orbitals of two C atoms or two 3s orbitals of two Na atoms. If the left and right
orbitals were not identical (e.g.. for bonding in HeH* or for the 77 bonding in a
C-0 group). their o values would be different and the Hiickel matrix problem

would look like:
(¢4 ﬁ CL . I S CL
g o | Cr| |S 1||CRY|

To find the MO energies that result from combining the AOs, one must find
the values of ¢ for which the above equations are valid. Taking the 2 x 2 matrix
consisting of ¢ times the overlap matrix to the left-hand side, the above set of
equations reduces to Eq. (2.21). It is known from matrix algebra that such a set
of linear homogeneous equations (i.e., having zeroes on the right-hand sides) can
have non-trivial solutions (i.e., values of C that are not simply zero) only if the
determinant of the matrix on the left side vanishes. Setting this determinant equal

below:

[§9)
b2
(V%)
—

to zero gives a quadratic equation in which the e values are the unknowns:
(@ —¢e) = (B—eS) =0. (2.24)
This quadratic equation can be factored into a product
(a—B—c+eS)a+B—e—e5)=0. (2.25)
which has two solutions
e=(a+p)/(1+5S). and e=(a— B —S) (2.26)

As discussed earlier, it turns out that the 8 values are usually negative, so the
lowest energy such solution is the & = (o + $8)/(1 + ) solution, which gives the
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energy of the bonding MO. Notice that the energies of the bonding and antibond-
ing MOs are not symmetrically displaced from the value o within this version
of the Hiickel model that retains orbital overlap. In fact, the bonding orbital lies
less than f below «, and the antibonding MO lies more than B above o because
of the 1 + 8 and 1 — S factors in the respective denominators. This asymmet-
ric lowering and raising of the MOs relative to the energies of the constituent
AQOs is commonly observed in chemical bonds; that is, the antibonding orbital
is more antibonding than the bonding orbital is bonding. This is another im-
portant thing to keep in mind because its effects pervade chemical bonding and
spectroscopy.

Having noted the effect of inclusion of AQ overlap effects in the Hiicke! model,
[ should admit that it is far more common to utilize the simplified version of the
Hiickel model in which the § factors are ignored. In so doing, one obtains patterns
of MO orbital energies that do not reflect the asymmetric splitting in bonding and
antibonding orbitals noted above. However, this simplified approach is easier to
use and offers qualitatively correct MO energy orderings. So, let’s proceed with
our discussion of the Hiickel model in its simplified version.

To obtain the LCAO-MO coefficients corresponding to the bonding and anti-
bonding MOs. one substitutes the corresponding « values into the linear equations

EAIBEA

and solves for the C, coefficients (actually, one can solve for all but one C,.and
then use normalization of the MO to determine the final C,,). For example, for the
bonding MO, we substitute ¢ = ¢ + B into the above matrix equation and obtain
two equations for C and C:

(2.27)

—BCL+ BCr = 0. {
BCL ~ BCr = 0. (

.28)
9)

| SO )
(S

These two equations are clearly not independent; either one can be solved for one
C in terms of the other C to give

C = Cy. (2.30)
which means that the bonding MO is
¢ = CLx + xr). (2.31)

The final unknown, Cy , is obtained by noting that ¢ is supposed to be a normalized
function (¢ | ¢) = 1. Within this version of the Hiickel model, in which the
overlap § is neglected, the normalization of ¢ leads to the following condition:

L= {1 ¢)=Cllx | x0) + (xexw)) = 27, (2.32)
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with the final result depending on assuming that each x 1s itself also normalized.
So, finally. we know that C; = (1/2)'/?, and hence the bonding MO is

¢ =1/2)"(n + ). (2.33)
Actually, the solution of 1 = 2C} could also have yielded Cy = —(1/2)!/? and
then we would have

¢ =—(1/2"0n + xw)- (2.34)

These two solutions are not independent (one is just —1 times the other), so only
one should be included in the list of MOs. However, either one is just as good as
the other because. as shown very early in this text, all of the physical properties
that one computes from a wave function depend not on ¢ but on ¥ *¥. So, two
wave functions that differ from one another by an overal] sign factor, as we have
here, have exactly the same "¢ and thus are equivalent.

In like fashion, we can substitute ¢ = o — 8 into the matrix equation and solve
for the Cy. and Cy values that are appropriate for the antibonding MO. Doing so
gives us

" =1/ — xw) (2.35)
or, alternatively,
" =(1/2)"0m = x0). (2.36)

Again, the fact that either expression for ¢* is acceptable shows a property of
all solutions to any Schrddinger equations; any multiple of a solution is also a
solution. In the above example, the two “answers™ for ¢* differ by a multiplicative
factor of (—1).

Let’s try another example to practice using Hiickel or tight-binding theory. In
particular, I'd like you to imagine two possible structures for a cluster of three
Na atoms (i.e., pretend that someone came to you and asked what geometry you
think such a cluster would assume in its ground electronic state), one linear and
one an equilateral triangle. Further, assume that the Na-Na distances in both such
clusters are equal (i.e., that the person asking for your theoretical help is willing
to assume that variations in bond lengths are not the crucial factor in determining
which structure is favored). In Fig. 2.11, I show the two candidate clusters and
their 3s orbitals.
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Numbering the three Na atoms’ valence 3s orbitals x1, x2, and x3, we then set
up the 3 x 3 Hiickel matrix appropriate to the two candidate structures:

a B 0
B o B (2.37)
0 B «

for the linear structure (n.b., the zeroes arise because x; and x3 do not overlap
and thus have no f coupling matrix element). Alternatively, for the triangular
structure, we find

a B B
B o« B (2.38)
B B «

as the Hiickel matrix. Each of these 3 x 3 matrices will have three eigenvalues
that we obtain by subtracting ¢ from their diagonals and setting the determinants
of the resulting matrices to zero. For the linear case, doing so generates

(@~ —2B8(a —e)=0, (2.39)
and for the triangle case it produces
(@—e)y =3 —e)+ 287 =0. (2.40)
The first cubic equation has three solutions that give the MO energies:
e=a+ ()78, £=ua. and e =a —(2)'°8. (241

for the bonding, non-bonding and antibonding MOs, respectively. The second
cubic equation also has three solutions

& =uwu+28. s=ua — f. and e=a —f. (2.42)

So, for the linear and triangular structures, the MO energy patterns are as shown
in Fig. 2.12.

—a-@"

— — =

a+ (Z)I/Zﬂ

a+28

orderings of molecular
orbitals of linear (left)
and triangular (right)

| sodium trimers.
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molecular orbitals of
linear and triangular
sodium trimers (note,
they are not energy
ordered).

Model problems that form important starting points

For the neutral Naj; cluster about which you were asked, vou have three valence
electrons to distribute among the lowest available orbitals. In the lincar case, we
place two electrons into the lowest orbital and one into the second orbital. Doing
so produces a three-electron state with a total energy of £ = 2(« + 2'?8) + « =
3a + 2 272 8. Alternatively, for the triangular species. we put two electrons into
the lowest MO and one into either of the degenerate MOs resulting in a three-
electron state with total energy £ = 3o + 3. Because f 1s a negative guantity,
the total energy of the triangular structure is lower than that of the linear structure
since 3 > 22177,

The above example illustrates how we can use Hiickel/tight-binding theory to
make qualitative predictions (e.g., which of two “shapes™ is likely to be of lower
energy). Notice that all one needs to know to apply such a model to any set of
atomic orbitals that overlap to form MOs is:

(1) the individual AO energies « (which relate to the electronegativity of the AOs) and
(it) the degree to which the AOs couple (the 8 parameters which relate to AO overlaps).

Let’s see if you can do some of this on your own. Using the above results,
would you expect the cation Naj to be linear or triangular? What about the anion
Na; ? Next, | want you to substitute the MO energies back into the 3 x 3 matrix
and find the C;, Cs, and C; coefficients appropriate to each of the three MOs of
the linear and of the triangular structure. See if doing so leads you to solutions
that can be depicted as shown in Fig. 2.13, and see if you can place each set of
MOs in the proper energy ordering.




The most elementary model of orbital energy splittings

Now, I want to show you how to broaden your horizons and use tight-binding
theory to describe all of the bonds in a more complicated molecule such as
ethylene shown in Fig. 2.14. Within the model described above, each pair of
orbitals that “touch” or overlap gives rise to a 2 x 2 matrix. More correctly, all
n of the constituent AOs form an # x »n matrix, but this matrix is broken up into
2 x 2 blocks whenever each AO touches only one other AO. Notice that this did
not happen in the triangular Na; case where each AO touched two other AOs. For
the ethylene case, the valence AOs consist of (a) four equivalent C sp” orbitals
that are directed roward the four 4 atoms, (b) four H s orbitals, (c)two C sp2
orbitals directed toward one another to form the C—C ¢ bond. and (d) two C p.
orbitals that will form the C—~C 7 bond. This total of 12 AOs generates six Hiickel
matrices as shown below. We obtain one 2 x 2 matrix for the C—C & bond of the

form
[ asp3 ,Bspl.sp: J (243)
ﬂsp:_sp: Uyl
and one 2 x 2 matrix for the C—C 7 bond of the form
o ﬁpg,m ) (2.44)
Boipe Q.

Finally, we also obtain four identical 2 x 2 matrices for the C—H bonds:

[ @ ﬁsp:.HJ. (2.45)

ﬁspl,H ay

The above matrices will then produce (i) four identical C—H bonding MOs
having energies e = 1/2{(ayy + o) — [(enr — ac)” + 48212}, (ii) four identical
C—H antibonding MOs having energies ¢* = /2oy + ac) + [(ay — ac)? +
482172}, (iii) one bonding C—C n orbital with & = & + B, (iv) a partner
antibonding C—C orbital with &* = e — B, (v)aC—C o bonding MO with
&= o5 + B, and (vi) its antibonding partner with ¢* = aspr — B. In all of these
expressions. the 8 parameter is supposed to be that appropriate to the specific
orbitals that overlap as shown in the matrices.
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Methane
molecule with four C—H
bonds.

Modei problems that form important starting points

If you wish to practice this exercise of breaking a large molecule down into
sets of interacting AOs, try to see what Hiickel matrices you obtain and what
bonding and antibonding MO energies you obtain for the valence orbitals of
methane shown in Fig, 2.15.

Before leaving this discussion of the Hiickel/tight-binding model. I need to
stress that it has its flaws (because it is based on approximations and involves
neglecting certain terms in the Schrédinger equation). For example. it predicts
(see above) that ethylene has four energetically identical C—H bonding MOs (and
four degenerate C—H antibonding MOs). However, this is not what is seen when
photoelectron spectra are used to probe the energies of these MOs. Likewise. it
suggests that methane has four equivalent C—H bonding and antibonding orbitals.
which again is not true. It turns out that. in each of these two cases (ethylene and
methane), the experiments indicate a grouping of four nearly iso-energetic bond-
ing MOs and four nearly iso-energetic antibonding MOs. However, there is some
“splitting” among these clusters of four MOs. The splittings can be interpreted,
within the Hiickel model, as arising from couplings or interactions among, for
example, one sp” or sp* orbital on a given C atom and another such orbital on the
same atom. Such couplings cause the n x » Hiickel matrix to not block-partition
into groups of 2 x 2 sub-matrices because now there exist off-diagonal 8 factors
that couple one pair of directed AOs to another. When such couplings are included
in the analysis. one finds that the clusters of MOs expected to be degenerate are
not, but are split just as the photoelectron data suggest.

2.5 Hydrogenic orbitals

The hydrogenic atom problem forms the basis of much of our thinking
about atomic structure. To solve the corresponding Schrédinger equation
requires separation of the r, 9, and ¢ variables.

The Schrédinger equation for a single particle of mass u moving in a central
potential (one that depends only on the radial coordinate r) can be written as

e N 9? n 9°
2u\3x?2 9w 9z2

) v+ (V/x? N :'3) v =Ey.  (246)
or, introducing the short-hand notation V2
B 2mV* + Vo = Ev. (2.47)

This equation is not separable in Cartesian coordinates (x, y.z) because of the
way x, y, and = appear together in the square root. However, it is separable in
spherical coordinates where it has the form

7 T8 (,0y 1 4 A 1 8y
—_—— — 2L L — 3 9__ -_ T I/ .
2002 [ar (' ar )} T sing 50 (Sm %8 ) T ramgag TV

=~/ 2mV + Vy = Ey. (2.48)
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Subtracting ¥(r)¥ from both sides of the equation and multiplying by — 22
. . . . . i
then moving the derivatives with respect to  to the right-hand side, one obtains

P 3 13 2ur? /.9
A (sin@—ﬁ) L N PN LAY
sing 96 a0 sin“ 8 d¢-? r or or

(2.49)

Notice that, except for y itself, the right-hand side of this equation is a function
of r only; it contains no 4 or ¢ dependence. Let’s call the entire right-hand side
F(r)¥ to emphasize this fact.

To further separate the 6 and ¢ dependence, we multiply by sin® # and subtract
the 6 derivative terms from both sides to obtain

a2

‘;TU' = F(r)ysin®0 — sinea% (sine‘;—‘g) . (2.50)
Now we have separated the ¢ dependence from the 8 and r dependence. We
now introduce the procedure used to separate variables in differential equations
and assume 1 can be written as a function of ¢ times a function of » and 9:
¥ = P(¢)0(r. 6). Dividing by ® 0, we obtain

%Z% = é <F(1‘)sin29Q—sin€% (gin@ﬁ)). (2.51)
Now all of the ¢ dependence is isolated on the left-hand side; the right-hand side
contains only r and 6 dependence.

Whenever one has isolated the entire dependence on one variable as we have
done above for the ¢ dependence. one can casily see that the left- and right-hand
sides of the equation must equal a constant. For the above example, the left-
hand side contains no  or 8 dependence and the right-hand side contains no )
dependence. Because the two sides are equal, they both must actually contain no
r. 6, or ¢ dependence; that is, they are constant.

For the above example, we therefore can set both sides equal to a so-called
separation constant that we call —m?. It will become clear shortly why we have
chosen to express the constant in the form of minus the square of an integer.
You may recall that we studied this same ¢ equation earlier and learned how the
integer m arises via the boundary condition that ¢ and ¢ + 27 represent identical
geometries.

2.5.1 The ® equation

The resulting ® equation reads (the "symbol is used to represent second deriva-
tive)

Q"+ mPd =0, (2.52)

This equation should be familiar because it is the equation that we treated much
carlier when we discussed the z-component of angular momentum. So, its further
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analysis should also be familiar, but, for completeness, I repeat much of it. The
above equation has as its most general solution

N

<D . Aei,1,¢'+3871,11074 (2 3)

Because the wave functions of quantum mechanics represent probability densi-
ties, they must be continuous and single-valued. The latter condition, applied to
our ¢ function, means that

n

P(p) = (27 + ¢) (2.54)

or

h

Ae" (1 — Ty 4 BT (1 — Ty = 0. (2.55)

This condition is satisfied only when the separation constant is equal to an integer
m =0, £1. £2, ... and provides another example of the rule that quantization
comes from the boundary conditions on the wave function. Here m is restricted
to certain discrete values because the wave function must be such that when you
rotate through 27 about the z-axis, you must get back what you started with.

2.5.2 The © equation

Now returning to the equation in which the ¢ dependence was isolated from the
r and 6 dependence and rearranging the 8 terms to the left-hand side, we have

1 a /. eaQ m*Q F)O (2.36)
— | SING—— - = : . Lo
sinf 96 86 sin’ 9 e

In this equation we have separated 8 and » variations so we can further decompose
the wave function by introducing Q = ®(6)R(r), which yields

11 2 ( 8(-)) m? F(r)R
sinf — = =

- = —— = . 2.57
© siné 96 a0 sin’ @ R ( )

where a second separation constant, —A, has been introduced once the » and
6 dependent terms have been separated onto the right- and left-hand sides,

respectively.
We now can write the 6 equation as
L2 (0g29) 10 _ 0 2.58
sin 36 96 ) st (228)

where m is the integer introduced earlier. To solve this equation for @, we make
the substitutions z = cos @ and P(z) = O(9), so /1 — z2 = siné, and
a
a0

@
N
| o

0
= —sinf—. 2.59
" sin = (2.59)

0
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The range of values for 6 was 0 < 6 < 7, so the range forzis —1 <z < |. The
equation for ©, when expressed in terms of P and =, becomes

d , dP > P
(=)= )= —— +rP=0. (2.60)
d:z dz I —

-2

Now we can look for polynomial solutions for P. because z is restricted to be
less than unity in magnitude. If m = 0, we first let

.
P=3as (2.61)
h={)

and substitute into the differential equation to obtain
D+ 200k + Dagaz' = 3tk + Dkagst + 4 D at =0 (2.62)
k=) k=0 k=0

Equating like powers of z gives

LIA(/\'(/\’+ l)—)‘.) 5
= 2.63
G TR D (=69
Note that for large values of &
dia 1+ 1)

=l (2.64)

o R0+

Since the coefficients do not decrease with 4 for large £, this series will diverge
for = = £1 unless it truncates at finite order. This truncation only happens if the
separation constant A obeys i = /(/ + 1). where / is an integer. So. once again.
we see that a boundary condition (i.e.. that the wave function not diver ge and thus
be normalizable in this case) gives rise to quantization. In this case. the values of
A are restricted to /(/ + 1): before, we saw that 7 is restricted to 0. 1. +2. . ..

Since the above recursion relation links every other coefficient, we can choose
to solve for the even and odd functions separately. Choosing aq and then deter-
mining all of the even ¢, in terms of this «,. followed by rescaling all of these
a; to make the function normalized, generates an even solution. Choosing «; and
determining all of the odd a; in like manner generates an odd solution.

For / = 0. the series truncates after one term and results in Py(z) = . For

! =1 the same thing applies and P(z) = z. For [ = 2. a» = 6du = —3ay , 50
one obtains P> = 3z° — 1. and so on. These polynomxals are called Legendre
polynomials.

For the more general case where m # 0, one can proceed as above to gener-
ate a polynomial solution for the ® function. Doing so results in the following
solutions:

int]
Pz = (1 - 23 4RE) (2.65)

dzim
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These functions are called associated Legendre polynomials, and they constitute
the solutions to the ® problem for non-zero m values.

The above £ and e functions, when re-expressed in terms of 6 and ¢, yield
the full angular part of the wave function for any centrosymmetric potential. These
solutions are usually written as Y, ,(6, ¢) = P(cos8)(2m)~ 172 exp(im¢), and
are called spherical harmonics. They provide the angular solution of the (r. 8. o)
Schrédinger equation for amy problem in which the potential depends only on the
radial coordinate. Such situations include all one-electron atoms and ions (c.g.,
H, He™, Li*™, etc.), the rotational motion of a diatomic molecule (where the
potential depends only on bond length 1), the motion of a nucleon in a spherically
symmetrical “box’ (as occurs in the shell model of nuclei). and the scattering of
two atoms (where the potential depends only on interatomic distance).The Y, ,,
functions possess varying numbers of angular nodes, which, as noted earlier.
give clear signatures of the angular or rotational energy content of the wave
function. These angular nodes originate in the oscillatory nature of the Legendre
and associated Legendre polynomials £/"(cos 8); the higher / is, the more sign
changes occur within the polynomial.

2.5.3 The R equation

Letus now turn our attention to the radial equation, which is the only place that the
explicit form of the potential appears. Using our earlier results for the equation
obeyed by the R(r) function and specifying V' (r) to be the Coulomb potential
appropriate for an electron in the field of a nucleus of charge + Ze, yields

1 d [ ,dR 2 z\ I+ 1)
—_—r— — | £ — R=0. 2.66
rdr (7 dr ) * I:Tf < * r ) r? :l (2.66)

We can simplify things considerably if we choose rescaled length and energy units
because doing so removes the factors that depend on u, A, and e. We introduce a
new radial coordinate p and a quantity o as follows:

[ —8SuE

a ( G )

Notice that if E is negative, as it will be for bound states (i.e., those states with en-

ergy below that of a free electron infinitely far from the nucleus and with zero kin-

etic energy), p isreal. On the other hand, if £ is positive, as it will be for states that

lie in the continuum, p will be imaginary. These two cases will give rise to quali-

tatively different behavior in the solutions of the radial equation developed below.

We now define a function S such that S(p) = R(r) and substitute S for R to
obtain

1
2 ; nZzet

. and ol=— . 2.67
hoooamd e 2ER (2.67)

1 d (,dS 1 I+ o
—— (== —— —}s=0. 2.6
o*dp (p dp)+< 4 p? +p) (2:68)
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The differential operator terms can be recast in several ways using

1 d ( 245) d25+ 2ds 1 dl( 5) 2.69)
s—— | p" 5 = ~——=(pS). .
p*dp dp*  pdp  pdp?

dp

The strategy that we now follow is characteristic of solving second order
differential equations. We will examine the equation for S at large and small p
values. Having found solutions at these limits, we will use a power series in p to
“interpolate™ between these two limits.

Let us begin by examining the solution of the above equation at small values
of p to see how the radial functions behave at small ». As p — 0, the second term
in the brackets in Eq. (2.68) will dominate. Neglecting the other two terms in the
brackets, we find that, for small values of p (or ), the solution should behave like
p’ and because the function must be normalizable, we must have L > 0. Since
L can be any non-negative integer, this suggests the following more general form
for S(p):

S(p) ~ pte. (2.70)

This form will insure that the function is normalizable since S(p) — Oasr — 0o
forall L, as long as p is a real quantity. If p is imaginary, such a form may not
be normalized (see below for further consequences).

Turning now to the behavior of S for large p, we make the substitution of S(p)
into the above equation and keep only the terms with the largest power of p (e.g.,
the first term in brackets in Eq. (2.68)). Upon so doing. we obtain the equation

. 1
aple™ = Zp’-e*“*’. (2.71)

which leads us to conclude that the exponent in the large-p behaviorof Sisa = %
Having found the small- and large-p behaviors of S(p), we can take S to have the
following form to interpolate between large and small p-values:

S(p) = pre ™ P(p). (2.72)

where the function P is expanded in an infinite power series in p as P(p)=
> aip*. Again substituting this expression for S into the above equation we
obtain

P'o+ P2L+2-p)+ Plo—L -1 =0, (2.73)
and then substituting the power series expansion of P and solving for the a;s we

arrive at a recursion relation for the a; coefficients:

(/<'—U+L+I)a,( 5
p] = . 2.74
S Dk + 2L +2) 74

For large £, the ratio of expansion coefficients reaches the limit a; | /a; = 1/k.
which has the same behavior as the power series expansion of e”. Because the
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power series expansion of P describes a function that behaves like e” for large p,
the resulting S(p) function would not be normalizable because the ¢—*/2 factor
would be overwhelmed by this e” dependence. Hence. the series expansion of P
must truncate in order to achieve a normalizable S function. Notice that if pis
imaginary, as it will be if £ is in the continuum, the argument that the series must
truncate to avoid an exponentially diverging function no longer applies. Thus,
we see a key difference between bound (with p real) and continuum (with p
imaginary) states. In the former case, the boundary condition of non-divergence
arises; in the latter, it does not because exp(p/2) does not diverge if p is
imaginary.

Totruncate ata polynomial of order n’, we musthave n’ — o + L + 1 = 0. This
implies that the quantity o introduced previously is restricted to o = n' + L + 1.
which is certainly an integer: let us call this integer #. If we label states in order
of increasing n = 1.2. 3. .. .. we see that doing so is consistent with specifying
a maximum order (»n') in the P(p) polynomial n" = 0. 1. 2. ... after which the
L-value can run from L = 0, in steps of unity, up to L = »n — 1.

Substituting the integer n for o, we find that the energy levels are quantized
because ¢ is quantized (equal to #):

24
L (2.75)
2frn
and the scaled distance turns out to be
Az
p=2 (2.76)
doph

Here, the length aq is the so-called Bohr radius (ag = ﬁz/uez); it appears once the
above expression for £ is substituted into the equation for ©. Using the recursion
equation to solve for the polynomial’s coefficients a; for any choice of n and /
quantum numbers generates a so-called Laguerre polynomial; P,_ 1-1(p). They
contain powers of p from zero throughn — L — 1, and they have n — L — 1 sign
changes as the radial coordinate ranges from zero to infinity. It is these sign
changes in the Laguerre polynomials that cause the radial parts of the hydrogenic
wave functions to have n — L — 1 nodes. For example, 3d orbitals have no radial
nodes, but 4d orbitals have one; and, as shown in Fig. 2.16, 3p orbitals have one
while 3s orbitals have two. Once again, the higher the number of nodes, the hi gher
the energy in the radial direction.

Let me again remind you about the danger of trying to understand quantum
wave functions or probabilities in terms of classical dynamics. What kind of
potential ¥'(r) would give rise to, for example, the 3s P(r) plotshowninFig. 2.16?
Classical mechanics suggests that P should be large where the particle moves
slowly and small where it moves quickly. So, the 3s P(r) plot suggests that the
radial speed of the electron has three regions where it is low (i.e., where the peaks
in P are) and two regions where it is very large (i.e., where the nodes are). This, in
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3p§:

3s

Radial distribution function, P

x } Radius, r

turn, suggests that the radial potential /() experienced by the 3s electron is high
in three regions (near peaks in P)and low in two regions (and at the nucleus). Of
course, this conclusion about the form of V(r) is nonsense and again illustrates
how one must not be drawn into trying to think of the classical motion of the
particle, especially for quantum states with small quantum number. In fact, the
low quantum number states of such one-electron atoms and ions have their radial
P(r) plots focused in regions of r-space where the potential —Ze?/r is most
attractive (i.e., largest in magnitude).

Finally. we note that the energy quantization does not arise for states lying in
the continuum because the condition that the expansion of P(p) terminate does
not arise. The solutions of the radial equation appropriate to these scattering states
(which relate to the scattering motion of an electron in the field of a nucleus of
charge Z) are a bit outside the scope of this text. so we will not treat them further
here. For the interested student, they are treated on p. 90 of the text by Eyring,
Walter, and Kimball.

To review, separation of variables has been used to solve the full (, 6, ¢)
Schrodinger equation for one electron moving about a nucleus of charge Z. The
8 and ¢ solutions are the spherical harmonics Y; (6, ¢). The bound-state radial
solutions

Ry 1(r)=S(p)=p*e " P_;_(p) (2.77)

depend on the n and / quantum numbers and are given in terms of the Laguerre
polynomials.
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2.5.4 Summary

To summarize, the quantum numbers Z and m arise through boundary conditions
requiring that v/(¢) be normalizable (i.e., not diverge) and ¥(¢) = Y (¢ + 27).
The radial equation, which is the only place the potential energy enters. is found
to possess both bound states (i.e., states whose energies lie below the asymptote
at which the potential vanishes and the kinetic energy is zero) and continuum
states lying energetically above this asymptote. The resulting hydrogenic wave
functions (angular and radial) and energies are summarized on pp. 133-136 in
the text by Pauling and Wilson for » up to and including 6 and L up to 5.

There are both bound and continuum solutions to the radial Schrédinger
equation for the attractive Coulomb potential because, at cnergies below the
asymptote, the potential confines the particle between » = 0 and an outer turning
point, whereas at energies above the asymptote, the particle is no longer confined
by an outer turning point (see Fig. 2.17). The solutions of this one-electron
problem form the qualitative basis for much of atomic and molecular orbital
theory. For this reason, the reader is encouraged to gain a firmer understanding
of the nature of the radial and angular parts of these wave functions. The orbitals
that result are labeled by 5, L. and m quantum numbers for the bound states and
by L and m quantum numbers and the energy £ for the continuum states. Much
as the particle-in-a-box orbitals are used to qualitatively describe m-electrons in
conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative
descriptions of orbitals of atoms with more than a single electron. By introducing
the concept of screening as a way to represent the repulsive interactions among
the electrons of an atom, an effective nuclear charge Z.q can be used in place of
Zinthe ¥, , and £, to generate approximate atomic orbitals to be filled by
electrons in a many-electron atom. For example, in the crudest approximation
of a carbon atom, the two 1s electrons experience the full nuclear attraction so
Zeg = 6 for them, whereas the 2s and 2p electrons are screened by the two 1s

~Ze3ir T
0.0

Bound y
states f

Continuum state
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electrons, so Zeg = 4 for them. Within this approximation, one then occupies
two 1s orbitals with Z = 6, two 2s orbitals with Z = 4 and two 2p orbitals with
Z = 4 in forming the full six-electron wave function of the lowest energy state of

carbon.

2.6 Electron tunneling

Tunneling is a phenomenon of quantum mechanics, hot classical mechan-
ics. It is an extremely important subject that occurs in. a wide variety of
chemical species.

Solutions to the Schrédinger equation display several properties that are very
different from what one experiences in Newtonian dynamics. One of the most
unusual and important is that the particles one describes using quantum mechanics
can move into regions of space where they would not be “allowed” to go if they
obeyed classical equations. Let us consider an example to illustrate this so-called
tunneling phenomenon. Specifically, we think of an electron (a particle that we
likely would use quantum mechanics to describe) moving in a direction we will
call R under the influence of a potential that is:

(i) Infinite for R < 0 (this could, for example, represent a region of space within a
solid material where the electron experiences very repulsive interactions with other
electrons);

(i) Constant and negative for some range of R between R = 0 and R, (this could
represent the attractive interaction of the electrons with those atoms or molecules
in a finite region of a solid);

(iii) Constant and repulsive by an amount §V 4 D, for another finite region from Ry
t0 Ripax + 8 (this could represent the repulsive interactions between the electrons
and a layer of molecules of thickness & lying on the surface of the solid at Riax)s

(iv) Constant and equal to D, from Ry, + 8 to infinity (this could represent the
electron being removed from the solid. but with a work function energy cost of D,
and moving freely in the vacuum above the surface and the ad-layer). Such a
potential is shown in Fig. 2.18.

| f
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D, Le

0.0

Roux Ry T

max max

Electron position coordinate R ——

Figure 2.18 LB
dimensional potential

showing a well, a
barrier, and the
asymptotic region.
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The piecewise nature of this potential allows the one-dimensional Schrédinger
equation to be solved analytically. For energies lyingintherange D, < £ < D. +
8V, an especially interesting class of solutions exists. These so-called resonance
states occur at energies that are determined by the condition that the amplitude of
the wave function within the barrier (i.e.. for 0 < R < Ry ) be large. Let us now
turn our attention to this specific energy regime, which also serves to introduce
the tunneling phenomenon.

The piecewise solutions to the Schridinger equation appropriate to the reso-
nance case are easily written down in terms of sin and cos or exponential functions,
using the following three definitions:

! l ’ - hi v . hl
k= 2m E/K. K=\2m(E =Dy, = V2mdD + 81 = E) /1,

(2.78)

The combinations of sin(k R) and cos(k R) that solve the Schrodinger equation
in the inner region and that vanish at g = 0 (because the function must vanish
within the region where ¥ is infinite and because it must be continuous, it must
vanish at R = 0) is

W = 4sin(kR) (for0 < R < Rinax ). (2.79)

Between R, and Rmax + 6. there are two solutions that obey the Schrédinger
equation, so the most general solution is a combination of these two:

V= B¥exp(«'R) + B~ exp(—«'R) (for Rpax < R < Ropr + 8). (2.80)

Finally. in the region beyond Ry.x + 8, wecanusea combination of either sin(k'R)
and cos(k'R) or exp(ik’'R) and exp(—ik'R) to express the solution. Unlike the
region near R = 0, where it was most convenient to use the sin and cos functions
because one of them could be “thrown away” since it could not meet the boundary
condition of vanishing at R = 0, in this large- R region, either set is acceptable. We
choose to use the exp(ik'R)and exp(—ik’'R) set because each of these functions is
an eigenfunction of the momentum operator ~%d/d R. This allows us to discuss
amplitudes for electrons movin g with positive momentum and with negative
momentum. So, in this region, the most general solution is

U = Cexp(ik'R) + Dexp(~ik'R) (for Ry +8 < R < 0). (2.81)

There are four amplitudes (4, B*, B~,and C) that can be expressed in terms
of the specified amplitude D of the incoming flux (e.g., pretend that we know
the flux of electrons that our experimental apparatus “shoots” at the surface).
Four equations that can be used to achieve this goal result when W and dW/dR
are matched at R, and at Rumax + 8 (one of the essentia) properties of solutions
to the Schrédinger equation is that they and their first derivative are continuous;
these properties relate to W being a probability and —i43/9 R being a momentum




Electron tunneling

operator). These four equations are
Asin(kRyux) = B7 exp(k Ruax) + B~ exp(—« Ruux)s (2.82)

Ak cos(h Rux) = 1" BT exp(k’ Rpax) — &' B exp(—x' Ruag ). (2.83)

B exp(i’(Rmax + 8)) + B™ exp(—«'( Riax + )
= Cexp(ik'(Rpa + 8) + Dexp(—ik'(Ruax + 68), (2.84)

K/B‘ exp(K/(Rmux + 5)) - K,B— exp(—K’(Rmux + 5))
= ik'Cexp(ik'(Rmax + 8)) — ik’ Dexp(—ik'(Ryu + 8)). (2.85)

It is especially instructive to consider the value of 4/ D that results from solving
this set of four equations in four unknowns because the modulus of this ratio
provides information about the relative amount of amplitude that exists inside
the barrier in the attractive region of the potential compared to that existing in
the asymptotic region as incoming flux.

The result of solving for 4/D is

AJD = 4" exp[—ik'(Ryax + 8)]{exple S)ik" — x )k sin(k Ry
+ hCOS(A R/ Tk + exp(—x SWik" + «)[x" sin(k Rpay)
— kcos(k Ry )1/ iK'} (2.86)
Further, it is instructive to consider this result under conditions of a high (large

D, + 8V — E) and thick (large §) barrier. In such a case. the “tunneling factor”
exp(—«'8) will be very small compared to its counterpart exp(x'8), and so

o
A/D =4 /‘I al - exp{—ih"(Ruax + 8)] expl—k'8) [« sin{k Rinuy)
ik~ K
+ kcosth Rye)] ™' (2.87)

The exp(—«'8) factor in 4/ D causes the magnitude of the wave function inside
the barrier to be small in most circumstances; we say that incident flux must
tunnel through the barrier to reach the inner region and that exp(—«'$) gives the
probability of this tunneling.

Keep in mind that, in the energy range we are considering (£ < D, + ), a
classical particle could not even enter the region Ry < R < Ry + 8 this is
why we call this the classically forbidden or tunneling region. A classical particle
starting in the large-R region can not enter. let alone penetrate, this region, so
such a particle could never end up inthe 0 < R < Ry, inner region. Likewise, a
classical particle that begins in the inner region can never penetrate the tunneling
region and escape into the large-R region. Were it not for the fact that electrons
obey a Schrddinger equation rather than Newtonian dynamics, tunneling would
not occur and, for example. scanning tunneling microscopy (STM), which has
proven to be a wonderful and powerful tool for imaging molecules on and near
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surfaces. would not exist, Likewise, many of the devices that appear in our mod-
ern electronic tools and games, which depend on currents induced by tunneling
through various junctions, would not be available. But. of course. tunneling does
occur and it can have remarkable effects.

Let us examine an especially important (in chemistry) phenomenon that takes
place because of tunneling and that occurs when the energy £ assumes very
special values. The magnitude of the 4/D factor in the above solutions of the
Schrédinger equation can become large if the energy £ is such that

K sin(k Ryuy) + k cos(k Rya) (2.88)
is small. In fact, if
tan(k Rpy ) = —k /' (2.89)

the denominator factor in A/D will vanish and 4/D will become infinite. It can
be shown that the above condition is similar to the energy quantization condition

tan(/(Rynux) = _A'/A' (290)

that arises when bound states of a finite potential well are examined. There is,
however. a difference. In the bound-state situation, two energy-related parameters
occur

k= 2uE/ (2.91)

and

K = \/2;1(03 — E)R. (2.92)

In the case we are now considering, k is the same, but

K = V2De + 8V — Ey/i2) (2.93)

rather than « occurs, so the two tan(k Ry ) equations are not identical, but they
are quite similar,

Another observation that is useful to make about the situations in which 4 /D
becomes very large can be made by considering the case of a very high barrier (so
that «" is much larger than k). In this case, the denominator that appears in 4/ D,

k' SIN(k Rypoy) + & COS(K Rinax ) = k" sin(k Ry ), (2.94)
can become small if
Sin(k R ) = 0. (2.95)

This condition is nothing but the energy quantization condition that occurs for
the particle-in-a-box potential shown in Fig. 2.19. This potential is identical to
the potential that we were examining for 0 < R < Rmax, but extends to infinity
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beyond Ray: the barrier and the dissociation asymptote displayed by our potential
are absent.

Lets consider what this tunneling problem has taught us. First, it showed
us that quantum particles penetrate into classically forbidden regions. It showed
that, at certain so-called resonance energies, tunneling is much more likely than at
energies than are “off resonance”. In our model problem, this means that electrons
impinging on the surface with resonance energies will have a very high probability
of tunneling to produce an electron that is trapped in the 0 < R < Ry region.

By the way, we could have solved the four equations for the amplitude C
of the outgoing wave in the R > Rpy region in terms of the 4 amplitude. We
might want to take this approach if wanted to model an experiment in which the
electronbeganinthe 0 < R < Ry, region and we wanted to compute the relative
amplitude for the electron to escape. However, if we were to solve for C/4 and
then examine under what conditions the amplitude of this ratio would become
small (so the electron can not escape), we would find the same tan(k Rmax) =
—k/«’ resonance condition as we found from the other point of view. This means
that the resonance energies tell us for what collision energies the electron will
tunnel inward and produce a trapped electron and, at these same energies, an
electron that is trapped will not escape quickly.

Whenever one has a barrier on a potential energy surface. at energies above
the dissociation asymptote D, but below the top of the barrier (D, + 8V here),
ong can expect resonance states to occur at “special” scattering energies £. As
we illustrated with the model problem, these so-called resonance energies can
often be approximated by the bound-state energies of a potential that is identical
to the potential of interest in the inner region (0 < R < Ry,y) but that extends
to infinity beyond the top of the barrier (i.e., beyond the barrier, it does not fall
back to values below £).

The chemical significance of resonances is great. Highly rotationally excited
molecules may have more than enough total energy to dissociate (D.), but this
energy may be “stored” in the rotational motion, and the vibrational energy may be
less than D.. In terms of the above model. high angular momentum may produce
a significant centrifugal barrier in the effective potential that characterizes the
molecule’s vibration, but the system’s vibrational energy may lie significantly
below D,. In such a case, and when viewed in terms of motion on an angular-
momentum-modified effective potential such as | show in Fig. 2.20, the lifetime
of the molecule with respect to dissociation is determined by the rate of tunneling
through the barrier.

In that case, one speaks of “rotational predissociation” of the molecule. The
lifetime 7 can be estimated by computing the frequency v at which flux that exists
inside R« strikes the barrier at R,
o
20 R

(s7Y (2.96)

1V
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and then multiplying by the probability P that flux tunnels through the barrier
from Ry, t0 Ry + 8

P = exp(—2«’'$). (2.97)
The result is that
- K exp(=2 ') (2.98)
T = Xp{—2k .
2/1'R1’1]3X p

with the energy E entering into & and «' being determined by the resonance
condition: (k' SIN(Ak Ripax ) + £ €oS(k Rinax)) = minimum. By looking back at the
defintion of ', we note that the probability of tunneling falls off exponentially
with a factor depending on the width § of the barrier through which the particle
must tunnel multiplied by «’, which depends on the height of the barrier D.+6
above the energy E available. This exponential dependence on thickness and
height of the barriers is something you should keep in mind because it appears
in all tunneling rate expressions,

Another important case in which tunneling occurs is in electronically meta-

stable states of anions. In so-called shape resonance states, the anion’s “extra™
electron experiences:

(1) an attractive potential due to its interaction with the underlying neutral molecule’s
dipole, quadrupole, and induced electrostatic moments, as well as

(ii)  a centrifugal potential of the form L(L + 1)h?/872m, R? whose magnitude
depends on the angular character of the orbital the extra electron occupies.

When combined, the above attractive and centrifugal potentials produce an effec-
tive radial potential of the form shown in Fig. 2.21 for the Nj case in which the
added electron occupies the 7* orbital which has L = 2 character when viewed
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symmetry

N, " orbital
. /having d angular

-

7 R

from the center of the N—N bond. Again, tunneling through the barrier in this
potential determines the lifetimes of such shape resonance states.

Although the examples treated above involved piecewise constant potentials
(so the Schrodinger equation and the boundary matching conditions could be
solved exactly), many of the characteristics observed carry over to more chemi-
cally realistic situations. In fact, one can often model chemical reaction processes
in terms of motion along a “reaction coordinate™ (s) from a region characteristic
of reactant materials where the potential surface is positively curved in all direc-
tion and all forces (i.e.. gradients of the potential along all internal coordinates)
vanish. to a transition state at which the potential surface’s curvature along s is
negative while all other curvatures are positive and all forces vanish: onward to
product materials where again all curvatures are positive and all forces vanish.
A prototypical trace of the energy variation along such a reaction coordinate
is shown in Fig. 2.22. Near the transition state at the top of the barrier on this
surface. tunneling through the barrier plays an important role if the masses of
the particles moving in this region are sufficiently light. Specifically. if H or D
atoms are involved in the bond breaking and forming in this region of the energy
surface, tunneling must usually be considered in treating the dynamics.

Within the above “recaction path™ point of view, motion transverse to the reac-
tion coordinate s is often modeled in terms of local harmonic motion although
more sophisticated treatments of the dynamics are possible. This picture leads
one to consider motion along a single degree of freedom (s), with respect to
which much of the above treatment can be carried over, coupled to transverse
motion along all other internal degrees of freedom taking place under an entirely
positively curved potential (which therefore produces restoring forces to move-
ment away from the “'streambed” traced out by the reaction path s). This point of
view constitutes one of the most widely used and successful models of molecular
reaction dynamics and is treated in more detail in Chapter 8 of this text.
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2.7 Angular momentum
2.7.1 Orbital angular momentum

A particle moving with momentum p at a position r relative to some coordi-
nate origin has so-called orbital angular momentum equal to L = r x p. The
three components of this angular momentum vector in a Cartesian coordinate
system located at the origin mentioned above are given in terms of the Cartesian
coordinates of r and p as follows:

L. =xp,.—yp,.. (2.99)
Ly =yp.—zp,, (2.100)
Ly =zp, —ap.. (2.101)

Using the fundamental commutation relations among the Cartesian coordi-
nates and the Cartesian momenta:

lav-pil=qip, — Pige =118, :(j k =x.yv.z2), (2.102)

it can be shown that the above angular momentum operators obey the following
set of commutation relations:

[L..L.)=ihL.. (2.103)
(L,.L.]=ihL,. (2.104)
[L..L,])=inL,. (2.105)

Although the components of L do not comniute with one another, they can be
shown to commute with the operator L defined by

LP=17+12+12% (2.106)

This new operator is referred to as the square of the total angular momentum
operator.

The commutation properties of the components of L allow us to conclude
that complete sets of functions can be found that are eigenfunctions of L2 and of
one, but not more than one, component of L. It is convention to select this one
component as L, and to label the resulting simultaneous eigenstates of L2 and
L: as {I, m) according to the corresponding eigenvalues:

L3, m) =Tz:/(l+l)|l,m), [=0,1,2.3...., (2.107)
LA m) = Tm|l, m), m=l £l —1), 20 -2).... 401~ (-1n).0
(2.108)

These eigenfunctions of 22 and of L. will not, in general, be eigenfunctions of
either L, orof L .. This means that any measurement of Ly or L, will necessarily
change the wave function if it begins as an eigenfunction of L ..

The above expressions for Ly, Ly, and L. can be mapped into quantum me-
chanical operators by substituting x, y, and z as the corresponding coordinate
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operators and —i%id/9x. —ifid/dy, and —i%d /0= for p,. p,, and p., respectively.
The resulting operators can then be transformed into spherical coordinates the
results of which are

L. =i/, (2.109)
L, = if{sing 3/96 + cotf cos ¢ 3/dg). (2.110)
L. = —ih{cos$ 3/86 — cott sinpd/de}, (2.111)
L* = —#{(1/sinf) 8/36(sinb 3/36) + (1/sin> 0) 8% /8¢*). (2.112)

2.7.2 Properties of general angular momenta

There are many types of angular momenta that one encounters in chemistry.
Orbital angular momenta, such as introduced above, arise in electronic motion in
atoms, in atom-atom and electron-atom collisions, and in rotational motion in
molecules. Intrinsic spin angular momentum is present in electrons, H!, H?, C'3,
and many other nuclei. In this section, we will deal with the behavior of any and
all angular momenta and their corresponding eigenfunctions.

At times, an atom or molecule contains more than one type of angular mo-
mentum. The Hamiltonian’s interaction potentials present in a particular species
may or may not cause these individual angular momenta to be coupled to an
appreciable extent (i.e., the Hamiltonian may or may not contain terms that re-
fer simultaneously to two or more of these angular momenta). For example, the
NH™ ion. which has a *IT ground electronic state (its electronic configuration is
Is32073072p2 2p! ) has electronic spin, electronic orbital. and molecular rota-
tional angular momenta. The full Hamiltonian 4 contains terms that couple the
electronic spin and orbital angular momenta, thereby causing them individually
to not commute with H.

In such cases, the eigenstates of the system can be labeled rigorously only
by angular momentum quantum numbers ; and m belonging to the total angular
momentum J. The total angular momentum of a collection of individual angular
momenta is defined, component-by-component, as follows:

JA:ZJA(,'). (2.113)

where £ labels x. v, and =, and / labels the constituents whose angular momenta
couple to produce J.

For the remainder of this section, we will study eigenfunction—eigenvalue
relationships that are characteristic of all angular momenta and which are con-
sequences of the commutation relations among the angular momentum vector’s
three components. We will also study how one combines eigenfunctions of two
or more angular momenta {J(7)} to produce eigenfunctions of the total J.
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Consequences of the commutation relations
Any set of three operators that obey

. ] =i (2.114)
(. J] = ik, (2.115)
e Jy) = ihd,. (2.116)

will be taken to define an angular momentum J. whose square J° = J? + J?2 + J?
commutes with all three of its components. It is useful to also introduce two
combinations of the three fundamental operators:

Je=J. £iJ,, 2.117)

and to refer to them as raising and lowering operators for reasons that will be
made clear below. These new operators can be shown to obey the following
commutation relations:

[J2. J.] = 0. (2.118)
[-I:. ‘/i] = j:r].]:‘ (2] 19)

Using only the above commutation properties, it is possible to prove important
properties of the eigenfunctions and eigenvalues of /2 and J.. Let us assume that
we have found a set of simultaneous eigenfunctions of J? and .J.: the fact that these
two operators commute tells us that this is possible. Let us label the eigenvalues
belonging to these functions:

J:[_/'. m) = # S m) o). 2.120)
J-ljomy = tm|jom). (2.121)

in terms of the quantities m and (/. m). Although we certainly “hint™ that these
quantities must be related to certain j and m quantum numbers, we have not vet
proven this, although we will soon do so. For now, we view (. m)and m simply
as symbols that represent the respective eigenvalues. Because both J2 and J. are
Hermitian, eigenfunctions belonging to different £, m) or m quantum numbers
must be orthogonal:

Gom | jom') = 8md; . (2.122)

We now prove several identities that are needed to discover the information
about the eigenvalues and eigenfunctions of general angular momenta that we
are after. Later in this section, the essential results are summarized.

(i) There is a maximum and a minimum eigenvalue for J.
Because all of the components of J are Hermitian, and because the scalar product
of any function with itself is positive semi-definite, the following identity holds:

(om(J7 + J1jom) = (S ml el jom) 4, Gmld, | m) > 0, (2.123)
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However. J2 + J; is equal to J2 — J2| so this inequality implies that

(jom|J* = J2jom) = B{f(j.m)—m*} > 0 (2.124)

which. in turn, implies that m?® must be less than or equal to (. m). Hence,
for any value of the total angular momentum eigenvalue f, the z-projection
eigenvalue (/) must have a maximum and a minimum value and both of these
m:ist be less than or equal to the total angular momentum squared eigenvalue £.

(iiy The raising and lowering operators change the J, eigenvalue but not
the J* eigenvalue when acting on | /. m)
Applying the commutation relations obeyed by J. to |, m) yields another useful

result:

S Il jomy — Jid-\j.omy = £hJL|j, m), (2.125)
T omy — JeJHjom) = 0. (2.126)

Now. using the fact that | j. m) is an eigenstate of J* and of J., these identities

give

S Jljom)y = mhE R J_|j.m) = Wm x 1)|j, m), (2.127)
Tl jom)y =B fG o my Sl m). (2.128)

These equations prove that the functions J.|/.m) must either themselves be
eigenfunctions of J* and J., with eigenvalues #* £(j. m)and i(m + 1)or Jeljom)
must equal zero. In the former case, we see that J. acting on |/, m) generates
a new eigenstate with the same J* eigenvalue as |/, m) but with one unit of 4
higher or lower in J. eigenvalue. It is for this reason that we call /= raising and
lowering operators. Notice that, although J.| /. m) is indeed an eigenfunction of
J- with eigenvalue (m & 1)A. J1|/j. m) is not identical to |, m & 1); it is only
proportional to | j, m % 1):

Joljom) = CF

j.m

[j.m 1), (2.129)

Explicit expressions for these Cfm cocetlicients will be obtained below. Notice also
that because the J.|/, m), and hence |j. m & 1), have the same J? eigenvalue as
[/, m) (in fact, sequential application of J.. can be used to show that all | j, m’),
for all m’, have this same .J? eigenvalue). the J* eigenvalue (. m) must be
independent of m. For this reason, f can be labeled by one quantum number ;.

(iii) The J* eigenvalues are related to the maximum and minimum J.
eigenvalues which are related to one another

Earlier, we showed that there exists a maximum and a minimum value for m, for
any given total angular momentum. It is when one reaches these limiting cases
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that J.|j, m) = 0 applies. In particular,

Jolj M) = 0. (2:130)
J_NJ mmin) = 0. (2.131)
Applying the following identities:

JoJe == J —h, (2.132)
Jodo = J = JI 4, (2.133)

respectively, to |/, mmax) and |/, mpin) gives
# {f(j, Mg ) — M2 — mmax} =0, (2.134)
# {f(j. Min) — miin + mmin} =0, (2.135)

which immediately gives the J? eigenvalues f(j. Muyax) and f(j. muyy) in terms
of 1 max OF M pin:

f(./ Miay) = Minax (M + 1), (2.136)

f(]~ Mmin) = M (M min — 1). (2137)

So, we now know the J2 cigenvalues for |/, my,) and |j. muin). However, we
earlier showed that | j, m) and |, m — 1) have the same J* eigenvalue (when we
treated the effect of Ji on |/, m)) and that the J? eigenvalue is independent of
m. If we therefore define the quantum number J 10 be m,,, we see that the J?2
eigenvalues are given by

JHjomy =1 + D), m). (2.138)
We also see that
SUm)y =+ 1) = Mupa My + 1) = Mpin (Mg — 1), (2.139)
from which it follows that
Miniy = Mgy (2.140)

(iv) The j quantum number can be integer or half-integer

The fact that the m-values run from j to — j in unit steps (because of the property
of the J; operators) means that there clearly can be only integer or half-integer
values for j. In the former case, the m quantum number runs over — Jo—j+
L—j+2,...,—j+(-1,0, 1,2,..., j;inthelatter, m runs over —j, —j +
L—j+2....,=j+(—-1/2),1/2,3/2,..., j. Only integer and half-integer
values can range from j to —j in steps of unity. Species with integer spin are
known as bosons and those with half-integer spin are called fermions.



Angular momentum

(v) More on J|j.m)
Using the above results for the effect of J. acting on |/, m) and the fact that J..

and J_ are adjoints of one another, allows us to write:

JomlJJoljom) = (j.m{(J? = J2 =) 1. m)
= rf{j(/+ 1) = m(m + 1))
(Jeljym)Jeljom) = (C], ). (2.141)

where C7 i is the proportionality constant between J, |/, m) and the normalized
function |/, m + 1). Likewise, the effect of J_ can be expressed as

GomlJod {j,m) = (jom| (J* = T2+ 1) 1j. m)
=G+ 1) —mim — 1)}
= (J_(j.m|J_|j.m) =(CT ), (2.142)

Jjom

where €, is the proportionality constant between J_|/, m) and the normalized
lj,m—1).

Thus, we can solve for Cjim

Jeljomy =h{j(j + )= mim £ DY ;m£1). (2.143)

after which the effect of Jx on | j, m) is given by

2.7.3 Summary

The above results apply to any angular momentum operators. The essential find-
ings can be summarized as follows:

(i) J*and J. have complete sets of simultaneous eigenfunctions. We label these
eigenfunctions | /. m): they are orthonormal in both their m- and J-type indices:
(./ m | // ”l,> = 8/}1./7!'5]'./'-

(1) These |/, m) eigenfunctions obey

JHjomy =1+ DI m), J = integer or half-integer, (2.144)
J-ljom)y = bm|j, m), m = —j, mnsteps of | to + J. (2.14%5)

(iii) The raising and lowering operators J+ act on |j. m) to yield functions that are
eigenfunctions of /2 with the same eigenvalues as | /. m) and eigenfunctions of J.
with eigenvalues of (m £ 1)A:

Joljom)y =G+ 1) = mim £ D) m £ 1), (2.146)

(iv) When Js acts on the “extremal” states |/, /) or |/, — ), respectively, the result is
zero.

The results given above are, as stated, general. Any and all angular momenta
have quantum mechanical operators that obey these equations. It is convention to
designate specific kinds of angular momenta by specific letters; however, it should
be kept in mind that no matter what letters are used, there are operators
corresponding to J2, J-, and J that obey relations as specified above, and there
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are cigenfunctions and eigenvalues that have all of the properties obtained above.
For electronic or collisional orbital angular momenta, it is common to use L and
L.: for electron spin, S* and S. are used; for nuclear spin /? and /. are most
common; and for molecular rotational angular momentum, N* and N. are most
common (although sometimes J° and J. may be used). Whenever two or more
angular momenta are combined or coupled to produce a “total” angular
momentum, the latter is designated by J° and J-.

2.7.4 Coupling of angular momenta

If the Hamiltonian under study contains terms that couple two or more angu-
lar momenta J(i), then only the components of the total angular momentum
J=>,J0) and J? will commute with H. It is therefore essential to label the
quantum states of the system by the eigenvalues of J. and J° and to construct
variational trial or model wavefunctions that are eigenfunctions of these total
angular momentum operators. The problem of angular momentum coupling has
to do with how to combine eigenfunctions of the uncoupled angular momen-
tum operators, which are given as simple products of the eigenfunctions of the
individual angular momenta [1;| j;, m;), to form eigenfunctions of J° and J..

Eigenfunctions of J,
Because the individual elements of J are formed additively, but J2 is not, it is
straightforward to form eigenstates of

J, = Z 00); (2.147)

stmple products of the form [, |j;, m;) are eigenfunctions of J.:
L Tmy =3 g [Tl ma) =3t [T tiomo). (2.148)
i k i k i

and have J, eigenvalues equal to the sum of the individual m;/ eigenvalues.
Hence, to form an eigenfunction with specified J and M eigenvalues, one must
combine only those product states [, |j;, m;) whose m;# sum is equal to the
specified M value.

Eigenfunctions of J?: the Clebsch-Gordon series

The task is then reduced to forming eigenfunctions |.J. M), given particular values
for the {j;} quantum numbers. When coupling pairs of angular momenta {| ;. m)
and |j’, m’)}, the total angular momentum states can be written, according to
what we determined above, as

My =) Cl o jom)j ), (2.149)
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: M . .
where the coefficients C/.J.m:j,‘m, are called vector coupling coefficients (because

angular momentum coupling is viewed much like adding two vectors j and j'
1o produce another vector J), and where the sum over m and m’ is restricted to
those terms for which m +m’" = M. It is more common to express the vector
coupling or so-called Clebsch—-Gordon (CG) coefficients as (j, m; j', m' | J. M)
and to view them as elements of a “matrix” whose columns are labeled by the
coupled-state J. M quantum numbers and whose rows are labeled by the quantum
numbers characterizing the uncoupled “product basis™ j, m; j’, m’. It turns out
that this matrix can be shown to be unitary so that the CG coefficients obey

Z(j- mijlom' S MY myjlom' | S MYy =8, 58y (2.150)

m.m’
and

Z(_/‘. njon VS MYGomsom T MY = 8y (2.151)
JM
This unitarity of the CG coefficient matrix allows the inverse of the relation
giving coupled functions in terms of the product functions:

[Jo MY = Z(j.m:j'.m' [ J MY jomylj o m') (2.152)

m.m’

to be written as

o om'y = " Gomj m | S MY M)

JoM
= Zu. M joms ' om . M. (2.153)
JoM
This result expresses the product functions in terms of the coupled angular mo-
mentum functions.

Generation of the CG coefficients

The CG coefficients can be generated in a systematic manner; however, they can
also be looked up in books where they have been tabulated (e.g., see Table 2.4
of R. N. Zare, Angular Momentum, John Wiley, New York (1988)). Here, we
will demonstrate the technique by which the CG coefficients can be obtained,
but we will do so for rather limited cases and refer the reader to more extensive
tabulations.

The strategy we take is to generate the |/, J) state (i.e., the state with maxi-
mum M-value} and to then use J_ to generate |.J, J — 1), after which the state
|/ — 1. J — 1) (i.e., the state with one lower J-value) is constructed by finding a
combination of the product states in terms of which [/, J — 1) is expressed {be-
cause both |/, J — 1) and |/ — 1, J — 1) have the same M-value M = J —~ 1)
which is orthogonal to |J. J ~ 1) (because |J —1.J — 1) and |J, J — 1) are
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eigenfunctions of the Hermitian operator J* corresponding to different eigen-
values. they must be orthogonal). This same process is then used to generate
\J.J = 2)[J —1,J —2) and (by orthogonality construction) {J — 2, .J — 2),
and so on.

(i) The states with maximum and minimum M-values

We begin with the state |/, J) having the highest M-value. This state must be
formed by taking the highest m and the highest m’ values (i.e., m = j and m’ =
J'). and is given by

oSy =17 M0 (2.154)

Only this one product is needed because only the one term with m = ; and
m' = j' contributes to the sum in the above CG series. The state

Wo=Jy =17, =il =T (2.155)
with the minimum M -value is also given as a single product state. Notice that these

states have M-values given as £(j + j'); since this is the maximum M -value, it
must be that the J-value corresponding to this state is J = j + j'.

(ii) States with one lower M-value but the same J-value
Applying J_ to |J, J), and expressing J.. as the sum of lowering operators for
the two individual angular momenta:

Jo=J_(1)+ J_(2) (2.156)
gives
JNL D =wJJ+ D)= JJ - IAS T =1
= (J_(1)+ J_NIj. i)' J"
=i+ =G =W =D+ R+ D
= J'G =W T = . (2.157)

This result expresses |J, J — 1) as follows:

T =1 =[iG+D~—jG -2 =Dl )
+ G+ D =5 G = DY = D]
{(J(J+1)—=J(J ~ I)}‘”z; (2.158)

thatis, the [.J, J — 1) state, whichhas M = J — 1, is formed from the two product
states |7, j — 1}J', j/y and |/, j)|j'. j/ — 1) that have this same M-value.

(iii) States with one lower J-value

To find the state |J — 1, J — 1) that has the same M-value as the one found
above but one lower J-value, we must construct another combination of the two
product states with M = J — 1 (i.e., |j, j — DIJ'. jyand [/, j)|j'. j' — 1)) that
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is orthogonal to the combination representing |J, J — 1); after doing so, we must
scale the resulting function so jt is properly normalized. In this case, the desired

function is

MW=L J =) =[G +1) - j(j - DI, 7 = 1)
UG+ -y - DY) j = DI 0
VI + D - o -1y, (2.159)

It is straightforward to show that this function is indeed orthogonal to |/, J — 1.

(iv) States with even one lower J-value
Having expressed |.J, J — [)and |/ - 1.7 — I} in terms of A~ DI )
and |/, /)17, /'~ 1), we are now prepared to carry on with this Stepwise pro-
cess to generate the states |.J, J — D0 —-1.J = 2)and (J -2, J - 2) as
combinations of the product states with A = J — 2. These product states are
7 =20 j, ey j - 2),and |}, j - DI/ j = 1). Notice that there
are precisely as many product states whose m + 5’ values add up to the desired
M-value as there are tota] angular momentum states that must be constructed
(there are three of each in this case).

The steps needed to find the state [J — 2, J — 2) are analogous to those taken
above:

(i) One first applies J_to |/ ~ 1. / lyandto |/, J — 1) to obtain |/ — 1, 7 2)
and |/, J — 2), respectively, as combinations of [, j =21/, /). i =2,

and /. j — 1)l j =1y,
(if) One then constructs |/ — 2./ — 23 as a linear combination of the =2, 7.
L/ iNJ j =25, and j=Dlj. - 1) that is orthogonal to the combinations

found for |/ — | J — 2yand |J, J ~ 2).

Once |/ -2, 7~ 2) is obtained, it is then possible to move on to form
od =3y, 1 —1.J— 3),and |J -2, J— 3) by applying J_ to the three
States obtained in the preceding application of the process, and to then form
M ~3.J=3) as the combination of o7 =30 ), oI j =3, /.
J=2. )~ Loy j— /' j = 2) that is orthogonal to the combinations
obtained for |/, J ~ 3y, 1y~ 1 7 _ 3),and | -2, J — 3y,

Again notice that there are precisely the correct number of product states (four
here) as there are total angular momentum states to be formed. In fact, the product
States and the total angular momentum states are equal in number and are both
members of orthonormal function sets (because J2(1), J.(1), J*(2), and J.(2) as
wellas J? and J. are Hermitian oOperators). This is why the CG coefficient matrix

is unitary; because jt Maps one set of orthonormal functions to another, with both
Sets containing the same number of functions,
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An example

Let us consider an example in which the spin and orbital angular momenta of the
Siatom in its *P ground state can be coupled to produce various *P; states. In this
case, the specific values for j and j are j = S=1land ;' = L = 1. We could.
of course. take j = L = 1 and j' = S = I, but the final wave functions obtained
would span the same space as those we are about to determine.

The state with highest M-value is the PM =1, M; = 1)state, which can be
represented by the product of an «a spin function (representing § = 1. Mg = | )
and a 3p; 3p spatial function (representing L = 1. M, = 1), where the first func-
tion corresponds to the first open-shell orbital and the second function to the
second open-shell orbital. Thus, the maximum AM-value is M = 2 and corre-
sponds to a state with J = 2;

I =2.M=2) =2.2) = aeIp; 3po. (2.160)

Clearly, the state |2, —2) would be given as A8 3p_i3pg.
The states |2, 1) and [1. 1) with one lower M-value are obtained by applying
Jo=5_41L_t0]2,2) as follows:

Jo12.2) = R23) = 200072, 1)
= (S,+L_.)Clu3p13p“. (2]6])

To apply S or L_ to aar 3p;3py. one must realize that each of these operators
Is, in turn, a sum of lowering operators for each of the two open-shell electrons:

S_=S(H)+S.(2. (2.162)
L_=L_(1)+L_(). (2.163)

The result above can therefore be continued as

(S— + Lojaadpi3pe = #1/2(3/2) — 1/2(=1/2)}'? Ba3p,3po
+7{1/2(3/2) — 1/2(=1/2)}'*aB3p,3p,
+ A{1(2) — 1(0)} " aar3py3py
+ 7{(1(2) — 0(—= 1)} 2 aa3p 3p..,. (2.164)

So, the function |2, 1) is given by (aa3py3p, violates the Pauli principle, so it is
removed)

12.1) = [Ba3p13po + aB3p;3p, + {21 *aa3p;3p_,] /2. (2.165)
which can be rewritten as
12.1) = [(Ba + aB)3p13po + (2} eer3pi3p_.] /2. (2.166)

Writing the result in this way makes it clear that 12, 1} is a combination of the
product states |S =1, Mg = 0)|L = 1, M; = 1) (the terms containing |S = 1.
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My =0)= 27Y2(aB + Ba)) and IS=1 Ms=1)|]L =1, M; = 0) (the terms
containing |[§ = 1. My = 1) = ae).

To form the other function with M = 1, the |1, 1) state, we must find another
combination of [S=1 Ms=0)L =1, M, = l) and [S=1, M5 = )|L =
1. 3, = 0) that is orthogonal to |2. 1) and is normalized. Since

R =27"0S= L. Ms=0)[L=1L.M, = ) +|S= 1. My = I)

XL =1 M, =0)], (2.167)
we immediately see that the requisite function is
L =2 S= 1. My =)L = 1.M, = 1) — |S =1, My = 1y
XL =1,M, =0)] (2.168)
In the spin-orbital notation used above, this state is
1) = [(Ba + aB)3p3py — {2} aa3p3p_] /2. (2.169)

Thus far, we have found the *P, states with J = 2M=2J=2M=1:and
J=1M=1

To find the *P; states with J = 2M=0]=1,M=0andJ = 0. M = 0.
we must once again apply the J_ tool. In particular, we apply J_ to |2.1) to
obtain |2. 0) and we apply J_ to |1. 1} to obtain |1, 0), each of which will be
expressed in terms of |S = 1, My = 0)|L = 1. My =0)1S=1.Mg=1)|l =
LMp=-1),and|S=1, My =—1)|L = 1. M; = 1). The |0, 0 state is then
constructed to be a combination of these same product states which is orthogonal
to |2. 0) and to |1. 0). The results are as follows:

M=2 M =0) = 6"R21L.0)1.0) + L DL =1) + 1. =11 )], (2.170)
o= 1M =0) =271 1L =1) — (L. —D)]1. 1)), (2.171)
=00 =0) =32 [1L001L.0) = [ DI —1) = (1. =D)L 1], (2.172)

where, in all cases, a shorthand notation has been used in which the
{S. M) L. M, ) products stated have been represented by their quantum numbers
with the spin function always appearing first in the product. To finally express
all three of these new functions in terms of spin-orbital products it is necessary
to give the |S. Mg)|L. M) products with M = 0 in terms of these products. For
the spin functions, we have

[S=1.M;=1) = ao. (2.173)
IS =1, Mg =0) = 27"*(af + Ba) (2.174)
IS =1, Ms=-1) = BB. (2.175)

For the orbital product function, we have

IL=1,M, =1) = 3p,3p,, (2.176)
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IL=1.M; =0) =2""(3py3p, + 3p;3p_)). (2.177)

Coupling angular momenta of equivalent electrons

If equivalent angular momenta are coupled (e.g., to couple the orbital angular
momenta of a p or d* configuration), one must use the following “box" method
to determine which of the term symbols violate the Pauli principle. To carry out
this step, one forms all possible unique (determinental) product states with non-
negative M; and M values and arranges them into groups according to their M
and M; values. For example, the boxes appropriate to the p® orbital occupancy
are shown below:

M, 2 I 0

M, 1 Iprapoc| Prap.a|
0 IprapiBl IpapoBl. Ipoapi Bl Ipriap-i Bl Ip_iapi Bl. [poape]

There is no need to form the corresponding states with negative M, or negative
My values because they are simply “mirror images” of those listed above. For
example, the state with M; = —1 and Mg = —1 is Ip-18puBl. which can be
obtained from the M, = 1. Ms = 1 state |p apyc| by replacing « by g and
replacing p; by p_;.

Given the box entries, one can identify those term symbols that arise by apply-
ing the following procedure over and over until all entries have been accounted
for:

(1) One identifies the highest M value (this gives a value of the total spin quantum
number that arises, S) in the box. For the above example, the answer is S = 1.
(i) For all product states of this M; value, one identifies the highest M, value (this
gives a value of the total orbital angular momentum, L, that can arise for this S).
For the above example, the highest M; within the M = 1 states is M 1 =1 (not
M; =2),hence L = 1.
(ii1) Knowing an S, L combination, one knows the first term symbol that arises from
this configuration. In the p? example, this is 3P,
(iv) Because the level with these L and § quantum numbers contains (2L + 1)(2S + 1)
states with M; and My quantum numbers running from ~L to L and from —S$ to
§, respectively, one must remove from the original box this number of product
states. To do so, one simply erases from the box one entry with each such M, and
M value. Actually, since the box need only show those entries with non-negative
M; and M values, only these entries need be explicitly deleted. In the *P
example, this amounts to deleting nine product states with A 1, Mg values of
1,1;1,0;1,-1;0,1;0, 0; 0, -1;-1,1;-1,0, -1, —1.
(v) After deleting these entries, one returns to step 1 and carries out the process again.
For the p? example, the box after deleting the first nine product states looks as
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follows (those that appear in italics should be viewed as already cancelled in
counting all of the P states):

M, 2 1 0

M, 1 Iprapyal prap_c|
0 [piapi Bl IprapoBl. [poapi Bl | piap_ Bl Ip-1epi B, IpoapeB)

It should be emphasized that the process of deleting or crossing off entries in
various M, Mg boxes involves only counting how many states there are; by
no means do we identify the particular L, S, M, , Mg wave functions when we
cross out any particular entry in a box. For example, when the |p;apof| prod-
uct is deleted from the M; = 1. Ms = 0 box in accounting for the states in
the *P level, we do not claim that |p,apyB] itself is a member of the P level; the
Ipoerp( Bl product state could just as well be eliminated when accounting for the
3P states.

Returning to the p* example at hand, after the *P term symbols states have
been accounted for, the highest M value is 0 (hence there is an S = 0 state), and
within this M value, the highest M, value is 2 (hence there is an L = 2 state).
This means there is a 'D level with five states having M; =2.1.0. -1, =2.
Deleting five appropriate entries from the above box (again denoting deletions
by italics) leaves the following box:

IWL 2 1 0

M, 1 piapoe] tprap o)
0 Iprapi Bl IpapoBl. tpoap Bl | prap—i Bl I p-iapi Bl Ipeapo B

The only r:maining entry, which thus has the highest Mg and M; values, has
Ms = 0and M, = 0. Thus there is also a 'S level in the p> configuration.

Thus, unlike the non-equivalent 2p'3p' case, in which *P, 'P, *D, 'D, 3S, and
'S levels arise, only the *P. D, and 'S arise in the p? situation. It is necessary
to carry out this “box method” whenever one is dealing with equivalent angular
momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can
determine all possible couplings of the equivalent angular momenta using this
method and then use the simpler vector coupling method to add the non-equivalent
angular momenta to each of these coupled angular momenta. For example, the
pd' configuration can be handled by vector coupling (using the straightforward
non-equivalent procedure) L = 2 (the d orbital) and § = 1/2 (the third electron’s
spin) to each of *P,'D, and 'S. The result is *F, *D, *P, °F, *D, *P, ’G, °F, *D, ’P,
’S, and ?D.
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2.8 Rotations of molecules

2.8.1 Rotational motion for rigid diatomic and linear
polyatomic molecules
This Schrédinger equation relates to the rotation of diatomic and linear

polyatomic molecules. It also arises when treating the angular motions
of electrons in any spherically symmetric potential.

A diatomic molecule with fixed bond length R rotating in the absence of any
external potential is described by the following Schrédinger equation:

- 1 3 3 1 82
2 | R?sin6 06 a6 RZsin’ 6 d¢>
or
Ly
= Ei. 2.180
21 R? v ( )

where L is the square of the total angular momentum operator L2 + L2412
expressed in polar coordinates above. The angles 6 and ¢ describe the orlentanon
of the diatomic molecule’s axis relative to a laboratory-fixed coordinate system.
and y is the reduced mass of the diatomic molecule o= mym>/(m; + m>). The
differential operators can be seen to be exactly the same as those that arose in
the hydrogen-like atom case as discussed above. Therefore, the same spherical
karmonics that served as the angular parts of the wave function in the hydrogen-
atom case now serve as the entire wave function for the so-called rigid rotor: Y=
Y;01(0. ¢). These are exactly the same functions as we plotted earlier when we
graphed thes (L = 0),p(L = 1),and d (L = 2) orbitals. The energy eigenvalues
corresponding to each such eigenfunction are given as

HJJ+1)

E, =
! 2uR?

=BJ(J+1) (2.181)

and are independent of M. Thus each energy level is labeled by J andis (2J + 1)-
fold degenerate (because M ranges from —.J to .J). Again, this is just like we saw
when we looked at the hydrogen orbitals; the p orbitals are three-fold degenerate
and the d orbitals are five-fold degenerate. The so-called rotational constant
B (defined as 7#°/2uR?) depends on the molecule’s bond length and reduced
mass. Spacings between successive rotational levels (which are of spectroscopic
relevance because, as shown in Chapter 5, angular momentum selection rules
often restrict the changes AJ in J that can occur upon photon absorption to 1,0,
and —1) are given by

AE =B(J+1)(J +2) = BJ(J +1)=2B(J + 1). (2.182)

These energy spacings are of relevance to microwave spectroscopy which probes
the rotational energy levels of molecules. In fact, microwave spectroscopy offers
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the most direct way to determine molecular rotational constants and hence molec-
ular bond lengths.

The rigid rotor provides the most commonly employed approximation to the
rotational energies and wave functions of linear molecules. As presented above,
the model restricts the bond length to be fixed. Vibrational motion of the molecule
gives rise to changes in R which are then reflected in changes in the rotational
;nergy levels. The coupling between rotational and vibrational motion gives rise
to rotational B constants that depend on vibrational state as well as dynamical
couplings, called centrifugal distortions, that cause the total ro-vibrational energy
of the molecule to depend on rotational and vibrational quantum numbers in a
non-separable manner.

Within this “rigid rotor” model, the absorption spectrum of a rigid diatomic
molecule should display a series of peaks, each of which corresponds to a specific
J — J + I transition. The energies at which these peaks occur should grow
linearly with J. An example of such a progression of rotational lines is shown
in Fig. 2.23. The energies at which the rotational transitions occur appear to fit
the AE =2B(J + 1) formula rather well. The intensities of transitions from
level J to level J + 1 vary strongly with J primarily because the population of
molecules in the absorbing level varies with J. These populations P, are given,
when the system is at equilibrium at temperature 7, in terms of the degeneracy
(2J + 1) ofthe Jth level and the energy of this level BJ(J + 1) by the Boltzmann
formula:

Py= Q7Y 2J + 1) exp(=BJ(J + 1)/ kT). (2.183)
where Q is the rotational partition function:
0= Z<2J+ 1) exp(—BJ(J + 1)/ kT). (2.184)
J

For low values of J, the degeneracy is low and the exp(—BJ(J + 1)/kT)
factor is near unity. As J increases, the degeracy grows linearly but the

Intensity

J —

Typical
rotational absorption
profile showing
intensity vs. J value of
the absorbing level.
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exp(—=BJ(J + 1)/ kT) factor decreases more rapidly. As a result, there is a value
of J, given by taking the derivative of (2J + 1)exp(—BJ(J + 1)/kT) with re-
spect to J and setting it equal to zero,

2 + 1 = V2kT/B. (2.185)

at which the intensity of the rotational transition is expected to reach its maximum.
This behavior is clearly displayed in the above figure.

The eigenfunctions belonging to these energy levels are the spherical harmon-
ics Y, m(8, ¢) which are normalized according to

/ / (Y] 1/(0.0) Y 3 (6. p)sinGdBdP) = 81 1 xy.a. (2.186)
Jo Ju

As noted above, these functions are identical to those that appear in the solu-
tion of the angular part of hydrogen-like atoms. The above energy levels and
eigenfunctions also apply to the rotation of rigid linear polyatomic molecules:
the only difference is that the moment of inertia / entering into the rotational
energy expression is given by

I=Y m.R;. (2.187)
where m,, is the mass of the ath atom and R, is its distance from the center of mass

of the molecule. This moment of inertia replaces R’ in the carlier rotational
energy level expressions.

2.8.2 Rotational motions of rigid non-linear molecules

The rotational kinetic energy
The rotational kinetic energy operator for a rigid polyatomic molecule is

He = J2/21, + J2 /21y + J2 /21, (2.188)

where the [(k = a, b, c) are the three principal moments of inertia of the
molecule (the eigenvalues of the moment of inertia tensor). This tensor has el-
ements in a Cartesian coordinate system (K, K’ = X. Y. Z), whose origin is
located at the center of mass of the molecule, that can be computed as

Ixg=Y mi(R2=R,))  (fork =K. (2.189)

J
Ixx ==Y mR;Rg;  (forK #K'). (2.190)
J

As discussed in more detail in Chapter 6, the components of the quantum me-
chanical angular momentum operators along the three principal axes are

] 1 9 d
J, = —ih tf— - — jhisin x —, .
i cosx(co oy Sin03¢>+zvsmxw, (2.191)
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. a 1 3 d
Jp = ihsin x (COtQE - m%) +ihcosx£, (2.192)
L0
J.o= —zha—. (2.193)

The angles 6, ¢, and x are the Euler angles needed to specify the orientation of
the rigid molecule relative to a laboratory-fixed coordinate system. The corre-
sponding square of the total angular momentum operator .J> can be obtained as

S =L+ S

R 3 1 /9 9 3
=—— —coth— + — [ — + — —2cos6- . (2.194)
362 30 " sind \ag? | 3x2 apdx

and the component along the lab-fixed Z-axis J7 is —i%3/3¢ as we saw much
earlier in this text.

The eigenfunctions and eigenvalues for special cases

(i) Spherical tops

When the three principal moment of inertia values are identical, the molecule is
termed a spherical top. In this case, the total rotational energy can be expressed
in terms of the total angular momentum operator /2

Heo = J?/21. (2.195)

As a result, the eigenfunctions of H are those of J2 and J, as well as J7,
both of which commute with J2 and with one another. J is the component
of J along the lab-fixed Z-axis and commutes with J, because J, = —iho/9¢
and J, = —i%d/d x act on different angles. The energies associated with such
eigenfunctions are

E(J, K. M) =RJ(J + 1)/21%, (2.196)

forall K (i.e.. J, quantum numbers) ranging from —J to ./ in unit steps and for
all M (i.e., Jz quantum numbers) ranging from —J to J. Each energy level is
therefore (2. + 1)* degenerate because there are 2.J + 1 possible K values and
2J + 1 possible M values for each J.

The eigenfunctions |/, M. K) of J2, J; and J, , are given in terms of the set
of so-called rotation matrices Dy y x:

T+
oMKy = |2t (2.197)

V 5oz Dhax®. 6. %),
which obey

SN MUKy = 1 + DIJ, M, K), (2.198)
LI MKy = 1K|J, M. K), (2.199)
Jo\J. M. Ky = M |J, M, K). (2.200)
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These Dy 4., functions are proportional to the spherical harmonics Y 1/(8. ¢)
multiplied by exp(iK x ), which reflects its x-dependence.

(ii) Symmetric tops

Molecules for which two of the three principal moments of inertia are equal are
called symmetric tops. Those for which the unique moment of inertia is smaller
than the other two are termed prolate symmetric tops: if the unique moment of
inertia is larger than the others, the molecule is an oblate symmetric top. An
American football is prolate, and a frisbee is oblate.

Again, the rotational kinetic energy. which is the full rotational Hamiltonian.
can be written in terms of the total rotational angular momentum operator J~ and
the component of angular momentum along the axis with the unique principal
moment of inertia;

Hl’()l
Hl'()l

J7/20 + JH1/21, — 1/21}  for prolate tops. (
J?/21 + J2{1/21. —1/21})  for oblate tops. (

0n)
02)

[SS 2 S 1
b b

Here, the moment of inertia / denotes that moment that is commion to two direc-
tions; that is, / is the non-unique moment of inertia. As a result, the eigenfunctions
of H, are those of J? and J, or J. (and of Jz). and the corresponding energy
levels are

E(,K.My=FJ(J+1)/218 + FK*1)21, — 1,21} (2.203)
for prolate tops,
E(J. K. M)=1J(J + 1)/21* + FK*{1/21. — 1/21) (2.204)

for oblate tops. again for K and M (ie., J, or J, and J, quantum numbers,
respectively) ranging from —J to ./ in unit steps. Since the energy now depends
on K, these levels are only 2.J + 1 degenerate due to the 2J + 1 different M
values that arise for each J value. Notice that for prolate tops, because I, is
smaller than /, the energies increase with increasing X for given J. In contrast,
for oblate tops, since /. is larger than I, the energies decrease with K for given
J. The eigenfunctions {J, M, K} are the same rotation matrix functions as arise
for the spherical-top case, so they do not require any further discussion at this
time.

(iii) Asymmetric tops

The rotational eigenfunctions and energy levels of a molecule for which all three
principal moments of inertia are distinct (a so-called asymmetric top) can not
easily be expressed in terms of the angular momentum eigenstates and the J,
M, and K quantum numbers. In fact, no one has ever solved the corresponding
Schrédinger equation for this case. However, given the three principal moments
of inertia 7, I, and /., a matrix representation of each of the three contributions
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to the rotational Hamiltonian

JEoo 8
Hog = =4 4 22 ¢ 2.205
YRR ARy (2.205)

can be formed within a basis set of the {|J. M, K'}} rotation-matrix functions dis-
cussed earlier. This matrix will not be diagonal because the |J. M. K) functions
are not eigenfunctions of the asymmetric top H.,. However, the matrix can be
formed in this basis and subsequently brought to diagonal form by finding its
eigenvectors {C, ; v x } and its eigenvalues { £, ). The vector coefficients express
the asymmetric top eigenstates as

Vol 9. x)= Y Cosyxld. M. K). (2.206)
JMK
Because the total angular momentum /2 still commutes with H:ot, €ach such
eigenstate will contain only one J-value, and hence W, can also be labeled by a
J quantum number:

W, (0.6 )= Courxl. M. K). (2.207)

MK

To form the only non-zero matrix elements of H,,, within the 1J, M, K} basis,
one can use the following properties of the rotation-matrix functions (see, for
example. R. N. Zare, Angular Momentum, John Wiley, New York (1988)):

fl

(oM K\ MK = (J. M.K|J2J. M. K)

=1/20 M.K|J* = J7|J. M. K)

N

=FJJ+ 1) - K. (2.208)
(J.M K| M. Ky =K, (2.209)

(Jo MK MK £2) = ~(J, M K[ M. K £2)
=F[JJ+ 1)~ KK+ D] [J(J+ 1)
— (K = 1)K £ )], (2.210)

(JoM.K|JZ|J MK +£2) =0. (2.211)

Each of the elements of /7. J;. and J; must, of course, be multiplied. respectively,
by 1/27..1/21,.and 1/21, and summed together to form the matrix representa-
tion of H,,,. The diagonalization of this matrix then provides the asymmetric top

energies and wave functions.

2.9 Vibrations of molecules

This Schrédinger equation forms the basis for our thinking about bond
stretching and angle bending vibrations as well as collective vibraticns
called phonons in solids.
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Model problems that form important starting points

The radial motion of a diatomic molecule in its lowest (/ = 0) rotational level
can be described by the following Schrédinger equation:

B9 (0 ,
—Zr ™ (1‘ E)zﬂ—{— Viry = Ey. (2.212)
where u is the reduced mass w = mmy/(m, + m,) of the two atoms. If the
molecule is rotating, then the above Schrodinger equation has an additional term
J(J + 1,)h2/2w"3¢/ on its left-hand side. Thus, each rotational state (labeled by
the rotational quantum number J) has its own vibrational Schrédinger equation
and thus its own set of vibrational energy levels and wave functions. It is com-
mon to examine the J = 0 vibrational problem and then to use the vibrational
levels of this state as approximations to the vibrational levels of states with non-
zero J values (treating the vibration—rotation coupling via perturbation theory
introduced in Section 4.1). Let us thus focus on the J = 0 situation.

By substituting ¢ = F(r)/r into this equation, one obtains an equation for
F(r) in which the differential operators appear to be less complicated:

W diF

V(ir)F = EF. 2.213
2 dr + V() ( )

This equation is exactly the same as the equation seen earlier in this text for the
radial motion of the electron in the hydrogen-like atoms except that the reduced
mass u replaces the electron mass m and the potential V() is not the Coulomb
potential,

If the vibrational potential is approximated as a quadratic function of the bond
displacement x = r — r, expanded about the equilibrium bond length r. where
V has its minimum,

V = 1/2k(r —r.), (2.214)

the resulting harmonic-oscillator equation can be solved exactly. Because the
potential }” grows without bound as x approaches oo or —oo, only bound-state
solutions exist for this model problem. That is, the motion is confined by the
nature of the potential, so no continuum states exist in which the two atoms
bound together by the potential are dissociated into two separate atoms.
Insolving the radial differential equation for this potential, the large-r behavior
is first examined. For large r, the equation reads
2
%1; = %kﬁ (;—’j) F, (2.215)
where x = r —r, is the bond displacement away from equilibrium. Defining
£ = (uk/7?)*x as a new scaled radial coordinate allows the solution of the
large-r equation to be written as

Fiarge » = exp(—£°/2). (2.216)
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The general solution to the radial equation is then expressed as this large-r
solution multiplied by a power series in the ¢ variable:

F=exp~£/2)Y ¢"C,, (2.217)
n=0

where the C), are coefficients to be determined. Substituting this expression into
the full radial equation generates a set of recursion equations for the C, ampli-
tudes. As in the solution of the hydrogen-like radial equatior, the series described
by these coefficients is divergent unless the energy £ happens to equal specific
values. It is this requirement that the wave function not diverge so it can be nor-
malized that yields energy quantization. The energies of the states that arise are
given by

E, = Wk/m)"(n + 1/2). (2.218)

and the eigenfunctions are given in terms of the so-called Hermite polynomials
H,(») as follows:

Ynlx) = (127 /) exp(~ax? /2)H, (o) (2.219)

where ¢ = (/\',u/ﬁz)]/”z. Within this harmonic approximation to the potential. the
vibrational energy levels are evenly spaced:

AE = E:H»I - En = 71(/\/14)] /:- (2220)

In experimental data such evenly spaced energy level patterns are seldom seen:
most commonly, one finds spacings £,.| — E, that decrease as the quantum
number 7 increases. In such cases, one says that the progression of vibrational
levels displays anharmonicity.

Because the Hermite functions H,, are odd or even functions of x (depending on
whether » is odd or even), the wave functions ¥, (x) are odd or even. This splitting
of the solutions into two distinct classes is an example of the effect of symmetry;

in this case. the symmetry is caused by the symmetry of the harmonic potential *

with respect to reflection through the origin along the x-axis (i.e., changing x
to —x). Throughout this text, many symmetries arise; in each case. symmetry
properties of the potential cause the solutions of the Schrddinger equation to be
decomposed into various symmetry groupings. Such symmetry decompositions
are of great use because they provide additional quantum numbers (i.e., symmetry
labels) by which the wave functions and energies can be labeled.

The basic idea underlying how such symmetries split the solutions of the
Schridinger equation into different classes relates to the fact that a symmetry
Operator (e.g.. the reflection plane in the above example) commutes with the
Hamiltonian. That is, the symmetry operator S obeys

SHY = HSW. (2.

™
to
13
=
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potential energy as a
function of bond length.

Model problems that form important starting points

So S leaves H unchanged as it acts on (this allows us to pass S through H in
the above equation). Any operator that leaves the Hamiltonian (i.c.. the energy)
unchanged is called a symmetry operator,

If you have never learned about how point group symmetry can be used to
help simplify the solution of the Schrédinger equation, this would be a good time
to interrupt your reading and go to Chapter 4 and read the material there.

The harmonic oscillator energies and wave functions comprise the simplest
reasonable model for vibrational motion. Vibrations of a polyatomic molecule
are often characterized in terms of individual bond-stretching and angle-bending
motions, each of which is. in turn, approximated harmonically. This results in a
total vibrational wave function that is written as a product of functions. one for
each of the vibrational coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack
of anharmonicity (i.e., non-uniform energy level spacings) and lack of bond
dissociation, result from the quadratic nature of its potential. By introducing
model potentials that allow for proper bond dissociation (i.e.. that do not increase
without bound as x — o0), the major shortcomings of the harmonic oscillator
picture can be overcome. The so-called Morse potential (see Fig. 2.24)

V(r) = D1 ~ exp[—a(r — r)])2. (2.222)

is often used in this regard.

In the Morse potential function, D, is the bond dissociation energy, r. is the
equilibrium bond length, and a is a constant that characterizes the “steepness”
of the potential and thus affects the vibrational frequencies. The advantage of
using the Morse potential to improve upon harmonic-oscillator-level predictions
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is that its energy levels and wave functions are also known exactly. The energies
are given in terms of the parameters of the potential as follows:

5 172
12 (n + 875 ii
E, = h(l%) (n + 1) (i) . (2.223)

2 4D,

where the force constant is given by & = 2D, . The Morse potential supports
both bound states (those lying below the dissociation threshold for which vibration
is confined by an outer turning point) and continuum states lying above the
dissociation threshold. Its degree of anharmonicity is governed by the ratio of the
harmonic energy 7i(k/u)"/? to the dissociation energy D.

The eigenfunctions of the harmonic and Morse potentials display nodal char-
acter analogous to what we have seen earlier in the particle-in-a-box model prob-
lems. Namely, as the energy of the vibrational state increases, the number of
nodes in the vibrational wave function also increases. The state having vibra-
tional quantum number v has v nodes. I hope that by now the student is getting
used to seeing the number of nodes increase as the quantum number and hence
the energy grows.
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