Part 1. Background Material

In this portion of the text, most of the topics that are appropriate to an
undergraduate reader are covered. Many of these subjects are subsequently discussed
again in Chapter 5, where a broad per spective of what theoretical chemistry isabout is
offered. They are treated again in greater detail in Chapters 6-8 where the three main

disciplines of theory are covered in depth appropriate to a graduate-student reader.

Chapter 1. The Basics of Quantum M echanics

Why Quantum Mechanicsis Necessary for Describing Molecular Properties.

We know that all molecules are made of atoms which, in turn, contain nuclei and
electrons. As| discussin thisintroductory section, the equations that govern the motions

of electrons and of nuclei are not the familiar Newton equations

but a new set of equations called Schrddinger equations. When scientists first studied the
behavior of electrons and nuclel, they tried to interpret their experimental findingsin

terms of classical Newtonian motions, but such attempts eventually failed. They found



that such small light particles behaved in away that smply is not consistent with the
Newton equations. Let me now illustrate some of the experimental data that gave rise to
these paradoxes and show you how the scientists of those early times then used these data
to suggest new equations that these particles might obey. | want to stress that the
Schrodinger equation was not derived but postulated by these scientists. In fact, to date,
no one has been able to derive the Schrddinger equation.

From the pioneering work of Bragg on diffraction of x-rays from planes of atoms
orionsin crystals, it was known that peaks in the intensity of diffracted x-rays having
wavelength | would occur at scattering angles g determined by the famous Bragg

equation:

nl =2dsing,

where d is the spacing between neighboring planes of atoms or ions. These quantities are
illustrated in Fig. 1.1 shown below. There are may such diffraction peaks, each labeled by
adifferent value of theinteger n (n=1, 2, 3, ...). The Bragg formula can be derived by
considering when two photons, one scattering from the second plane in the figure and the
second scattering from the third plane, will undergo constructive interference. This
condition is met when the “extra path length” covered by the second photon (i.e., the

length from points A to B to C) is an integer multiple of the wavelength of the photons.



Figure 1.1. Scattering of two beams at angle q from two planesin acrystal spaced by d.

The importance of these x-ray scattering experiments to electrons and nuclei
appears in the experiments of Davisson and Germer in 1927 who scattered el ectrons of
(reasonably) fixed kinetic energy E from metallic crystals. These workers found that plots
of the number of scattered electrons as a function of scattering angle q displayed “ peaks’
at angles g that obeyed a Bragg-like equation. The startling thing about this observation is
that electrons are particles, yet the Bragg equation is based on the properties of waves.

An important observation derived from the Davisson-Germer experiments was that the
scattering angles q observed for electrons of kinetic energy E could be fit to the Bragg n

| =2d sing equation if awavelength were ascribed to these el ectrons that was defined by



| =h/(2m,E)"?,
where m, is the mass of the electron and h is the constant introduced by Max Planck and
Albert Einstein in the early 1900s to relate a photon’s energy E to itsfrequency nviaE =
hn. These amazing findings were among the earliest to suggest that electrons, which had
always been viewed as particles, might have some properties usually ascribed to waves.
That is, as de Broglie has suggested in 1925, an electron seems to have a wavelength
inversely related to its momentum, and to display wave-type diffraction. | should mention
that analogous diffraction was also observed when other small light particles (e.g.,
protons, neutrons, nuclel, and small atomic ions) were scattered from crystal planes. In all
such cases, Bragg-like diffraction is observed and the Bragg equation is found to govern

the scattering angles if one assigns a wavelength to the scattering particle according to

| =h(@2mE)¥

where m is the mass of the scattered particle and h is Planck’s constant (6.62 x10* erg
SEC).

The observation that electrons and other small light particles display wave like
behavior was important because these particles are what all atoms and molecules are
made of. So, if we want to fully understand the motions and behavior of molecules, we
must be sure that we can adequately describe such properties for their constituents.
Because the classical Newtonian equations do not contain factors that suggest wave
properties for electrons or nuclei moving freely in space, the above behaviors presented

significant challenges.



Another problem that arose in early studies of atoms and molecules resulted from
the study of the photons emitted from atoms and ions that had been heated or otherwise
excited (e.g., by electric discharge). It was found that each kind of atom (i.e., H or C or
O) emitted photons whose frequencies n were of very characteristic values. An example

of such emission spectrais shown in Fig. 1.2 for hydrogen atoms.
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Figure 1.2. Emission spectrum of atomic hydrogen with some lines repeated below to

illustrate the series to which they belong.

In the top panel, we see al of the lines emitted with their wave lengths indicated in nano-
meters. The other panels show how these lines have been analyzed (by scientists whose
names are associated) into patterns that relate to the specific energy levels between which

transitions occur to emit the corresponding photons.



In the early attempts to rationalize such spectrain terms of electronic motions,
one described an electron as moving about the atomic nuclei in circular orbits such as

showninFig. 1. 3.

s

Two circular orbits of radii r{ and ry.

Figure 1. 3. Characterization of small and large stable orbits for an electron moving

around a nucleus.
A circular orbit was thought to be stable when the outward centrifugal force characterized
by radius r and speed v (m, v¥/r) on the electron perfectly counterbalanced the inward

attractive Coulomb force (Z€°/r?) exerted by the nucleus of charge Z:

m, V/r = Zef/r?



This equation, in turn, allows one to relate the kinetic energy 1/2 m, v* to the Coulombic
energy Ze/r, and thus to express the total energy E of an orbit in terms of the radius of

the orhit:

E=12m,v*-Z€/r =-1/2 Z€ .

The energy characterizing an orbit or radiusr, relative to the E = 0 reference of
energy at r ® ¥, becomes more and more negative (i.e., lower and lower) asr becomes
smaller. Thisrelationship between outward and inward forces alows one to conclude that
the electron should move faster as it moves closer to the nucleus since v = Z&¥/(r m,).
However, nowhere in thismodel is a concept that relates to the experimental fact that
each atom emits only certain kinds of photons. It was believed that photon emission
occurred when an electron moving in alarger circular orbit lost energy and moved to a
smaller circular orbit. However, the Newtonian dynamics that produced the above
equation would allow orbits of any radius, and hence any energy, to be followed. Thus, it
would appear that the electron should be able to emit photons of any energy asit moved
from orbit to orbit.

The breakthrough that allowed scientists such as Niels Bohr to apply the circular-
orbit model to the observed spectral datainvolved first introducing the idea that the
electron has a wavelength and that thiswavelength | isrelated to its momentum by the
de Broglie equation| = h/p. The key step in the Bohr model was to also specify that the
radius of the circular orbit be such that the circumference of the circle 2p r equal an

integer (n) multiple of the wavelength | . Only in thisway will the electron’s wave



experience constructive interference as the el ectron orbits the nucleus. Thus, the Bohr
relationship that is analogous to the Bragg equation that determines at what angles

constructive interference can occur is

2pr=nl.

Both this equation and the analogous Bragg equation are illustrations of what we call
boundary conditions; they are extra conditions placed on the wavelength to produce some
desired character in the resultant wave (in these cases, constructive interference). Of
course, there remains the question of why one must impose these extra conditions when
the Newton dynamics do not require them. The resolution of this paradox is one of the
things that quantum mechanics does.

Returning to the above analysisand using | =h/p=h/(mv), 2pr=nl , aswell as
the force-balance equation m, v¥/r = Z€?/r?, one can then solve for the radii that stable

Bohr orbits obey:

r=(nh/2p) Y(m, Z &)

and, in turn for the velocities of electronsin these orbits

v =Z €/(nh/2p).



These two results then allow one to express the sum of the kinetic (1/2 m,v?) and

Coulomb potential (-Z€/r) energies as

E =-1/2 m, Z? €/(nh/2p)>.

Just as in the Bragg diffraction result, which specified at what angles special high
intensities occurred in the scattering, there are many stable Bohr orbits, each labeled by a
value of the integer n. Those with small n have small radii, high velocities and more
negative total energies (n.b., the reference zero of energy corresponds to the electron at r
=¥ ,and withv = 0). So, it isthe result that only certain orbits are “allowed” that causes
only certain energies to occur and thus only certain energies to be observed in the emitted
photons.

It turned out that the Bohr formulafor the energy levels (labeled by n) of an
electron moving about a nucleus could be used to explain the discrete line emission
spectra of all one-electron atoms and ions (i.e., H, He", Li*?, etc.) to very high precision.

In such an interpretation of the experimental data, one claims that a photon of energy

hn =R (Un?—1/n?)

is emitted when the atom or ion undergoes a transition from an orbit having quantum

number n; to alower-energy orbit having n,. Here the symbol R is used to denote the

following collection of factors:



R =1/2m,Z? €'/(h/2p)>

The Bohr formula for energy levels did not agree as well with the observed pattern of
emission spectrafor species containing more than a single electron. However, it does
give areasonable fit, for example, to the Na atom spectraif one examines only transitions
involving only the single valence electron. The primary reason for the breakdown of the
Bohr formulais the neglect of electron-electron Coulomb repulsionsin its derivation.
Nevertheless, the success of this model made it clear that discrete emission spectra could
only be explained by introducing the concept that not all orbits were “alowed”. Only
special orbits that obeyed a constructive-interference condition were really accessible to
the electron’s motions. Thisideathat not al energies were allowed, but only certain
“quantized” energies could occur was essential to achieving even a qualitative sense of
agreement with the experimental fact that emission spectra were discrete.

In summary, two experimental observations on the behavior of electrons that were
crucia to the abandonment of Newtonian dynamics were the observations of electron
diffraction and of discrete emission spectra. Both of these findings seem to suggest that
electrons have some wave characteristics and that these waves have only certain allowed
(i.e., quantized) wavelengths.

So, now we have some idea about why Newton’s equations fail to account for the
dynamical motions of light and small particles such as electrons and nuclei. We see that
extra conditions (e.g., the Bragg condition or constraints on the de Broglie wavelength)

could be imposed to achieve some degree of agreement with experimental observation.
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However, we till are left wondering what the equations are that can be applied to
properly describe such motions and why the extra conditions are needed. It turns out that
anew kind of equation based on combining wave and particle properties needed to be
devel oped to address such issues. These are the so-called Schrédinger equations to which
we now turn our attention.

As| said earlier, no one has yet shown that the Schrodiger equation follows
deductively from some more fundamental theory. That is, scientists did not derive this
equation; they postulated it. Some idea of how the scientists of that era*dreamed up” the
Schrodinger equation can be had by examining the time and spatial dependence that
characterizes so-called travelling waves. It should be noted that the people who worked
on these problems knew a great deal about waves (e.g., sound waves and water waves)
and the equations they obeyed. Moreover, they knew that waves could sometimes display
the characteristic of quantized wavelengths or frequencies (e.g., fundamentals and
overtones in sound waves). They knew, for example, that waves in one dimension that
are constrained at two points (e.g., aviolin string held fixed at two ends) undergo
oscillatory motion in space and time with characteristic frequencies and wavelengths. For
example, the motion of the violin string just mentioned can be described as having an

amplitude A(x,t) at a position x along its length at time t given by

A(x,t) = A(x,0) cos(2p n t),

where n isits oscillation frequency. The amplitude’ s spatial dependence also has a

sinusoidal dependence given by

11



A(X,00=Asin(2px/l)

where| isthe crest-to-crest length of the wave. Two examples of such wavesin one

dimension are shown in Fig. 1. 4.

A(x,0)
‘/sin(lpx/L)
\/\ X >
sin(2px/L)

Figure 1.4. Fundamental and first overtone notes of aviolin string.

In these cases, the string isfixed at x = 0 and at x = L, so the wavelengths belonging to
the two waves shown arel =2L and| =L. If theviolin string were not clamped at x = L,
the waves could have any value of | . However, because the string is attached at x = L,

the allowed wavelengths are quantized to obey
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| =L/n,

wheren=1, 2, 3, 4, ... .The equation that such waves obey, called the wave equation,

reads:

02 (x,0)/d? = ¢ PATdX?

where c isthe speed at which the wave travels. This speed depends on the composition of
the material from which the violin string is made. Using the earlier expressions for the x-
and t- dependences of the wave A(x,t), we find that the wave' s frequency and wavelength

are related by the so-called dispersion equation:

2= (c/l )2,

or

This relationship implies, for example, that an instrument string made of avery stiff
materia (large c) will produce a higher frequency tone for a given wavelength (i.e,, a
given value of n) than will a string made of a softer material (smaller c).

For waves moving on the surface of, for example, arectangular two-dimensional

surface of lengths L, and L, one finds
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A(x,y,t) =sin(n, px/L,) sin(n, py/L,) cos(2p nt).

Hence, the waves are quantized in two dimensions because their wavelengths must be
constrained to cause A(x,y,t) tovanishatx =0andx =L, aswell asaty =0andy =L,
for all timest. Let us now return to the issue of waves that describe electrons moving.
The pioneers of quantum mechanics examined functional forms similar to those
shown above. For example, forms such as A = exp[+2pi(nt —x/I )] were considered
because they correspond to periodic waves that evolve in x and t under no external x- or

t- dependent forces. Noticing that

dPA/dx2= - (2p/l )2A

and using the de Broglie hypothesis| = h/p in the above equation, one finds

d?Aldx?= - p* (2p/h)?A.

If A issupposed to relate to the motion of a particle of momentum p under no external

forces (since the waveform corresponds to this case), p? can be related to the energy E of

the particle by E = p?/2m. So, the equation for A can be rewritten as:

d’A/dx*= - 2m E (2p/h)* A,
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or, alternatively,

- (W2p)? PAldx? = E A,

Returning to the time-dependence of A(x,t) and using n = E/h, one can also show that

i (h/2p) dA/dt = E A,

which, using the first result, suggests that

i (h2p) dA/dt = - (h/2p)? PA/dX

Thisisaprimitive form of the Schrédinger equation that we will address in much more

detail below. Briefly, what is important to keep in mind that the use of the de Broglie and

Planck/Einstein connections (I = h/p and E = h n), both of which involve the constant h,

produces suggestive connections between

i (h/2p) d/dt and E

and between
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p? and — (h/2p)? d?/dx?

or, alternatively, between

p and —i (h/2p) d/dx.

These connections between physical properties (energy E and momentum p) and
differential operators are some of the unusual features of quantum mechanics.

The above discussion about waves and quantized wavelengths as well as the
observations about the wave equation and differential operators are not meant to provide
or even suggest a derivation of the Schrodinger equation. Again the scientists who
invented quantum mechanics did not derive its working equations. Instead, the equations
and rules of quantum mechanics have been postulated and designed to be consistent with
laboratory observations. My students often find this to be disconcerting because they are
hoping and searching for an uderlying fundamental basis from which the basic laws of
quantum mechanics follows logically. | try to remind them that thisis not how theory
works. Instead, one uses experimental observation to postulate a rule or equation or
theory, and one then tests the theory by making predictions that can be tested by further
experiments. If the theory fails, it must be “refined”, and this process continues until one
has a better and better theory. In this sense, quantum mechanics, with all of its unusual
mathematical constructs and rules, should be viewed as arising from the imaginations of
scientists who tried to invent atheory that was consistent with experimental data and

which could be used to predict things that could then be tested in the laboratory. Thusfar,
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this theory has proven to be reliable, but, of course, we are always searching for a*“ new
and improved” theory that describes how small light particles move.

If it helps you to be more accepting of quantum theory, | should point out that the
quantum description of particles will reduce to the classical Newton description under
certain circumstances. In particular, when treating heavy particles (e.g., macroscopic
masses and even heavier atoms), it is often possible to use Newton dynamics. Briefly, we
will discuss in more detail how the quantum and classical dynamics sometimes coincide
(in which case oneis free to use the simpler Newton dynamics). So, let us now move on
to look at this strange Schrodinger equation that we have been digressing about for so

long.

I. The Schradinger Equation and Its Components

It has been well established that electrons moving in atoms and molecules do not
obey the classical Newton equations of motion. People long ago tried to treat electronic
motion classically, and found that features observed clearly in experimental
measurements simply were not consistent with such a treatment. Attempts were made to
supplement the classical equations with conditions that could be used to rationalize such
observations. For example, early workers required that the angular momentumL =r x p
be allowed to assume only integer mulitples of h/2p (which is often abbreviated as h),
which can be shown to be equivalent to the Borh postulaten| =2 pr. However, until

scientists realized that a new set of laws, those of quantum mechanics, applied to light
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microscopic particles, awide gulf existed between laboratory observations of molecule-
level phenomena and the equations used to describe such behavior.

Quantum mechanicsis cast in alanguage that is not familiar to most students of
chemistry who are examining the subject for the first time. Its mathematical content and
how it relates to experimental measurements both require a great deal of effort to master.
With these thoughtsin mind, | have organized this material in a manner that first provides
abrief introduction to the two primary constructs of quantum mechanics- operators and
wave functions that obey a Schrodinger equation. Next, | demonstrate the application of
these constructs to several chemically relevant model problems. By learning the solutions
of the Schrédinger equation for afew model systems, the student can better appreciate
the treatment of the fundamental postulates of quantum mechanics as well astheir
relation to experimental measurement for which the wave functions of the known model

problems offer important interpretations.

A. Operators
Each physically measurable quantity has a corresponding operator. The
eigenvalues of the operator tell the only values of the corresponding physical property

that can be observed.

Any experimentally measurable physical quantity F (e.g., energy, dipole moment,
orbital angular momentum, spin angular momentum, linear momentum, kinetic energy)
has a classical mechanical expression in terms of the Cartesian positions{q;} and

momenta{p;j} of the particles that comprise the system of interest. Each such classical
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expression is assigned a corresponding quantum mechanical operator F formed by
replacing the { pj} in the classical form by the differential operator -ihY/fg;j and leaving
the coordinates ¢ that appear in F untouched. For example, the classical kinetic energy of

N particles (with masses m,) moving in a potential field containing both quadratic and

linear coordinate-dependence can be written as

F=Si=1n (P%2m; + /2 k(gi-gi9)2 + L(g1-q19)).

The quantum mechanical operator associated with thisFis

F=Si=1N (- h22m; 129912 + 12 k(q-a19)2 + L(g-q/9)).

Such an operator would occur when, for example, one describes the sum of the kinetic
energies of acollection of particles (the Si=1 N (pi 2/2m, ) term), plus the sum of "Hookes
Law" parabolic potentials (the 1/2 Si=1 n k(q-q9)2), and (the last term in F) the
interactions of the particles with an externally applied field whose potential energy varies
linearly as the particles move away from their equilibrium positions { ,%}.

Let us try more examples. The sum of the z-components of angular momenta

(recall that vector angular momentum L isdefined asL =r x p) of acollection of N

particles has the following classical expression

F=Sj=1,N (XjPyj - YjPxj),
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and the corresponding operator is

F=-ih Si=1,N (TMy; - y; 1T%)).

If one transforms these Cartesian coordinates and derivatives into polar coordinates, the

above expression reduces to

F=-i S\ 115

The x-component of the dipole moment for a collection of N particles has a classical

form of

F=Sj=1,N Zjexj,

for which the quantum operator is

F=Sj=1N ZjeXj ,

where Zje isthe charge on the jth particle. Notice that in this case, classical and quantum

forms are identical because F contains no momentum operators.
The mapping from F to F is straightforward only in terms of Cartesian

coordinates. To map aclassical function F, given in terms of curvilinear coordinates
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(even if they are orthogonal), into its quantum operator is not at all straightforward. The
mapping can always be done in terms of Cartesian coordinates after which a
transformation of the resulting coordinates and differential operatorsto a curvilinear
system can be performed.

The relationship of these quantum mechanical operators to experimental
measurement lies in the eigenvalues of the quantum operators. Each such operator has a

corresponding eigenval ue equation

Fc =a c

in which the c; are called eigenfunctions and the (scalar numbers) a; are called
eigenvalues. All such eigenvalue equations are posed in terms of a given operator (F in
this case) and those functions {c;} that F acts on to produce the function back again but
multiplied by a constant (the eigenvalue). Because the operator F usually contains
differential operators (coming from the momentum), these equations are differential
equations. Their solutions c; depend on the coordinates that F contains as differential
operators. An example will help clarify these points. The differential operator d/dy acts
on what functions (of y) to generate the same function back again but multiplied by a

constant? The answer is functions of the form exp(ay) since

d (exp(ay))/dy = aexp(ay).

So, we say that exp(ay) is an eigenfunction of d/dy and ais the corresponding eigenvalue.
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As | will discussin more detail shortly, the eigenvalues of the operator F tell us
the only values of the physical property corresponding to the operator F that can be
observed in alaboratory measurement. Some F operators that we encounter possess
eigenvalues that are discrete or quantized. For such properties, laboratory measurement
will result in only those discrete values. Other F operators have eigenvalues that can take
on a continuous range of values; for these properties, laboratory measurement can give

any value in this continuous range.

B. Wave functions

The eigenfunctions of a quantum mechanical operator depend on the coordinates
upon which the operator acts. The particular operator that corresponds to the total
energy of the systemis called the Hamiltonian operator. The eigenfunctions of this

particular operator are called wave functions

A special case of an operator corresponding to a physically measurable quantity is
the Hamiltonian operator H that relates to the total energy of the system. The energy
eigenstates of the system Y are functions of the coordinates { ¢;} that H depends on and
of timet. The function |Y (q;,t) |2=Y*Y givesthe probability density for observing the
coordinates at the values g at time t. For a many-particle system such as the HoO
molecule, the wave function depends on many coordinates. For H20O, it depends on the x,
y, and z (or r,q, and f ) coordinates of the ten electrons and the x, y, and z (or r,q, and f )
coordinates of the oxygen nucleus and of the two protons; atotal of thirty-nine

coordinates appear in Y .
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In classical mechanics, the coordinates gj and their corresponding momenta p; are
functions of time. The state of the system is then described by specifying g;(t) and p;(t).
In quantum mechanics, the concept that ¢ is known as a function of timeis replaced by
the concept of the probability density for finding g at a particular value at a particular
time |Y (qj,t)|2. Knowledge of the corresponding momenta as functions of timeisalso
relinquished in quantum mechanics; again, only knowledge of the probability density for
finding pj with any particular value at a particular timet remains.

The Hamiltonian eigenstates are especially important in chemistry because many
of thetools that chemists use to study molecules probe the energy states of the molecule.
For example, most spectroscopic methods are designed to determine which energy state a
moleculeisin. However, there are other experimental measurements that measure other
properties (e.g., the z-component of angular momentum or the total angular momentum).

As stated earlier, if the state of some molecular system is characterized by awave
function Y that happens to be an eigenfunction of a quantum mechanical operator F, one
can immediately say something about what the outcome will beif the physical property F

corresponding to the operator F is measured. In particular, since

wherel ; is one of the eigenvalues of F, we know that the value | ; will be observed if the
property F is measured while the molecule is described by the wave function Y =c;. In
fact, once a measurement of a physical quantity F has been carried out and a particular

eigenvalue | ; has been observed, the system's wave function Y becomes the
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eigenfunction c; that corresponds to that eigenvalue. That is, the act of making the
measurement causes the system's wave function to become the eigenfunction of the
property that was measured.

What happens if some other property G, whose quantum mechanical operator is G
is measured in such a case? We know from what was said earlier that some eigenvalue m
of the operator G will be observed in the measurement. But, will the molecul€e's wave
function remain, after G is measured, the eigenfunction of F, or will the measurement of
G cause Y to be altered in away that makes the molecul €'s state no longer an

eigenfunction of F? It turnsout that if the two operators F and G obey the condition

FG=GF,

then, when the property G is measured, the wave function Y = ¢; will remain unchanged.
This property that the order of application of the two operators does not matter is called
commuitation; that is, we say the two operators commute if they obey this property. Let us
see how this property leads to the conclusion about Y remaining unchanged if the two
operators commute. In particular, we apply the G operator to the above eigenvalue

equation:

GFc=Gl,c.

Next, we use the commutation to re-write the left-hand side of this equation, and use the

fact that | ; is ascalar number to thus obtain:

24



FGc=1,Gc;

So, now we see that (Gc,) itself is an eigenfunction of F having eigenvaluel ;. So, unless
there are more than one eigenfunction of F corresponding to the eigenvaluel ; (i.e., unless
this eigenvalue is degenerate), Ge; must itself be proportional to c;. We write this

proportionality conclusion as

Ge =mc;,

which means that ¢; is also an eigenfunction of G. This, in turn, means that measuring the
property G while the system is described by the wave function Y = c; does not change the
wave function; it remains c;.

So, when the operators corresponding to two physical properties commute, once
one measures one of the properties (and thus causes the system to be an eigenfunction of
that operator), subsequent measurement of the second operator will (if the eigenvalue of
the first operator is not degenerate) produce a unique eigenvalue of the second operator
and will not change the system wave function.

If the two operators do not commute, one simply can not reach the above
conclusions. In such cases, measurement of the property corresponding to the first
operator will lead to one of the eigenvalues of that operator and cause the system wave
function to become the corresponding eigenfuction. However, subsequent measurement

of the second operator will produce an eigenvalue of that operator, but the system wave
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function will be changed to become an eigenfuntion of the second operator and thus no

longer the eigenfunction of the first.

C. The Schradinger Equation
This equation is an eigenvalue equation for the energy or Hamiltonian operator;

its eigenval ues provide the only allowed energy levels of the system

1. The Time-Dependent Equation
If the Hamiltonian operator contains the time variable explicitly, one must solve

the time-dependent Schrédinger equation

Before moving deeper into understanding what quantum mechanics ‘'means, it is
useful to learn how the wave functions Y are found by applying the basic equation of
quantum mechanics, the Schrédinger equation, to afew exactly soluble model problems.
Knowing the solutions to these 'easy" yet chemically very relevant models will then
facilitate learning more of the details about the structure of quantum mechanics.

The Schrodinger equation is a differential equation depending on time and on all
of the spatial coordinates necessary to describe the system at hand (thirty-nine for the

H20 example cited above). It is usually written

HY =ihTY/ft
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where Y (gj,t) is the unknown wave function and H is the operator corresponding to the
total energy of the system. This operator is called the Hamiltonian and is formed, as
stated above, by first writing down the classical mechanical expression for the total
energy (Kinetic plus potential) in Cartesian coordinates and momenta and then replacing
al classica momenta pj by their quantum mechanical operators pj = - AT/ .

For the H2O example used above, the classical mechanical energy of all thirteen

particlesis

E= S| { p|2/2me+ 1/2 & ezlru - SaZan/rLa}

+ Sa{pa?/2ma+ 12 Sy ZaZpe2Irap },

wheretheindicesi and j are used to label the ten electrons whose thirty Cartesian
coordinates are { gj} and aand b label the three nuclei whose charges are denoted {Z3},
and whose nine Cartesian coordinates are { gg} . The electron and nuclear masses are
denoted mg and { mg}, respectively. The corresponding Hamiltonian operator is
H= S { - (h2/2me) ﬂZ/ﬂChZ +1/2 Sj ezlri,j - SaZaez/ri'a}
+ S, { - (h212my) 12/9052+ 1/2 Sp ZaZp2lrap } -

Noticethat H is asecond order differential operator in the space of the thirty-nine

27



Cartesian coordinates that describe the positions of the ten electrons and three nuclei. It is
a second order operator because the momenta appear in the kinetic energy as pjz and pg2,
and the quantum mechanical operator for each momentum p = -ih f/{iq is of first order.

The Schrodinger equation for the HoO example at hand then reads

Si{ - (h212me) 12/qi2 + 1/2 Sj e2/ri,j -SaZ£ria} Y

+ Saf - (h2/2mg) T12/M0e2+ 12 Sp ZaZp2lrap} Y =i ATY /L.

The Hamiltonian in this case contains t nowhere. An example of a case where H does
contain t occurs when the an oscillating electric field E cos(wt) along the x-axis interacts

with the electrons and nuclel and aterm

S.Z.eX, E cosgwt) - S ex E cos(wt)

is added to the Hamiltonian. Here, X, and x; denote the x coordinates of the &" nucleus

and the j" electron, respectively.

2. The Time-Independent Equation
If the Hamiltonian operator does not contain the time variable explicitly, one can

solve the time-independent Schrdinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not
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contain terms that are explicitly time dependent (e.g., interactions with time varying
external electric or magnetic fields would add to the above classical energy expression
time dependent terms), the separations of variables techniques can be used to reduce the
Schrodinger equation to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that Y (gj,t) is
of the form (n.b., this step is an example of the use of the separations of variables method

to solve adifferentia equation)

Y (9;.1) = Y (qj) F(D).

Substituting this ‘ansatz' into the time-dependent Schrodinger equation gives

Y (qj) i B IF/t=F(t) H Y (qp) .

Dividing by Y (q;) F(t) then gives

FL1ihIFM) = Y-2(H Y(q)).

Since F(t) isonly afunction of timet, and Y (qj) is only afunction of the spatial
coordinates { ¢}, and because the left hand and right hand sides must be equal for all
values of t and of { g}, both the left and right hand sides must equa a constant. If this
constant is called E, the two equations that are embodied in this separated Schrodinger

equation read as follows:
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H Y (q) =EY(q),

ih dF(t)/dt = E F(t).

The first of these equationsis called the time-independent Schrédinger equation; itisa
so-called eigenvalue equation in which oneis asked to find functions that yield a constant
multiple of themselves when acted on by the Hamiltonian operator. Such functions are
called eigenfunctions of H and the corresponding constants are called eigenvalues of H.
For example, if H were of the form (- h2/2M) 2/9f 2 = H , then functions of the form

exp(i mf ) would be eigenfunctions because

{ - h2/2M 12/91f 2} exp(i mf ) = { m2h2/2M } exp(i mf).

In this case, m2h2 /2M is the eigenvalue. In this example, the Hamiltonian contains the
square of an angular momentum operator (recall earlier that we showed the z-component
of angular momentum isto equal —i h d/df ).

When the Schrodinger equation can be separated to generate a time-independent
equation describing the spatial coordinate dependence of the wave function, the
eigenvalue E must be returned to the equation determining F(t) to find the time dependent

part of the wave function. By solving

ih dF(t)/dt = E F(Y)
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once E is known, one obtains

F(t) = exp( -i Et/ h),

and the full wave function can be written as

Y (gj.t) = Y(qj) exp (-i Et/ h).

For the above example, the time dependence is expressed by

F(t) = exp (-i t{ m2h2/2M }/ h).

In summary, whenever the Hamiltonian does not depend on time explicitly, one

can solve the time-independent Schrddinger equation first and then obtain the time

dependence as exp(-i Et/ h) once the energy E is known. In the case of molecular

structure theory, it is a quite daunting task even to approximately solve the full

Schrodinger equation becauseit is apartial differential equation depending on all of the

coordinates of the el ectrons and nuclei in the molecule. For this reason, there are various

approximations that one usually implements when attempting to study molecular

structure using quantum mechanics.

3. The Born-Oppenheimer Approximation
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One of the most important approximations relating to applying quantum
mechanics to molecules is known as the Born-Oppenheimer (BO) approximation.
The basic idea behind this approximation involves realizing that in the full electrons-plus-

nuclei Hamiltonian operator introduced above

H =S5 { - (h%2me) 12/10;i2 + 1/2 Sj e2/ri,j - SaZa€2ri 2}

+ Sy { - (h212my) 12/902+ 1/2 Sp ZaZp2lrap }

the time scales with which the electrons and nuclei move are generally quite different. In
particular, the heavy nuclei (i.e., even aH nucleus weighs nearly 2000 times what an
electron weighs) move (i.e., vibrate and rotate) more slowly than do the lighter electrons.
Thus, we expect the electrons to be able to “adjust” their motions to the much more
slowly moving nuclel. This observation motivates us to solve the Schrédinger equation
for the movement of the electronsin the presence of fixed nuclei as away to represent the
fully-adjusted state of the electrons at any fixed positions of the nuclei.

The electronic Hamiltonian that pertains to the motions of the electronsin the

presence of so-called clamped nuclei

H= S| { - (h2/2me) ﬂzlﬂq|2 +1/2 SJ eZ/I’hJ - SaZae2/ri,a}

produces as its elgenval ues through the equation
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H'y (G102 = Ex(d) ¥ (4l0.)

energies E,(q,) that depend on where the nuclel are located (i.e., the{q,} coordinates). As
its eigenfunctions, one obtains what are called electronic wave functions {y (a|0.)}
which aso depend on where the nuclei are located. The energies E,(q,) are what we

usually call potential energy surfaces. An example of such a surfaceis shown in Fig. 1.5.
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Figure 1. 5. Two dimensional potential energy surface showing local minima, transition

states and paths connecting them.

This surface depends on two geometrical coordinates {q,} and isaplot of one particular

eigenvalue E,(q,) vs. these two coordinates.
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Although this plot has more information on it than we shall discuss now, afew
features are worth noting. There appear to be three minima (i.e., points where the
derivative of E;with respect to both coordinates vanish and where the surface has
positive curvature). These points correspond, as we will see toward the end of this
introductory material, to geometries of stable molecular structures. The surface also
displays two first-order saddle points (labeled transition structures A and B) that connect
the three minima. These points have zero first derivative of E; with respect to both
coordinates but have one direction of negative curvature. Aswe will show later, these
points describe transition states that play crucial rolesin the kinetics of transitions among
the three stable geometries.

Keep in mind that Fig. 1. 5 shows just one of the E, surfaces; each molecule has a
ground-state surface (i.e., the one that is lowest in energy) as well as an infinite number
of excited-state surfaces. Let’s now return to our discussion of the BO model and ask
what one does once one has such an energy surface in hand.

The motion of the nuclei are subsequently, within the BO model, assumed to obey

a Schrodinger equation in which Sa{ - (h2/2mg) 12/ga2+ U2 Sp ZaZpe?lrap } + Ec(d)

defines a rotation-vibration Hamiltonian for the particular energy state E, of interest. The
rotational and vibrational energies and wave functions belonging to each electronic state
(i.e., for each value of theindex K in E.(q,)) are then found by solving a Schrodinger
equation with such a Hamiltonian.

This BO model forms the basis of much of how chemists view molecular
structure and molecular spectroscopy. For example as applied to formaldehyde H,C=0,

we speak of the singlet ground electronic state (with all electrons spin paired and
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occupying the lowest energy orbitals) and its vibrational states aswell asthen® p* and
p ® p* electronic states and their vibrational levels. Although much more will be said
about these concepts later in this text, the student should be aware of the concepts of
electronic energy surfaces (i.e., the { E.(q,)}) and the vibration-rotation states that belong
to each such surface.

Having been introduced to the concepts of operators, wave functions, the
Hamiltonian and its Schrédinger equation, it isimportant to now consider several
examples of the applications of these concepts. The examples treated bel ow were chosen
to provide the reader with valuable experience in solving the Schrodinger equation; they
were also chosen because they form the most elementary chemical models of electronic
motions in conjugated molecules and in atoms, rotations of linear molecules, and

vibrations of chemical bonds.

[1. Your First Application of Quantum Mechanics- Motion of a Particlein One
Dimension.
Thisisa very important problem whose solutions chemists use to model a wide

variety of phenomena.

Let’s begin by examining the motion of asingle particle of mass m in one direction
which we will call x while under the influence of a potential denoted V (x). The classical
expression for the total energy of such asystemis E = p/2m + V(x), where p is the

momentum of the particle along the x-axis. To focus on specific examples, consider how
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this particle would move if V(x) were of the forms shown in Fig. 1. 6, where the total

energy E is denoted by the position of the horizontal line.

L XR

Figure 1. 6. Three characteristic potentials showing left and right classical turning points

at energies denoted by the horizontal lines.

A. The Classical Probability Density

I would like you to imagine what the probability density would be for this particle
moving with total energy E and with V(x) varying as the above three plotsillustrate. To
conceptualize the probability density, imagine the particle to have a blinking lamp
attached to it and think of thislamp blinking say 100 times for each time it takes for the
particle to complete afull transit from its left turning point, to its right turning point and

back to the former. The turning points x, and X are the positions at which the particle, if
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it were moving under Newton’s laws, would reverse direction (as the momentum changes
sign) and turn around. These positions can be found by asking where the momentum goes

to zero:

0=p=(2m(E-V(X))*

These are the positions where al of the energy appears as potentia energy E = V(x) and
correspond in the above figures to the points where the dark horizontal lines touch the
V(X) plots as shown in the central plot.

The probability density at any value of x represents the fraction of time the
particle spends at this value of x (i.e., within x and x+dx). Think of forming this density
by allowing the blinking lamp attached to the particle to shed light on a photographic
plate that is exposed to this light for many oscillations of the particle between x, and X.
Alternatively, one can express this probability amplitude P(x) by dividing the spatial

distance dx by the velocity of the particle at the point x:

P(x) = (2m(E-V(x))™"* m dx.

Because E is constant throughout the particle’ s motion, P(x) will be small at x values
where the particle is moving quickly (i.e., where V islow) and will be high where the
particle moves slowly (whereV is high). So, the photographic plate will show a bright
region where V is high (because the particle moves slowly in such regions) and less

brightness where V islow.
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The bottom line is that the probability densities anticipated by analyzing the
classical Newtonian dynamics of this one particle would appear as the histogram plots

shown in Fig. 1.7 illustrate.

LIFIL Y| By T
1

L XR

Figure 1. 7 Classical probability plots for the three potentials shown

Where the particle has high kinetic energy (and thus lower V(x)), it spends less time and
P(x) issmall. Where the particle moves slowly, it spends more time and P(x) is larger.
For the plot on the right, V(X) is constant within the “box”, so the speed is constant,
hence P(x) is constant for all x values within this one-dimensional box. | ask that you
keep these plots in mind because they are very different from what one finds when one
solves the Schrodinger equation for this same problem. Also please keep in mind that
these plots represent what one expects if the particle were moving according to classical

Newtonian dynamics (which we know it is not!).
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B. The Quantum Treatment

To solve for the quantum mechanical wave functions and energies of this same
problem, we first write the Hamiltonian operator as discussed above by replacing p by

-ihd/dx:

H = - h%2m d¥dx®> + V(x).

Wethen try to find solutionsy (x) to Hy = Ey that obey certain conditions. These
conditions are related to the fact that |y (X)|? is supposed to be the probability density for
finding the particle between x and x+dx. To keep things as simple as possible, let’s focus
on the “box” potential V shown in the right side of Fig. B. 7. This potential, expressed as
afunction of x is: V(x) = ¥ for x< 0 and for x> L; V(x) = 0for x between O and L.
Thefact that V isinfinite for x< 0 and for x> L, and that the total energy E must
be finite, saysthat y must vanish in these two regions (y = 0for x< 0 and for x> L). This
condition means that the particle can not access these regions where the potential is
infinite. The second condition that we make use of isthat y (X) must be continuous; this
means that the probability of the particle being at x can not be discontinuously related to

the probability of it being at a nearby point.

C. The Energies and Wave functions

The second-order differential equation
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-R2mdy/dx? +V(X)y =Ey

has two solutions (because it is a second order equation) in the region between x= 0 and

x=1L:

y =sin(kx) andy = cos(kx), wherek is defined as k=(2mE/h?)Y2.

Hence, the most general solution is some combination of these two:

y = A sin(kx) + B cos(kx).

The fact that y must vanish at x= 0 (n.b., y vanishesfor x< 0 and is continuous, so it

must vanish at the point x= 0) means that the weighting amplitude of the cos(kx) term

must vanish because cos(kx) =1at x = 0. That is,

The amplitude of the sin(kx) term is not affected by the condition that y vanish at x= 0,

since sin(kx) itself vanishes at x= 0. So, now we know that y isreally of the form:

y (X) = A sin(kx).
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The condition that y also vanish at x= L has two possible implications. Either A =0 or k
must be such that sin(kL) = 0. The option A = 0 would lead to an answer y that vanishes
at all values of x and thus a probability that vanishes everywhere. Thisis unacceptable
because it would imply that the particle is never observed anywhere.

The other possibility isthat sin(kL) = 0. Let’s explore this answer because it
offers the first example of energy quantization that you have probably encountered. As
you know, the sin function vanishes at integral multiples of p. Hence kL must be some
multiple of p; let’'scall the integer n and write L k = np (using the definition of k) in the

form:

L (2mER)Y? =np.

Solving this equation for the energy E, we obtain:

E =n?p®h%(2mL?

This result says that the only energy values that are capable of giving awave function'y
(x) that will obey the above conditions are these specific E values. In other words, not all
energy values are “allowed” in the sense that they can producey functionsthat are
continuous and vanish in regions where V(x) isinfinite. If one uses an energy E that is
not one of the allowed values and substitutes this E into sin(kx), the resultant function

will not vanish a x = L. | hope the solution to this problem reminds you of the violin
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string that we discussed earlier. Recall that the violin string being tied down at x = 0 and
at x = L gave rise to quantization of the the wavelength just as the conditionsthat y be
continuous a X = 0 and X = L gave energy quantization.

Substituting k = np/L intoy = A sin(kx) gives

y (X) = A sin(npx/L).

The value of A can be found by remembering that |Y |* is supposed to represent the

probability density for finding the particle at x. Such probability densities are supposed to

be normalized, meaning that their integral over all x values should amount to unity. So,

we can find A by requiring that

1=0ly (X)]? dx = |[A]* osin®(npx/L) dx

where the integral ranges from x = oto x = L. Looking up the integral of sin’(ax) and

solving the above equation for the so-called normalization constant A gives

A = (2/L)*? and so

y (X) = (2/L)*2 sin(npx/L).

Thevaluesthat ncantakeonaren=1, 2, 3, ....; the choice n = 0 is unacceptable because

it would produce awave function y (x) that vanishes at all x.
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The full x- and t- dependent wave functions are then given as

Y (x,t) = (2/L)¥2 sin(npx/L) exp[-it n? p> h%(2mL?)/-h].

Notice that the spatial probability density |Y (x,t)[ is not dependent on time and is equal
to |y (x)J* because the complex exponential disappearswhen Y *Y isformed. This means
that the probability of finding the particle at various values of x is time-independent.
Another thing | want you to notice is that, unlike the classical dynamics case, not
all energy values E are allowed. In the Newtonian dynamics situation, E could be
specified and the particle’s momentum at any x value was then determined to within a
sign. In contrast, in quantum mechanics, one must determine, by solving the Schrodinger
equation, what the allowed values of E are. These E values are quantized, meaning that
they occur only for discrete values E = n? p%%(2mL?) determined by a quantum number

n, by the mass of the particle m, and by characteristics of the potential (L in this case).

D. The Probability Densities

Let’s now look at some of the wave functions Y (x) and compare the probability
densities |Y (x)[* that they represent to the classical probability densities discussed earlier.
Then =1 and n = 2 wave functions are shown in the top of Fig. 1.8. The corresponding
probability densities are shown below the wave functions in two formats
(as x-y plots and shaded plots that could relate to the flashing light way of monitoring the

particle’ slocation that we discussed earlier).
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Figure 1. 8. Thetwo lowest wave functions and probability densities

A more complete set of wave functions (for n ranging from 1 to 7) are shown in Fig. 1. 9.
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Figure 1. 9. Seven lowest wave functions and energies

Notice that as the quantum number n increases, the energy E also increases
(quadratically with nin this case) and the number of nodesin Y also increases. Also

notice that the probability densities are very different from what we encountered earlier
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for the classical case. For example, look at the n = 1 and n = 2 densities and compare

them to the classical density illustrated in Fig. 1.10.

T

Figure 1. 10. Classical probability density for potential shown

The classical density is easy to understand because we are familiar with classical
dynamics. In this case, we say that P(x) is constant within the box because the fact that
V(X) is constant causes the kinetic energy and hence the speed of the particle to remain
constant. In contrast, the n = 1 quantum wave function’s P(x) plot is peaked in the middle
of the box and fallsto zero at the walls. The n = 2 density P(x) has two peaks (one to the
left of the box midpoint, and one to the right), a node at the box midpoint, and fallsto
zero at the walls. One thing that students often ask me is “how does the particle get from
being in the left peak to being in the right peak if it has zero chance of ever being at the
midpoint where the node is?’ The difficulty with this question isthat it is posed in a
terminology that asks for a classical dynamics answer. That is, by asking “how does the

particle get...” oneis demanding an answer that involves describing its motion (i.e, it
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moves from here at timet, to there at timet,). Unfortunately, quantum mechanics does
not deal with issues such as a particle strajectory (i.e., whereit is at various times) but
only with its probabilty of being somewhere (i.e., |Y [). The next section will treat such

paradoxical issues even further.

E. Classical and Quantum Probability Densities

Asjust noted, it is tempting for most beginning students of quantum mechanics to
attempt to interpret the quantum behavior of a particlein classical terms. However, this
adventureis full of danger and bound to fail because small light particles smply do not
move according to Newton’s laws. To illustrate, let’ stry to “understand” what kind of
(classical) motion would be consistent with the n = 1 or n = 2 quantum P(x) plots shown
in Fig. B. 8. However, as | hope you anticipate, this attempt at gaining classical
understanding of a quantum result will not “work” in that it will lead to nonsensical
results. My point in leading you to attempt such a classical understanding is to teach you
that classical and quantum results are simply different and that you must resist the urge to
impose a classical understanding on quantum results.

For the n = 1 case, we note that P(x) is highest at the box midpoint and vanishes
at x =0and x =L. Inaclassical mechanics world, this would mean that the particle
moves slowly near x = L/2 and more quickly near x = 0 and x = L. Because the particle’s
total energy E must remain constant as it moves, in regions where it moves slowly, the
potential it experiences must be high, and where it moves quickly, V must be small. This

analysis (n.b., based on classical concepts) would lead usto conclude that the n =1 P(x)
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arises from the particle moving in a potential that is high near x = L/2 and low as x
approachesQ or L.

A similar analysis of the n = 2 P(x) plot would lead us to conclude that the
particle for which thisisthe correct P(x) must experience a potential that is high midway
between x = 0 and x = L/2, high midway between x = L/2 and x = L,. and very low near x
=L/2and near x =0 and x = L. These conclusions are “crazy” because we know that the
potential V(x) for which we solved the Schrédinger equation to generate both of the wave
functions (and both probability densities) is constant between x =0and x = L. That is, we
know the same V (x) appliesto the particle moving in the n = 1 and n = 2 states, whereas
the classical motion analysis offered above suggests that V(x) is different for these two
cases.

What iswrong with our attempt to understand the quantum P(x) plots? The
mistake we made was in attempting to apply the equations and concepts of classical
dynamicsto a P(x) plot that did not arise from classical motion. Simply put, one can not
ask how the particle is moving (i.e., what isits speed at various positions) when the
particle is undergoing quantum dynamics. Most students, when first experiencing
guantum wave functions and quantum probabilities, try to think of the particle moving in
aclassical way that is consistent with the quantum P(x). This attempt to retain a degree of
classical understanding of the particle’s movement is always met with frustration, as|
illustrated with the above example and will illustrate later in other cases.

Continuing with thisfirst example of how one solves the Schrodinger equation
and how one thinks of the quantized E values and wave functions Y, let me offer alittle

more optimistic note than offered in the preceding discussion. If we examine the Y (X)
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plot shown in Fig. B.9 for n = 7, and think of the corresponding P(x) = |Y (X)|?, we note

that the P(x) plot would look something like that shownin Fig. 1. 11.
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Figure 1. 11. Quantum probability density for n = 7 showing seven peaks and six nodes

It would have seven maxima separated by six nodes. If we wereto plot Y (X)|? for avery
large n value such as n = 55, we would find a P(x) plot having 55 maxima separated by
54 nodes, with the maxima separated approximately by distances of (1/55L). Such aplot,
when viewed in a*“ coarse grained” sense (i.e., focusing with somewhat blurred vision on
the positions and heights of the maxima) looks very much like the classical P(x) plot in
which P(x) is constant for all x. In fact, it isageneral result of quantum mechanics that

the quantum P(x) distributions for large quantum numbers take on the form of the
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classical P(x) for the same potential V that was used to solve the Schrédinger equation. It
is also true that classical and quantum results agree when one is dealing with heavy
particles. For example, a given particle-in-a-box energy E, = n*h?/(2mL?) would be
achieved for a heavier particle at higher n-values than for alighter particle. Hence,
heavier particles, moving with agiven energy E, have higher n and thus more classical
probability distributions.

We will encounter this so-called quantum-classical correspondence principal
again when we examine other model problems. It is an important property of solutions to
the Schrédinger equation because it is what allows us to bridge the “gap” between using
the Schrédinger equation to treat small light particles and the Newton equations for
macroscopic (big, heavy) systems.

Another thing | would like you to be aware of concerning the solutionsy and E to
this Schrodinger equation is that each pair of wave functionsy ,and y ,, belonging to
different quantum numbersn and n’ (and to different energies) display a property termed

orthonormality. This property means that not only arey ,,and y ., each normalized

1: 0|y n|2 dX = oIy n’l2 dX!

but they are also orthogonal to each other

0=0(y )*y,dx
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where the complex conjugate * of the first function appears only when they solutions
contain imaginary components (you have only seen one such case thus far- the exp(imf )
eigenfunctions of the z-component of angular momentm). It is common to write the
integrals displaying the normalization and orthogonality conditions in the following so-

cdled Dirac notation

1=<y,|ly,> 0=<y,|ly.>

wherethe | > and < | symbolsrepresenty andy *, respectively, and putting the two
together in the < | > construct implies the integration over the variable that y depends
upon.

The orthogonality conditon can be viewed as similar to the condition of two
vectors v, and v, being perpendicular, in which case their scalar (sometimes called “dot”)
product vanishesv, - v, =0. | want you to keep this property in mind because you will
soon see that it is a characteristic not only of these particle-in-a-box wave functions but
of al wave functions obtained from any Schrodinger equation.

In fact, the orthogonality property is even broader than the above discussion
suggests. It turns out that all quantum mechanical operators formed as discussed earlier
(replacing Cartesian momenta p by the corresponding -i h §/9q operator and leaving all
Cartesian coordinates as they are) can be shown to be so-called Hermitian operators. This
means that they form Hermitian matrices when they are placed between pairs of functions
and the coordinates are integrated over. For example, the matrix representation of an

operator F when acting on a set of functions denoted {f j} is:
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F,=<f|F|f>=0of * Ff,dq.

For al of the operators formed following the rules stated earlier, one finds that these

matrices have the following property:

which makes the matrices what we call Hermitian. If the functions upon which F acts and
F itself have no imaginary parts (i.e., are real), then the matrices turn out to be

symmetric:

The importance of the Hermiticity or symmetry of these matricesliesin the fact that it
can be shown that such matrices have al real (i.e., not complex) eigenvalues and have
eigenvectors that are orthogonal.

So, all quantum mechanical operators, not just the Hamiltonian, have real
eigenvalues (thisis good since these eigenvalues are what can be measured in any
experimental observation of that property) and orthogonal eigenfunctions. It isimportant
to keep these facts in mind because we make use of them many times throughout this

text.
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F. Time Propagation of Wave functions

For a system that existsin an eigenstate Y (x) = (2/L)"? sin(npx/L) having an

energy E, = n*p°h%(2mL?), the time-dependent wave function is

Y (x,t) = (2/L)"2 sin(npx/L) exp(-itE./h),

which can be generated by applying the so-called time evolution operator U(t,0) to the

wave functionat t = 0;

Y (x,1) = U(,0) Y (x,0)

where an explicit form for U(t,t’) is:

U(t,t') = exp[-i(t-t")H/-R].

The function Y (x,t) has a spatial probability density that does not depend on time because

Y *(x,1) Y (X,t) = (2/L) sin’(npx/L);

since exp(-itE,/h) exp(itE/h) = 1. However, it is possible to prepare systems (even in real

laboratory settings) in states that are not single eigenstates; we call such states

superposition states. For example, consider a particle moving along the x- axis within the

“box” potential but in a state whose wave function at someinitial timet=0is
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sin(2 pi s/L))"2

0.5 (sin(pi x/L)

sin(n pi x/L) forn=1and 2

Thisis asuperposition of the n =1 and n = 2 eigenstates. The probability density

associated with thisfunction is

[Y P = 1/2{(2/L) sinrf(1px/L)+ (2/L) sin(2px/L) -2(2/L) sin(1px/L)sin(2px/L)}.

Y (x,0) = 2Y2 (2/L)*? sin(1px/L) — 22 (2/L)Y? sin(2px/L).

Then =1 and n =2 components, the superposition Y, and the probability density att =0

[Y |? are shown in the first three panels of Fig. 1.12.
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Figure 1. 12. Then =1 and n = 2 wave functions, their superposition, and thet = 0 and

time-evolved probability densities of the superposition
It should be noted that the probability density associated with this superposition state is
not symmetric about the x=L/2 midpoint even though the n = 1 and n = 2 component
wave functions and densities are. Such a density describes the particle localized more
strongly in the large-x region of the box than in the small-x region.
Now, let’s consider the superposition wave function and its density at later times.

Applying the time evolution operator exp(-itH/h) to Y (x,0) generates this time-evolved

function at timet;

Y (x,t) = exp(-itH/R) {272 (2/L)Y2 sin(1px/L) — 22 (2/L)¥? sin(2px/L)}

= {22 (2/L)"? sin(1px/L) ) exp(-itE,/R). —22 (2/L)"? sin(2px/L) ) exp(-itE,/h) }.

The spatial probability density associated with thisY is:

IV ()P = 1/2{(2IL) Sn¥(1px/L)+ (2/L) Sin¥(2px/L)

-2(2/L) cos(E,-E,)t/h) sin(1px/L)sin(2px/L)}.
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Att =0, thisfunction clearly reduces to that written earlier for Y (x,0). Notice that astime
evolves, this density changes because of the cos(E,-E,)t/h) factor it contains. In particular,
note that ast moves through a period of length dt = p h/(E,-E,), the cos factor changes
sign. That is, for t = O, the cos factor is +1; for t = p h/(E,-E,), the cos factor is—1; for t =
2 p h/(E,-E), it returnsto +1. The result of thistime-variation in the cos factor isthat |Y |
changesin form from that shown in the bottom left panel of Fig. B. 12 to that shown in
the bottom right panel (at t = p h/(E,-E,)) and then back to the form in the bottom | eft
panel (att =2 p h/(E,-E,)). One can interpret thistime variation as describing the

particle s probability density (not its classical position!), initially localized toward the
right side of the box, moving to the left and then back to the right. Of course, thistime
evolution will continue over more and more cycles as time evolves further.

This example illustrates once again the difficulty with attempting to localize
particles that are being described by quantum wave functions. For example, a particle that
is characterized by the eigenstate (2/L)"2 sin(1px/L) is more likely to be detected near x
= L/2 than near x = 0 or X = L because the square of thisfunctionislargenear x = L/2. A
particle in the state (2/L)? sin(2px/L) is most likely to be found near x = L/4 and x =
3L/4, but not near x =0, X = L/2, or x =L. The issue of how the particle in the | atter state
moves from being near x = L/4 to x = 3L/4 is not something quantum mechanics deals
with. Quantum mechanics does not alow usto follow the particle strajectory whichis
what we need to know when we ask how it moves from one place to another.

Neverthel ess, superposition wave functions can offer, to some extent, the opportunity to

follow the motion of the particle. For example, the superposition state written above as
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212 (2/L)"? sin(1px/L) — 22 (2/L)"? sin(2px/L) has a probability amplitude that changes
with time as shown in the figure. Moreover, this amplitude’ s major peak does move from
side to side within the box as time evolves. So, in this case, we can say with what
frequency the major peak moves back and forth. In a sense, this allows usto “follow” the
particle’s movements, but only to the extent that we are satisfied with ascribing its
location to the position of the major peak in its probability distribution. That is, we can
not really follow its “precise” location, but we can follow the location of whereit isvery
likely to be found. Thisis an important observation that | hope the student will keep fresh
in mind. It isalso an important ingredient in modern quantum dynamics in which
localized wave packets, similar to superposed eigenstates, are used to detail the position
and speed of a particle’s main probability density peak.

The above example illustrates how one time-evolves a wave function that can be
expressed as alinear combination (i.e., superposition) of eigenstates of the problem at
hand. As noted above, there is alarge amount of current effort in the theoretical
chemistry community aimed at developing efficient approximations to the exp(-itH/h)
evolution operator that do not require Y (x,0) to be explicitly written as a sum of
eigenstates. Thisisimportant because, for most systems of direct relevance to molecules,
one can not solve for the eigenstates; it is simply too difficult to do so. You can find a
significantly more detailed treatment of the research-level treatment of this subject in my
Theory Page web site and my QM I C text book. However, let’s spend alittletime on a

brief introduction to what is involved.
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The problem is to express exp(-itH/-h) Y (q;), where Y () is some initia wave
function but not an eigenstate, in a manner that does not require one to first find the

eigenstates{Y j} of H andto expand Y in terms of these eigenstates:

Y =S,C,Y,

after which the desired function is written as

exp(-itH/-h) Y (g) = S,C, Y, exp(-itE/h).

The basic ideaisto break H into itskinetic T and potential V energy components and to
realize that the differential operators appear in T only. The importance of this observation
liesinthe fact that T and V do not commute which meansthat TV isnot equal to VT
(n.b., for two quantities to commute means that their order of appearance does not
matter). Why do they not commute? Because T contains second derivatives with respect
to the coordinates { g} that V depends on, so, for example, d*/dq?(V(q) Y (g)) is not equal
to V(q)d?/dg?Y (). The fact that T and V do not commute isimportant because the most
common approaches to approximating exp(-itH/-h) is to write this single exponential in

terms of exp(-itT/-h) and exp(-itV/-h). However, the identity

exp(-itH/-h) = exp(-itV/-h) exp(-itT/-h)
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isnot fully valid as one can see by expanding all three of the above exponential factors as
exp(x) =1+ x + x4/2! + ..., and noting that the two sides of the above equation only agree
if one can assumethat TV = VT, which, aswe noted, is not true.

In most modern approaches to time propagation, one divides the time interval t
into many (i.e., P of them) small time “dlices’ t = t/P. One then expresses the evolution

operator as a product of P short-time propagators:

exp(-itH/-h) = exp(-it H/-R) exp(-it H/-h) exp(-it H/h) ... = [exp(-it HIh) 17,

If one can then develop an efficient means of propagating for a short timet, one can then

do so over and over again P times to achieve the desired full-time propagation.

It can be shown that the exponential operator involving H can better be

approximated in terms of the T and VV exponential operators as follows:

exp(-it H/-h) » exp(-t* (TV-VT)/-h?) exp(-it V/-h) exp(-it T/-h).

So, if one can be satisfied with propagating for very short time intervals (so that thet?

term can be neglected), one can indeed use

exp(-it H/-h) » exp(-it V/-h) exp(-it T/-h)

as an approximation for the propagator U(t ,0).
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To progress further, one then expresses exp(-it T/-h) acting on the initial function
Y () in terms of the eigenfunctions of the kinetic energy operator T. Note that these
eigenfunctions do not depend on the nature of the potential V, so this step isvalid for any

and all potentials. The eigenfunctions of T = - h%2m d?/dqf are

y »(0) = (1/2p)*? exp(ipg/-h)

and they obey the following orthogonality

oy ,*(9) Y »(q) dg = d(p™-p)

and compl eteness relations

oy (@) Y ,,*(q) dp = d(g-).

Writing Y (q) as

Y (q) = od(a-q) Y (),

and using the above expression for d(g-q’) gives:

Y () =®y (9 y,*(@) Y(d) dg' dp.
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Then inserting the explicit expressions for y (g) and y ,*(q') in terms of

y () = (1/2p)*? exp(ipa/-h) gives

Y (q) = ®(1/2p)** exp(ipg/-h) (1/2p)** exp(-ipg’-h) Y (q') da’ dp.

Now, allowing exp(-it T/-h) to act on thisform for Y (q) produces

exp(-it T/-h) Y () = dexp(-it p’hA7/2mh) (1/2p)*? exp(ip(a-a)/-h) (1/2p) Y (q') da’ dp.

The integral over p above can be carried out analytically and gives

exp(-it T/Hh) Y (q) = (m/2pth)*? 0 exp(im(g-q)%2th) Y (q) dg.

So, the final expression for the short-time propagated wave function is:

Y (g.t) = exp(-it V(g)/-h) (m/2pth)*? 0 exp(im(g-q)%2th) Y (q) dq,

which is the working equation one uses to compute Y (q,t) knowing Y (q). Notice that all

one needs to know to apply this formulais the potential V(q) at each point in space. One

does not to know any of the eigenfunctions of the Hamiltonian to apply this method.

However, one does have to use this formula over and over again to propagate the initial
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wave function through many small time stepst to achieve full propagation for the desired
timeinterval t=Pt.

Because this type of time propagation technique is avery active area of research
in the theory community, it islikely to continue to be refined and improved. Further
discussion of it is beyond the scope of this book, so | will not go further into this

direction.

1. Free Particle Motionsin More Dimensions

The number of dimensions depends on the number of particles and the number of
spatial (and other) dimensions needed to characterize the position and motion of each

particle

A. The Schrédinger Equation

Consider an electron of mass m and charge e moving on a two-dimensional

surface that defines the X,y plane (e.g., perhaps an electron is constrained to the surface of

asolid by a potential that bindsit tightly to a narrow region in the z-direction), and

assume that the electron experiences a constant and not time-varying potential Vg at all

points in this plane. The pertinent time independent Schrédinger equation is:

- R2/2m (12192 +92/1y2)y (x.y) +Voy (x.y) = Ey (X.y).
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Thetask at hand is to solve the above eigenvalue equation to determine the “allowed”
energy states for this electron. Because there are no termsin this equation that couple
motion in the x and y directions (e.g., no terms of the form xayP or §/x /7y or x1/1y),
separation of variables can be used to writey asaproduct y (x,y)=A(X)B(y). Substitution
of thisform into the Schrodinger equation, followed by collecting together all x-

dependent and all y-dependent terms, gives,

- h2/2m A-192A/9x2 - h2/2m B-192B/1y2 =E-V.

Since the first term contains no y-dependence and the second contains no x-dependence,

and because the right side of the equation is independent of both x and y, both terms on

the left must actually be constant (these two constants are denoted Ex and Ey,

respectively). This observation allows two separate Schrodinger equations to be written:

- h2/2m A-192A/9x2 =Ey, and

- h2/2m B-192B/fly2 =Ey.

The total energy E can then be expressed in terms of these separate energies Ex and Ey as

Ex + Ey = E-V. Solutions to the x- and y- Schrédinger equations are easily seen to be:

A(x) = exp(ix(2mEx/h2)Y2) and exp(-ix(2mEx/h2)Y2)
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B(y) = exp(iy(2mEy/h2)1/2) and exp(-iy(2mEy/h2)12),

Two independent solutions are obtained for each equation because the x- and y-space
Schrodinger equations are both second order differential equations (i.e., a second order

differential equation has two independent solutions).

B. Boundary Conditions

The boundary conditions, not the Schrédinger equation, determine whether the

eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the x,y plane, the energies Ex and Ey
can assume any values; this means that the experimenter can 'inject’ the electron onto the
X,y plane with any total energy E and any components Ex and Ey along the two axes as
long as Ex + Ey = E. In such a situation, one speaks of the energies along both
coordinates as being 'in the continuum’ or 'not quantized'.

In contrast, if the electron is constrained to remain within afixed areain the x,y
plane (e.g., arectangular or circular region), then the situation is qualitatively different.
Constraining the electron to any such specified area gives rise to boundary conditions that
Impose additional requirements on the above A and B functions. These constraints can
arise, for example, if the potential Vo(x,y) becomes very large for x,y values outside the

region, in which case, the probability of finding the electron outside the region is very
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small. Such a case might represent, for example, a situation in which the molecular
structure of the solid surface changes outside the enclosed region in away that is highly
repulsive to the electron (e.g., as in the case of molecular corrals on metal surfaces). This
case could then represent asimple model of so-called “corrals’ in which the particleis
constrained to afinite region of space.

For example, if motion is constrained to take place within a rectangular region
defined by O£ X £ Lx; 0 £y £ Ly, then the continuity property that all wave functions
must obey (because of their interpretation as probability densities, which must be
continuous) causes A(X) to vanish at 0 and at Ly. That is, because A must vanish for x <0
and must vanish for x > L, and because A is continuous, it must vanish at x = 0 and at x

=L,. Likewise, B(y) must vanish at 0 and at Ly. To implement these constraints for A(x),
one must linearly combine the above two solutions exp(ix(2mEx/h2)Y2) and

exp(-ix(2mEy/h2)Y2) to achieve a function that vanishes at x=0:

A(x) = exp(ix(2mEx/h2)Y2) - exp(-ix(2mEx/h2)V2).
Oneisallowed to linearly combine solutions of the Schrédinger equation that have the
same energy (i.e., are degenerate) because Schrodinger equations are linear differential
eguations. An analogous process must be applied to B(y) to achieve afunction that

vanishes at y=0:

B(y) = exp(iy(2mEy/h2)112) - exp(-iy(2mEy/h2)V/2),
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Further requiring A(x) and B(y) to vanish, respectively, at x=Lx and y=Ly, gives

equations that can be obeyed only if Ex and Ey assume particular values:

exp(iLx(2mEx/h2)V2) - exp(-iLx(2mEy/h2)12) = 0, and

exp(iLy(2mEy/h2)12) - exp(-iLy(2mEy/h2)1/2) = 0.

These equations are equivalent (i.e., using exp(ix) = cos(x) + i sin(x)) to

Sin(Lx(2MEx/A2)12) = sin(Ly(2mE,/i2)1/2) = 0,

Knowing that sin(g) vanishes at q = np, for n=1,2,3,..., (although the sin(np) function

vanishes for n=0, this function vanishes for all x or y, and is therefore unacceptable

because it represents zero probability density at al pointsin space) one concludes that the

energies Ex and Ey can assume only values that obey:

Lx(szxlhz) 12 =Nxp,

Ly(2mEy/R2)V2 =nyp, or

Ex = nk2p2 h2/(2mLy2), and
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Ey = ny2p2h2/(2mLy2), with ny and ny =1,2,3, ...

It isimportant to stress that it is the imposition of boundary conditions, expressing the
fact that the electron is spatially constrained, that gives rise to quantized energies. In the
absence of spatial confinement, or with confinement only at x =0 or Ly or only at y =0 or
Ly, quantized energies would not be realized.

In this example, confinement of the electron to afinite interval along both the x and
y coordinates yields energies that are quantized along both axes. If the electron were
confined along one coordinate (e.g., between O £ x £ Ly) but not along the other (i.e.,
B(y) is either restricted to vanish at y=0 or at y=Ly or at neither point), then the total
energy E liesin the continuum; its Ex component is quantized but Ey is not. Analogs of
such cases arise, for example, when alinear triatomic molecule has more than enough
energy in one of its bonds to rupture it but not much energy in the other bond; the first
bond's energy lies in the continuum, but the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation
energy is excited to alevel that is not enough to break it but that isin excess of the
dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the
strong bond having high internal energy and the weak bond having low energy (y 1), and
ii. the strong bond having little energy and the weak bond having more than enough
energy to ruptureit (y 2). Although an experiment may prepare the molecule in a state
that contains only the former component (i.e., y = C1y 1 + Coy 2 with C1 =1, C2 = 0),
coupling between the two degenerate functions (induced by terms in the Hamiltonian H

that have been ignored in defining y 1 and y ») usually causes the true wave function
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Y =exp(-itH/h) y to acquire acomponent of the second function as time evolves. In such

a case, one speaks of internal vibrational energy relaxation (IVR) giving rise to

unimolecular decomposition of the molecule.

C. Energiesand Wave functionsfor Bound States

For discrete energy levels, the energies are specified functions that depend on

guantum numbers, one for each degree of freedom that is quantized

Returning to the situation in which motion is constrained along both axes, the

resultant total energies and wave functions (obtained by inserting the quantum energy

levelsinto the expressions for A(x) B(y)) are as follows:

Ex = nx?p2h2/(2mLy?), and

E:Ex+Ey +VO

y (x,y) = (1/2Ly) 12 (ﬂZLy)ﬂZ[eXp(inpr/Lx) -exp(-inkpx/Lx)]

[exp(inypy/Ly) -exp(-inypy/Ly)], withny and ny =1,2,3, ... .

The two (1/2L)Y2 factors are included to guarantee that y is normalized:
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oly (x,y)l? dx dy = 1.

Normalization allows |y (x,y)[? to be properly identified as a probability density for
finding the electron at apoint X, y.
Shown in Fig. 1. 13 are plots of four such two dimensional wave functions for n,and

n, valuesof (1,1), (2,1), (1.2) and (2,2), respectively.

[a] b!l

=1 <13

69



Figure 1. 13. Plots of the (1,1), (2,1), (1,2) and (2,2) wave functions

Note that the functions vanish on the boundaries of the box, and notice how the number
of nodes (i.e., zeroes encountered as the wave function oscillates from positive to
negative) isrelated to the n, and n, quantum numbers and to the energy. This pattern of
more nodes signifying higher energy is one that we encounter again and again in quantum
mechanics and is something the student should be able to use to “guess’ therelative
energies of wave functions when their plots are at hand. Finally, you should also notice
that, asin the one-dimensional box case, any attempt to classically interpret the
probabilities P(x,y) corresponding to the above quantum wave functions will result in
failure. Asin the one-dimensional case, the classical P(x,y) would be constant along
slices of fixed x and varying y or slices of fixed y and varying x within the box because
the speed is constant there. However, the quantum P(x,y) plots, at least for small quantum
numbers, are not constant. For large n, and n, values, the quantum P(x,y) plots will again,
viathe quantum-classical correspondence principle, approach the (constant) classical

P(x,y) form.

D. Quantized Action Can Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levels and is especially
straightforward to use for systems whose Schrédinger equations are separable. The so-

called classical action (denoted S) of a particle moving with momentum p along a path
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leading from initial coordinate g; at initial timet; to afinal coordinate g at timets is

defined by:

ar;tf
Qisti

Here, the momentum vector p contains the momentaalong all coordinates of the system,
and the coordinate vector g likewise contains the coordinates along all such degrees of
freedom. For example, in the two-dimensional particle in abox problem considered

above, q = (x, y) has two components as does p = (px, py), and the action integral is.

XsYfits
S= 8 (pxdx+pydy).
Xi3Yisti

In computing such actions, it is essentia to keep in mind the sign of the momentum as the

particle moves fromitsinitial to itsfinal positions. An example will help clarify these

matters.

For systems such as the above particle in abox example for which the Hamiltonian
Is separable, the action integral decomposes into a sum of such integrals, one for each

degree of freedom. In this two-dimensional example, the additivity of H:

H = Hy + Hy = px2/2m + py2/2m + V(x) + V(y)
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= - h2/2m 12/9x2 + V(X) - h2/2m 12/7y2 + V(y)

means that pyx and py can be independently solved for in terms of the potentials V(x) and

V(y) aswell asthe energies Ex and Ey associated with each separate degree of freedom:

Px = = N 2m(Ex - V(X))

Py =£\2m(Ey - V(Y)) ;

the signs on py and py must be chosen to properly reflect the motion that the particleis

actually undergoing. Substituting these expressionsinto the action integral yields:

S= S( + Sy
Xt Vit
0 0
= 0 #n/2m(Ex-V(X))dx + O i\/Zm(Ey -V(y)) dy .
Xi tj Yisti

The relationship between these classical action integrals and existence of quantized
energy levels has been shown to involve equating the classical action for motion on a

closed path to an integral multiple of Planck's constant:
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ar=qi;tf
Sosed= ©p-dg =nh. (n=1,234,..)
Qisti

Applied to each of the independent coordinates of the two-dimensional particle in abox

problem, this expression reads:

X=Lx x=0
0 0
nch= 0~2m(Ex- V(X)) dx + O -\/2m(Ex - V(X)) dx

x=0 X=Lx

y=Ly y=0
o] o]

nyh= 0~2m(Ey-V(y))dy + O -\/Zm(Ey -V(y)) dy .
y=0 y=Ly

Notice that the sign of the momenta are positive in each of the first integrals appearing
above (because the particle is moving from x = 0 to x = Ly, and analogously for y-
motion, and thus has positive momentum) and negative in each of the second integrals
(because the motion isfrom x = Ly to x = 0 (and analogously for y-motion) and thus the
particle has negative momentum). Within the region bounded by O£ X £ Lx; 0Ly £ Ly,
the potential vanishes, so V(x) = V(y) = 0. Using thisfact, and reversing the upper and

lower limits, and thus the sign, in the second integrals above, one obtains:
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X:LX

Q
nxh:2 0 \lszde =2 \'ZmEX I—X

x=0

y:,Ly
Q

y=0

Solving for Ex and Ey, one finds:

(nxh)?
Ex= 8mL 2

(nyh)?2
By = 8mLy2 -

These are the same quantized energy levels that arose when the wave function boundary

conditionswere matched at x =0, X = Ly andy = 0, y = Ly. In this case, one saysthat the

Bohr-Sommerfeld quantization condition:

ar=qi;tf
nh= 8 p-dq
it
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has been used to obtain the resullt.

The use of action quantization asillustrated above has become a very important tool.
It has allowed scientists to make great progress toward bridging the gap between classical
and quantum descriptions of molecular dynamics. In particular, by using classical
concepts such as trgjectories and then appending quantal action conditions, people have
been able to develop so-called semi-classical models of molecular dynamics. In such
models, oneis able to retain agreat deal of classical understanding while building in

quantum effects such as energy quantization, zero-point energies, and interferences.

E. Quantized Action Does Not Always Work

Unfortunately, the approach of quantizing the action does not always yield the
correct expression for the quantized energies. For example, when applied to the so-called
harmonic oscillator problem that we will study in quantum form later, which serves as the
simplest reasonable model for vibration of a diatomic molecule AB, one expresses the

total energy as

E = p?/2m+ k/2 x?

where m= m,mg/(m, + my) is the reduced mass of the AB diatom, k is the force constant

describing the bond between A and B, x is the bond-length displacement, and pisthe

momentum along the bond length. The quantized action requirement then reads
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nh = 0p dx = O[2m(E-k/2 x?)]¥2 dx.

Thisintegral is carried out between x = - (2E/k)"? and (2E/k)"? the | eft and right turning
points of the oscillatory motion and back again to form a closed path. Carrying out this

integral and equating it to n h gives the following expression for the energy E:

E = n (W2p) [kIm"

where the quantum number n is alowed to assume integer values ranging fromn =0, 1,
2, to infinity. The problem with thisresult isthat it iswrong! As experimental data
clearly show, the lowest-energy level for the vibrations of a molecule do not have E = 0;
they have a“zero-point” energy that is approximately equal to 1/2 (h/2p) [k/nj*2. So,
although the action quantization condition yields energies whose spacings are reasonably
in agreement with laboratory data for low-energy states (e.g., such states have
approximately constant spacings), it failsto predict the zero-point energy content of such
vibrations. Aswe will seelater, a proper quantum mechanical treatment of the harmonic

oscillator yields energies of the form

E = (n+ 1/2) (W2p) [k/n]*2

which differs from the action-based result by the proper zero-point energy.

Even with such difficulties known, much progress has been made in extending the

most elementary action-based methods to more and more systems by introducing, for
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example, rules that allow the quantum number n to assume half-integer as well as integer
values. Clearly, if nwere alowed to equal 1/2, 3/2, 5/2, ..., the earlier action integral
would have produced the correct result. However, how does one know when to allow nto
assume only integer or only half-integer or both integer and half-integer values. The
answers to this question are beyond the scope of this text and constitute an active area of
research. For now, it is enough for the student to be aware that one can often find energy
levels by using action integrals, but one must be careful in doing so because sometimes
the answers are wrong.

Before leaving this section, it is worth noting that the appearance of half-integer
quantum numbers does not only occur in the harmonic oscillator case. To illustrate, let us
consider the L, angular momentum operator discussed earlier. As we showed, this
operator, when computed as the z-component of r x p, can be written in polar (r, g, f)

coordinates as

L, =-ihd/df.

The eigenfunctions of this operator have the form exp(iaf ), and the eigenvalues are a h.
Because geometries with azimuthal angles equal tof or equal tof + 2p are exactly the
same geometries, the function exp(iaf ) should be exactly the same as exp(ia(f +2p)). This
can only bethe caseif ais an integer. Thus, one concludes that only integral multiples of
h- can be “alowed” values of the z-component of angular momentum. Experimentally,
one measures the z-component of an angular momentum by placing the system

possessing the angular momentum in a magnetic field of strength B and observing how
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many z-component energy states arise. For example, a boron atom with its 2p orbital has
one unit of orbital angular momentum, so one finds three separate z-component values
which are usually denoted m = -1, m=0, and m=1. Another example is offered by the
scandium atom with one unpaired electron in ad orbital; this atom’s states split into five
(m=-2,-1,0, 1, 2) z-component states. In each case, one finds 2L + 1 values of them
guantum number, and, because L is an integer, 2L + 1 isan odd integer. Both of these
observations are consistent with the expectation that only integer values can occur for L,
eigenvalues.

However, it has been observed that some species do not possess3 or 5or 7 or 9 z-
component states but an even number of such states. In particular, when electrons,
protons, or neutrons are subjected to the kind of magnetic field experiment mentioned
above, these particles are observed to have only two z-component eigenvalues. Because,
aswe discuss later in this text, all angular momenta have z-component eigenval ues that
are separated from one aother by unit multiples of h, oneisforced to conclude that these
three fundamental building-block particles have z-component eigenvalues of 1/2 h and
—1/2 h. The appearance of half-integral angular momenta is not consistent with the
observation made earlier that f and f + 2p correspond to exactly the same physical point
in coordinate space, which, in turn, implies that only full-integer angular momenta are
possible.

The resolution of the above paradox (i.e., how can half-integer angular momenta
exist?) involved realizing that some angular momenta correspond not to ther x p angular
momenta of a physical mass rotating, but, instead, are intrinsic properties of certain

particles. That is, the intrinsic angular momenta of electrons, protons, and neutrons can
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not be viewed as arising from rotation of some mass that comprises these particles.
Instead, such intrinsic angular momenta are fundamental “built in” characteristics of
these particles. For example, the two 1/2 h and — 1/2 h angular momentum states of an
electron, usually denoted a and b, respectively, are two internal states of the electron that
are degenerate in the absence of a magnetic field but which represent two distinct states
of the electron. Analogously, a proton has 1/2 h and — 1/2 h states, as do neutrons. All
such half-integral angular momentum states can not be accounted for using classical

mechanics but are known to arise in quantum mechanics.

Chapter 2. Model Problems That Form Important Starting Points

The model problems discussed in this Section form the basis for chemists
under standing of the electronic states of atoms, molecules, clusters, and solids aswell as

the rotational and vibrational motions of molecules.

|. Free Electron Model of Polyenes

The particle-in-a-box problem provides an important model for several relevant

chemical situations

The 'particle in abox' model for motion in two dimensions discussed earlier can
obviously be extended to three dimensions or to one. For two and three dimensions, it
provides a crude but useful picture for electronic states on surfaces or in metallic crystals,

respectively. | say metallic crystals because it isin such systems that the outermost
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valence electrons are reasonably well treated as moving freely. Free motion within a
spherical volume givesrise to eigenfunctions that are used in nuclear physics to describe
the motions of neutrons and protonsin nuclei. In the so-called shell model of nuclel, the
neutrons and protons fill separate s, p, d, etc. orbitals with each type of nucleon forced to
obey the Pauli principle (i.e., to have no more than two nucleonsin each orbital because
protons and neutrons are Fermions). To remind you, | display in Fig. 2. 1 the angular

shapes that characterize s, p, and d orbitals.
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Figure 2.1. The angular shapes of s, p, and d functions

This same spherical box model has also been used to describe the orbitals of valence
electronsin clusters of metal atoms such as Cs,, Cup, Nay and their positive and negative
ions. Because of the metallic nature of these species, their valence electrons are
essentially free to roam over the entire spherical volume of the cluster, which rendersthis
simple model rather effective. In thismodel, one thinks of each electron being free to
roam within a sphere of radius R (i.e., having a potential that is uniform within the sphere
and infinite outside the sphere). Finally, as noted above, this same spherical box model
forms the basis of the so-called shell model of nuclear structure. In this model, one
assumes that the protons and neutrons that make up a nucleus, both of which are
Fermions, occupy spherical-box orbitals (one set of orbitals for protons, another set for
neutrons because they are distinguishable from one another). By placing the protons and
neutrons into these orbitals, two to an orbital, one achieves a description of the energy

levels of the nucleus. Excited states are achieved by promoting a neutron or proton from
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an occupied orbital to avirtua (i.e., previously unoccupied) orbital. In such amodel,
especialy stable nuclei are achieved when “closed-shell” configurations such as 1< or
15°2572p° are realized (e.g., “He has both neutrons and protons in 1s* configurations).

The orbitals that solve the Schrédinger equation inside such a spherical box are not
the samein their radial 'shapes asthes, p, d, etc. orbitals of atoms because, in atoms,
there is an additional radial potential V(r) = -Ze2/r present. However, their angular shapes
are the same as in atomic structure because, in both cases, the potential is independent of
g and f. Asthe orbital plots shown above indicate, the angular shapes of s, p, and d
orbitals display varying number of nodal surfaces. The s orbitals have none, p orbitals
have one, and d orbitals have two. Analogous to how the number of nodes related to the
total energy of the particle constrained to the x, y plane, the number of nodesin the
angular wave functions indicates the amount of angular or rotational energy. Orbitals of s
shape have no angular energy, those of p shape have less then do d orbitals, etc.

One-dimensional free particle motion provides a qualitatively correct picture for p-
electron motion along the py, orbitals of delocalized polyenes. The one Cartesian
dimension then corresponds to motion along the delocalized chain. In such a model, the
box length L isrelated to the carbon-carbon bond length R and the number N of carbon
centersinvolved in the delocalized network L=(N-1) R. In Fig. 2.2, such a conjugated
network involving nine centersis depicted. In this example, the box length would be

eight times the C-C bond length.
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Conjugated p Network with 9 Centers Involved

Figure 2.2. The p atomic orbitals of a conjugated chain of nine carbon atoms

The eigenstates y n(x) and their energies Ep, represent orbitals into which electrons are
placed. In the example case, if nine p electrons are present (e.g., asin the 1,3,5,7-
nonatetraene radical), the ground el ectronic state would be represented by atotal wave
function consisting of a product in which the lowest four y 's are doubly occupied and the

fifthy issingly occupied:

Y =yiay 1by say sby zay 3by 4ay 4by sa.

The z-component angular momentum states of the electrons are labeled a and b as
discussed earlier.

A product wave function is appropriate because the total Hamiltonian involves the
kinetic plus potential energies of nine electrons. To the extent that this total energy can be
represented as the sum of nine separate energies, one for each electron, the Hamiltonian

allows a separation of variables

H @S; H(j)
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in which each H(j) describes the kinetic and potential energy of an individual electron.
Recall that when a partial differential equation has no operators that couple its different
independent variables (i.e., when it is separable), one can use separation of variables
methods to decompose its solutions into products. Thus, the (approximate) additivity of

impliesthat solutionsof HY =EY are products of solutions to

H@y(r)=Ey(rj.

The two lowest p-excited states would correspond to states of the form

Y*=yjayjbyrayobyzaysbysaysbysa,and

Y*=yjayjbyoayobyzaysbysaysbyea,

where the spin-orbitals (orbitals multiplied by a or b) appearing in the above products

depend on the coordinates of the various electrons. For example,

yiayibyoayobyszaysbysaysbysa

denotes

H
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yia(ri)yib (ro)yoa (ra)y2b (ra) ysa (rs)ysb (re) yasa (r7)

ysb (rg) ysa (ro).

The electronic excitation energies from the ground state to each of the above excited

states within this model would be

DE* = p2h2/2m [ 52/L2 - 42/L.2] and

DE™* = p2h2/2m[ 62/L2 - 52/L2].

It turns out that this ssmple model of p-electron energies provides a qualitatively correct
picture of such excitation energies. Its ssimplicity allows one, for example, to easily
suggest how a molecul€e’s color (as reflected in the complementary color of the light the
molecule absorbs) varies as the conjugation length L of the molecule varies. That is,
longer conjugated molecules have lower-energy orbitals because L? appearsin the
denominator of the energy expression. As aresult, longer conjugated molecules absorb
light of lower energy than do shorter molecules.

This simple particle-in-a-box model does not yield orbital energies that relate to
ionization energies unless the potential 'inside the box' is specified. Choosing the value of

this potential Vg such that Vo + p2h2/2m [ 52/L2] is equal to minus the lowest ionization

energy of the 1,3,5,7-nonatetragne radical, gives energy levels (asE = Vg + p2 h2/2m
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[ n2/L2]) which can then be used as approximations to ionization energies.

The individual p-molecular orbitals
Y n=(2/L)Y2 sin(npx/L)
aredepicted in Fig. 2.3 for amodel of the 1,3,5 hexatriene p-orbital system for which the
'box length' L isfive times the distance Rcc between neighboring pairs of carbon atoms.

The magnitude of the kth C-atom centered atomic orbital in the nth p-molecular orbital is

given by (2/L)Y2 sin(npkRcc/L).

(2/L)1/2 sin(npx/L); L =5 X Rcc

Figure 2.3. The phases of the six molecular orbitals of a chain containing six atoms.
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In this figure, positive amplitude is denoted by the clear spheres, and negative amplitude
is shown by the darkened spheres. Where two spheres of like shading overlap, the wave
function has enhanced amplitude; where two spheres of different shading overlap, a node
occurs. Once again, we note that the number of nodes increases as one ranges from the
lowest-energy orbital to higher energy orbitals. The reader is once again encouraged to
keep in mind this ubiquitous characteristic of guantum mechanical wave functions.

This simple model allows one to estimate spin densities at each carbon center and
provides insight into which centers should be most amenable to electrophilic or
nucleophilic attack. For example, radical attack at the Cs carbon of the nine-atom
nonatetraene system described earlier would be more facile for the ground state Y than
for either Y* or Y "™. In the former, the unpaired spin density residesiny s, which has
non-zero amplitude at the Cs site x=L/2. InY* and Y '*, the unpaired density isiny 4 and
Y 6, respectively, both of which have zero density at Cs. These densities reflect the values
(2/L)Y2 sin(npkRcc/L) of the amplitudes for this casein which L =8 x Rec forn=5, 4,
and 6, respectively. Plots of the wave functions for n ranging from 1 to 7 are shown in

another format in Fig. 2.4 where the nodal pattern is emphasized.
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Figure 2.4. The nodal pattern for a chain containing seven atoms

| hope that by now the student is not tempted to ask how the electron “gets’ from one

region of high amplitude, through a node, to another high-amplitude region. Remember,
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such questions are cast in classical Newtonian language and are not appropriate when

addressing the wave-like properties of quantum mechanics.

I1. Bandsof Orbitalsin Solids

Not only does the particle in abox model offer auseful conceptual representation of
electrons moving in polyenes, but it also is the zeroth-order model of band structuresin
solids. Let us consider a simple one-dimensional “crystal” consisting of alarge number of
atoms or molecules, each with a single orbital (the blue spheres shown below) that it
contributes to the bonding. Let us arrange these building blocks in aregular “lattice” as

shown in the Fig. 2.5.
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Figure 2.5. The energy levelsarising from 1, 2, 3, 4, and an infinite number of orbitals

In the top four rows of thisfigure we show the case with 1, 2, 3, and 4 building blocks.
To the left of each row, we display the energy splitting pattern into which the building
blocks' orbitals evolve as they overlap and form delocalized molecular orbitals. Not
surprisingly, for n = 2, one finds a bonding and an antibonding orbital. For n = 3, one has
a bonding, one non-bonding, and one antibonding orbital. Finally, in the bottom row, we

attempt to show what happens for an infinitely long chain. The key point is that the
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discrete number of molecular orbitals appearing in the 1-4 orbital cases evolvesinto a
continuum of orbitals called aband. This band of orbital energies ranges from its bottom
(whose orbital consists of afully in-phase bonding combination of the building block
orbitals) to its top (whose orbital is afully out-of-phase antibonding combination).

In Fig. 2.6 weillustrate these fully bonding and fully antibonding band orbitals for two
cases- the bottom involving s-type building block orbitals, and the top involving p-type
orbitals. Notice that when the energy gap between the building block sand p orbitalsis
larger than is the dispersion (spread) in energy within the band or s or band of p orbitals,
a band gap occurs between the highest member of the s band and the lowest member of
the p band. The splitting between the sand p orbitalsis a property of the individual atoms
comprising the solid and varies among the elements of the periodic table. The dispersion
in energies that a given band of orbitalsis split into as these atomic orbitals combine to
form a band is determined by how strongly the orbitals on neighboring atoms overlap.

Small overlap produces small dispersion, and large overlap yields a broad band.
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Figure 2.6. The bonding through antibonding energies and band orbitals arising from s

and from p orbitals

Depending on how many valence el ectrons each building block contributes, the various
bands formed by overlapping the building-block orbitals of the constituent atoms will be
filled to various levels. For example, if each orbital shown above has a single valence
electron in an s-orbital (e.g., asin the case of the alkali metals), the s-band will be half
filled in the ground state with a and b -paired electrons. Such systems produce very good
conductors because their partially filled bands allow electrons to move with very little

(e.g., only thermal) excitation among other orbitals in this same band. On the other hand,
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for alkaline earth systems with two s electrons per atom, the s-band will be completely
filled. In such cases, conduction requires excitation to the lowest members of the nearby
p-orbital band. Finally, if each building block were an Al (3s* 3p*) atom, the s-band
would be full and the p-band would be half filled. Systems whose highest energy
occupied band is completely filled and for which the gap in energy to the lowest unfilled
band is large are called insulators because they have no way to easily (i.e., with little
energy requirement) promote some of their higher-energy electrons from orbital to orbital
and thus effect conduction. If the band gap between afilled band and an unfilled band is
small, it may be possible for thermal excitation (i.e., collisions with neighboring atoms or
molecules) to cause excitation of electrons from the former to the latter thereby inducing

conductive behavior. An example of such acaseisillustrated in Fig. 2.7.
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Figure 2.7. The valence and conduction bands and the band gap.

In contrast, systems whose highest energy occupied band is partially filled are conductors

because the have little spacing among their occupied and unoccupied orbitals.
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To form a semiconductor, one starts with an insulator as shown in Fig.2.8 with its

filled (dark) band and a band gap between this band and its empty (clear) upper band.

> o
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Figure 2.8. Thefilled and empty bands, the band gap, and exmpty acceptor or filled

donor bands.

If thisinsulator material were synthesized with a small amount of “dopant” whose
valence orbitals have energies between the filled and empty bands of the insulator, one

may generate a semiconductor. If the dopant species has no valence electrons (i.e., has an
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empty valence orbital), it gives rise to an empty band lying between the filled and empty
bands of the insulator as shown below in case a. In this case, the dopant band can act as
an electron acceptor for electrons excited (either thermally or by light) from the filled
band into the dopant band. Once electrons enter the dopant band, charge can flow and
the system becomes a conductor. Another case isillustrated in the b part of the figure.
Here, the dopant hasits own band filled but lies close to the empty band of the insulator.
Hence excitation of el ectrons from the dopant band to the empty band can induce current

to flow.

[11. Densities of Statesin 1, 2, and 3 dimensions.
When a large number of neighboring orbitals overlap, band are formed.

However, the nature of these bands is very different in different dimensions.

Before leaving our discussion of bands of orbitals and orbital energiesin solids, |
want to address the issue of the density of electronic states and the issue of what
determines the energy range into which orbitals of a given band will split. First, let’s
recall the energy expression for the 1 and 2- dimensional electron in abox case, and let’s

generaizeit to three dimensions. The general result is

E =S n?p*k’/(2mL?)

where the sum over j runs over the number of dimensions (1, 2, or 3), and L, isthe length

of the box along the j"™ direction. For one dimension, one observes a pattern of energy
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levels that grows with increasing n, and whose spacing between neighboring energy
levels also grows. However, in 2 and 3 dimensions, the pattern of energy level spacing
displays a qualitatively different character at high quantum number.

Consider first the 3-dimensional case and, for ssimplicity, let’s use a“box” that has
equal length sides L. In this case, the total energy E is (R°p?/2mL?) times (n> +n? +n).
The latter quantity can be thought of as the square of the length of avector R having three
components n,, n,, n,. Now think of three Cartesian axes |abeled n,, n,, and n, and view a
sphere of radius R in this space. The volume of the 1/8 " sphere having positive values of
n,, n,, and n, and having radius R is 1/8 (4/3 pR®). Because each cube having unit length
along the n,, n,, and n, axes corresponds to a single quantum wave function and its
energy, the total number N,,(E) of quantum states with positive n,, n,, and n,and with

energy between zero and E = (h*p?/2mL?%)R?is

N, = 1/8 (4/3 pR®) = 1/8 (4/3 p [2mEL(?p?)]*?

The number of quantum states with energies between E and E+dE is (dN,,/dE) dE, which

isthe density W(E) of states near energy E:

WE) = 1/8 (4/3 p [2mL%(h*p?)]¥?3/2 EYA
Notice that this state density increases as E increases. This means that, in the 3-
dimensional case, the number of quantum states per unit energy grows; in other words,

the spacing between neighboring state energies decreases, very unlike the 1-dimensioal
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case where the spacing between neighboring states grows as n and thus E grows. This
growth in state density in the 3-dimensional caseisaresult of the degenacies and near-
degenracies that occur. For example, the stateswith n,, n,,n,=2,1,1and 1, 1, 2, and 1, 2,
1 are degenerate, and those withn,, n,,n,=5,3,10r5,1,30r1,3,50r1,530r3,1,5
or 3, 5, 1 are degenerate and nearly degenerate to those having quantum numbers 4, 4, 1
orl 4,4,0or41, 4.

In the 2-dimensional case, degeracies also occur and cause the density of statesto
possess an interesting E dependence. In this case, we think of states having energy
E= (Wp%2mL?R? but with R* = n?+ n? Thetotal number of states having energy

between zeroand E is

N, = 4pR* = 4p E(2mL?/-h*p?)

S0, the density of states between E and E+dE is

WE) = dN,,.,/dE = 4p (2mL?%-Hp?)

That is, in this 2-dimensional case, the number of states per unit energy is constant for

high E values (where the analysis above applies best).

Thiskind of analysis for the 1-dimensional case gives

Nyw= R= (2mEL%-h’p?"?
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S0, the state density between E and E+ dE is:

WE) = 1/2 (2mLY-Rpd) 2 B2,

which clearly shows the widening spacing, and thus lower density, as one goes to higher
energies.

These findings about densities of statesin 1-, 2-, and 3- dimensions are important
because, in various problems one encounters in studying electronic states of extended
systems such as solids and surfaces, one needs to know how the number of states
available at agiven total energy E varieswith E. Clearly, the answer to this question
depends upon the dimensionality of the problem, and thisfact iswhat | want the students

reading this text to keep in mind.

IV. TheMost Elementary Model of Orbital Energy Splittings: Hickel or Tight

Binding Theory

Now, let’s examine what determines the energy range into which orbitals (e.g., p,
orbitalsin polyenes or metal sor p orbitalsin asolid) split. To begin, consider two
orbitals, one on an atom labeled A and another on a neighboring atom labeled B; these
orbitals could be, for example, the 1s orbitals of two hydrogen atoms, such as Figure 2.9

illustrates.
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Figure 2.9. Two 1sorbitals combine to produce as bonding and as* antibonding

molecular orbital

However, the two orbitals could instead be two p, orbitals on neighboring carbon atoms

such as are shown in Fig. 2.10 as they form bonding and p* anti-bonding orbitals.
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Figure 2.10. Two atomic p, orbitals form abonding p and antibonding p* molecular

orbital.

In both of these cases, we think of forming the molecular orbitals (MOs) f, aslinear
combinations of the atomic orbitals (AOs) c, on the constituent atoms, and we express

this mathematically asfollows:

fy= S,CyaCa

where the C, , are called linear combination of atomic orbital to form molecular orbital

(LCAO-MO) coefficients. The MOs are supposed to be solutions to the Schrodinger

equation in which the Hamiltonian H involves the kinetic energy of the electron as well

asthe potentials V| and V, detailing its attraction to the left and right atomic centers:

101



H=-k/2mN2+V + V..

In contrast, the AOs centered on the left atom A are supposed to be solutions of the
Schradinger equation whose Hamiltonian isH = - h¥2m N2+ V|, and the AOs on the
right atom B have H = - h¥2m N2+ V.. Substituting f = S,C, , C,into theMO’s
Schrédinger equation Hf = e, f . and then multiplying on the left by the complex

conjugate of ¢, and integrating over ther, g and f coordinates of the electron produces

Sa<Cb| - h2/2m N2+ VL + VR |Ca> CK,a: € Sa <Cb|Ca> CK,a

Recall that the Dirac notation <a|b> denotes the integral of a* and b, and <a| op| b>
denotes the integral of a* and the operator op acting on b.

In what is known as the Hiickel model in organic chemistry or the tight-binding
model in solid-state theory, one approximates the integrals entering into the above set of

linear equations as follows:

i. The diagonal integral <c,| - h/2m N2+ V| + V|c,> involving the AO centered on the
right atom and labeled ¢, is assumed to be equivalent to <c,| - B/2m N+ V. |c,>, which
means that net attraction of this orbital to the left atomic center is neglected. Moreover,
thisintegral is approximated in terms of the binding energy (denoted a, not to be
confused with the electron spin function a) for an electron that occupies the ¢, orbital:

<cy| - B¥2m N2+ V. |c,> = a,. The physical meaning of a, isthekinetic energy of the
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electron in c, plus the attraction of this electron to the right atomic center while it resides
in c,. Of course, an analogous approximation is made for the diagonal integral involving

C,; <cJ-k2mN?+V [c>=a,.

ii. The off-diagonal integrals <c,| - h¥2m N?+ V_ + V|c> are expressed in terms of a
parameter b,, which relates to the kinetic and potential energy of the electron while it
resides in the “overlap region” in which both ¢, and c,, are non-vanishing. Thisregionis
shown pictorially above as the region where the left and right orbitals touch or overlap.
The magnitude of b is assumed to be proportional to the overlap S, between the two
AOs: S, = <cjc,>. It turns out that b is usually a negative quantity, which can be seen
by writing it as <c,| - h¥2m N2+ V. |c> + <c,| V. |c>. Sincec, isan eigenfunction of -
k2m N2+ V. having the eigenvalue a, the first term is equal to a, (a negative quantity)
times <c,|c>, the overlap S. The second quantity <c,| V, |c> isequa to the integral of
the overlap density c(r) c(r) multiplied by the (negative) Coulomb potential for
attractive interaction of the electron with the left atomic center. So, whenever c,(r) and

c(r) have positive overlap, b will turn out negative.

iii. Finally, in the most elementary Huckel or tight-binding model, the overlap integrals
<cjc,>=S,, areneglected and set equal to zero on the right side of the matrix
eigenvalue equation. However, in some Hickel models, overlap between neighboring

orbitalsis explictly treated, so, in some of the discussion below we will retain S, .

103



With these Hiickel approximations, the set of equations that determine the orbital
energies g, and the corresponding LCAO-MO coefficients Cy , are written for the two-

orbital case at hand as in the first 2x2 matrix equations shown below

b
a
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which is sometimes written as

These equations reduces with the assumption of zero overlap to

& buecL é1 OueCL
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The a parameters areidentical if thetwo AOs ¢, and c,are identical, as would be
the case for bonding between the two 1s orbitals of two H atoms or two 2p, orbitals of
two C atoms or two 3s orbitals of two Naatoms. If the |eft and right orbitals were not
identical (e.g., for bonding in HeH™ or for the p bonding in a C-O group), their a values

would be different and the Hiickel matrix problem would look like:
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To find the MO energies that result from combining the AOs, one must find the
values of e for which the above equations are valid. Taking the 2x2 matrix consisting of e
times the overlap matrix to the left hand side, the above set of equations reduces to the
third set displayed earlier. It is known from matrix algebrathat such a set of linear
homogeneous equations (i.e., having zeros on the right hand sides) can have non-trivia
solutions (i.e., values of C that are not simply zero) only if the determinant of the matrix

on the | eft side vanishes. Setting this determinant equal to zero gives a quadratic equation

in which the e values are the unknowns;

(a-e)*— (b-eS)* = 0.

This quadratic equation can be factored into a product

(a-b-e+eS)(a+b-e-eS)=0

which has two solutions

e=(a+b)(1+9), ande=(a-b)/(1-9).
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Asdiscussed earlier, it turns out that the b values are usually negative, so the
lowest energy such solutionisthee = (a + b)/(1 + S) solution, which gives the energy of
the bonding MO. Notice that the energies of the bonding and anti-bonding MOs are not
symmetrically displaced from the value a within this version of the Hiickel model that
retains orbital overlap. In fact, the bonding orbital lies lessthan b below a, and the
antibonding MO lies more than b above a because of the 1+S and 1-S factorsin the
respective denominators. This asymmetric lowering and raising of the MOs relative to the
energies of the constituent AOs is commonly observed in chemical bonds; that is, the
antibonding orbital is more antibonding than the bonding orbital isbonding. Thisis
another important thing to keep in mind because its effects pervade chemical bonding and
Spectroscopy.

Having noted the effect of inclusion of AO overlap effectsin the Hiickel model, |
should admit that it is far more common to utilize the ssmplified version of the Hickel
model in which the Sfactors areignored. In so doing, one obtains patterns of MO orbital
energies that do not reflect the asymmetric splitting in bonding and antibonding orbitals
noted above. However, this simplified approach is easier to use and offers qualitatively
correct MO energy orderings. So, let’s proceed with our discussion of the Huickel model
initssimplified version.

To obtain the LCAO-MO coefficients corresponding to the bonding and

antibonding M Os, one substitutes the corresponding a values into the linear equations
éa-e b l:éCLl:I _ éol]

é b a 'G%Ra_gﬁa
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and solves for the C, coefficients (acutally, one can solve for all but one C,, and then use

normalization of the MO to determine the final C,). For example, for the bonding MO,

we substitute e = a + b into the above matrix equation and obtain two equations for C,

and Cxg:

- bC +bCy=0

bC,-bCy=0.

These two equations are clearly not independent; either one can be solved for one C in

terms of the other C to give:

which means that the bonding MO is

f =C_(c +cR).

Thefina unknown, C, is obtained by noting that f is supposed to be a normalized

function <f |f > = 1. Within this version of the Hlickel model, in which the overlap Sis

negleted, the normalization of f leads to the following condition:
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1=<flf>= CL2 (<cilc, >+ <cpep>) =2 CL2

with the final result depending on assuming that each c isitself also normalized. So,

finally, we know that C_ = (1/2)"2, and hence the bonding MO is:

f = (1/2)"(c, + cpq)-

Actually, the solution of 1 =2 C,? could also have yielded C, = - (1/2)¥? and then, we

would have

f =- (1/2)"*(c,_+ cp).

These two solutions are not independent (oneisjust —1 time the other), so only one
should be included in the list of MOs. However, either oneisjust as good as the other
because, as shown very early in thistext, all of the physical properties that one computes
from awave function depend not ony but ony *y . So, two wave functions that differ
from one another by an overall sign factor as we have here have exactly the samey *y
and thus are equivalent.

In like fashion, we can substitute e = a - b into the matrix equation and solve for

the C, can C, valuesthat are appropriate for the antibonding MO. Doing so, gives us:

f* = (12)"(c.- cq)
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or, aternatively,
f* =(1/2)"*(cg - c.).

Again, thefact that either expression for f * is acceptable shows a property of all
solutions to any Scrrodinger equations; any multiple of asolution is aso a solution. In the
above example, the two “answers’ for f * differ by a multiplicative factor of (-1).
Let’stry another example to practice using Hiickel or tight-binding theory. In
particular, I’d like you to imagine two possible structures for a cluster three Na atoms
(i.e., pretend that someone came to you and asked what geometry you think such a cluster
would assume in its ground electronic state), one linear and one an equilateral triangle.
Further, assume that the Na-Na distances in both such clusters are equal (i.e., that the
person asking for your theoretical help iswilling to assume that variations in bond
lengths are not the crucial factor in determining which structure is favored). In Fig. 2.11,

| shown the two candidate clusters and their 3s orbitals.

H H |

Figure 2.11. Linear and equilateral triangle structures of sodium trimer.
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Numbering the three Na atoms' valence 3sorbitalsc,, ¢,, and c,, we then set up

the 3x3 Huckel matrix appropriate to the two candidate structures:

éa b Oy
& a bu
& b af

for the linear structure (n.b., the zeros arise because ¢, and ¢, do not overlap and thus

have no b coupling matrix element). Alternatively, for the triangular structure, we find’

& b bl
e u
é a bg
gbbaH

as the Huckel matrix. Each of these 3x3 matrices will have three eigenvalues that we

obtain by subtracting e from their diagonals and setting the determinants of the resulting

matrices to zero. For the linear case, doing so generates

(a-e)®*-2b*(a-e) =0,

and for the triangle case it produces

(a-e)®*-3b’*(a-e) +2b* =0.
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The first cubic equation has three solutions that give the MO energies:

e=a+(2"b,e=a,ande=a - (2)"?b,

for the bonding, non-bonding and antibonding M Os, respectively. The second cubic

equation also has three solutions

e=a+2b,e=a-b,ande=a-b.

So, for the linear and triangular structures, the MO energy patterns are as shown in Fig.

2.12.
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a- (2%

a+(2)Yb

a+2b

Linear Nag Cluster MO Energies  Triangle Nag Cluster MO Energies

Figure 2.12. Energy orderings of molecular orbitals of linear and triangular

sodium trimer

For the neutral Na, cluster about which you were asked, you have three valence
electrons to distribute among the lowest available orbitals. In the linear case, we place
two electronsinto the lowest orbital and one into the second orbital. Doing so produces a
3-electron state with atotal energy of E= 2(a+2"2 b) + a = 3a +2 2"?b. Alternatively, for
the triangular species, we put two electrons into the lowest MO and one into either of the
degenerate MOs resulting in a 3-electron state with total energy E = 3a + 3b. Because b
is anegative quantity, the total energy of the triangular structure is lower than that of the

linear structure since 3> 2 2'2,

The above example illustrates how we can use Huickel/tight-binding theory to
make qualitative predictions (e.g., which of two “shapes’ islikely to be of lower energy).
Notice that all one needs to know to apply such amodel to any set of atomic orbitals that

overlap to form MOsis
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(i) the individual AO energiesa (which relate to the electronegativity of the AOs) and
(i1) the degree to which the AOs couple (the b parameters which relate to AO overlaps).
Let’s seeif you can do some of this on your own. Using the above results, would
you expect the cation Na," to be linear or triangular? What about the anion Na;? Next, |
want you to substitute the MO energies back into the 3x3 matrix and find the C,, C,, and
C, coefficients appropriate to each of the 3 MOs of the linear and of the triangular
structure. See if doing so leads you to solutions that can be depicted as shown in Fig.

2.13, and seeif you can place each set of MOsin the proper energy ordering.

O
‘@
a9

Figure 2.13. The molecular orbitals of linear and triangular sodium trimer (note,

they are not energy ordered).
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Now, | want to show you how to broaden your horizons and use tight-binding
theory to describe all of the bonds in a more complicated molecule such as ethylene
shown in Fig. 2.14. Within the model described above, each pair of orbitals that “touch”
or overlap givesriseto a 2x2 matrix. More correctly, al n of the constituent AOs form an
nxn matrix, but this matrix is broken up into 2x2 blocks whenever each AO touches only
one other AO. Notice that this did not happen in the triangular Na, case where each AO
touched two other AOs. For the ethlyene case, the valence AO’s consist of (a) four
equivalent C sp® orbitals that are directed toward the four H atoms, (b) four H 1s orbitals,
(c) two C sp?orbitals directed toward one another to form the C-C s bond, and (d) two C
p, orbitals that will form the C-C p bond. This total of 12 AOs generates 6 Huickel

matrices as shown below the ethylene molecule.

Figure 2.14 Ethylene molecule with four C-H bonds, one C-C s bond, and one C-C p

bond.
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We obtain one 2x2 matrix for the C-C s bond of the form

7 a b AY
e o° 2yspzu

Sp 7
g)sz’SpZ aqu H

and one 2x2 matrix for the C-C p bond of the form

€ app pr‘Pp u

g)pp,pp app H

Finally, we also obtain four identical 2x2 matrices for the C-H bonds:

The above matrices will then produce (a) four identical C-H bonding M Os having
energiese= 1/2 {(a, + a.) (ay-ac)*+ 4b%*?%}, (b) four identical C-H antibonding MOs
having energies e = 1/2{(a,, + ay) + [(a, - a)* + 4b%¥?%, (c) one bonding C-C

p orbital withe=a,,+ b, (d) apartner antibonding C-C orbital withe* =a,, - b, (€) a
C-Cs bonding MO withe=ag,+ b, and (f) its antibonding partner withe* =ag,- b. In
all of these expressions, the b parameter is supposed to be that appropriate to the specific

orbitals that overlap as shown in the matrices.
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If you wish to practice this exercise of breaking a large molecule down into sets
of interacting AQOs, try to see what Hiickel matrices you obtain and what bonding and
antibonding MO energies you obtain for the valence orbitals of methane shown in Fig.

2.15.

Figure 2.15. Methane molecule with four C-H bonds.

Before leaving this discussion of the Hiickel/tight-binding model, | need to stress
that it hasits flaws (because it is based on approximations and involves neglecting certain
terms in the Schrodinger equation). For example, it predicts (see above) that ethylene has
four energetically identical C-H bonding MOs (and four degenerate C-H antibonding
MOs). However, thisis not what is seen when photoel ectron spectra are used to probe
the energies of these MOs. Likewise, it suggests that methane has four equivalent C-H
bonding and antibonding orbitals, which, again is not true. It turns out that, in each of
these two cases (ethylene and methane), the experiments indicate a grouping of four
nearly iso-energetic bonding MOs and four nearly iso-energetic antibonding MOs.

However, there is some “splitting” among these clusters of four MOs. The splittings can
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be interpreted, within the Hlckel model, as arising from couplings or interactions among,
for example, one sp® or sp® orbital on a given C atom and another such orbital on the
same atom. Such couplings cause the nxn Hiickel matrix to not block-partition into
groups of 2x2 sub-matrices because now there exist off-diagonal b factors that couple
one pair of directed AOs to another. When such couplings are included in the analysis,
one finds that the clusters of M Os expected to be degenerate are not but are split just as

the photoel ectron data suggest.

V. Hydrogenic Orbitals
The Hydrogenic atom problem forms the basis of much of our thinking about
atomic structure. To solve the corresponding Schrodinger equation requires separation

of ther, g, and f variable.

The Schrodinger equation for asingle particle of mass mmoving in a central

potential (one that depends only on the radial coordinate r) can be written as

&R 2 20 e 6
- Tn%]? + 2 2y t VE&x2+y2+728y =Ey .
or, introducing the short-hand notation N

-R2mN?y + Vy =Ey.
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This equation is not separable in Cartesian coordinates (X,y,z) because of the way x,y,
and z appear together in the square root. However, it is separablein spherical coordinates

whereit has theform

_h2. y® 1 T8 1My
2 & &2 qr r28|nq'ﬂq$nqﬂqf’j

+#ﬂ+v =-h¥2mN?y + Vy =E
r2Sin2q 2 T V(y =-R72mN%y y =Ey.

2nr2
Subtracting V(r)y from both sides of the equation and multiplying by - T2 then

moving the derivatives with respect to r to the right-hand side, one obtains

1 & o 1 Ty
Sing 7q &4 Ygg * Sin2q ff 2

2?2 2 fyo
= The (BVO) Y- 62 o

Notice that, except for y itself, the right-hand side of this equation is afunction of r only;
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it containsno q or f dependence. Let'scall the entire right hand side F(r) y to emphasize
thisfact.
To further separate the g and f dependence, we multiply by Sin2g and subtract the

g derivative terms from both sides to obtain

T2y T2 fyo
g2 = F(nysin?g- Sing ﬂqgnqﬂ—qg.

Now we have separated thef dependence from the g and r dependence. We now
introduce the procedure used to separate variablesin differntial equations and assumey
can be written asafunction of f timesafunctionof randq: y =F (f) Q(r,q). Dividing by

F Q, weobtain

QCI)

17F 1 1
w2 =5§(r)8m2qQ Sing 1g %nq T -

1
E

Now all of thef dependence isisolated on the left hand side; the right hand side contains
only r and g dependence.

Whenever one has isolated the entire dependence on one variable as we have done
abovefor thef dependence, one can easily see that the left and right hand sides of the
equation must equal a constant. For the above example, the left hand side contains no r

or q dependence and the right hand side containsno f dependence. Because the two
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sides are equal, they both must actually contain nor, g, or f dependence; that is, they are
constant.

For the above example, we therefore can set both sides equal to a so-called
separation constant that we call -m2. It will become clear shortly why we have chosen to
express the constant in the form of minus the square of an integer. Y ou may recall that we
studied thissamef - equation earlier and learned how the integer m arises via. the

boundary condition that f and f + 2p represent identical geometries.

1. TheF Equation

Theresulting F equation reads (the “ symbol is used to represent second

derivative)

F"+m2F =0.

This equation should be familiar because it is the equation that we treated much earlier
when we discussed z-component of angular momentum. So, its further analysis should
also be familiar, but for completeness, | repeat much of it. The above equation has asits

most general solution

F = Admf + Bgimf
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Because the wave functions of quantum mechanics represent probability densities, they
must be continuous and single-valued. The latter condition, applied to our F function,
means (n.b., we used thisin our earlier discussion of z-component of angular momentum)

that

Ff)=F(@2p+f) or,

Aemf (1 -e2mpy +Beimf 1-e2mpy =0,

This condition is satisfied only when the separation constant is equal to an integer m =0,
11, £ 2, .... and provides another example of the rule that quantization comes from the
boundary conditions on the wave function. Here misrestricted to certain discrete values
because the wave function must be such that when you rotate through 2p about the z-axis,

you must get back what you started with.

2. The Q Equation

Now returning to the equation in which the f dependence was isolated from the r

and q dependence.and rearranging the q termsto the left-hand side, we have
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1 78 190 m2Q
Sing 716 &59Nd Y9 - Sn2g = FNQ

In this equation we have separated q and r variations so we can further decompose the

wave function by introducing Q = Q(q) R(r) , which yields

where a second separation constant, -l , has been introduced once the r and g dependent
terms have been separated onto the right and left hand sides, respectively.

We now can write the g equation as

where m is the integer introduced earlier. To solve this equation for Q , we make the

substitutions z = Cosq and P(z) = Q(q) , so V1-z2 = Sinqg, and

==
I
2R
~I=
I
1
o2
>
a8
=
N
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Therange of valuesforqwasO£ q<p, sotherangefor zis-1<z<1. Theequation

for Q , when expressed in terms of P and z, becomes

dg , AP0 m2p
az 1—2)5,3-@ +|P=0.

Now we can look for polynomial solutions for P, because z is restricted to be less than

unity in magnitude. If m =0, wefirst let

P=aQadzk ,
k=0

and substitute into the differential equation to obtain

¥ ¥ ¥
A (k+2)(k+1) a2 2 - A (k+l) kaz< +1 A az = 0.
k=0 k=0 k=0

Equating like powers of z gives

a(k(k+1)-1 )
a2 = ()

123



Note that for large values of k

e 19
ak+2 k2&+§g

e

Since the coefficients do not decrease with k for large k, this series will divergefor z=+
1 unless it truncates at finite order. This truncation only happens if the separation
constant | obeys| =I1(I+1), wherel isan integer. So, once again, we see that a boundary
condition (i.e., that the wave function not diverge and thus be normalizable in this case)
giveriseto quantization. In thiscase, thevaluesof | arerestricted to I(I+1); before, we
saw that misrestrictedto O, £1, + 2, ...

Since the above recursion relation links every other coefficient, we can choose to
solve for the even and odd functions separately. Choosing ag and then determining all of
the even a in terms of this ag, followed by rescaling all of these ax to make the function
normalized generates an even solution. Choosing a; and determining all of the odd & in
like manner, generates an odd solution.

For 1= 0, the series truncates after one term and resultsin Po(z) = 1. For |= 1 the

2]
same thing appliesand P1(z) =z. Forl=2,a=-67% =-33,, S0 one obtains P, = 3z2-1,

and so on. These polynomials are called L egendre polynomials.
For the more general case wherem® 0O, one can proceed as above to generate a

polynomial solution for the Q function. Doing so, results in the following solutions:
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m d™p (2)
Pl =1-22)" —

These functions are called Associated L egendre polynomials, and they constitute the
solutions to the Q problem for non-zero m values.
The above P and éMf functions, when re-expressed in terms of q and f, yield the

full angular part of the wave function for any centrosymmetric potential. These solutions

1
areusually writtenas Y| m(q,f) = PT(Cosq) (2p)_2 exp(imf ), and are called spherical

harmonics. They provide the angular solution of ther,q, f Schrédinger equation for any
problem in which the potential depends only on theradia coordinate. Such situations
include all one-electron atoms and ions (e.g., H, He*, Li** | etc.), the rotational motion of
adiatomic molecule (where the potential depends only on bond Iength r), the motion of a
nucleon in a spherically symmetrical "box" (as occursin the shell model of nuclel), and
the scattering of two atoms (where the potential depends only on interatomic distance).
The Y, functions possess varying number of angular nodes, which, as noted earlier, give
clear signatures of the angular or rotational energy content of the wave function. These
angular nodes originate in the oscillatory nature of the Legendre and associated Legendre
polynomials P (cosg); the higher | is, the more sign changes occur within the

polynomial.

3. The R Equation

Let us now turn our attention to the radial equation, which isthe only place that
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the explicit form of the potential appears. Using our earlier results for the equation
obeyed by the R(r) function and specifying V(r) to be the coulomb potential appropriate

for an electron in the field of anucleus of charge +Ze, yields:

d & drRO ze20 (1 +1)°
d_g d_ﬂ § r ﬂ r2 [} R

We can simplify things considerably if we choose rescaled length and energy units
because doing so removes the factors that depend on m h , and e. We introduce a new

radial coordinater and a quantity s asfollows:

2
r andsz:_@
’ 2En2 -

S
N
SER=

Notice that if E isnegative, asit will be for bound states (i.e., those states with energy
below that of afree electron infinitely far from the nucleus and with zero kinetic energy),
r isreal. Ontheother hand, if E is positive, asit will be for statesthat liein the
continuum, r will be imaginary. Thesetwo cases will giverise to qualitatively different
behavior in the solutions of the radial equation devel oped below.

We now define afunction S such that S(r ) = R(r) and substitute S for R to obtain:

126



The differential operator terms can be recast in several ways using

d@,d0 s 2ds 1
ar &2are=gr2 *rar =rgr2(S.

1
r2

The strategy that we now follow is characteristic of solving second order
differential equations. We will examine the equation for S at large and small r values.
Having found solutions at these limits, we will use a power seriesinr to "interpolate”
between these two limits.

L et us begin by examining the solution of the above equation at small values of r
to see how the radia functions behave at small r. Asr ® 0, the second term in the
brackets will dominate. Neglecting the other two terms in the brackets, we find that, for
small values of r (or r), the solution should behave like r L and because the function must
be normalizable, we must have L 3 0. SinceL can be any non-negative integer, this

suggests the following more general form for S(r) :
S(r)y»rLea,

Thisform will insure that the function isnormalizablesince S(r) ® Oasr® ¥ forall L,
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aslong asr isareal quantity. If r isimaginary, such aform may not be normalized (see
below for further consequences).

Turning now to the behavior of Sfor larger , we make the substitution of S(r)
into the above equation and keep only the terms with the largest power of r (e.g., the first

term in brackets). Upon so doing, we obtain the equation

1
rled =7 rlea

1
which leads us to conclude that the exponent in the large-r behavior of Sisa=5 .

Having found the small- and large-r behaviors of S(r), we can take S to have the

following form to interpolate between large and small r -values:

r

S(r)=r '—e_E P(r),

where the function P is expanded in an infinite power seriesinr asP(r) = é ark.

Again substituting this expression for Sinto the above equation we obtain

P'r + P(2L+2-r) + P(s-L-I) =0,
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and then substituting the power series expansion of P and solving for the ax's we arrive at

arecursion relation for the g, coefficients:

(K-s+L+) a
H+1 = (k+1)(k+2L+2) -

. . - o Gk+1l 1 .
For large k, the ratio of expansion coefficients reaches the limit é =k »Which hasthe

same behavior as the power series expansion of €. Because the power series expansion

of P describes afunction that behaves like € for larger , the resulting S(r ) function

NI

would not be normalizable because the e - factor would be overwhelmed by this e’
dependence. Hence, the series expansion of P must truncate in order to achieve a
normalizable Sfunction. Noticethat if r isimaginary, asit will beif Eisinthe
continuum, the argument that the series must truncate to avoid an exponentially diverging
function no longer applies. Thus, we see akey difference between bound (withr real)
and continuum (with r imaginary) states. Inthe former case, the boundary condition of
non-divergence arises; in the latter, it does not because exp(r /2) does not divergeif r is
imaginary.

To truncate at a polynomial of order n', we must haven'-s + L+ |=0. This
implies that the quantity s introduced previoudly isrestrictedtos =n'+ L + 1, whichis
certainly an integer; let uscall thisinteger n. If we label statesin order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the

P(r) polynomial n'=0,1,2,... after which the L-value can run from L = 0, in steps of unity
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uptoL =n-1.
Substituting the integer n for s , we find that the energy levels are quantized

because s is quantized (equal to n):

nz2e4
© 2h2n2

and the scaled distance turns out to be

& o]
h2 -
Here, the length ay isthe so called Bohr radius gao = @;; it appears once the above E-

expression is substituted into the equation for r . Using the recursion equation to solve
for the polynomial's coefficients a for any choice of n and | quantum numbers generates
aso-caled Laguerre polynomial; Py -1(r). They contain powers of r from zero through
n-L-1, and they have n-L-1 sign changes as the radial coordinate ranges from zero to
infinity. It is these sign changes in the Laguerre polynomials that cause the radia parts of
the hydrogenic wave functions to have n-L-1 nodes. For example, 3d orbitals have no
radial nodes, but 4d orbitals have one; and, as shown in Fig. 2.16, 3p orbitals have one
while 3s orbitals have two. Once again, the higher the number of nodes, the higher the

energy in theradial direction.
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Figure 2.16. Plots of the Radial Parts of the 3s and 3p Orbitals

L et me again remind you about the danger of trying to understand quantum wave
functions or probabilitiesin tems of classical dynamics. What kind of potential V(r)
would giveriseto, for example, the 3s P(r) plot shown above? Classical mechanics
suggests that P should be large where the particle moves slowly and small where it moves
quickly. So, the 3s P(r) plot suggests that the radial speed of the electron has three regions
whereitislow (i.e., where the peaksin P are) and two regions where it isvery large (i.e.,
where the nodes are). This, in turn, suggests that the radial potential V(r) experienced by
the 3s electron is high in three regions (near peaksin P) and low in two regions (and at
the nucleus). Of course, this conclusion about the form of V(r) is nonsense and again

illustrates how one must not be drawn into trying to think of the classical motion of the

131



particle, especially for quantum states with small quantum number. In fact, the low
quantum number states of such one-electron atoms and ions have their radial P(r) plots
focused in regions of r-space where the potential —Z€?/r is most attractive (i.e., largest in
magnitude).

Finally, we note that the energy quantization does not arise for states lying in the
continuum because the condition that the expansion of P(r ) terminate does not arise. The
solutions of the radial equation appropriate to these scattering states (which relate to the
scattering motion of an electron in the field of anucleus of charge Z) are abit outside the
scope of thistext, so we will not treat them further here. For the interested student, they
are treated on p. 90 of the text by Eyring, Walter, and Kimball.

To review, separation of variables has been used to solve the full r,q,f
Schrédinger equation for one e ectron moving about a nucleus of chargeZ. Theq and f

solutions are the spherical harmonics Y| m (q,f). The bound-state radial solutions

r

RnL(t)=S(r) =rle” Pria(r)

depend on the n and | quantum numbers and are given in terms of the Laguerre

polynomials.
4, Summary

To summarize, the quantum numbers L and m arise through boundary conditions

requiring that y (q) be normalizable (i.e., not diverge) and y (f) =y (f +2p). The radial
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equation, which isthe only place the potential energy enters, is found to possess both
bound-states (i.e., states whose energies lie below the asymptote at which the potential
vanishes and the kinetic energy is zero) and continuum states lying energetically above
this asymptote. The resulting hydrogenic wave functions (angular and radial) and
energies are summarized on pp. 133-136 in the text by L. Pauling and E. B. Wilson for n
up to and including 6 and L up to 5.

There are both bound and continuum solutions to the radial Schrédinger equation
for the attractive coulomb potential because, at energies below the asymptote, the
potential confines the particle between r=0 and an outer turning point, whereas at
energies above the asymptote, the particle is no longer confined by an outer turning point

(seeFig. 2.17).

-Zee/rT Continuum State

0.0
Boun

States\
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Figure 2.17. Radia Potential for Hydrogenic Atoms and Bound and Continuum Orbital

Energies.

The solutions of this one-electron problem form the qualitative basis for much of atomic
and molecular orbital theory. For this reason, the reader is encouraged to gain afirmer
understanding of the nature of the radial and angular parts of these wave functions. The
orbitals that result are labeled by n, L, and m guantum numbers for the bound states and
by L and m quantum numbers and the energy E for the continuum states. Much as the
particle-in-a-box orbitals are used to qualitatively describe p- electronsin conjugated
polyenes, these so-called hydrogen-like orbitals provide qualitative descriptions of
orbitals of atoms with more than a single electron. By introducing the concept of
screening as away to represent the repulsive interactions among the electrons of an atom,
an effective nuclear charge Z can be used in place of Zinthey ,, ,, and E, to generate
approximate atomic orbitalsto be filled by electrons in a many-electron atom. For
example, in the crudest approximation of a carbon atom, the two 1s electrons experience
the full nuclear attraction so Z, = 6 for them, whereas the 2s and 2p electrons are
screened by the two 1s electrons, so Z; = 4 for them. Within this approximation, one then
occupies two 1s orbitals with Z = 6, two 2s orbitals with Z = 4 and two 2p orbitals with

Z=4in forming the full six-electron wave function of the lowest-energy state of carbon.

V1. Electron Tunneling
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Tunneling is a phenomenon of quantum mechanics, not classical mechanics. Itis

an extremely important subject that occursin a wide variety of chemical species.

Solutions to the Schrodinger equation display several properties that are very different
from what one experiences in Newtonian dynamics. One of the most unusual and
important is that the particles one describes using quantum mechanics can move into
regions of space where they would not be “alowed” to go if they obeyed classical
equations. Let us consider an example to illustrate this so-called tunneling phenomenon.
Specifically, we think of an electron (a particle that we likely would use quantum
mechanics to describe) moving in adirection we will call R under the influence of a
potential that is:

a. Infinite for R < O (this could, for example, represent aregion of space within a solid
material where the electron experiences very repulsive interactions with other electrons);
b. Constant and negative for some range of R between R =0 and R, (this could
represent the attractive interaction of the electrons with those atoms or moleculesin a
finite region of asolid);

c. Constant and repulsive by an amount dV + D, for another finite region fromR_, to
R, +d (this could represent the repulsive interactions between the electrons and a layer
of molecules of thickness d lying on the surface of the solid at R.,.,,);

d. Constant and equal to D, from R, +d to infinity (this could represent the electron
being removed from the solid, but with a*“work function energy cost of D, and moving
freely in the vacuum above the surface and the ad-layer). Such a potential is shownin

Fig. 2.18.
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Figure 2.18. One-dimensional potential showing awell, abarrier, and the asymptotic

region.

The piecewise nature of this potential allows the one-dimensional Schrédinger equation
to be solved analytically. For energies lying in the range De < E < De +dV, an especially

interesting class of solutions exists. These so-called resonance states occur at energies
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that are determined by the condition that the amplitude of the wave function within the
barrier (i.e., for 0 £ R £ Rmax ) belarge. Let us now turn our attention to this specific
energy regime, which also serves to introduce the tunneling phenomenon.

The piecewise solutions to the Schrodinger equation appropriate to the resonance
case are easily written down in terms of sin and cos or exponential functions, using the

following three definitions:

k=y2mE/ #* K = y2m(E- D,)/ n’* k' = J2m(D, +dV - E)/ 1’

The combination of sin(kR) and cos(kR) that solve the Schrodinger equation in the inner
region and that vanish at R=0 (because the function must vanish within the region where

V isinfinite and because it must be continuous, it must vanish at R=0) is:

Y = Asin(kR) (for 0£ R £ Rmax )-

Between R, ,and R, +d, there are two solutions that obey the Schrédiger equation, so

the most general solution is a combination of these two:

Y =B"exp(k'R) + B exp(-k'R) (for Rmax £ R £ Rmax *+d).

Finally, in the region beyond R, + d, we can use a combination of either sin(k’R) and
cos(k’R) or exp(ik’ R) and exp(-ik’ R) to express the solution. Unlike the region near R=0,

where it was most convenient to use the sin and cos functions because one of them could
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be “thrown away” since it could not meet the boundary condition of vanishing at R=0, in
thislarge-R region, either set is acceptable. We choose to use the exp(ik’ R) and

exp(-ik’ R) set because each of these functionsis an eigenfunction of the momentum
operator —AY/fR. This alows us to discuss amplitudes for electrons moving with positive

momentum and with negative momentum. So, in thisregion, the most general solution is

Y = Cexp(ik'R) + D exp(-ik'R) (for Rmax td £ R< ¥).

There are four amplitudes (A, B+, B-, and C) that can be expressed in terms of the

specified amplitude D of the incoming flux (e.g., pretend that we know the flux of
electrons that our experimental apparatus “shoots’ at the surface). Four equations that can

be used to achieve this goal result when'Y and dY /dR are matched at Rmax and at Rmax +
d (one of the essential properties of solutions to the Schrédinger equation is that they and
their first derivative are continuous; these propertiesrelateto Y being a probability and
—h{/TR being a momentum operator). These four equations are:

Asi n(kRmax) =B’ exp(klRmax) +B exp('klRmax)i

Akcos(kR,.,) = k'B* exp(k'R5) - K'B” eXp(-K'R;z0),

B” exp(K'(Ryne + d)) + B” exp(-K'(Ryps + )
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= Cexp(ik'(Ryx + d) + D exp(-ik'(R *+ d),

k'B” exp(k'(Rya + d)) - K'B” eXp(-K'(Rya + d))

= iK'C exp(iK'(R, o + d)) -ik' D exp(-ik'(R,, + d)).

It is especially instructive to consider the value of A/D that results from solving this set of
four equationsin four unknowns because the modulus of thisratio provides information
about the relative amount of amplitude that exists inside the barrier in the attractive
region of the potential compared to that existing in the asymptotic region as incoming
flux.

The result of solving for A/D is:

A/D = 4 K'exp(-ik'(R, . +d))

{exp(k'd)(ik-k') (k'S n(KR ) +kcos(kRmax)) /iK'

+ exp(-k'd)(ik'+k") (k'S n(KRmax)-kcos(KRma))/ik' }-1.

Further, it isinstructive to consider this result under conditions of a high (large De + dV -

E) and thick (large d) barrier. In such a case, the "tunneling factor" exp(-k'd) will be very

small compared to its counterpart exp(k'd), and so
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AID = 450 exp(-ik' (Rmax+d)) exp(-k'd) {k'sin(kRmax)+kcos(kRmax) } L.

The exp(-k'd) factor in A/D causes the magnitude of the wave function inside the barrier
to be small in most circumstances; we say that incident flux must tunnel through the
barrier to reach the inner region and that exp(-k'd) gives the probability of this tunneling.

Keep in mind that, in the energy range we are considering (E < D+d), aclassical
particle could not even enter theregion R, <R < R, + d; thisiswhy we call thisthe
classically forbidden or tunneling region. A classical particle starting in the large-R
region can not enter, let alone penetrate, this region, so such a particle could never end up
inthe 0 <R < R, inner region. Likewise, aclassical particle that beginsin the inner
region can never penetrate the tunneling region and escape into the large-R region. Were
it not for the fact that electrons obey a Schrédinger equation rather than Newtonian
dynamics, tunneling would not occur and, for example, scanning tunneling microscopy
(STM), which has proven to be awonderful and powerful tool for imaging molecules on
and near surfaces, would not exist. Likewise, many of the devices that appear in our
modern electronic tools and games, which depend on currents induced by tunneling
through various junctions, would not be available. But, or course, tunneling does occur
and it can have remarkabl e effects.

L et us examine an especially important (in chemistry) phenomenon that takes
place because of tunneling and that occurs when the energy E assumes very special
values. The magnitude of the A/D factor in the above solutions of the Schrodinger

equation can become large if the energy E is such that
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k'sin(kRmax)+kcos(kRmax)

issmall. In fact, if

tan(kRmax) = - k/k'

the denominator factor in A/D will vanish and A/D will become infinite. It can be shown

that the above condition is similar to the energy quantization condition

tan(kRmax) =-k/k

that arises when bound states of afinite potential well are examined. Thereis, however, a

difference. In the bound-state situation, two energy-related parameters occur

k =\/2nE/h2

and

k = \/2m(De- E)/R2 .

In the case we are now considering, k is the same, but
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k'= \/2m(De +aV - E)/R2 )
rather than k occurs, so the two tan(kRmax) equations are not identical, but they are quite
similar.
Another observation that is useful to make about the situations in which A/D

becomes very large can be made by considering the case of a very high barrier (so that k'

is much larger than k). In this case, the denominator that appearsin A/D

k'SiN(KRmax) Hkcos(KRmax) @k’ sin(kRmax)

can become small if

sin(kRmax) @0.

This condition is nothing but the energy quantization condition that occurs for the

particle-in-a-box potential shown in Fig. 2.19.

0.0

Rmax

Electron Coordinate R ——— >
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Figure 2.19. One-dimensional potential similar to the tunneling potential but without the

barrier and asymptotic region.

This potential isidentical to the potential that we were examining for 0 £ R £ Ryax , but
extends to infinity beyond Rmax ; the barrier and the dissociation asymptote displayed by
our potential are absent.

Let’s consider what this tunneling problem has taught us. First, it showed us that
quantum particles penetrate into classically forbidden regions. It showed that, at certain
so-called resonance energies, tunneling is much more likely that at energies that are “ of f
resonance’. In our model problem, this means that el ectrons impinging on the surface
with resonance energies will have avery high probability of tunneling to produce an
electron that istrapped inthe 0 < R< R, region.

By the way, we could have solved the four equations for the amplitude C of the
outgoing wave inthe R > R, region in terms of the A amplitude. We might want to take
this approach if wanted to model an experiment in which the electron beganinthe 0 <R
< R, region and we wanted to compute the relative amplitude for the electron to escape.
However, if we were to solve for C/A and then examined under what conditions the
amplitude of this ratio would become small (so the electron can not escape), we would
find the same tan(kRmax) = - k/k' resonance condition as we found from the other point of
view. This means that the resonance energies tell us for what collision energies the
electron will tunnel inward and produce atrapped electron and, at these same energies, an

electron that is trapped will not escape quickly.
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Whenever one has a barrier on a potential energy surface, at energies above the
dissociation asymptote De but below the top of the barrier (De + dV here), one can expect
resonance states to occur at "specia” scattering energies E. Asweillustrated with the
model problem, these so-called resonance energies can often be approximated by the
bound-state energies of a potential that isidentical to the potential of interest in the inner
region (0 £ R £ Rmax ) but that extends to infinity beyond the top of the barrier (i.e.,
beyond the barrier, it does not fall back to values below E).

The chemical significance of resonances is great. Highly rotationally excited
molecules may have more than enough total energy to dissociate (Dg), but this energy
may be "stored" in the rotational motion, and the vibrational energy may be less than De.
In terms of the above model, high angular momentum may produce a significant
centrifugal barrier in the effective potential that characterizes the molecul€ s vibration,
but the system's vibrational energy may lie significantly below De. In such a case, and
when viewed in terms of motion on an angular-momentum-modified effective potential
such as| show in Fig. 2.20 , the lifetime of the molecule with respect to dissociation is

determined by the rate of tunneling through the barrier.
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M etastable rotational level

V(R<(J(i+1))/8p2|
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“«—V/(R) for non-rotating molecule

Figure 2.20. Radial potential for non-rotating (J = 0) molecule and for rotating molecule.

In that case, one speaks of "rotational predissociation” of the molecule. The

lifetimet can be estimated by computing the frequency n at which flux that existsinside

Rmax strikes the barrier at Rmax
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and then multiplying by the probability P that flux tunnels through the barrier from Rmax

to Rmax +d:
P = exp(-2k'd).

Theresult is that

-1— i k'
t = 2MRmax exp(-2k'd)

with the energy E entering into k and k' being determined by the resonance condition:
(k'sin(kRmax)+kcos(kRmax)) = minimum. By looking back at the defintion of k’, we note
that the probability of tunneling falls of exponentially with afactor depending on the
width d of the barrier through which the particle must tunnel multiplied by k’, which
depends on the height of the barrier D, + d above the energy E available. This exponential
dependence on thickness and height of the barriersis something you should keep in mind
because it appearsin all tunneling rate expressions.

Another important case in which tunneling occursisin electronically metastable
states of anions. In so-called shape resonance states, the anion’s “extra’ electron
experiences
a. an attractive potential dueto its interaction with the underlying neutral molecule’s

dipole, quadrupole, and induced electrostatic moments, as well as
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b. acentrifugal potential of the form L(L+1)h?/8p?m,R* whose magnitude depends on
the angular character of the orbital the extra electron occupies.

When combined, the above attractive and centrifugal potentials produce an effective

radial potentia of the form shown in Fig. 2.21 for the N, case in which the added

electron occupies the p* orbital which has L=2 character when viewed from the center of

the N-N bond. Again, tunneling through the barrier in this potential determines the

lifetimes of such shape resonance states.

symmetry

N, p* orbital
/ \/ «~ having d angular

N

R

\Effective radial potential

for electron in the p*
orbital

with the L=2
L(L+1)h?/8p’mR?

Figure 2.21 Effective radial potential for the excess electron in N, occupying the p*

orbital which has adominant L = 2 component.
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Although the exampl es treated above involved piecewise constant potentials (so
the Schrédinger equation and the boundary matching conditions could be solved exactly),
many of the characteristics observed carry over to more chemically realistic situations. In
fact, one can often model chemical reaction processes in terms of motion along a
"reaction coordinate” (s) from aregion characteristic of reactant materials where the
potential surfaceis positively curved in al direction and al forces (i.e., gradients of the
potential along al internal coordinates) vanish; to atransition state at which the potential
surface's curvature along s is negative while all other curvatures are positive and all
forces vanish; onward to product materials where again all curvatures are positive and all
forces vanish. A prototypical trace of the energy variation along such areaction

coordinateisin Fig. 2.22.

Potential energy
\ Activation energy |

Region of
activated
complex

Reactants Products

Figure 2.22. Energy profile aong a reaction path showing the barrier through which

tunneling may occur.
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Near the transition state at the top of the barrier on this surface, tunneling through the
barrier plays an important role if the masses of the particles moving in thisregion are
sufficiently light. Specifically, if H or D atoms are involved in the bond breaking and
forming in thisregion of the energy surface, tunneling must usually be considered in
treating the dynamics.

Within the above "reaction path” point of view, motion transverse to the reaction
coordinate sis often modeled in terms of local harmonic motion although more
sophisticated treatments of the dynamicsis possible. This picture leads one to consider
motion along a single degree of freedom (s), with respect to which much of the above
treatment can be carried over, coupled to transverse motion along all other internal
degrees of freedom taking place under an entirely positively curved potential (which
therefore produces restoring forces to movement away from the "streambed” traced out
by the reaction path s). This point of view constitutes one of the most widely used and
successful models of molecular reaction dynamics and is treated in more detail in Chapter

8 of thistext.

VIl. Angular Momentum

1. Orbital Angular Momentum

A particle moving with momentum p at aposition r relative to some coordinate

origin has so-called orbital angular momentum equal to L =r x p . The three components
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of this angular momentum vector in a Cartesian coordinate system located at the origin

mentioned above are given in terms of the Cartesian coordinates of r and p as follows:

Lz=XPpy-YPpPx,

Lx=YPz-Zpy,

Ly=Zpx-Xpz.

Using the fundamental commutation relations among the Cartesian coordinates

and the Cartesian momenta:

[Ok.Pj] =k P - Pj Ak = iR dik (j.k=XYy,2),

it can be shown that the above angular momentum operators obey the following set of

commutation relations:

[Lx, Ly] =ih Lz,
[Ly, Lzl =ih LX ,
Ly, L] =iALy .
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Although the components of L do not commute with one another, they can be shown to

commute with the operator L2 defined by

L2: LX2+ Ly2+ Lzz

This new operator is referred to as the square of the total angular momentum operator.

The commutation properties of the components of L allow us to conclude that
compl ete sets of functions can be found that are eigenfunctions of L2 and of one, but not
more than one, component of L. It is convention to select this one component as L, and
to label the resulting simultaneous eigenstates of L2 and L as ||,m> according to the

corresponding eigenval ues:

L2 Il,m>=h2I(1+1) |, m>, 1 =0,1,2,3,....

Ly l,m>=hmll,m> m=z1, £(-1), £(-2), ... +(-(I-1)), O.

These eigenfunctions of L2 and of L, will not, in general, be eigenfunctions of either Ly
or of Ly. This means that any measurement of Ly or Ly will necessarily change the
wavefunction if it begins as an eigenfunction of L.

The above expressions for Ly, Ly, and Lz can be mapped into quantum
mechanical operators by substituting X, y, and z as the corresponding coordinate
operators and -ikT/1x, -iRY/1ly, and -ihT/z for px, py, and p, respectively. The resulting

operators can then be transformed into spherical coordinates the results of which are:
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Lz =-ih /9 ,

Ly =ih{sinf 1/9g + cotq cosf /1f} ,

Ly =-ih{cosf 1/1q - cotqsinf f/1f} ,

L2 =- k2 {(Using) 1/a (sinq /a) + (Usin2q) 12/1f 2} .

2. Properties of General Angular Momenta

There are many types of angular momenta that one encounters in chemistry.
Orbital angular momenta, such as that introduced above, arise in electronic motion in
atoms, in atom-atom and electron-atom collisions, and in rotational motion in molecules.
Intrinsic spin angular momentum is present in electrons, H1, H2, C13, and many other
nuclei. In this section, we will deal with the behavior of any and al angular momenta and
their corresponding eigenfunctions.

At times, an atom or molecule contains more than one type of angular
momentum. The Hamiltonian's interaction potentials present in a particul ar species may
or may not cause these individual angular momenta to be coupled to an appreciable
extent (i.e., the Hamiltonian may or may not contain terms that refer smultaneously to

two or more of these angular momenta). For example, the NH- ion, which has a 2P

152



ground electronic state (its electronic configuration is 1sy22s 23s 22ppx22ppyt) has
electronic spin, electronic orbital, and molecular rotational angular momenta. The full
Hamiltonian H contains terms that couple the electronic spin and orbital angular
momenta, thereby causing them individually to not commute with H.

In such cases, the eigenstates of the system can be labeled rigorously only by
angular momentum quantum numbers j and m belonging to the total angular momentum
J. Thetotal angular momentum of a collection of individual angular momenta is defined,

component-by-component, as follows:

Jk = Si J(i),

wherek labels x, y, and z, and i 1abels the constituents whose angular momenta couple to
produce J.

For the remainder of this Section, we will study eigenfunction-eigenvalue
relationships that are characteristic of all angular momenta and which are consequences
of the commutation relations among the angular momentum vector's three components.
We will also study how one combines eigenfunctions of two or more angular momenta

{J(1)} to produce eigenfunctions of the the total J.

a. Consequences of the Commutation Relations

Any set of three operators that obey
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[, y] =ih,

[, 3 =ih

[‘JZ! ‘]X] = Ih‘Jy )

will be taken to define an angular momentum J, whose square 2= 2 + J,2 + J,2

commutes with al three of its components. It is useful to also introduce two

combinations of the three fundamental operators:

and to refer to them as raising and lowering operators for reasons that will be made clear

below. These new operators can be shown to obey the following commutation relations:

[2,3:] =0,

[‘]ZaJi]zthi

Using only the above commutation properties, it is possible to prove important

properties of the eigenfunctions and eigenvalues of 22 and J,. Let us assume that we have

found a set of simultaneous eigenfunctions of J2 and J; ; the fact that these two operators
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commute tells us that thisis possible. Let uslabel the eigenvalues belonging to these

functions;

P [j,m>=h2f(j,m) |j,m>,

& lj,m>=hm]|,m>,

in terms of the quantities m and f(j,m). Although we certainly "hint" that these quantities
must be related to certain j and m quantum numbers, we have not yet proven this,

although we will soon do so. For now, we view f(j,m) and m simply as symbols that
represent the respective eigenval ues. Because both J2 and J, are Hermitian,

eigenfunctions belonging to different f(j,m) or m quantum numbers must be orthogonal:

<j,m|j'’,m> = dmm dj .

We now prove severa identities that are needed to discover the information about

the eigenvalues and eigenfunctions of general angular momenta that we are after. Later in

this Section, the essential results are summarized.

i. ThereisaMaximum and a Minimum Eigenvalue for J,

Because al of the components of J are Hermitian, and because the scalar product

of any function with itself is positive semi-definite, the following identity holds:
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<jumik@ + J2fj,m> = <J<j,m| Klj,m> + <Jy<j,m| Jy[j,m> 3 0.
However, J2 + J,2 isequal to J2 - J,2, so thisinequality implies that
<j,m| P - 32 [j,m> = h2 {f(j,m) - m?} 3 0,
which, in turn, implies that m2 must be less than or equal to f(j,m). Hence, for any value
of the total angular momentum eigenvalue f, the z-projection eigenvalue (m) must have a
maximum and a minimum value and both of these must be less than or equal to the total
angular momentum squared eigenvaluef.
ii. The Raising and L owering Operators Change the J, Eigenvalue but not the J2
Eigenvalue When Acting on |j,m>
Applying the commutation relations obeyed by J: to |j,m> yields another useful
result:
JZ‘Ji Ij1m> - Ji‘JZ Ij1m> = ih‘]i' Ijam>a
Pl fj,m>-3 Fj,m>=0.

Now, using the fact that [j,m> is an eigenstate of J2 and of J,, these identities give

Jz L [,m> = (mA+h) I |j,m>=h (m£l) |j,m>,
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P L |j,m>=h2f(j,m) i [j,m>.

These equations prove that the functions J |j,m> must either themselves be
eigenfunctions of J and J,, with eigenvalues h2 f(j,m) and h (m+1) or J: |j,m> must
equal zero. In the former case, we see that J: acting on |j,m> generates a new eigenstate
with the same J eigenvalue as |j,m> but with one unit of h higher or lower in J,
eigenvalue. It isfor thisreason that we call J: raising and lowering operators. Notice that,
although J: |j,m> isindeed an eigenfunction of J, with eigenvalue (m+1) h, J; |j,m>is

not identical to |j,m+1>; it is only proportiona to |j,m+1>:

i [j,m>=C&j m [j,m+1>.

Explicit expressions for these C*j m coefficients will be obtained below. Notice also that
because the J: |j,m>, and hence |j,m+1>, have the same J eigenvalue as |j,m> (in fact,
sequential application of J+ can be used to show that all [j,m'>, for all m', have this same

JF eigenvalue), the 2 eigenvalue f(j,m) must be independent of m. For this reason, f can

be labeled by one quantum number j.

iii. The J Eigenvalues are Related to the Maximum and Minimum J, Eigenvalues Which

are Related to One Another
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Earlier, we showed that there exists a maximum and a minimum value for m, for

any given total angular momentum. It is when one reaches these limiting cases that J:

li,m> = 0 applies. In particular,

I+ [l,Mmax> =0,

J. [j,Mmin> = 0.

Applying the following identities:

JJ=F-32-h),

LI=P-3R2+hd,

respectively, to |j,Mmax> and [j,mmin> gives

hz{ f(J,Mmax) - Mmax? - Mmax} = 0,

h2 { £(j,Mmin) - Mmin2 + Mmin} =0,

which immediately gives the 2 eigenvalue f(j,Mmax) and f(j,Mmin) in terms of Mmax or

Mmin:
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f(,Mmax) = Mmax (Mmax+1),

f(4,Mmin) = Mmin (Mmin-1).

So, we now know the J eigenvalues for |j,Mmax> and [j,mmin>. However, we earlier

showed that [j,m> and |j,m-1> have the same J eigenvalue (when we treated the effect of

J: on |j,m>) and that the J? eigenvalue is independent of m. If we therefore define the

quantum number j to be mmax , We see that the J2 eigenvalues are given by

Zlj,m>=h2j([j+1) [j,m>.

We aso see that

f(G,m) =j(+1) = Mmax (Mmax*+1) = Mmin (Mmin-1),

from which it follows that

Mmin = - Mmax -

iv. The ] Quantum Number Can Be Integer or Half-Integer
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The fact that the m-values run from j to -j in unit steps (because of the property of
the J: operators), there clearly can be only integer or half-integer valuesfor j. In the
former case, the m quantum number runs over -j, -j+1, -j+2, ..., -j+(j-1), 0, 1, 2, ... J;
in the latter, m runsover -j, -j+1, -j+2, ... j+(j-1/2), 1/2, 3/2, ...J. Only integer and half-
interger values can range from j to -j in steps of unity. Species with integer spin are

known as Bosons and those with half-integer spin are called Fermions,

v. Moreon J |j,m>

Using the above results for the effect of J. acting on |j,m> and the fact that J+ and

J. are adjoints of one another, allows usto write:

<jm|d e fj,m> = <j,m| (- 2-h L) |j,m>

=R2{j(+1)-m(m+1)} = <&<j,m| efj,m> = (C*,m)?,

where C*j isthe proportionality constant between J.[j,m> and the normalized function

i,m+1>. Likewise, the effect of J. can be expressed as

<jml 3¢ I [j,m> = <j,m| (- 2 +h Jp) [j, >

= K2 {j(+1)-m(m-1)} = <1<j,m| 1f.m> = (Cjm)2
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where C7j m isthe proportionality constant between J. [j,m> and the normalized [j,m-1>.

Thus, we can solve for C¥j m after which the effect of J. on |j,m> is given by:

i [i,m>=h{j({+1) -m(m-1)} Y2 |j, m+1>.

3. Summary

The above results apply to any angular momentum operators. The essential

findings can be summarized as follows:

(i) 22 and J, have complete sets of simultaneous eigenfunctions. We label these

eigenfunctions |j,m>; they are orthonormal in both their m- and j-type indices:

<j,m| jl,m'> = dm’m' dj'j' .

(i) These [j,m> eigenfunctions obey:

F|j,m>=h2j(j+1) |j,m>, { j= integer or half-integer},

Jj,m>=hm|j,m>{ m=-j,instepsof 1to +j}.
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(iii) Theraising and lowering operators J: act on |j,m> to yield functions that are
eigenfunctions of J2 with the same eigenvalue as |j,m> and eigenfunctions of J, with

eigenvalueof (mz1) h:

L [i,m> =R {j(j+1) - m(mz1)} V2 [j,m+1>.

(iv) When J;: acts on the "extremal" states |j,j> or |j,-j>, respectively, the result is zero.
The results given above are, as stated, general. Any and all angular momenta have

quantum mechanical operators that obey these equations. It is convention to designate

specific kinds of angular momenta by specific letters; however, it should be kept in mind
that no matter what letters are used, there are operators corresponding to 2, J,, and J«
that obey relations as specified above, and there are eigenfunctions and eigenval ues that
have all of the properties obtained above. For electronic or collisional orbital angular
momenta, it iscommon to use L2 and L, ; for electron spin, S2 and S; are used; for
nuclear spin 12 and |, are most common; and for molecular rotational angular momentum,
N2 and N, are most common (although sometimes J2 and J, may be used). Whenever two
or more angular momenta are combined or coupled to produce a"total" angular

momentum, the latter is designated by J2 and J,.

4. Coupling of Angular Momenta
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If the Hamiltonian under study contains terms that couple two or more angular

momenta J(i), then only the components of the total angular momentum J = S; J(i) and

J2 will commute with H. It is therefore essential to label the quantum states of the system
by the eigenvalues of J, and J2 and to construct variational trial or model wavefunctions
that are eigenfunctions of these total angular momentum operators. The problem of
angular momentum coupling has to do with how to combine eigenfunctions of the
uncoupled angular momentum operators, which are given as simple products of the
eigenfunctions of the individual angular momenta P |j;,mj>, to form eigenfunctions of J2

and J,.

a. Eigenfunctions of J,

Because the individual elements of J are formed additively, but isnot , itis

straightforward to form eigenstates of

J; = §j I(i);

simple products of the form P; |j;,m;j> are eigenfunctions of J:

Iz Pj [ji,mi> = Sk J(K) Pi [ji,mi> = Sxh mg Pj [ji,m;>,
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and have J, eigenvalues equal to the sum of the individual my h eigenvalues. Hence, to

form an eigenfunction with specified Jand M eigenvalues, one must combine only those

product states P |jj,m;> whose mjh sum is equal to the specified M value.

b. Eigenfunctions of J; the Clebsch-Gordon Series

Thetask is then reduced to forming eigenfunctions |J,M>, given particular values
for the{ji} quantum numbers. When coupling pairs of angular momenta{ [j,m> and
i'm>}, the total angular momentum states can be written, according to what we

determined above, as

|J,M> = Sm,m' C‘J'Mj'm;j',m‘ |j,m> |jl,ml>,

where the coefficients CIM; .y are called vector coupling coefficients (because
angular momentum coupling is viewed much like adding two vectorsj and j' to produce
another vector J), and where the sum over m and m' is restricted to those terms for which
m+m' = M. It is more common to express the vector coupling or so-called Clebsch-
Gordon (CG) coefficients as <j,m;j'm’'[J,M> and to view them as elements of a"matrix"
whose columns are labeled by the coupled-state J,M quantum numbers and whose rows
are labeled by the quantum numbers characterizing the uncoupled "product basis’
J,m;j',m’. It turns out that this matrix can be shown to be unitary so that the CG

coefficients obey:
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Smm' <j,m;'MPIM>* <j,m;j'm'|IJ,M">=d; 3 dv m'

and

SiMm - <i,mj'nIM> <j,m;i'm'lIM>" = dn m diy -

This unitarity of the CG coefficient matrix allows the inverse of the relation

giving coupled functions in terms of the product functions:

IM> = Si oy <j.mi'm I M> fj,m> [j',m'>

to be written as:

j,m> it m'> = Syy <j,m'mPIM>* [JM>

= Sym <IM[,m;j'm> |IM>,

This result expresses the product functions in terms of the coupled angular momentum

functions.

c. Generation of the CG Coefficients

The CG coefficients can be generated in a systematic manner; however, they can
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also be looked up in books where they have been tabulated (e.g., see Table 2.4 of Dick
Zare's book on angular momentum). Here, we will demonstrate the technique by which
the CG coefficients can be obtained, but we will do so for rather limited cases and refer
the reader to more extensive tabulations.

The strategy we take is to generate the |J,J> state (i.e., the state with maximum M-
value) and to then use J. to generate [J,J-1>, after which the state |[J-1,J-1> (i.e., the state
with one lower J-value) is constructed by finding a combination of the product statesin
terms of which [J,J-1> is expressed (because both [J,J-1> and |J-1,J-1> have the same M-
value M=J-1) which is orthogonal to |J,J-1> (because |J-1,J-1> and [J,J-1> are
eigenfunctions of the Hermitian operator J corresponding to different eigenvalues, they
must be orthogonal). This same process is then used to generate |J,J-2> |J-1,J-2> and (by

orthogonality construction) [J-2,J-2>, and so on.

i. The States With Maximum and Minimum M-V aues

We begin with the state |J,2> having the highest M-value. This state must be

formed by taking the highest m and the highest m' values (i.e., m=j and m'=j"), and is

given by:

3> = .5> 17>

Only this one product is needed because only the one term with m=j and m'=j' contributes

to the sum in the above CG series. The state
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|‘J7"]> = U!'j> Ijll'jl>

with the minimum M-value is also given as a single product state.

Notice that these states have M-values given as +(j+j"); since this is the maximum M-

value, it must be that the J-value corresponding to this state is J= j+j'.

ii. States With One Lower M-Value But the Same J-Value

Applying J. to |J,J>, and expressing J. as the sum of lowering operators for the

two individual angular momenta:

1=+

gives

I3 = R{ (1) -JFD} Y2 10,315

= (1) + 2(2) 1> >

=h{j(+1) - j(-D}Y2 |j,j-1> "> + R{G D) G-DY 2 > -1

This result expresses |J,J-1> as follows:

WF1>=[{j(+D)-G- Dy V2 [j-1> >
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+{0'G+DG-DYY2 1> 011 { A3+ D) -X(F 1)} -V2;

that is, the |J,J-1> state, which has M=J-1, is formed from the two product states |j,j-1>

i'j’>and|j,j> [i',j'-1> that have this same M-value.

iii. States With One Lower J-Value

To find the state |J-1,J-1> that has the same M-value as the one found above but
one lower Jvalue, we must construct another combination of the two product states with
M=J1 (i.e, |j,j-1>|j',j"> and [j,j> [j',j'-1>) that is orthogonal to the combination
representing |J,J-1>; after doing so, we must scale the resulting function so it is properly

normalized. In this case, the desired functioniis;

1,31>= [{j(+D-iG-Dy V2 [ j> ['-1>

(GO Y2 -1 1>] {(3+D) -} -2.

It is straightforward to show that this function isindeed orthogonal to |J,J-1>.

iv. States With Even One Lower J-Vaue

Having expressed |J,J-1> and |J-1,J-1> in terms of |j,j-1> [j',j"> and [j,j> [j',j'-1>,

we are now prepared to carry on with this stepwise process to generate the states |J,J-2>,

|J-1,J-2> and |J-2,J-2> as combinations of the product states with M=J-2. These product

statesare|j,j-2> |j',j">, li,j> |i')'-2>, and |j,j-1> |j',j'-1>. Notice that there are precisely as
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many product states whose m+m' values add up to the desired M-value as there are total
angular momentum states that must be constructed (there are three of each in this case).

The steps needed to find the state |J-2,J-2> are anal ogous to those taken above:

a. Onefirst applies J. to |J-1,J-1> and to |J,J-1> to obtain |J-1,J-2> and |J,J-2>,

respectively as combinations of |j,j-2> |j',j">, [i.j> |i'j-2>, and [j,j-1> |j',j"-1>.

b. One then constructs |J-2,J-2> as alinear combination of the |j,j-2> |j',j">, |.j> [j'.J'-2>,

and |j,j-1> |i',j"-1> that is orthogonal to the combinations found for |J1,J-2> and |J,J-2>.

Once [}2,J-2> is obtained, it is then possible to move on to form |3,J-3>, |J-1,J-3>,
and |J-2,J-3> by applying J. to the three states obtained in the preceding application of the
process, and to then form |J-3,J-3> as the combination of |j,j-3> |i',j">, |i.j> li'j"-3>,
ij-2>|i'j'-1>, |j,j-1>|i',j’-2> that is orthogonal to the combinations obtained for |J,J-3>,
I3-1,3-3>, and |3-2,3-3>.

Again notice that there are precisely the correct number of product states (four
here) as there are total angular momentum states to be formed. In fact, the product states
and the total angular momentum states are equal in number and are both members of
orthonormal function sets (because J(1), J,(1), J2(2), and J,(2) aswell as P and J, are
Hermitian operators). Thisiswhy the CG coefficient matrix is unitary; because it maps
one set of orthonormal functions to another, with both sets containing the same number

of functions.
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d. An Example

L et us consider an example in which the spin and orbital angular momenta of the
Si atom in its 3P ground state can be coupled to produce various 3P; states. In this case,
the specific valuesfor j and ' are j=S=1 and j'=L=1. We could, of coursetakej=L=1 and
j'=S=1, but the final wavefunctions obtained would span the same space as those we are

about to determine.

The state with highest M-value is the 3P(Mg=1, M =1) state, which can be
represented by the product of anaa spin function (representing S=1, Ms=1) and a
3p13po spatia function (representing L=1, M_=1), where the first function corresponds to
the first open-shell orbital and the second function to the second open-shell orbital. Thus,

the maximum M-value is M= 2 and corresponds to a state with J=2:

|[J=2,M=2>=12,2> = aa 3p13pp .

Clearly, the state |2,-2> would be given as bb 3p.13po.

The states |2,1> and |1,1> with one lower M-value are obtained by applying J. =

S.+L.to|2,2> asfollows:

1 |2,2> = h{2(3)-2(1)} V2 |2,1>

=(S.+L.)aa 3p13po.
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Toapply S. or L. toaa 3p13po, one must realize that each of these operatorsis, in turn,

asum of lowering operators for each of the two open-shell electrons:

S.=5(1) +S(2),

L.=L(1) +L.(2).

The result above can therefore be continued as

(S. + L.) aa 3p13pg = h{ 1/2(3/2)-1/2(-1/2)} Y2 ba 3p13pg

+ h{1/2(3/2)-1/2(-1/2)} Y2 ab 3p13pg

+h{1(2)-1(0)} 2 aa 3po3po

+R{1(2-0(-1)} Y2 aa 3p13p.1.

So, the function |2,1> is given by

|2,1> = [ba 3p13po + ab 3p13po + {2} 2 aa 3po3po

+{2} Y2 aa 3p13p.1]/2,
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which can be rewritten as;

|2,1> =[(ba + ab)3p,3p, + {2} 1/2 aa (3p,3p, + 3p:3p.1)]/2.

Writing the result in thisway makes it clear that |2,1> is a combination of the product

states |S=1,M¢=0> |L=1,M,=1> (the terms containing |S=1,M=0> = 2¥4ab+ba)) and

|S=1,M=1> |L=1,M =0> (the terms containing |S=1,M=1> = aa).

To form the other function with M=1, the |1,1> state, we must find another

combination of [S=1,M¢=0> |L=1,M,=1> and |[S=1,M=1> |L=1,M =0> that is orthogonal

to [2,1> and is normalized. Since

21> = 22 [|S=1,M=0> [L=1,M,=1> + |S=1,M=1> |L=1,M,=0>],
S

we immediately see that the requisite function is

I1,1> = 2-V2[|S=1,Mg=0> |L=1,M =1> - |S=1,Ms=1> |L=1,M =0>].

In the spin-orbital notation used above, this state is:

|1,1> = [(ba + ab)3p13po - {2} V2 aa (3po3po + 3p13p-1)]/2.

Thus far, we have found the 3P; states with J=2, M=2; =2, M=1; and J=1, M=1.
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To find the 3P; states with J=2, M=0; J=1, M=0; and J=0, M=0, we must once
again apply the J. tool. In particular, we apply J. to |2,1> to obtain |2,0> and we apply J.
to |1,1> to obtain |1,0>, each of which will be expressed in terms of |S=1,Ms=0>
IL=1,M_ =0>, |S=1,Mg=1> |L=1,M| =-1>, and |S=1,Mg=-1> |L=1,M =1>. The|0,0>
state is then constructed to be a combination of these same product states which is

orthogonal to |2,0> and to |1,0>. The results are as follows:

|=2,M=0>=6"Y2[2|1,0> |1,0> + |1,1> [1,-1> + |1,-1> |1,1>],

|=1,M=0> = 2-V2[|1,1> [1,-1> - |1,-1> [1,1>],

|=0, M=0> = 3-V2[|1,0> [1,0> - [1,1> |1,-1> - |1,-1> |1,1>],

where, in al cases, a short hand notation has been used in which the |SMgs> |L, M| >

product stated have been represented by their quantum numbers with the spin function

always appearing first in the product. To finally express all three of these new functions

in terms of spin-orbital productsit is necessary to give the |[S,Ms> |L,M_> products with

M=0 in terms of these products. For the spin functions, we have:

[S=1,Ms=1>=aa,

|S=1,Mg=0> = 2-V2(ab+ba).
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IS=1,Mg=-1> = bb.

For the orbital product function, we have:

|L=1, M_=1> = 3p13po,

IL=1,M =0> = 2-Y2(3pg3pg + 3p13p-1),

IL=1, M| =-1> = 3pg3p-1.

e. Coupling Angular Momenta of Equivalent Electrons

If equivalent angular momenta are coupled (e.g., to couple the orbital angular

momenta of a p2 or d3 configuration), one must use the following "box" method to

determine which of the term symbols violate the Pauli principle. To carry out this step,

one forms al possible unique (determinental) product states with non-negative M and
M s values and arranges them into groups according to their M. and Mg values. For

example, the boxes appropriate to the p2 orbital occupancy are shown below:
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Ms 1 lp1apoa| lp1ap-1a|
0 lp1apab| lp1apobl, [poapib|  Ipiap-1bl,
Ip-1ap1bl,
Ipoapob|

There is no need to form the corresponding states with negative M|_ or negative Mg
values because they are simply "mirror images' of those listed above. For example, the
state with M_=-1 and Ms =-1is|p-1bpgb|, which can be obtained fromthe M|_ =1, Mg
= 1 state |[p1apoa| by replacing a by b and replacing p1 by p-1.

Given the box entries, one can identify those term symbols that arise by applying

the following procedure over and over until all entries have been accounted for:

I. One identifies the highest Mg value (this gives avalue of the total spin quantum

number that arises, S) in the box. For the above example, the answer isS= 1.

ii. For all product states of this Mg value, one identifies the highest M value (thisgivesa
value of the total orbital angular momentum, L, that can arise for this S). For the above
example, the highest M within the Mg =1 statesisM| =1 (not M = 2), hence L=1.

iii. Knowing an S, L combination, one knows the first term symbol that arises from this
configuration. In the p2 example, thisis 3P.

iv. Because the level with thisL and S quantum numbers contains (2L+1)(2S+1) states
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with M|_ and Mg quantum numbers running from -L to L and from -Sto S, respectively,
one must remove from the original box this number of product states. To do so, one
simply erases from the box one entry with each such M| and Mg value. Actually, since
the box need only show those entries with non-negative M| and Mg values, only these
entries need be explicitly deleted. In the 3P example, this amounts to deleting nine
product stateswith M|, Mgvauesof 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

v. After deleting these entries, one returns to step 1 and carries out the process again. For
the p2 example, the box after deleting the first nine product states |ooks as follows (those

that appear in italics should be viewed as already cancelled in counting all of the 3P

states):
ML 2 1 0
Ms 1 |p1apoal |prap-1a|
0 lp1ap1b| |p1apob|, [poapib|  [p1ap-1bl,
lp-1apabl,
Ipoapob|

It should be emphasized that the process of deleting or crossing off entriesin various M,
M s boxes involves only counting how many states there are; by no means do we identify
the particular L,S,M|_,M s wavefunctions when we cross out any particular entry in a box.

For example, when the |p1apgb| product is deleted from the M = 1, Ms=0 box in
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accounting for the states in the 3P level, we do not claim that |pi1apgb] itself is a member
of the 3P level; the [poap1b| product state could just as well been eliminated when
accounting for the 3P states.

Returning to the p2 example at hand, after the 3P term symbol's states have been

accounted for, the highest Mg value is 0 (hence there is an S=0 state), and within thisMg
value, the highest M valueis 2 (hence there is an L=2 state). This means thereisa 1D
level with five states having ML = 2,1,0,-1,-2. Deleting five appropriate entries from the

above box (again denoting deletions by italics) leaves the following box:

ML 2 1 0
Ms 1 |p1apoa| |p1ap-1a|
0 |p1ap1b] |p1apobl, |poapib|  |piap-1bl,
|p-1ap1b],
lpoapob]

The only remaining entry, which thus has the highest Ms and M|_ values, has Ms = 0 and

M = 0. Thusthereisalso alSlevel inthe p? configuration.
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Thus, unlike the non-equivalent 2p13p! case, in which 3P, 1P, 3D, 1D, 3S, and 1S
levels arise, only the 3P, 1D, and 1S arise in the p? situation. This "box method" is
necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can
determine all possible couplings of the equivalent angular momenta using this method
and then use the simpler vector coupling method to add the non-equivalent angular
momenta to each of these coupled angular momenta. For example, the p2d? configuration
can be handled by vector coupling (using the straightforward non-equivalent procedure)
L=2 (the d orbital) and S=1/2 (the third electron’s spin) to each of 3P, 1D, and 1S. The

result is 4F, 4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D.

VIII. Rotationsof Molecules
1. Rotational Motion For Rigid Diatomic and Linear Polyatomic M olecules

This Schrédinger equation relates to the rotation of diatomic and linear
polyatomic molecules. It also arises when treating the angular motions of electronsin

any spherically symmetric potential.

A diatomic molecule with fixed bond length R rotating in the absence of any

external potential is described by the following Schrédinger equation:

h2/2m{ (R2sing)-19/1q (sing 1/1q) + (R2sin2q) 1 12/f 2}y =Ey
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or

L2y /2nR2=EYy,

where L? is the square of the total angular momentum operator L,> + L,? + L,” expressed
in polar coordinates above. The anglesq and f describe the orientation of the diatomic
molecule's axis relative to alaboratory-fixed coordinate system, and mis the reduced
mass of the diatomic molecule meEmymy/(m1+my). The differential operators can be seen
to be exactly the same as those that arose in the hydrogen-like-atom caseas discussed
above. Therefore, the same spherical harmonics that served as the angular parts of the
wave function in the hydrogen-atom case now serve as the entire wave function for the
so-called rigid rotor: y =Y j3m(q,f). These are exactly the same functions as we plotted
earlier when we graphed the s (L=0), p (L=1), and d (L=2) orbitals. As detailed in
Chapter 6 of thistext, the energy eigenvalues corresponding to each such eigenfunction

are given as.

Ej=h2 J}*1)/(2nR2) = B J(J+1)

and are independent of M. Thus each energy level islabeled by Jand is 23+1-fold
degenerate (because M ranges from -Jto J). Again, thisisjust like we saw when we
looked at the hydrogen orbitals; the p orbitals are 3-fold degenerate and the d orbitals are
5-fold degenerate. The so-called rotational constant B (defined ash2/2nR?) depends on

the molecule's bond length and reduced mass. Spacings between successive rotational
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levels (which are of spectroscopic relevance because, as shown in Chapter 6, angular
momentum selection rules often restrict the changes DJ in J that can occur upon photon

absorption to 1,0, and -1) are given by

DE = B (J+1)(3+2) - B J(J+1) = 2B(J+1).

These energy spacings are of relevance to microwave spectroscopy which probes the
rotational energy levels of molecules. In fact, microwave spectroscopy offers the most
direct way to determine molecular rotational constants and hence molecular bond lengths.

Therigid rotor provides the most commonly employed approximation to the
rotational energies and wave functions of linear molecules. As presented above, the
model restricts the bond length to be fixed. Vibrational motion of the molecule givesrise
to changesin R which are then reflected in changesin the rotational energy levels. The
coupling between rotational and vibrational motion gives rise to rotational B constants
that depend on vibrational state aswell as dynamical couplings, called centrifugal
distortions, that cause the total ro-vibrational energy of the molecule to depend on
rotational and vibrational quantum numbers in a non-separable manner.

Within this"rigid rotor" model, the absorption spectrum of arigid diatomic
molecule should display a series of peaks, each of which corresponds to a specific J==>
J+ 1 transition. The energies at which these peaks occur should grow linearly with J. An

example of such a progression of rotational linesis shown in the Fig. 2.23.
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Figure 2.23. Typical rotational absorption profile showing intensity vs. Jvalue of the

absorbing level

The energies at which the rotational transitions occur appear to fit the DE = 2B (J+1)
formularather well. The intensities of transitions from level Jto level J+1 vary strongly
with J primarily because the population of molecules in the absorbing level varies with J.

These populations Pj are given, when the system is at equilibrium at temperature T, in
terms of the degeneracy (23+1) of the Jh level and the energy of thislevel B J(J+1) by the

Boltzmann formula:

Py= Q-1 (23+1) exp(-BJH1)/KT),

where Q isthe rotational partition function:

Q = S;(23+1) exp(-BIFH1)/KT).
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For low values of J, the degeneracy islow and the exp(-BJ(J+1)/KT) factor is near unity.
As Jincreases, the degeracy grows linearly but the exp(-BJ(J+1)/KT) factor decreases
more rapidly. Asaresult, thereisavalue of J, given by taking the derivative of (2J+1)

exp(-BJ(J+1)/KT) with respect to J and setting it equal to zero,

2Jmax + 1 =\/2KT/B

at which the intensity of the rotational transition is expected to reach its maximum. This

behavior is clearly displayed in the above figure.

The eigenfunctions belonging to these energy levels are the spherical harmonics

YL m(a,f) which are normalized according to

\S)
©

(8(y*Lm(@@f) Yo m(a,f)singdgdf)) =d - dvme .

o OOOONT
o @

As noted above, these functions are identical to those that appear in the solution of the
angular part of Hydrogen-like atoms. The above energy levels and eigenfunctions also
apply to the rotation of rigid linear polyatomic molecules; the only difference is that the

moment of inertia | entering into the rotational energy expression is given by

| = Sa Mg Raz
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where m, is the mass of the ath atom and Ry isits distance from the center of mass of the

molecule. This moment of inertia replaces nR2 in the earlier rotational energy level

eXpressions.

2. Rotational M otions of Rigid Non-Linear Molecules

a. The Rotational Kinetic Energy
The rotational kinetic energy operator for arigid polyatomic molecule is

Hrot = Ja2/2|a + Jb2/2| b + JCZ/ZIC

wherethe I (k = a, b, ¢) are the three principa moments of inertia of the molecule (the
eigenvalues of the moment of inertiatensor). Thistensor has elementsin a Cartesian

coordinate system (K, K'= X, Y, Z), whose origin is located at the center of mass of the

molecule, that can be computed as:

k= Sim(R2-R%)) (forK=K)

=" SymRejRej  (forK® K)).

183



Asdiscussed in more detail in Chapter 6, the components of the quantum mechanical

angular momentum operators along the three principal axes are:

Ja = -ih cosc [cotq T/1c - (sing)-19/9f ] - -ih sinc /9q

Jp = ih sinc [cotq T/1c - (sing)-11/1f ] - -ik cosc /19

Jo = - ih T/c.

Theanglesq, f, and ¢ are the Euler angles needed to specify the orientation of therigid
molecule relative to a laboratory-fixed coordinate system. The corresponding square of

the total angular momentum operator J can be obtained as

JZ = Jaz + Jbz + JCZ

= - 12192 - cotq 1/1q

+ (1/sinq) (T2/9f 2 + 12/9c2 - 2 cosqT2/1f c),

and the component along the lab-fixed Z axis Jz is - ik f/{if aswe saw much earlier in

this text.

b. The Eigenfunctions and Eigenvalues for Special Cases
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i. Spherical Tops
When the three principal moment of inertia values are identical, the moleculeis
termed a spherical top. In this case, the total rotational energy can be expressed in terms

of the total angular momentum operator J
Hrot = J2/2| .

As aresult, the eigenfunctions of Hyt are those of J2 and J; as well as Jz both of which
commute with J2 and with one another. Jz isthe component of J along the lab-fixed Z-
axis and commutes with J; because Jz = - ih /{f and J; = - ih 1/fc act on different

angles. The energies associated with such eigenfunctions are
E(JK,M) =h2 J(J+1)/212,

for al K (i.e., Ja quantum numbers) ranging from -Jto Jin unit stepsand for al M (i.e.,

Jz quantum numbers) ranging from -Jto J. Each energy level istherefore (2] + 1)2

degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for

each J.
The eigenfunctions |J,M,K> of 2, Jz and J, are given in terms of the set of so-

called rotation matrices Dym k:

[22+1
MMK>="\/Tg 5z D'amk(@f.c)
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which obey

P IM K> = h2 J(3+1) |IM K>,

Ja UM, K>=hK [JM,K>,

3 IMK>=hM |JJM K>,

These D, « functions are propotional to the spherical harmonics Y ,,,(q,f ) multiplied by

exp(iKc), which reflects its c-dependence.

Ii. Symmetric Tops

Molecules for which two of the three principal moments of inertia are equal are
called symmetric tops. Those for which the unique moment of inertiais smaller than the
other two are termed prolate symmetric tops; if the unique moment of inertiais larger
than the others, the molecule is an oblate symmetric top. An American football is prolate,
and afrisbeeis oblate.

Again, the rotational kinetic energy, which isthe full rotational Hamiltonian, can
be written in terms of the total rotational angular momentum operator 2 and the
component of angular momentum along the axis with the unique principal moment of

inertia:
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Hyot = J2/21 + J52{1/214- 1/21}, for prolate tops

Hrot = J/21 + A 1/2I¢ - 1/21}, for oblate tops.

Here, the moment of inertial denotes that moment that is common to two directions; that

is, | isthe non-unique moment of inertia. As aresult, the eigenfunctions of H,qt are those

of J2 and Jyor J. (and of Jz), and the corresponding energy levels are:

E(IK,M) = B2 JJ+1)/212+ h2K2{1/2l,- 1/2I},

for prolate tops

E(JK,M) = R2 (H1)/212+ h2K2{ 12l - 1/2I},

for oblate tops, again for K and M (i.e., Jyor Jc and Jz quantum numbers, respectively)
ranging from -Jto Jin unit steps. Since the energy now depends on K, these levels are
only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each Jvalue.
Notice that for prolate tops, because | ,is smaller than |, the energies increase with
increasing K for given J. In contrast, for oblate tops, since |.islarger than |, the energies
decrease with K for given J. The eigenfunctions |[J, M,K> are the same rotation matrix
functions as arise for the spherical-top case, so they do not require any further discussion

at thistime.
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iii. Asymmetric Tops

Therotational eigenfunctions and energy levels of a molecule for which all three
principal moments of inertia are distinct (a so-called asymmetric top) can not easily be
expressed in terms of the angular momentum eigenstates and the J, M, and K quantum
numbers. In fact, no one has ever solved the corresponding Schrédinger equation for this
case. However, given the three principal moments of inertialg, Ip, and I¢, a matrix

representation of each of the three contributions to the rotational Hamiltonian

Hrot = Ja2/2|a + Jb2/2| b+ JCZ/ZIC

can be formed within a basis set of the {|J, M, K>} rotation-matrix functions discussed
earlier. This matrix will not be diagona because the |[J, M, K> functions are not
eigenfunctions of the asymmetric top Hyot. However, the matrix can be formed in this
basis and subsequently brought to diagonal form by finding its eigenvectors { Cn jm K}
and its eigenvalues { Ep} . The vector coefficients express the asymmetric top eigenstates

as

Yn(@,f,c)=Ssm kCnimk M, K>,

Because the total angular momentum J till commutes with Hyqt, each such eigenstate

will contain only one J-value, and hence Y ,, can aso be labeled by a J quantum number:

188



Yng (@ f,c)=Sm kCnimk M, K>.

To form the only non-zero matrix elements of Hyot within the |J, M, K> basis, one

can use the following properties of the rotation-matrix functions (see, for example, R. N.

Zare, Angular Momentum, John Wiley, New Y ork (1988)):

< M, K| 32 I M, K>=<J M, K| J2J M, K>

=12<I M, K| 2-32 |3 M, K>=h2[ JJ+1) - K2],

<M, K| 32 I M, K>=h2K2,

<M, K| 2 I M, K+2>=-<I M, Kl}2I M K=2>

= R2[J( 1) - K(K+ D]Y2[J(FH1) -(K+ 1)(K+ 2)] V2

< M,K|J2 I M, K +2>=0.

Each of the elements of Jc2, J32, and Jy2 must, of course, be multiplied, respectively, by

121, 1/21 5 and 1/21p and summed together to form the matrix representation of Hyo.

The diagonalization of this matrix then provides the asymmetric top energies and wave

functions.
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IX. Vibrations of Molecules
This Schrodinger equation forms the basis for our thinking about bond stretching and

angle bending vibrations as well as collective vibrations called phononsin solids.

The radia motion of adiatomic moleculein its lowest (J=0) rotational level can

be described by the following Schrodinger equation:

- (R2/2m) r-291/qr (r29/) y +V(r)y =Ey,

where mis the reduced mass m= mimy/(m1+my) of the two atoms. If the moleculeis

rotating, then the above Schradinger equation has an additional term J(J+1)-h2/2mr-2y
on itsleft-hand side. Thus, each rotational state (labeled by the rotational quantum
number J) hasits own vibrational Schrodinger equantion and thus its own set of
vibrational energy levels and wave functions. It iscommon to examine the J=0
vibrational problem and then to use the vibrational levels of this state as approximations
to the vibrational levels of states with non-zero Jvalues (treating the vibration-rotation
coupling via perturbation theory introduced in Sec. VI1.). Let us thus focus on the J=0
situation.

By substituting y = F(r)/r into this equation, one obtains an equation for F(r) in

which the differential operators appear to be less complicated:

~h2/2md2F/dr2 + V(r) F= EF.
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This equation is exactly the same as the equation seen earlier in this text for the radial
motion of the electron in the hydrogen-like atoms except that the reduced mass mreplaces
the electron mass m and the potential V(r) is not the Coulomb potential.

If the vibrational potential is approximated as a quadratic function of the bond
displacement x = r-re expanded about the equilibrium bond length r, where V hasits

minimum:

V = 12 k(r-re)?,

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V
grows without bound as x approaches ¥ or -¥, only bound-state solutions exist for this
model problem. That is, the motion is confined by the nature of the potential, so no
continuum states exist in which the two atoms bound together by the potential are
dissociated into two separate atoms.

In solving the radial differential equation for this potential, the large-r behavior is

first examined. For large-r, the equation reads:

d2F/dx2 = 12 k x2 (2nih2) F,

where x = r-re is the bond displacement away from equilibrium. Defining x= (k/h2)1/4 x
asanew scaled radial coordinate allows the solution of the large-r equation to be written

as:
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Flarger = exp(- X2/2).

The general solution to the radial equation is then expressed asthislarge-r

solution multiplied by a power seriesin the z variable:

¥
F = exp(- x2/2) a xnc,,
n=0

where the C,, are coefficients to be determined. Substituting this expression into the full
radial equation generates a set of recursion equations for the C,, amplitudes. Asin the
solution of the hydrogen-like radial equation, the series described by these coefficientsis
divergent unless the energy E happens to equal specific values. It isthis requirement that
the wave function not diverge so it can be normalized that yields energy quantization.

The energies of the states that arise are given by:
En=h (k'm1Y2 (n+1/2),
and the eigenfunctions are given in terms of the so-called Hermite polynomials Hn(y) as

follows:

yn(X) = (n! 2)-1/2 (a/p)V4 exp(- ax?/2) Hn(aV2 x),
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where a =(kmfh2)Y/2, Within this harmonic approximation to the potential, the vibrational

energy levels are evenly spaced:

DE = En+1 - En=h (k/m/2.

In experimental data such evenly spaced energy level patterns are seldom seen; most
commonly, one finds spacings En+1 - Ep that decrease as the quantum number n
increases. In such cases, one says that the progression of vibrational levels displays
anharmonicity.

Because the Hermite functions Hy, are odd or even functions of x (depending on
whether nis odd or even), the wave functionsy n(x) are odd or even. This splitting of the
solutions into two distinct classes is an example of the effect of symmetry; in this case,
the symmetry is caused by the symmetry of the harmonic potential with respect to
reflection through the origin along the x-axis (i.e., changing x to —x). Throughout this
text, many symmetries arise; in each case, symmetry properties of the potential cause the
solutions of the Schrodinger equation to be decomposed into various symmetry
groupings. Such symmetry decompositions are of great use because they provide
additional quantum numbers (i.e., symmetry labels) by which the wave functions and
energies can be labeled.

The basic idea underlying how such symmetries split the solutions of the
Schrodinger equation into different classes relates to the fact that a symmetry operator
(e.g., thereflection plane in the above example) commutes with the Hamiltonian. That is,

the symmetry operator S obeys

193



SHY =HSY.

So Sleaves H unchanged as it acts on H (this allows usto pass S through H in the above
equation). Any operator that leaves the Hamiltonian (i.e., the energy) unchanged is called
asymmetry operator.

If you have never learned about how point group symmetry can be used to hjelp
simplify the solution of the Schrodinger equation, this would be a good time to interrupt
your reading and go to Sec. VIII and read the materia there.

The harmonic oscillator energies and wave functions comprise the simplest
reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often
characterized in terms of individual bond-stretching and angle-bending motions, each of
which is, in turn, approximated harmonically. Thisresultsin atotal vibrational wave
function that is written as a product of functions, one for each of the vibrational
coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of
anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation,
result from the quadratic nature of its potential. By introducing model potentials that
allow for proper bond dissociation (i.e., that do not increase without bound as x=>¥), the
major shortcomings of the harmonic oscillator picture can be overcome. The so-called

Morse potential (see Fig. 2.24)

V(r) = De (1-exp(-a(r-re)))?,
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is often used in this regard.
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Figure 2.24. Morse potential energy as a function of bond length

In the Morse potential function, De is the bond dissociation energy, reisthe equilibrium
bond length, and ais a constant that characterizes the 'steepness’ of the potential and thus
affects the vibrational frequencies. The advantage of using the Morse potential to
improve upon harmonic-oscillator-level predictionsisthat its energy levels and wave
functions are also known exactly. The energies are given in terms of the parameters of the

potential as follows:

En = h(k/mY2 { (n+1/2) - (n+1/2)2 h(kim)¥2/4Dg },
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where the force constant is given by k=2D¢ &. The Morse potential supports both bound
states (those lying below the dissociation threshold for which vibration is confined by an
outer turning point) and continuum states lying above the dissociation threshold. Its
degree of anharmonicity is governed by the ratio of the harmonic energy h(k/m¥/2 to the
dissociation energy De.

The eigenfunctions of the harmonic and Morse potentials display nodal character
analogous to what we have seen earlier in the particle-in-boxes model problems. Namely,
asthe energy of the vibrational state increases, the number of nodesin the vibrational
wave function also increases. The state having vibrational quantum number v hasv
nodes. | hope that by now the student is getting used to seeing the number of nodes

increase as the quantum number and hence the energy grows.

Chapter 3. Characteristics of Energy Surfaces

Born-Oppenheimer energy surfaces (or the empirical functions often used to
represent them) possess important critical points that detail the properties of stable
molecular structures, transition states, and reaction paths, all of which play central roles
in the theoretical description of molecular properties. In this Chapter, you will learn
about these special points on the surfaces, how to find them, and what to do with them

once you know them.

|. Strategiesfor Geometry Optimization
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The extension of the harmonic and Morse vibrational models to polyatomic
molecules requires that the multidimensional energy surface be analyzed in a manner
that allows one to approximate the molecule’ s motions in terms of many nearly
independent vibrations. In this Section, we will explore the tools that one usesto carry

out such an analysis of the surface.

Many strategies that attempt to locate minimaon molecular potential energy
landscapes begin by approximating the potential energy V for geometries (collectively
denoted in terms of 3N Cartesian coordinates{ g} ) in a Taylor series expansion about
some “starting point” geometry (i.e., the current molecular geometry in an iterative

process):

V (ak) = V(0) + Sk (TV/TIak) ak + V2 Sjk gy Hjk Ok + ... -

Here, V(0) isthe energy at the current geometry, (TV/1igk) = g, isthe gradient of the
energy along the g, coordinate, Hj k = (T°V/1q,TaKk) is the second-derivative or Hessian
matrix, and g, is the length of the “step” to be taken along this Cartesian direction. An
example of an energy surface in only two dimensionsis given in the Figure 3.1 where
various specia aspects areillustrated. For example, minima corresponding to stable
molecular structures, transition states (first order saddle points) connecting such minima,

and higher order saddle points are displayed.
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Figure 3.1. Two-dimensional potential surface showing minima, transition states, and

paths connecting them.

If the only knowledge that is available is V(0) and the gradient components (e.g.,
computation of the second derivativesis usually much more computationally taxing than

is evaluation of the gradient), the linear approximation

V (k) = V(0) + Sk 0« Ok

suggests that one should choose “step” elements g, that are opposite in sign from that of
the corresponding gradient elements g, = (TV/flgk). The magnitude of the step elementsis
usually kept small in order to remain within the “trust radius’ within which the linear
approximation to V isvalid to some predetermined desired precision.

When second derivative datais available, there are different approaches to
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predicting what step {g,} to take in search of aminimum. We first write the quadratic

Taylor expansion

V(@@)=V(O0) +Sg.a+12S,qH,aq

in matrix-vector notation

V@)=V +q - g+12q - H-q

with the elements{ g,} collected into the column vector g whose transpose is denoted g .

Introducing the unitary matrix U that diagonalizes the symmetric H matrix, the above

equation becomes

V() =V(0)+g'U U'q+1/29" UUTHU U q.

Because U'HU is diagonal

(UTH U)k,l = dk,l |

and has eigenvalues| . For non-linear molecules, 3N-6 of these eigenvalues will be non-

zero; for linear molecules, 3N-5 will be non-zero. The 5 or 6 zero eigenvalues of H have

eigenvectors that describe translation and rotation of the entire molecule; they are zero
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because the energy surface V does not change if the molecule is rotated or trandlated.

The eigenvectors of H form the columns of the array U that brings H to diagonal form:

S H, U, = | m Ukm

Therefore, if we define

Qm = SKUTm,k qk and C-:'m = S( UYm,k gk

to be the component of the step { g,} and of the gradeint along the m™ eigenvector of H,
the quadratic expansion of V can be written in terms of steps along the 3N-5 or 3N-6

{Q,} directionsthat correspond to non-zero Hessian eigenvalues:

V (a) = V(0) + Sm G’ Qm + 12 Sm Qm | m Qm.

The advantage to transforming the gradient, step, and Hessian to the eigenmode basisis
that each such mode (labeled m) appearsin an independent uncoupled form in the
expansion of V. This allows usto take steps along each of the Q,,, directionsin an
independent manner with each step designed to lower the potential energy (as we search
for minima).

For each eigenmode direction, one can ask for what step Q would the quantity GQ
+ 1/21 Q? be aminimum. Differentiating this quadratic form with respect to Q and

setting the result equal to zero gives
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Qm:_Gmllm;

that is, one should take a step opposite the gradient but with a magnitude given by the
gradient divided by the eigenvalue of the Hessian matrix. If the current molecular
geometry isone that has al positivel ., values, thisindicates that one may be “close” to a
minimum on the energy surface (because all | , are positive at minima). In such case, the
step Q,,=- G, /I ,,, isopposed to the gradient along all 3N-5 or 3N-6 directions. The
energy change that is expected to occur if the step {Q,,} is taken can be computed by

substituting Q,, = - G,/I ., into the quadratic equation for V:

V(after step) = V(0) + Sm G'y, (- G/l ) + 12 Sml m (- G/l )°

=V(0) - U2Sm! m( G/l )2

This clearly suggests that the step will lead “downhill” in energy aslong as all of thel ,
values are positive.

However, if one or more of thel , are negative at the current geometry, oneisin a
region of the energy surface that is not close to aminimum. In fact, if only onel ., is
negative, one anticipates being near atransition state (at which all gradient components
vanish and all but onel ,, are positive with one | , negative). In such a case, the above
analysis suggests taking astep Q,, = - G/l ,, aong all of the modes having positivel ,,,

but taking a step of opposite direction Q,, =+ G,/I ,,along the direction having negative
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In any event, once a step has been suggested within the eigenmode basis, one
needs to express that step in terms of the original Cartesian coordinates g, so that these
Cartesian values can be altered within the software program to effect the predicted step.
Given values for the 3N-5 or 3N-6 step components Q,, (n.b., the step components Q,,,
along the 5 or 6 modes having zero Hessian eigenvalues can be taken to be zero because
the would simply trand ate or rotate the molecule), one must compute the {q,}. To do so,

we use the relationship

Qm = S( UTm,k qk

and write itsinverse (using the unitary nature of the U matrix):

qk = Sm Uk,m Qm

to compute the desired Cartesian step components.

In using the Hessian-based approaches outlined above, one has to take special
care when one or more of the Hessian eigenvaluesis small. This often happens when
i. one has a molecule containing “soft modes’ (i.e., degrees of freedom along which the
energy varieslittle), or
ii. as one moves from aregion of negative curvature into aregion of positive curvature

(or vice versa)- in such cases, the the curvature must move through or near zero.
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For these situations, the expression Q,, = - G,/I ,, can produce a very large step along the
mode having small curvature. Care must be taken to not allow such incorrect artificially
large steps to be taken.

Before closing this Section, | should note that there are other important regions of
potential energy surfaces that one must be able to locate and characterize. Above, we
focused on local minima and transition states. In Chapter 8, we will discuss how to
follow so-called reaction paths that connect these two kinds of stationary points using the
type of gradient and Hessian information that we introduced earlier in this Chapter.

Finally, it is sometimes important to find geometries at which two Born-
Oppenheimer energy surfaces V,(q) and V,(q) intersect. First, let’s spend afew minutes
thinking about whether such surfaces can indeed intersect because students often hear
that surfaces do not intersect but, instead, undergo “avoided crossings’. To understand
the issue, let us assume that we have two wave functions F ; and F , both of which depend
on 3N-6 coordinates{ g} . These two functions are not assumed to be exact eigenfunctions
of the Hamiltonian H, but likely are chosen to approximate such eigenfunctions. To find
the improved functions 'Y ; and Y , that more accurately represent the eigenstates, one

usually formslinear combinationsof F, and F ,,

Y¢=Cc1F1+C, F,

from which a 2x2 matrix eigenvalue problem arises:
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This quadratic equation has two solutions

2E, = (H1,1+ Hz,z) iJ(Hl,l_ Hz,z)2 + 4H1,22 .

These two solutions can be equal (i.e., the two state energies can cross) only if the square
root factor vanishes. Because this factor is a sum of two squares (each thus being positive

quantities), this can only happen if two identities hold:

Hy,=H,,

and

The main point then is that in the 3N-6 dimensional space, the two states will generally
not have equal energy. However, in a space of two lower dimensions (because there are
two conditions that must simultaneously be obeyed- H,, = H,,and H, , = 0), their
energies may be equal. They do not haveto be equal, but it is possible that they are. It is
based upon such an analysis that one usually says that potential energy surfacesin 3N-6
dimensions may undergo intersections in spaces of dimension 3N-8. If the two states are

of different symmetry, the off-diagonal element H, , vanishes automatically, so only one
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other condition is needed to realize crossing. So, we say that two states of different
symmetry can crossin a space of dimension 3N-7.

To find the lower-dimensional space in which two surfaces cross, one must have
available information about the gradients and Hessians of both functionsV, and V,. One
then uses thisinformation to locate a geometry at which the difference function F = [V,
-V.,]? passes through zero by using conventional “root finding” methods designed to
locate where F = 0. Once one such geometry (q,) has been located, one subsequently
tries to follow the “seam” along which the function F remains zero. Thisis done by
parameterizng steps away from (g,) in a manner that constrains such steps to have no
component along the gradient of F (i.e., to liein the tangent plane where F is constant).
For a system with 3N-6 geometrical degrees of freedom, this seam will be a subsurface of
lower dimension (3N-8 or 3N-7 as noted earlier). Such intersection seam location
procedures are becoming more commonly employed, but are still under very active
development. Locating these intersections is an important ingredient when oneis
interested in studying, for example, photochemical reactions in which the reactants and

products may move from one electronic surface to another.
1. Normal Modes of Vibration

Having seen how one can use information about the gradients and Hessianson a
Born-Oppenheimer surface to locate geometries corresponding to stable species, let us

now move on to see how this same data is used to treat vibrations on this surface.

For a polyatomic molecule whose electronic energy's dependence on the 3N
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Cartesian coordinates of its N atoms, the potential energy V can be expressed
(approximately) in terms of a Taylor series expansion about any of the local minima. Of
course, different local minima (i.e., different isomers) will have different values for the
equilibrium coordinates and for the derivatives of the energy with respect to these

coordinates. The Taylor series expansion of the electronic energy iswritten as:

V (ak) = V(0) + Sk (TV/Tlak) dk + V2 Sjk gy Hjk Ok + ..

where V(0) is the value of the electronic energy at the stable geometry under study, gk is
the displacement of the ki, Cartesian coordinate away from this starting position,
(V/1iak) isthe gradient of the electronic energy along this direction, and the H; k are the
second derivative or Hessian matrix elements along these directions H; k = (‘|12V/‘|1qj‘ﬂqk).
If the geometry corresponds to a stable species, the gradient terms will all vanish
(meaning this geometry corresponds to a minimum, maximum, or saddle point), and the
Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear
molecules) positive eigenvalues and 5 or 6 zero eigenvalues (corresponding to 3
trandational and 2 or 3 rotational motions of the molecule). If the Hessian has one
negative eigenvalue, the geometry corresponds to atransition state. From now on, we
assume that the geometry under study corresponds to that of a stable minimum about
which vibrational motion occurs. The treatment of unstable geometriesis of great

importance to chemistry, but this material will be limited to vibrations of stable species.

A. The Newton Equations of Motion for Vibration
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1. The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms
dominate because only small displacements from the equilibrium geometry are of
interest), one has the so-called harmonic potential :

V (dk) = V(0) + V2 Sj k gj Hj k k-

The classical mechanical equations of motion for the 3N {qx} coordinates can be written

in terms of the above potential energy and the following kinetic energy function:

T:1/28jmjé]j2,

whereq j denotesthe time rate of change of the coordinate gj and m; is the mass of the

atom on which the jth Cartesian coordinate resides. The Newton eguations thus obtained

are:

mj 'q'j = - Sk Hjk dk

where the force along the jth coordinate is given by minus the derivative of the potential

V aong this coordinate (TV/0j) = Sk Hj k dk within the harmonic approximation.
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These classical equations can more compactly be expressed in terms of the time

evolution of aset of so-called mass weighted Cartesian coordinates defined as:

X = ¢ (M) 12,

in terms of which the above Newton equations become

XJ = - Sk Hij k Xk

and the mass-weighted Hessian matrix elements are

H'j k = Hj k (m; my)-1/2,

2. The Harmonic Vibrational Energies and Normal Mode Eigenvectors

Assuming that the xj undergo some form of sinusoidal time evolution:

Xj(t) = xj (0) cos(wt),

and substituting thisinto the Newton equations produces a matrix eigenval ue equation:

w2 Xj = Sk H'j,k Xk
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in which the eigenvalues are the squares of the so-called normal mode vibrational
frequencies and the eigenvectors give the amplitudes of motion along each of the 3N
mass weighted Cartesian coordinates that belong to each mode. Hence, to perform a
normal-mode analysis of a molecule, one forms the mass-weighted Hessian matrix and
then finds the 3N-5 or 3N-6 non-zero eigenvalues w,” as well as the corresponding
eigenvectors x, 9.

Within this harmonic treatment of vibrational motion, the total vibrational energy

of the moleculeisgiven as

3N-°50r6
E(vi, V2, = Vansore) = A hwj (vj + 1/2)
j=1

asum of 3N-5 or 3N-6 independent contributions one for each normal mode. The

corresponding total vibrational wave function

Y = Piiansors ij (XG))

isaproduct of 3N-5 or 3N-6 harmonic oscillator functionsy Vi (x9) one for each normal

mode. The energy gap between one vibrational level and another in which one of the v;

quantum numbersisincreased by unity (i.e., for fundamental vibrational transitions) is

DEV]® Vj+]_=th
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The harmonic model thus predicts that the "fundamental” (v=0® v = 1) and "hot band"
(v=1® v = 2) transitions should occur at the same energy, and the overtone (v=0® v=2)

transitions should occur at exactly twice this energy.
B. The Use of Symmetry
1. Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and
eigenvectors by exploiting molecular point group symmetry. For molecules that possess
symmetry at a particular stable geometry, the electronic potential V(qj) displays
symmetry with respect to displacements of symmetry equivalent Cartesian coordinates.
For example, consider the water molecule at its Cyy equilibrium geometry asillustrated in
Fig. 3.2. A very small movement of the H,O molecul€e's left H atom in the positive x
direction (Dx| ) produces the same change in the potential V as a correspondingly small

displacement of the right H atom in the negative x direction

(-Dxr). Similarly, movement of the left H in the positive y direction (Dy ) produces an

energy change identical to movement of the right H in the positive y direction (DyR).

by

H q \H

) ]
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Figure 3.2. Water molecule showing its two bond lengths and angle

The equivalence of the pairs of Cartesian coordinate displacementsis aresult of
the fact that the displacement vectors are connected by the point group operations of the
Coy group. In particular, reflection of Dx|_ through the yz plane (the two planes are
depicted in Fig. 3.3) produces - DxR, and reflection of Dy through this same plane yields

Dyr.

Figure 3.3. Two planes of symmetry of the water molecule.

More generally, it is possible to combine sets of Cartesian displacement
coordinates { gk} into so-called symmetry adapted coordinates { Qgj}, where the index G

labelsthe irreducible representation in the appropriate point group and j labels the
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particular combination of that symmetry. These symmetry adapted coordinates can be
formed by applying the point group projection operators (that are treated in detail in Sec.
VIII) to theindividual Cartesian displacement coordinates.

Toillustrate, again consider the HoO molecule in the coordinate system described
above. The 3N =9 mass weighted Cartesian displacement coordinates (X, YL, ZL, Xo,
Yo, Zo, XR, YR, ZR) can be symmetry adapted by applying the following four projection

operators:

PA1:1+Syz+Sxy+C2
Pop =1+Syz-Sxy-C2
Ppp=1-Syz+Sxy-C2

Pazzl‘Syz'Sxy+C2

to each of the 9 original coordinates (the symbol s denotes reflection through a plane and
C, means rotation about the molecule’' s C, axis). Of course, one will not obtain 9x 4=
36 independent symmetry adapted coordinates in this manner; many identical
combinations will arise, and only 9 will be independent.

The independent combination of a; symmetry (normalized to produce vectors of

unit length) are

Qa1 = 2°Y2[XL - XR]

Qa2 = 2-V2[Y | +YR]
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Qal,3 = [Y O]

Those of by symmetry are

Qb,1 = 2°V2[XL + XR]
Qby2 =2°V2[Y - YR]

Qb2,3 = [XO] ’

and the combinations

Qoy1 =22 [Z + Zg]

Qb2 = [Z0]

are of b; symmetry, whereas

Qap1=212[Z, - Zg]

is of a symmetry.

2. Point Group Symmetry of the Harmonic Potential
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These nine QG]- are expressed as unitary transformations of the original mass

weighted Cartessian coordinates:

[]
Qgj=a Cajk Xk
k

These transformation coefficients { Cg; k} can be used to carry out a unitary

transformation of the 9x9 mass-weighted Hessian matrix. In so doing, we need only form

blocks

HG 1= Cgjk Hkk (Mkmy)Y2 Cgx

k k

within which the symmetries of the two modes areidentical. The off-diagonal elements

GG

HjI

=S Cajk Hik (Memg)l2 Cg e

vanish because the potential V (gj) (and the full vibrational HamiltonianH=T + V)
commutes with the Cpy point group Symmetry operations.

As aresult, the 9x9 mass-weighted Hessian eigenval ue problem can be sub

divided into two 3x3 matrix problems (of a; and by symmetry), one 2x2 matrix of by
symmetry and one 1x1 matrix of ap symmetry. For example, the a; symmetry block HjaT
isformed asfollows:
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The by, by and ap blocks are formed in asimilar manner. The eigenvalues of each of

these blocks provide the squares of the harmonic vibrational frequencies, the eigenvectors

provide the normal mode displacements as linear combinations of the symmetry adapted
{QS}.

Regardless of whether symmetry is used to block diagonalize the mass-weighted
Hessian, six (for non-linear molecules) or five (for linear species) of the eigenvalues will
equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3

trandations and 2 or 3 rotations of the molecule. For example,

1
3 [XL + XRr+ X(]
1
% [YL+YR+Y(]

1
3 [ZL +Zr + ZO]

are three trandation eigenvectors of by, a; and b; symmetry, and
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\/_15 (ZL - ZR)

isarotation (about the Y -axis in the figure shown above) of ap symmetry. Thisrotation
vector can be generated by applying the ap projection operator to Z, or to Zr. The other
two rotations are of by and by symmetry and involve spinning of the molecule about the
X- and Z- axes of the Fig. B.39, respectively.

So, of the 9 Cartesian displacements, 3 are of a3 symmetry, 3 of by, 2 of by, and 1
of ap. Of these, there are three trandations (a1, by, and by) and three rotations (bo, b1, and
a). Thisleavestwo vibrations of a; and one of by symmetry. For the H,O example
treated here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of
a1 by , and a1 symmetry. They describe the symmetric and asymmetric stretch vibrations

and the bending mode, respectively asillustrated in Fig. 3.4.

& J &
Figure 3.4. Symmetric and asymmetric stretch modes and bending mode of water

The method of vibrational analysis presented here can work for any polyatomic

molecule. One knows the mass-weighted Hessian and then computes the non-zero
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eigenvalues, which then provide the squares of the normal mode vibrational frequencies.
Point group symmetry can be used to block diagonalize this Hessian and to |abel the
vibrational modes according to symmetry as we show in Fig. 3.5 for the CF, moleculein

tetrahedral symmetry.

Figure 3.5. Symmetries of vibrations of methane

Chapter 4. Some Important Tools of Theory
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For all but the most elementary problems, many of which serve as fundamental
approximations to the real behavior of molecules (e.g., the Hydrogenic atom, the
harmonic oscillator, therigid rotor, particles in boxes), the Schrédinger equation can not
be solved exactly. It is therefore extremely useful to have tools that allow one to
approach these insoluble problems by solving other Schrédinger equations that can be
trusted to reasonably describe the solutions of the impossible problem. The tools

discussed in this Chapter are the most important tools of this type.
|. Perturbation Theory and the Variational Method

In most practical applications of quantum mechanics to molecular problems, one
is faced with the harsh reality that the Schrodinger equation pertinent to the problem at
hand can not be solved exactly. To illustrate how desperate this situation is, | note that
neither of the following two Schrddinger equations have ever been solved exactly
(meaning analyticaly):

1. The Schrédinger equation for the two electrons moving about the He nucleus:

[- h2Z12me N2 - h2/2me N2 — 2€°Ir, — 2€%ir, + €Ir,,ly =Ey,

2. The Schrodinger equation for the two electrons moving in an H, molecule even if the

locations of the two nuclel (labeled A and B) are held clamped:

[- h2/2me N2 - B2/2me Np2 — €11, — €1, 0 — €1, — E¥1,5 + €811,y =E VY.
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These two problems are examples of what is called the “three-body problem” meaning
solving for the behavior of three bodies moving relative to one another. Motions of the
sun, earth, and moon (even neglecting all the other planets and their moons) constitute
another three-body problem. None of these problems, even the classical Newton's
equation for the sun, earth, and moon, have ever been solved exactly. So, what does one
do when faced with trying to study real molecules using quantum mechanics?

There are two very powerful tools that one can use to “sneak up” on the solutions
to the desired equations by first solving an easier “model” problem and then using the
solutions to this problem to approximate the solutions to the real Schrodinger problem of
interest. For example, to solve for the energies and wave functions of a boron atom, one
could use hydrogenic 1s orbitals (but with Z = 5) and hydrogenic 2s and 2p orbitals with
Z = 3to account for the screening of the full nuclear charge by the two 1s electrons as a
starting point. To solve for the vibrational energies of a diatomic molecule whose energy
vs. bond length E(R) is known, one could use the Morse oscillator wave functions as
starting points. But, once one has decided on areasonable “ starting point” model to use,
how does one connect this model to the real system of interest? Perturbation theory and

the variational method are the two tools that are most commonly used for this purpose.

A. Perturbation Theory

In this method, one has available a set of equations for generating a sequence of

approximations to the true energy E and true wave functiony . | will now briefly outline
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the derivation of these working equations for you. First, one decomposes the true
Hamiltonian H into a so-called zeroth-order part H° (this is the Hamiltonian of the model
problem one has chosen to use to represent the real system) and the difference (H-H°)

which is called the perturbation and often denoted V:

H=H+V.

The fundamental assumption of perturbation theory is that the wave functions and
energies can be expanded in a Taylor seriesinvolving various powers of the perturbation.
That is, one expands the energy E and the wave function'y into zeroth-, first-, second,

etc, order pieces which form the unknowns in this method:

E=E°+E' +E°+E3 + ...

y =yo+yt+yityi+

Next, one substitutes these expansions of E of H and of y into Hy = Ey . This produces
one eguation whose right and left hand sides both contain terms of various “powers’ in
the perturbation. For example, terms of theform E*y?and V y? and E° y ® are all of third
power (also called third order). Next, one equates the terms on the left and right sides that
are of the same order. This produces a set of equations, each containing all the terms of a

given order. The zeroth, first, and second order such equations are given below:
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H0y0: EOyO’

H0y1+Vy0: E0y1+ ElyO

H0y2+Vy1= E0y2+ Ely1+ EZyO'

The zeroth order equation simply instructs us to solve the zeroth-order Schrodinger
equation to obtain the zeroth-order wave function y ° and its zeroth-order energy E°.

In the first-order equation, the unknowns arey * and E* (recall that V is assumed to be
known because it is the difference between the Hamiltonian one wants to solve and the
model Hamiltonian H°).

To solve the first-order and higher-order equations, one expands each of the
corrections to the wave function y  in terms of the complete set of wave functions of the
zeroth-order problem {y °}. This means that one must be able to solve H°y °,= E%y °, not
just for the zeroth-order state oneis interested in (denoted y ° above) but for all of the
other (e.g., excited statesif y °isthe ground state) zeroth-order states{y °} . For example,

expanding y * in this manner gives:

y'=S,Chy°%

Now, the unknowns in the first-order equation become E! and the C', expansion

coefficients. Substituting this expansioninto Hy *+ V y°= E°y '+ E'y ° and solving for

these unknows produces the following final first-order working equations.
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E'=<y°|V|y®

yl: SJyOJ{<yO| \ |yOJ>/(EO_EOJ)}'

where the index Jis restricted such that y ,” not equal the state y ° you are interested in.
These are the fundamental working equations of first-order perturbation theory. They
instruct us to compute the average value of the perturbation taken over a probability
distrubution equal to y” y ° to obtain the first-order correction to the energy E'. They also
tell us how to compute the first-order correction to the wave function in terms of
coefficients multiplying various other zeroth-order wave functionsy ,’.

An anaogous approach is used to solve the second- and higher-order equations.
Although modern quantum mechanics does indeed use high-order perturbation theory in
some cases, much of what the student needs to know is contained in the first- and second-
order resultsto which | will therefore restrict our attention. The expression for the

second- order energy correction isfound to be:

E*=S,<y°|V |y >I(E° - E),

where again, the index Jis restricted as noted above. Let’s now consider an example

problem that illustrates how perturbation theory is used.

Example Problem for Perturbation Theory
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Aswe discussed earlier, an electron moving in a conjugated bond framework can
be modeled as aparticlein abox. An externally applied electric field of strength e

interacts with the electron in afashion that can described by adding the perturbation V =

LO
eeg - 5 tothe zeroth-order Hamiltonian. Here, X isthe position of the electronin the

box, e isthe electron’'s charge, and L is the length of the box.

First, we will compute the first order correction to the energy of the n=1 state and
the first order wave function for the n=1 state. In the wave function calculation, we will
only compute the contribution toy made by y °, (thisis just an approximation to keep
things simplein thisexample) . Let me now do all the steps needed to solve this part of
the problem. Try to make sure you can do the algebra but also make sure you understand

how we are using the first-order perturbation equations.

ae
V = eex gYn—ggSn gand

n = 2mL2 -

©) ) & Lg  (0)
En 1 = <Yp= 1|V|Yn-1> <Yn 1/eeeX - 2dY n=1
L

géo S n2g'lxgeee< szx
0
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L L
= %fe% S nZQ%dx - %Lee%g S nzg%x
0 0

©

Thefirst integral can be evaluated using the following identity witha=1":

—

) x2 X Sin(2ax) Cos(2ax) (AR
Sin (ax)xdx—4- 4a -~ a2 IO =

L?
4

o OO

X
The second integral can be evaluated using the following identity with q = pT

and dq :E dx :
: P
9 xQ Lg
8si nzggr_;}jx = 59 Sin2qdq
0 0
p .
4 1 I
BSin2qdy = -3 Sin(20) +%,:_2 =3
0

Making all of these appropriate substitutions we obtain:

S i R T
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0) 0)
<Yn-2|eee< 23 Y =12 Yn=2

e
n=1 = ) )
En:l - En:2
L
. A 0
%% Sin 2@ n?gﬂx
(1) 0
Yn=1 = h2p2 ] S' n?ﬂ

2.
2mL2(1%- 22

The two integrals in the numerator need to be evaluated:

XS %g&n?@x andoSm%gSln

o 00O

, 1 X ,
Using the integral identities 8 xCos(ax)dx = 2 Cos(ax) + 3 Sin(ax), and 8 Cos(ax)dx

1
=7 Sin(ax), we obtain the following:

Ve

Sm?*,z& nggﬂx = Z%Co %

19  exdL L o|_u
:§$S|n%a.o - 3pSin Ex%‘ﬂ =0

px
L

0
Cosg 1 gix

:
d

o 00O -
o OOO~ [
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& o & 4
xSi n% ?gdx = —éxCosg%%jx - §XCO@%XH
0

o OoOo -

1682 o Lx % 2 px0  Lx OQLU
:Q@ZCO Slng &?CO ,Z,+ 3p %

212 212 L2 L2 gL?

" 2p? "18p2 T 9p2 "p2 T 9p2

Making all of these appropriate substitutions we obtain:

@2 | 0
ke - 50

a1 )
1) & E2px0
Yn=1 = “3h2p? gfa S'“g Lo

2mL2

(1) 32mL3ee Q
Yn=1 = 5724 27h2p4 ﬂ %ﬂ

Now, let’s compute the induced dipole moment caused by the polarization of the electron

9 LO
density due to the electric field effect using the equation Mnpguced = - e8Y*§ - 7Y dXx

with Y now being the sum of our zeroth- and first-order wave functions. In computing
thisintegral, we neglect the term proportional to e2 because we are interested in only the
term linear in e because thisis what gives the dipole moment. Again, allow me to do the

algebraand see if you can follow.

226



& (0) (1)0
Mnduced = - eoY zade where, Y = eY 1 +Y 19

L

9 (& LO (0 (0)* LO ()
=8y 7 -5 T - 98 - 20 1dx

0

L L

Q*e L0 (0) Qe L0
6§ & - 2gY 1 dx 8 Y1 &-3p¢ 1dx
0 0

1
Thefirst integral is zero (see the evaluation of thisintegral for E(l) above). The fourth

integral is neglected sinceit is proportional to €2. The second and third integrals are the

same and are combined to give:

L
o2 LO (1)
Mnduced = '268Y -5 10X
0

1 .
0 0 xQ 1)  32mlL3ee xQ
Substituting Y(l) = gg Sing gandY ( ) 27h2p4 9 g S ?Eg we obtain:

32mL3 x¢e LO px0
Mnduced = -2€ 5724 27h2p Ep n?@( Zﬁn L X
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These integrals are familiar from what we did to compute Y *; doing them we finally

obtain:

32ml 3eezp 3P| 20
Mnduced = -2e 27h2p4 {%'ngg

mL 4e%e 210
Mnduced = h2p6 35

Now. Let’s compute the polarizability, a, of the electron in the n=1 state of the

box, and try to undestand physically why a should depend as it does upon the length of

mi
the box L. To compute the polarizability, we need to know that a = % : 0 .Using our
e=

induced moment result above, we then find

oz g mL4e220
= E%zeco = h2pb 3

Notice that this finding suggests that the larger the box (molecul€), the more polarizable

the electron density. This result also suggests that the polarizability of conjugated

polyenes should vary non-linearly with the length of the congugated chain.

B. The Variational M ethod

Let us now turn to the other method that is used to solve Schrédinger equations
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approximately, the variational method. In this approach, one must again have some
reasonable wave function y ° that is used to approximate the true wave function. Within
this approximate wave function, one imbeds one or more variables{a} that one
subsequently varies to achieve aminimum in the energy of y ° computed as an

expectation value of the true Hamiltonian H:

Efa}) =<y H|y%>/i<y®|y®.

The optimal values of the a, parameters are determined by making

dE/da, =0

To achieve the desired energy minimum (n.b., we also should verify that the second

derivative matrix (1°E/fa,Ta,) has al positive eigenvalues).

The theoretical basis underlying the variational method can be understood through

the following derivation. Suppose the someone knew the exact eigenstates (i.e., true Y

and true E,) of the true Hamiltonian H. These states obey

HY, =E Y,

Because these true states form a complete set (it can be shown that the eigenfunctions of
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all the Hamiltonian operators we ever encounter have this property), our so-called “trial

wave function” y ° can, in principle, be expanded in terms of these Y .

y°=SCcYy.

Before proceeding further, allow me to overcome one likely misconception. What | am
going through now is only a derivation of the working formula of the variational method.
The final formulawill not require us to ever know the exact Y  or the exact E,, but we
are allowed to use them as tools in our derivation because we know they exist even if we
never know them.

With the above expansion of our trial function in terms of the exact
eigenfunctions, let us now substitute this into the quantity <y °| H | y °>/<y ° | y °> that the

varitational method instructs us to compute:

E= <y0| H Iyo>/<yo Iyo> =<§CY(|H|S C Y ><S§CY S C Y >

Using the fact that the Y  obey HY = E, Y  and that the Y , are orthonormal (I hope you

remember this property of solutionsto all Schrédinger equations that we discussed

earlier)

<YlY >=d,
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the above expression reduces to

E=S<Cc Y |H|C Y >/(S<C Y| C Y >) = ScICI E/SlCi [

One of the basic properties of the kind of Hamiltonia we encounter is that they have a
lowest-energy state. Sometimes we say they are bounded from below, which means their
energy states do not continue all the way to minus infinity. There are systems for which
thisis not the case, but we will now assume that we are not dealing with such systems.
This allows usto introduce the inequality E, 2 E,which saysthat all of the energies are
higher than or equal to the energy of the lowest state which we denote E,. Introducing

thisinequality into the above expression gives

E3 S¢|C« Eo/ScICk = E,.

This means that the variational energy, computed as<y °|H |y ®>/<y° |y °> will lie above
the true ground-state energy no matter what trial function y ° we use.

The significance of the above result that E 2 E,is asfollows. We are allowed to
imbed into our trial wave function y ° parameters that we can vary to make E, computed
as<y? H|y%/<y®|y° aslow as possible because we know that we can never make
<y | H |y ®/<y?|y°> lower than the true ground-state energy. The philosophy then isto

vary the parametersin y °to render E as low as possible, because the closer E isto E, the
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“better” isour variational wave function. Let me now demonstrate how the variational

method is used in such a manner by solving an example problem.
Example Variational Problem

Suppose you are given atrial wave function of the form:

Ze3 aner19 @Zerzg
F=pa® &P a0 0 P& a0 o

to represent atwo-electron ion of nuclear charge Z and suppose that you are lucky
enough that | have already evaluated the <y °| H | y ®>/<y° |y °> integral, which I'll call

W, for you and found

e2

5_0
Wzgez' ZZZe+§ZeB% .

Now, let’s find the optimum value of the variational parameter Ze for an arbitrary nuclear

dw
charge Z by setting aZe = 0. After finding the optimal value of Zg, we'll then find the

optimal energy by plugging this Z, into the above W expression. I’ll do the algebra and

seeif you can follow.
5_0¢
W = §e2 - ZZZe + g Zeaa)
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dW e 50e2
=&Ze-2Z+g gz =0

5
ZZe'ZZ‘I‘g =0

5
2Ze:22'§

5
Ze=Z-1g =Z-03125

(n.b., 0.3125 represents the shielding factor of one 1s electron to the other).

Now, using thisoptimal Z, in our energy expression gives

502
W = zegze 2Z + 8irag

§ 50 50€?

W=¢& - Te@¥ - 160" 24 * 80
® 50 50

W =& - T2 + 1607,

5 50¢e2

2 ® 5QRe
W= -& - 1667 - 1665 = & 169 ag

= - (Z- 0.3125)2(27.21) eV

(n.b., since g, isthe Bohr radius 0.529 A, €/a, = 27.21 eV, or one atomic unit of energy).

Isthis energy “any good”? The total energies of some two-electron atoms and ions have

been experimentally determined to be:
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He
Li+
Bet2
B+3
Cct+4
N*S

O*6

-14.35eV

-78.98 eV

-198.02 eV

-371.5eV

-599.3 eV

-881.6 eV

-1218.3 eV

-1609.5 eV

Using our optimized expression for W, let’s now calculate the estimated total energies of

each of these atoms and ions as well as the percent error in our estimate for each ion.

Z ‘ Atom ‘ Experimental ‘

Calculated

% Error

Z=1 ‘

H_

-14.35eV

-12.86 eV

10.38%
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Z=2 He
Z=3 Li+
Z=4 Bet2
Z=5 B+3
Z=6 c+4
Z=7 N+5
Z=8 O+6

-78.98 eV

-198.02 eV

-371.5eV

-599.3 eV

-881.6 eV

-1218.3 eV

-1609.5 eV

-77.46 eV

-196.46 eV

-369.86 eV

-597.66 eV

-879.86 eV

-1216.48 eV

-1607.46 eV

1.92%

0.79%

0.44%

0.27%

0.19%

0.15%

0.13%

The energy errors are essentially constant over the range of Z, but produce a larger

percentage error at small Z.

In 1928, when quantum mechanics was quite young, it was not known whether

the isolated, gas-phase hydride ion, H-, was stable with respect to loss of an electrn ot

form ahydrogen atom. Let’s compare our estimated total energy for H- to the ground

state energy of a hydrogen atom and an isolated electron (which is known to be

-13.60 eV). When we use our expression for W and take Z = 1, we obtain W = -12.86 eV,

which isgreater than -13.6 eV (H + €), so thissimple variational calculation erroneously

predicts H- to be unstable. More complicated variational treatments give a ground state

energy of H- of -14.35 eV, in agreement with experiment.

[1. Point Group Symmetry
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It is assumed that the reader has previoudly learned, in undergraduate inorganic or
physical chemistry classes, how symmetry arises in molecular shapes and structures and
what symmetry elements are (e.g., planes, axes of rotation, centers of inversion, etc.). For
the reader who feels, after reading this appendix, that additional background is needed,
the text by Eyring, Walter, and Kimball or by Atkins and Friedman can be consulted. We
review and teach here only that material that is of direct application to symmetry analysis
of molecular orbitals and vibrations and rotations of molecules. We use a specific
example, the ammonia molecule, to introduce and illustrate the important aspects of point

group symmetry.

A. The Czy Symmetry Group of Ammonia - An Example

The ammonia molecule NH3 belongs, in its ground-state equilibrium geometry, to
the C3y point group. Its symmetry operations consist of two C3 rotations, Cz, C32
(rotations by 120° and 240°, respectively about an axis passing through the nitrogen atom
and lying perpendicular to the plane formed by the three hydrogen atoms), three vertical
reflections, sy, sy’ Sv", and the identity operation. Corresponding to these six operations
are symmetry elements: the three-fold rotation axis, C3 and the three symmetry planes

Sv, Sy and s\ that contain the three NH bonds and the z-axis (see Fig. 4.1).
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Cs axis (2)

X- axisS =«

Sxz 1SSy H3

Figure 4.1 Ammonia Molecule and its Symmetry Elements

These six symmetry operations form a mathematical group. A group is defined as

a set of objects satisfying four properties.

1. A combination rule is defined through which two group elements are combined to
give aresult which we call the product. The product of two elements in the group
must also be a member of the group (i.e., the group is closed under the

combination rule).

2. One special member of the group, when combined with any other member of the
group, must leave the group member unchanged (i.e., the group contains an

identity element).
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3. Every group member must have areciprocal in the group. When any group

member is combined with its reciprocal, the product is the identity element.

4. The associative law must hold when combining three group members (i.e., (AB)C

must equal A(BC)).

The members of symmetry groups are symmetry operations; the combination rule
IS successive operation. Theidentity element is the operation of doing nothing at all.
The group properties can be demonstrated by forming a multiplication table. Let us label
the rows of the table by the first operation and the columns by the second operation.
Note that this order isimportant because most groups are not commutative. The Cay

group multiplication table is as follows:

E Cs C32 Sv Sy Sy" second operation
E E Cs C32  Sv Sv' Sv'
Cs Cs C32 E sy sy" Sv
C32 Cz? E Cs Sv' Sv Sy’
Sv Sv Siv Sy E C32 Cs
sy’ sy’ Sv sy C3 E C3?
Sy" Sy" Sy Sv Cz?2 Cs E
First
operation
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Note the reflection plane labels do not move. That is, although we start with Hy inthe sy,
plane, Ho ins\", and Hz in s\", if H1 moves due to the first symmetry operation, sy

remains fixed and adifferent H atom liesin the s\, plane.

B. Matrices as Group Representations

In using symmetry to help simplify molecular orbital (mo) or vibration/rotation
energy level identifications, the following strategy is followed:
1. A set of M objects belonging to the constituent atoms (or molecular fragments, in a
more general case) isintroduced. These objects are the orbitals of the individual atoms
(or of the fragments) in the m.o. case; they are unit vectors along the x, y, and z directions
located on each of the atoms, and representing displacements along each of these
directions, in the vibration/rotation case.
2. Symmetry tools are used to combine these M objectsinto M new objects each of which
belongs to a specific symmetry of the point group. Because the Hamiltonian (electronicin
the m.o. case and vibration/rotation in the latter case) commutes with the symmetry
operations of the point group, the matrix representation of H within the symmetry
adapted basis will be "block diagonal”. That is, objects of different symmetry will not

interact; only interactions among those of the same symmetry need be considered.

To illustrate such symmetry adaptation, consider symmetry adapting the 2s orbital

of N and the three 1s orbitals of the three H atoms. We begin by determining how these
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orbitals transform under the symmetry operations of the C3, point group. The act of each

of the six symmetry operations on the four atomic orbitals can be denoted as follows:

E

(SN,S1,52,S3) ® (SN,S1,52,S3)
Cs3
® (SN,S3,51,S)
C32
® (SN,S2,53,51)
Sv
® (SN,S1,S3,S)

@ (Sn1Se.52,50)

s
® (SN.S2,51,53)

Here we are using the active view that a Cg3 rotation rotates the molecule by 120°. The
equivalent passive view isthat the 1s basis functions are rotated -120°. Inthe C3

rotation, Sz ends up where S; began, Sp, ends up where Sy began and Sy ends up where

Sz began.

These transformations can be thought of in terms of a matrix multiplying a
vector with elements (Sn,S1,52,Sg). For example, if D(4) (C3) is the representation
matrix giving the C3 transformation, then the above action of C3 on the four basis orbitals

can be expressed as:
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§sull G100 0Bl €5l
ESlu 60001ueslu eSQU
D(4)(C3)§sz g:éo 10 oueszg ésll;\l
e,U € ,,,Ueg U €4 U

We can likewise write matrix representations for each of the symmetry operations of the

Cay point group:

@i1oo0o0( @1o00o0(
€oo10U €o100U

DOCA=B 9 0 1 U PPE=Ey 510U
€100U €roo01U
1000l @1o00o0(
€100U €oo0o01U

DOGV=8q ¢ ¢ 1L,J’D(4)(SV')=éo 01 oL,J
€010U €100U
@i1o00o0(
eo 01 oU

DA(sv") = 60 10 oLJ
eo 001U
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It is easy to verify that a C3 rotation followed by a sy, reflection isequivalent to as,,'

reflection alone. In other words

S S3 S3

syCz=sy\,o0r,

Note that this same relationship is carried by the matrices:

@rooo0Jéroool] Er1oo00(]

A0100[JA00011] A0O0O 1y
D) D= S0 601 901 0.0 9= 20 0 10 3=DW6Y)
Co010U€ 010U € 100U

Likewise we can verify that C3 sy = sy directly and we can notice that the matrices also

show the same identity:

@roooJéroool] Eroo00(]

A0001]JA0L100f] AOO10Y]
DGy DMKSV):?O 10 olll?o 00 192?0 10 ol,il:D(“)(Sv")-

e0010ue0010u eOOOlu

In fact, one finds that the six matrices, D(4)(R), when multiplied together in all 36

possible ways obey the same multiplication table as did the six symmetry operations. We
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say the matrices form a representation of the group because the matrices have all the

properties of the group.
1. Characters of Representations

One important property of amatrix isthe sum of its diagona elementswhichis

called the trace of the matrix D and is denoted Tr(D):

Tr(D)=a Dj =¢.
i

So, C iscalled the trace or character of the matrix. In the above example

C(E) =4
C(Cg)=C(CxH =1

C(sv) =C(sv) =C(syv") =2

The importance of the characters of the symmetry operations liesin the fact that they do
not depend on the specific basis used to form them. That is, they are invariant to a unitary
or orthorgonal transformation of the objects used to define the matrices. As aresult, they
contain information about the symmetry operation itself and about the space spanned by
the set of objects. The significance of this observation for our symmetry adaptation

process will become clear later.
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Note that the characters of both rotations are the same as are those of all three
reflections. Collections of operations having identical characters are called classes. Each
operation in aclass of operations has the same character as other members of the class.
The character of a class depends on the space spanned by the basis of functions on which

the symmetry operations act.

2. Another Basis and Another Representation

Above we used (SN,S1,$,S3) asabasis. If, aternatively, we use the one-
dimensional basis consisting of the 1s orbital on the N-atom, we obtain different
characters, as we now demonstrate.

The act of the six symmetry operations on this Sy can be represented as follows:

Cs Cg?
SNE Su; NG Su; NG Sy
& S SN & S NG Sy

We can represent this group of operationsin this basis by the one-dimensional set of

matrices:
DM (E) = 1; DM (Cg) = 1; DM (C32) =1,
DM (sy) = 1; DM(s\") = 1; DM (sy) =1.
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Again we have

D (sy) D@ (Cg) = 1 X1 = DA (s,"), and

DX (C3) DO (sy) =1 X1 =DM (s,)).

These six matrices form another representation of the group. In this basis, each character
isequal to unity. The representation formed by allowing the six symmetry operations to
act on the 1s N-atom orbital is clearly not the same as that formed when the same six
operations acted on the (Sn,S1,52,S3) basis. We now need to learn how to further analyze
the information content of a specific representation of the group formed when the

symmetry operations act on any specific set of objects.

C. Reducibleand Irreducible Representations

1. A Reducible Representation

Note that every matrix in the four dimensional group representation labeled D(4)

has the so-called block diagonal form
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0 3 X 3 matrix

This means that these D(4) matrices are really a combination of two separate group
representations (mathematically, it is called a direct sum representation). We say that D(4)
is reducible into a one-dimensional representation D(1) and a three-dimensional

representation formed by the 3x3 submatrices that we will call D®).

éitooy éoo1y €o 10U
p@E) =80 10U pE(cy=€1 00U, pEEcH=oo01U
001 010 € 50U
eloou e001u e01ou

DB)(s,) = eOO 1u, DG)(sy) = eo 10U, DE)(sy' )—610OU
010 €100 001U
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The characters of D®) are C(E) = 3, €(2C3) = 0, €(3sy) = 1. Note that we would have

obtained this D) representation directly if we had originally chosen to examine the basis

(S1,S2,S3); aso note that these characters are equal to those of D(4) minus those of D(D).
2. A Changein Basis

Now let us convert to a new basis that is alinear combination of the original

$1,5,S3 basis:
T1=S51+3+33
T2=251-%-S3
T3=5-33
(Don't worry about how we construct Ty, To, and T3 yet. Aswill be demonstrated later,
we form them by using symmetry projection operators defined below). We determine

how the"T" basis functions behave under the group operations by allowing the

operations to act on the §; and interpreting the results in terms of the T;. In particular,

Sv E

Sy' 1 3 1 1
(T1,T2,T3) ® (S3+S5p+51,253-52-51,52-S1) = (T1, 5 T2-2T3, 53 T2+35T3);
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Sy" 1 3_ 1 1
(T1,T2,T3) ® (Sp+S51+53,25-51-53,51-S3) = (T2, -2 T2+2T3,2 T2 +2 T3);

Cs 1 3.1 1
(T1,T2,T3) ® (S3+S1+52,253-51-52,51-Sp) = (T1, -3 T2-37T3,3T2-3T3);

Cz? 1 3 1 1
(T1,T2T3) ® (Sp+S3+51,25p-S53-51,53-S1) = (T1, -3 T2+32 T3, 32 T2-3Ta).

So the matrix representations in the new T basis are:

gl 0 08 ?1 0 OL,J
1 3

D(3)(E):é0 1 OQ;D(S)(C:;):?O 2 2 l:';

€0 01U e, A _%U

eroou €10 0U
A 1 37 e u
D(?’)(Csz):?o 2 2 9; DE(sy)=@0 1 0y
2 "2
@10 oy @1 0 o]
D(S)(Sv'):?O 2 "2 l;I DG)(s\") :?0 2 12 l;'
€, 1 U €, 22U
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3. Reduction of the Reducible Representation

These six matrices can be verified to multiply just as the symmetry operations
do; thus they form another three-dimensional representation of the group. We seethat in
the T; basis the matrices are block diagonal. This means that the space spanned by the T;
functions, which is the same space as the §; span, forms a reducible representation that
can be decomposed into a one dimensional space and atwo dimensional space (via
formation of the T; functions). Note that the characters (traces) of the matrices are not
changed by the change in bases.

The one-dimensional part of the above reducible three-dimensional
representation is seen to be the same as the totally symmetric representation we arrived at
before, D(1). The two-dimensional representation that is left can be shown to be

irreducible ; it has the following matrix representations:

é1 3 é1 30

D(Z)E—(al Oa-D(2)c —é_z K a'D(Z)CZ—é-Z i u.
()—e 1H' (3)_é+§ _:—ZL 01 (3) e_% _:—2L 0,
é1 3 é1 3

D@(sy) 8L 0 p@e)=€ . Upoemn=€. U
S =e U, S = A~ S = A
V780 -1 1 v el i el lu
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The characters can be obtained by summing diagonal elements:

c(BE)=2,¢c(2C;)=-1,¢ (3s,) =0.

4. Rotations as aBasis

Another one-dimensional representation of the group can be obtained by taking

rotation about the Z-axis (the C3 axis) as the object on which the symmetry operations

act:

E Cs C3?
R;® Ry R,® R; R, ® Ry

S Sy" Sy
R,® -Ry R, ® -Ry: R, ® -R,.

In writing these relations, we use the fact that reflection reverses the sense of arotation.

The matrix representations corresponding to this one-dimensional basis are:

DE)=1; DO(C3) =1; D)(C3z?) = 1;

D((sy) =-1,0)(s") =-1; DM (sy) =-1.

These one-dimensional matrices can be shown to multiply together just like the symmetry

operations of the Czy group. They form an irreducible representation of the group
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(becauseit is one-dimensional, it can not be further reduced). Note that this one-
dimensional representation is not identical to that found above for the 1s N-atom orbital,

or the T1 function.

5. Overview

We have found three distinct irreducible representations for the Cgz, symmetry
group; two different one-dimensional and one two dimensional representations. Are
there any more? An important theorem of group theory shows that the number of
irreducible representations of agroup is equal to the number of classes. Since there are
three classes of operation (i.e., E, C; and s,), we have found al the irreducible
representations of the Cgy point group. There are no more.

The irreducible representations have standard names; the first D(1) (that arising
from the T1 and 1sy orbitals) is called A1, the D(D) arising from R, is called A, and D(2)
iscalled E (not to be confused with the identity operation E). We will see shortly where
to find and identify these names.

Thus, our origina D(4) representation was a combination of two A1
representations and one E representation. We say that D(4) is a direct sum representation:
D@ =2A1 A E. A consequence is that the characters of the combination representation
D(4) can be obtained by adding the characters of its constituent irreducible

representations.
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E 2C3 3sy

A1 1 1 1
A1 1 1 1
E 2 -1 0
2A1A E 4 1 2

6. How to Decompose Reducible Representations in General

Suppose you were given only the characters (4,1,2). How can you find out
how many times A1, E, and A2 appear when you reduce D(¥) to itsirreducible parts?
Y ou want to find a linear combination of the characters of Aj, A, and E that add up

(4,1,2). You can treat the characters of matrices as vectors and take the dot product of A1

with D(4)

€1 111110 A1 7
é uxe u=4+1+1+2+2+2:12.

eE C3 SV u 1\2 SV 7
, U
& 0

The vector (1,1,1,1,1,1) is not normalized; hence to obtain the component of (4,1,1,2,2,2)

along aunit vector in the (1,1,1,1,1,1) direction, one must divide by the norm of
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12
(1,1,1,1,1,1); thisnormis 6. The result is that the reducible representation contains 5 =

2 A1 components. Analogous projectionsin the E and A directions give components of 1

and O, respectively. In general, to determine the number ng of timesirreducible
representation G appears in the reducible representation with characters €, one

caculates

10
n6=3 A CdRIC(R) .
R

where g isthe order of the group and € (R) are the characters of the Ghirreducible

representation.
7. Commonly Used Bases

We could take any set of functions as a basis for a group representation.
Commonly used setsinclude: coordinates (x,y,z) located on the atoms of a polyatomic
molecule (thelr symmetry treatment is equivalent to that involved in treating a set of p
orbitals on the same atoms), quadratic functions such as d orbitals - xy,yz,xz,x2-y2,72, as
well asrotations about the X, y and z axes. The transformation properties of these very

commonly used bases are listed in the character tables shown at the end of this Section.
8. Summary
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The basic idea of symmetry analysisisthat any basis of orbitals,
displacements, rotations, etc. transforms either as one of the irreducible representations or
as adirect sum (reducible) representation. Symmetry tools are used to first determine
how the basis transforms under action of the symmetry operations. They are then used to

decompose the resultant representations into their irreducible components.

D. Another Example

1. The 2p Orbitals of Nitrogen

For afunction to transform according to a specific irreducible representation
means that the function, when operated upon by a point-group symmetry operator, yields
alinear combination of the functions that transform according to that irreducible
representation. For example, a 2p, orbital (z isthe C3 axis of NH3) on the nitrogen atom
belongs to the A1 representation because it yields unity times itself when Cz, C32, sy,
sv',Sy" or theidentity operation act onit. The factor of 1 meansthat 2p, has A1
symmetry since the characters (the numbers listed opposite A1 and below E, 2C3, and
3sy in the Cg,, character table shown at the end of this Section) of al six symmetry
operations are 1 for the A1 irreducible representation.

The 2px and 2py orbitals on the nitrogen atom transform as the E representation
since C3, C32, Sy, Sv', Sy and the identity operation map 2py and 2py among one

another. Specificaly,
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The 2 x 2 matrices, which indicate how each symmetry operation maps 2px and 2py into
some combinations of 2px and 2py, are the representation matrices ( D('R)) for that

particular operation and for this particular irreducible representation (IR). For example,

=pB(sy)

(DXD> (DOD-
+
NI
+
NS

oo o

NI

This set of matrices have the same characters as the D(2) matrices obtained earlier when
the T, displacement vectors were analyzed, but the individual matrix elements are

different because we used a different basis set (here 2px and 2py ; aboveit was T2 and
T3). Thisillustrates the invariance of the trace to the specific representation; the trace

only depends on the space spanned, not on the specific manner in which it is spanned.

2. A Short-Cut

A short-cut device exists for evaluating the trace of such representation
matrices (that is, for computing the characters). The diagonal elements of the
representation matrices are the projections along each orbital of the effect of the

symmetry operation acting on that orbital. For example, adiagona element of the C3

matrix is the component of C32py along the 2py direction. Morerigorously, it
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is02p,* C;2p, dt. Thus, the character of the C3 matrix isthe sum of 02p* C, 2p, dt
and 02p* C, 2p,dt. In general, the character C of any symmetry operation S can be

computed by allowing Sto operate on each orbital f i, then projecting Sfj along f (i.e.,

forming Of i*Sfjdt ), and summing these terms,

o
a Bf*sfidt =c(S).
i

If these rules are applied to the 2py and 2py orbitals of nitrogen within the Cay

point group, one obtains
C(E) =2, ¢(Cg) = ¢(Cg?) =-1, C(sv) = C(sv") = C(sv) = 0.

This set of characters is the same as D(2) above and agrees with those of the E

representation for the Cay point group. Hence, 2px and 2py belong to or transform asthe

E representation. Thisiswhy (x,y) isto theright of the row of charactersfor the E

representation in the Cgzy character table shown at the end of this Section. In similar
fashion, the Cay character table (please refer to this table now) states that dy2. 2 and dxy
orbitals on nitrogen transform as E, as do dyy and dy, but d,2 transforms as A .

Earlier, we considered in some detail how the three 1sy orbitals on the

hydrogen atoms transform. Repeating this analysis using the short-cut rule just

described, the traces (characters) of the 3 x 3 representation matrices are computed by
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alowing E, 2Cg, and 3sy to operate on 1sy,, 1sH,, and 1sy4 and then computing the

component of the resulting function along the original function. The resulting characters
areC(E) = 3, C(C3) =C(C32) =0, and C(sy) = €(sy') = C(s\") = 1, in agreement with
what we calculated before.

Using the orthogonality of characters taken as vectors we can reduce the above

set of charactersto A1 + E. Hence, we say that our orbital set of three 1sy orbitals forms
areducible representation consisting of the sum of A1 and E IR's. This means that the
three 1sy orbitals can be combined to yield one orbital of A1 symmetry and a pair that

transform according to the E representation.

E. Projector Operators. Symmetry Adapted Linear Combinations of Atomic

Orbitals

To generate the above A1 and E symmetry-adapted orbitals, we make use of

so-called symmetry projection operators Pg and Pa ;. These operators are given in terms

of linear combinations of products of characters times elementary symmetry operations

asfollows:

o
Pa,=a CA(9S
S
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PE=al C(S)S
S

where S ranges over C3, C32, sy, sy’ and s\" and the identity operation. The result of

applying Pa, to say 1sy, is
PA1 ls)H1 = ls)H1 + 13,42 + 1SH3 + 1342 + 1sH3 + 1sH1
= 2(1SH1 + 1S|-|2 + 1S|-|3) =f A1

whichis an (unnormalized) orbital having A1 symmetry. Clearly, thissamef A, would
be generated by Pa, acting on 1s, or 1sH,. Hence, only one A1 orbital exists.
Likewise,

Pelsy, =2 ><1s|.|1 - IsH, - 1sH5° fE

which is one of the symmetry adapted orbitals having E symmetry. The other E orbital

can be obtained by allowing Pg to act on 1s, or 1sH,!

Pelsy, =2 ><1sH2 - 1sH, - 130 fE2

259



Pelsyy =2 XlsH3 - 1sy, - Isy,=fE3.

It might seem as though three orbitals having E symmetry were generated, but only two
of these are really independent functions. For example, f gzisrelatedtof g andf g2

as follows:

fes=-(FE1+fE2).

Thus, only f g 1 and f g 2 are needed to span the two-dimensional space of the E
representation. If weincludef g 1 in our set of orbitals and require our orbitals to be

orthogonal, then we must find numbersaand b such that f'e = af g2 + bf g 3is
orthogonal to f g 1: B 'efg1dt =0. A straightforward calculation givesa=-bor f'g =
a(1sH, - 1sHg) which agrees with what we used earlier to construct the Tj functionsin

terms of the S functions.

F. Summary

Let us now summarize what we have learned. Any given set of atomic

orbitals{f i}, atom-centered displacements or rotations can be used as a basis for the

symmetry operations of the point group of the molecule. The characters C(S) belonging

to the operations S of this point group within any such space can be found by summing
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the integrals 6f i*Sfjdt over all the atomic orbitals (or corresponding unit vector

atomic displacements). The resultant characters will, in general, be reducible to a
combination of the characters of the irreducible representations Ci(S). To decompose
the characters C(S) of the reducible representation to a sum of characters Ci(S) of the

irreducible representation

c(S)=a ncis),
i

it is necessary to determine how many times, nj, the i-th irreducible representation

occurs in the reducible representation. The expression for nj is
1lo
ni=ga ¢ Ci®
S

in which g isthe order of the point group- the total number of symmetry operationsin

the group (e.g., g =6 for Cay).

[EEN

For example, the reducible representation C(E) = 3, €(C3) =0, and C(sy) =

formed by the three 1sy orbitals discussed above can be decomposed as follows:

1
Na, =5 (3XL+2X0XL+3X1 X)) =1,
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1
Na, =5 (3 XL+2X0 XL +3 X1 X-1)) =0,

1
NE=g((32X2+2X0X-1) +3 X1 X0) =1.

These equations state that the three 1sy orbitals can be combined to give one A1 orbital
and, since E is degenerate, one pair of E orbitals, as established above. With
knowledge of the n;j, the symmetry-adapted orbitals can be formed by alowing the

projectors

P=a ¢(9S
i

to operate on each of the primitive atomic orbitals. How thisis carried out was
illustrated for the 1sq orbitalsin our earlier discussion. These tools allow a symmetry
decomposition of any set of atomic orbitals into appropriate symmetry-adapted orbitals.
Before considering other concepts and group-theoretical machinery, it should
once again be stressed that these same tools can be used in symmetry analysis of the
translational, vibrational and rotational motions of amolecule. The twelve motions of
NH3 (three trandations, three rotations, six vibrations) can be described in terms of
combinations of displacements of each of the four atoms in each of three (x,y,2)
directions. Hence, unit vectors placed on each atom directed in the x, y, and z

directions form a basis for action by the operations { S} of the point group. Inthe case
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of NH3, the characters of the resultant 12 x 12 representation matrices form areducible
representation in the Coy point group: C(E) =12, €¢(C3) = €(C32) =0, C(sy) =C(sy) =
C (sy") = 2. For example under sy, the Ho and H3z atoms are interchanged, so unit
vectors on either one will not contribute to the trace. Unit z-vectorson N and Hq

remain unchanged as well as the corresponding y-vectors. However, the x-vectorson N

and Hi arereversed in sign. Thetotal character for s\’ the Ho and H3 atoms are

interchanged, so unit vectors on either one will not contribute to the trace. Unit z-

vectors on N and H; remain unchanged as well as the corresponding y-vectors.
However, the x-vectorson N and Hy are reversed in sign. The total character for sy is

thus4 - 2 =2. Thisrepresentation can be decomposed as follows:

=8 (1042 + 200 + 309 =3,

N, = § [190242 + 20 + 3E1)8] = 1,

ne =3 1842+ 2X1)%+39%] = 4

From the information on the right side of the Cg,, character table, translations of all four
atomsinthe z, x and y directions transform as A1(z) and E(X,y), respectively, whereas

rotations about the z(Rz), X(Rx), and y(Ry) axes transform as A and E. Hence, of the
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twelve motions, three trandations have A1 and E symmetry and three rotations have A»
and E symmetry. Thisleaves six vibrations, of which two have A1 symmetry, none
have A, symmetry, and two (pairs) have E symmetry. We could obtain symmetry-
adapted vibrational and rotational bases by allowing symmetry projection operators of
the irreducible representation symmetries to operate on various elementary cartesian

(x,y,2) atomic displacement vectors.

G. Direct Product Representations

1. Direct Products in N-Electron Wave functions

We now turn to the symmetry analysis of orbital products. Such knowledge
isimportant because one is routinely faced with constructing symmetry-adapted N-
electron configurations that consist of products of N individual spin orbitals, one for
each electron. A point-group symmetry operator S, when acting on such a product of

orbitals, gives the product of S acting on each of the individual orbitals

S(f af of 3..FN) = (SF 1) (SF2) (Sf3) ... (SEN).

For example, reflection of an N-orbital product through the s\, plane in NH3 applies the
reflection operation to al N electrons.
Just as the individual orbitals formed abasis for action of the point-group

operators, the configurations (N-orbital products) form a basis for the action of these
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same point-group operators. Hence, the various electronic configurations can be treated
as functions on which S operates, and the machinery illustrated earlier for decomposing
orbital symmetry can then be used to carry out a symmetry analysis of configurations.

Another shortcut makes thistask easier. Since the symmetry adapted
individual orbitals{fi, 1 =1, ..., M} transform according to irreducible representations,
the representation matrices for the N-term products shown above consist of products of
the matrices belonging to each f j. This matrix product is not a simple product but what
iscaled adirect product. To compute the characters of the direct product matrices, one
multiplies the characters of the individual matrices of the irreducible representations of
the N orbitals that appear in the electron configuration. The direct-product
representation formed by the orbital products can therefore be symmetry-analyzed
(reduced) using the same tools as we used earlier.

For example, if oneisinterested in knowing the symmetry of an orbital
product of the form a;2ap2e2 (note: lower case |etters are used to denote the symmetry
of electronic orbitals, whereas capital letters are reserved to label the overall
configuration’s symmetry) in Cz, symmetry, the following procedure is used. For each
of the six symmetry operationsin the Coy, point group, the product of the characters

associated with each of the six spin orbitals (orbital multiplied by a or b spin) isformed

¢ = 6 Ci(S) = (Ca,(9)? (Cax(S)? (CE(9))%
|
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In the specific case considered here, C(E) = 4, C(2C3) = 1, and €(3sy) = 0. Notice that
the contributions of any doubly occupied nondegenerate orbitals (e.g., &2, and a2) to
these direct product characters €(S) are unity because for all operators (Ck(S))2 = 1 for
any one-dimensional irreducible representation. Asaresult, only the singly occupied
or degenerate orbitals need to be considered when forming the characters of the
reducible direct-product representation €(S). For this example this means that the

direct-product characters can be determined from the characters Cg(S) of the two active

(i.e., nonclosed-shell) orbitals - the €2 orbitals. That is, C(S) = Cg(S) XCg(S).

From the direct-product characters C(S) belonging to a particular electronic
configuration (e.g., a;2ap2e2), one must still decompose this list of charactersinto a
sum of irreducible characters. For the example at hand, the direct-product characters
C(S) decompose into one A1, one A2, and one E representation. This means that the €2
configuration contains A1, Ao, and E symmetry elements. Projection operators
analogous to those introduced earlier for orbitals can be used to form symmetry-
adapted orbital products from the individual basis orbital products of the form
a1%ap2eMey™ , where m and m' denote the occupation (1 or 0) of the two degenerate
orbitals ex and ey. When dealing with indistinguishable particles such as electrons, it is
also necessary to further project the resulting orbital products to make them
antisymmetric (for Fermions) or symmetric (for Bosons) with respect to interchange of
any pair of particles. This step reduces the set of N-electron states that can arise. For

example, in the above €2 configuration case, only 3A,, 1A 1, and 1E states arise; the 3E,

3A1, and 1A, possibilities disappear when the antisymmetry projector is applied. In
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contrast, for an ele'l configuration, all states arise even after the wave function has
been made antisymmetric. The stepsinvolved in combining the point group symmetry

with permutational antisymmetry areillustrated in Chapter 10 of my QMIC text. In

Appendix |11 of Electronic Spectra and Electronic Structure of Polyatomic Molecules,
G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. (1966) the resolution of

direct products among various representations within many point groups are tabul ated.

2. Direct Productsin Selection Rules

Two statesy 5 and y ,, that are eigenfunctions of a Hamiltonian Hq in the
absence of some external perturbation (e.g., electromagnetic field or static electric field
or potential due to surrounding ligands) can be "coupled” by the perturbation V only if
the symmetries of V and of the two wave functions obey a so-called selection rule. In

particular, only if the coupling integral

Bya Vypdt =Vap

is non-vanishing will the two states be coupled by V .

Therole of symmetry in determining whether such integrals are non-zero can
be demonstrated by noting that the integrand, considered as a whole, must contain a
component that isinvariant under all of the group operations (i.e., belongs to the totally
symmetric representation of the group) if theintegral isto not vanish. In terms of the

projectors introduced above we must have
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Q *
a CaA(S) Sya Vybp
S

not vanish. Here the subscript A denotes the totally symmetric representation of
whatever point group applies. The symmetry of the producty 53" V y p is, according to
what was covered earlier, given by the direct product of the symmetriesof y 5 of V
and of y p. So, the conclusion isthat the integral will vanish unless this triple direct
product contains, when it is reduced to its irreducible components, a component of the
totally symmetric representation.

To see how thisresult is used, consider theintegral that arisesin formulating
the interaction of electromagnetic radiation with a molecule within the electric-dipole

approximation:

éya* rypdt .

Here, r isthe vector giving, together with e, the unit charge, the quantum mechanical

dipole moment operator

[ o
r=eaZan-eal’j,
n j

where Z,, and Ry, are the charge and position of the nth nucleus and r j isthe position of

the jth electron. Now, consider evaluating thisintegral for the singlet n® p* transition in
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formaldehyde. Here, the closed-shell ground state is of 1A 1 symmetry and the singlet
excited state, which involves promoting an electron from the non-bonding by lone pair
orbital on the Oxygen into the p* by orbital on the CO moiety, is of 1A, symmetry (b1x
by = a). The direct product of the two wave function symmetries thus contains only ap

symmetry. The three components (x, y, and z) of the dipole operator have, respectively,
b1, bp, and & symmetry. Thus, the triple direct products give rise to the following

possibilities:

ag X by = by,

ap X by =Dy,

Xa=a.

Thereis no component of & symmetry in the triple direct product, so the integral

vanishes. This allows us to conclude that the n® p* excitation in formaldehydeis

electric dipole forbidden.

H. Overview

We have shown how to make a symmetry decomposition of abasis of atomic
orbitals (or cartesian displacements or orbital products) into irreducible representation

components. Thistool isvery helpful when studying spectroscopy and when

269



constructing the orbital correlation diagrams that form the basis of the Woodward-
Hoffmann rules. We aso learned how to form the direct-product symmetries that arise
when considering configurations consisting of products of symmetry-adapted spin
orbitals. Finally, we learned how the direct product analysis allows one to determine
whether or not integrals of products of wave functions with operators between them
vanish. Thistool isof utmost importance in determining selection rules in spectroscopy
and for determining the effects of external perturbations on the states of the species under

investigation.
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