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Part 1. Background Material

In this portion of the text, most of the topics that are appropriate to an

undergraduate reader are covered. Many of these subjects are subsequently discussed

again in Chapter 5, where a broad perspective of what theoretical chemistry is about is

offered. They are treated again in greater detail in Chapters 6-8 where the three main

disciplines of theory are covered in depth appropriate to a graduate-student reader.

Chapter 1. The Basics of Quantum Mechanics

Why Quantum Mechanics is Necessary for Describing Molecular Properties.

We know that all molecules are made of atoms which, in turn, contain nuclei and

electrons. As I discuss in this introductory section, the equations that govern the motions

of electrons and of nuclei are not the familiar Newton equations

F = m a

but a new set of equations called Schrödinger equations. When scientists first studied the

behavior of electrons and nuclei, they tried to interpret their experimental findings in

terms of classical Newtonian motions, but such attempts eventually failed. They found
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that such small light particles behaved in a way that simply is not consistent with the

Newton equations. Let me now illustrate some of the experimental data that gave rise to

these paradoxes and show you how the scientists of those early times then used these data

to suggest new equations that these particles might obey. I want to stress that the

Schrödinger equation was not derived but postulated by these scientists. In fact, to date,

no one has been able to derive the Schrödinger equation.

From the pioneering work of Bragg on diffraction of x-rays from planes of atoms

or ions in crystals, it was known that peaks in the intensity of diffracted x-rays having

wavelength λ would occur at scattering angles θ determined by the famous Bragg

equation:

n λ  = 2 d sinθ,

where d is the spacing between neighboring planes of atoms or ions. These quantities are

illustrated in Fig. 1.1 shown below. There are may such diffraction peaks, each labeled by

a different value of the integer n (n = 1, 2, 3, …). The Bragg formula can be derived by

considering when two photons, one scattering from the second plane in the figure and the

second scattering from the third plane, will undergo constructive interference. This

condition is met when the “extra path length” covered by the second photon (i.e., the

length from points A to B to C) is an integer multiple of the wavelength of the photons.
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Figure 1.1. Scattering of two beams at angle θ from two planes in a crystal spaced by d.

The importance of these x-ray scattering experiments to electrons and nuclei

appears in the experiments of Davisson and Germer in 1927 who scattered electrons of

(reasonably) fixed kinetic energy E from metallic crystals. These workers found that plots

of the number of scattered electrons as a function of scattering angle θ displayed “peaks”

at angles θ that obeyed a Bragg-like equation. The startling thing about this observation is

that electrons are particles, yet the Bragg equation is based on the properties of waves.

An important observation derived from the Davisson-Germer experiments was that the

scattering angles θ observed for electrons of kinetic energy E could be fit to the Bragg n

λ = 2d sinθ equation if a wavelength were ascribed to these electrons that was defined by



4

λ = h/(2me E)1/2,

where me is the mass of the electron and h is the constant introduced by Max Planck and

Albert Einstein in the early 1900s to relate a photon’s energy E to its frequency ν via E =

hν. These amazing findings were among the earliest to suggest that electrons, which had

always been viewed as particles, might have some properties usually ascribed to waves.

That is, as de Broglie has suggested in 1925, an electron seems to have a wavelength

inversely related to its momentum, and to display wave-type diffraction. I should mention

that analogous diffraction was also observed when other small light particles (e.g.,

protons, neutrons, nuclei, and small atomic ions) were scattered from crystal planes. In all

such cases, Bragg-like diffraction is observed and the Bragg equation is found to govern

the scattering angles if one assigns a wavelength to the scattering particle according to

λ = h/(2 m E)1/2

where m is the mass of the scattered particle and h is Planck’s constant (6.62 x10-27 erg

sec).

The observation that electrons and other small light particles display wave like

behavior was important because these particles are what all atoms and molecules are

made of. So, if we want to fully understand the motions and behavior of molecules, we

must be sure that we can adequately describe such properties for their constituents.

Because the classical Newtonian equations do not contain factors that suggest wave

properties for electrons or nuclei moving freely in space, the above behaviors presented

significant challenges.
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Another problem that arose in early studies of atoms and molecules resulted from

the study of the photons emitted from atoms and ions that had been heated or otherwise

excited (e.g., by electric discharge). It was found that each kind of atom (i.e., H or C or

O) emitted photons whose frequencies ν were of very characteristic values. An example

of such emission spectra is shown in Fig. 1.2 for hydrogen atoms.

Figure 1.2. Emission spectrum of atomic hydrogen with some lines repeated below to

illustrate the series to which they belong.

In the top panel, we see all of the lines emitted with their wave lengths indicated in nano-

meters. The other panels show how these lines have been analyzed (by scientists whose

names are associated) into patterns that relate to the specific energy levels between which

transitions occur to emit the corresponding photons.
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In the early attempts to rationalize such spectra in terms of electronic motions,

one described an electron as moving about the atomic nuclei in circular orbits such as

shown in Fig. 1. 3.

Figure 1. 3. Characterization of small and large stable orbits for an electron moving

around a nucleus.

A circular orbit was thought to be stable when the outward centrifugal force characterized

by radius r and speed v (me v
2/r) on the electron perfectly counterbalanced the inward

attractive Coulomb force (Ze2/r2) exerted by the nucleus of charge Z:

me v
2/r = Ze2/r2

r2

Two circular orbits of radii r1 and r2.

r1
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This equation, in turn, allows one to relate the kinetic energy 1/2 me v
2 to the Coulombic

energy Ze2/r, and thus to express the total energy E of an orbit in terms of the radius of

the orbit:

E = 1/2 me v
2 – Ze2/r = -1/2 Ze2/r.

The energy characterizing an orbit or radius r, relative to the E = 0 reference of

energy at r → ∞, becomes more and more negative (i.e., lower and lower) as r becomes

smaller. This relationship between outward and inward forces allows one to conclude that

the electron should move faster as it moves closer to the nucleus since v2 = Ze2/(r me).

However, nowhere in this model is a concept that relates to the experimental fact that

each atom emits only certain kinds of photons. It was believed that photon emission

occurred when an electron moving in a larger circular orbit lost energy and moved to a

smaller circular orbit. However, the Newtonian dynamics that produced the above

equation would allow orbits of any radius, and hence any energy, to be followed. Thus, it

would appear that the electron should be able to emit photons of any energy as it moved

from orbit to orbit.

The breakthrough that allowed scientists such as Niels Bohr to apply the circular-

orbit model to the observed spectral data involved first introducing the idea that the

electron has a wavelength and that this wavelength λ is related to its momentum by the

de Broglie equation λ  = h/p. The key step in the Bohr model was to also specify that the

radius of the circular orbit be such that the circumference of the circle 2π r equal an

integer (n) multiple of the wavelength λ. Only in this way will the electron’s wave
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experience constructive interference as the electron orbits the nucleus.  Thus, the Bohr

relationship that is analogous to the Bragg equation that determines at what angles

constructive interference can occur is

2 π r = n λ.

Both this equation and the analogous Bragg equation are illustrations of what we call

boundary conditions; they are extra conditions placed on the wavelength to produce some

desired character in the resultant wave (in these cases, constructive interference). Of

course, there remains the question of why one must impose these extra conditions when

the Newton dynamics do not require them. The resolution of this paradox is one of the

things that quantum mechanics does.

Returning to the above analysis and using  λ = h/p = h/(mv), 2π r = nλ, as well as

the force-balance equation me v
2/r = Ze2/r2, one can then solve for the radii that stable

Bohr orbits obey:

r = (nh/2π) 1/(me Z e2)

and, in turn for the velocities of electrons in these orbits

v = Z e2/(nh/2π).
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These two results then allow one to express the sum of the kinetic (1/2 me v
2)  and

Coulomb potential (-Ze2/r) energies as

E = -1/2 me Z
2 e4/(nh/2π)2.

Just as in the Bragg diffraction result, which specified at what angles special high

intensities occurred in the scattering, there are many stable Bohr orbits, each labeled by a

value of the integer n. Those with small n have small radii, high velocities and more

negative total energies (n.b., the reference zero of energy corresponds to the electron at r

= ∞ , and with v = 0). So, it is the result that only certain orbits are “allowed” that causes

only certain energies to occur and thus only certain energies to be observed in the emitted

photons.

It turned out that the Bohr formula for the energy levels (labeled by n) of an

electron moving about a nucleus could be used to explain the discrete line emission

spectra of all one-electron atoms and ions (i.e., H, He+, Li+2, etc.) to very high precision.

In such an interpretation of the experimental data, one claims that a photon of energy

hν  = R (1/nf
2 – 1/ni

2)

is emitted when the atom or ion undergoes a transition from an orbit having quantum

number ni to a lower-energy orbit having nf. Here the symbol R is used to denote the

following collection of factors:
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R = 1/2 me Z
2 e4/(h/2π)2.

The Bohr formula for energy levels did not agree as well with the observed pattern of

emission spectra for species containing more than a single electron. However, it does

give a reasonable fit, for example, to the Na atom spectra if one examines only transitions

involving only the single valence electron. The primary reason for the breakdown of the

Bohr formula is the neglect of electron-electron Coulomb repulsions in its derivation.

Nevertheless, the success of this model made it clear that discrete emission spectra could

only be explained by introducing the concept that not all orbits were “allowed”. Only

special orbits that obeyed a constructive-interference condition were really accessible to

the electron’s motions. This idea that not all energies were allowed, but only certain

“quantized” energies could occur was essential to achieving even a qualitative sense of

agreement with the experimental fact that emission spectra were discrete.

In summary, two experimental observations on the behavior of electrons that were

crucial to the abandonment of Newtonian dynamics were the observations of electron

diffraction and of discrete emission spectra. Both of these findings seem to suggest that

electrons have some wave characteristics and that these waves have only certain allowed

(i.e., quantized) wavelengths.

So, now we have some idea about why Newton’s equations fail to account for the

dynamical motions of light and small particles such as electrons and nuclei. We see that

extra conditions (e.g., the Bragg condition or constraints on the de Broglie wavelength)

could be imposed to achieve some degree of agreement with experimental observation.
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However, we still are left wondering what the equations are that can be applied to

properly describe such motions and why the extra conditions are needed. It turns out that

a new kind of equation based on combining wave and particle properties needed to be

developed to address such issues. These are the so-called Schrödinger equations to which

we now turn our attention.

As I said earlier, no one has yet shown that the Schrödiger equation follows

deductively from some more fundamental theory. That is, scientists did not derive this

equation; they postulated it. Some idea of how the scientists of that era “dreamed up” the

Schrödinger equation can be had by examining the time and spatial dependence that

characterizes so-called travelling waves. It should be noted that the people who worked

on these problems knew a great deal about waves (e.g., sound waves and water waves)

and the equations they obeyed. Moreover, they knew that waves could sometimes display

the characteristic of quantized wavelengths or frequencies (e.g., fundamentals and

overtones in sound waves). They knew, for example, that waves in one dimension that

are constrained at two points (e.g., a violin string held fixed at two ends) undergo

oscillatory motion in space and time with characteristic frequencies and wavelengths. For

example, the motion of the violin string just mentioned can be described as having an

amplitude A(x,t) at a position x along its length at time t given by

A(x,t) = A(x,o) cos(2π ν t),

where ν is its oscillation frequency. The amplitude’s spatial dependence also has a

sinusoidal dependence given by
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A(x,0) = A sin (2π x/λ)

where λ is the crest-to-crest length of the wave. Two examples of such waves in one

dimension are shown in Fig. 1. 4.

Figure 1.4.  Fundamental and first overtone notes of a violin string.

In these cases, the string is fixed at x = 0 and at x = L, so the wavelengths belonging to

the two waves shown are λ = 2L and λ = L. If the violin string were not clamped at x = L,

the waves could have any value of λ. However, because the string is attached at x = L,

the allowed wavelengths are quantized to obey

A(x,0)

x

sin(1πx/L)

sin(2πx/L)
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λ = L/n,

where n = 1, 2, 3, 4, ...  .The equation that such waves obey, called the wave equation,

reads:

d2Α(x,t)/dt2 = c2 d2Α/dx2

where c is the speed at which the wave travels. This speed depends on the composition of

the material from which the violin string is made. Using the earlier expressions for the x-

and t- dependences of the wave A(x,t), we find that the wave’s frequency and wavelength

are related by the so-called dispersion equation:

ν2 = (c/λ)2,

or

c = λ ν.

This relationship implies, for example, that an instrument string made of a very stiff

material (large c) will produce a higher frequency tone for a given wavelength (i.e., a

given value of n) than will a string made of a softer material (smaller c).

For waves moving on the surface of, for example, a rectangular two-dimensional

surface of lengths Lx and Ly, one finds
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A(x,y,t) = sin(nx πx/Lx) sin(ny πy/Ly) cos(2π νt).

Hence, the waves are quantized in two dimensions because their wavelengths must be

constrained to cause A(x,y,t) to vanish at x = 0 and x = Lx as well as at y = 0 and y = Ly

for all times t. Let us now return to the issue of waves that describe electrons moving.

The pioneers of quantum mechanics examined functional forms similar to those

shown above. For example, forms such as A = exp[±2πi(ν t – x/λ)] were considered

because they correspond to periodic waves that evolve in x and t under no external x- or

t- dependent forces.  Noticing that

d2A/dx2 = - (2π/λ)2 A

and using the de Broglie hypothesis λ = h/p in the above equation, one finds

d2A/dx2 = - p2 (2π/h)2 A.

If A is supposed to relate to the motion of a particle of momentum p under no external

forces (since the waveform corresponds to this case), p2 can be related to the energy E of

the particle by E = p2/2m. So, the equation for A can be rewritten as:

d2A/dx2 = - 2m E (2π/h)2 A,
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or, alternatively,

- (h/2π)2 d2A/dx2 = E A.

Returning to the time-dependence of A(x,t) and using ν = E/h, one can also show that

i (h/2π) dA/dt = E A,

which, using the first result, suggests that

i (h/2π) dA/dt =  - (h/2π)2 d2A/dx2.

This is a primitive form of the Schrödinger equation that we will address in much more

detail below. Briefly, what is important to keep in mind that the use of the de Broglie and

Planck/Einstein connections (λ = h/p and E = h ν), both of which involve the constant h,

produces suggestive connections between

i (h/2π) d/dt and E

and between
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p2  and – (h/2π)2 d2/dx2

or, alternatively, between

p and – i (h/2π) d/dx.

These connections between physical properties (energy E and momentum p) and

differential operators are some of the unusual features of quantum mechanics.

The above discussion about waves and quantized wavelengths as well as the

observations about the wave equation and differential operators are not meant to provide

or even suggest a derivation of the Schrödinger equation. Again the scientists who

invented quantum mechanics did not derive its working equations. Instead, the equations

and rules of quantum mechanics have been postulated and designed to be consistent with

laboratory observations. My students often find this to be disconcerting because they are

hoping and searching for an uderlying fundamental basis from which the basic laws of

quantum mechanics follows logically. I try to remind them that this is not how theory

works. Instead, one uses experimental observation to postulate a rule or equation or

theory, and one then tests the theory by making predictions that can be tested by further

experiments. If the theory fails, it must be “refined”, and this process continues until one

has a better and better theory. In this sense, quantum mechanics, with all of its unusual

mathematical constructs and rules, should be viewed as arising from the imaginations of

scientists who tried to invent a theory that was consistent with experimental data and

which could be used to predict things that could then be tested in the laboratory. Thus far,
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this theory has proven to be reliable, but, of course, we are always searching for a “new

and improved” theory that describes how small light particles move.

If it helps you to be more accepting of quantum theory, I should point out that the

quantum description of particles will reduce to the classical Newton description under

certain circumstances. In particular, when treating heavy particles (e.g., macroscopic

masses and even heavier atoms), it is often possible to use Newton dynamics. Briefly, we

will discuss in more detail how the quantum and classical dynamics sometimes coincide

(in which case one is free to use the simpler Newton dynamics). So, let us now move on

to look at this strange Schrödinger equation that we have been digressing about for so

long.

I. The Schrödinger Equation and Its Components

It has been well established that electrons moving in atoms and molecules do not

obey the classical Newton equations of motion. People long ago tried to treat electronic

motion classically, and found that features observed clearly in experimental

measurements simply were not consistent with such a treatment. Attempts were made to

supplement the classical equations with conditions that could be used to rationalize such

observations. For example, early workers required that the angular momentum L = r x p

be allowed to assume only integer mulitples of h/2π (which is often abbreviated as h),

which can be shown to be equivalent to the Borh postulate n λ = 2 πr.  However, until

scientists realized that a new set of laws, those of quantum mechanics, applied to light
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microscopic particles, a wide gulf existed between laboratory observations of molecule-

level phenomena and the equations used to describe such behavior.

 Quantum mechanics is cast in a language that is not familiar to most students of

chemistry who are examining the subject for the first time. Its mathematical content and

how it relates to experimental measurements both require a great deal of effort to master.

With these thoughts in mind, I have organized this material in a manner that first provides

a brief introduction to the two primary constructs of quantum mechanics- operators and

wave functions that obey a Schrödinger equation. Next, I demonstrate the application of

these constructs to several chemically relevant model problems. By learning the solutions

of the Schrödinger equation for a few model systems, the student can better appreciate

the treatment of the fundamental postulates of quantum mechanics as well as their

relation to experimental measurement for which the wave functions of the known model

problems offer important interpretations.

A. Operators

Each physically measurable quantity has a corresponding operator. The

eigenvalues of the operator tell the only values of the corresponding physical property

that can be observed.

Any experimentally measurable physical quantity F (e.g., energy, dipole moment,

orbital angular momentum, spin angular momentum, linear momentum, kinetic energy)

has a classical mechanical expression in terms of the Cartesian positions {qi} and

momenta {pi} of the particles that comprise the system of interest. Each such classical
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expression is assigned a corresponding quantum mechanical operator F formed by

replacing the {pi} in the classical form by the differential operator -ih∂/∂qj and leaving

the coordinates qj that appear in F untouched. For example, the classical kinetic energy of

N particles (with masses ml) moving in a potential field containing both quadratic and

linear coordinate-dependence can be written as

F=Σl=1,N (pl2/2ml + 1/2 k(ql-ql0)2 + L(ql-ql0)).

The quantum mechanical operator associated with this F is

F=Σl=1,N (- h2/2ml ∂2/∂ql2 + 1/2 k(ql-ql0)2 + L(ql-ql0)).

Such an operator would occur when, for example, one describes the sum of the kinetic

energies of a collection of particles (the Σl=1,N (pl2/2ml ) term), plus the sum of "Hookes'

Law" parabolic potentials (the 1/2 Σl=1,N k(ql-ql0)2), and (the last term in F) the

interactions of the particles with an externally applied field whose potential energy varies

linearly as the particles move away from their equilibrium positions {ql0}.

Let us try more examples. The sum of the z-components of angular momenta

(recall that vector angular momentum L is defined as L = r x p) of a collection of N

particles has the following classical expression

F=Σj=1,N (xjpyj - yjpxj),
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and the corresponding operator is

F=-ih Σj=1,N (xj∂/∂yj - yj∂/∂xj).

If one transforms these Cartesian coordinates and derivatives into polar coordinates, the

above expression reduces to

F = -i h Σj=1,N ∂/∂φj.

The x-component of the dipole moment for a collection of N particles has a classical

form of

F=Σj=1,N Zjexj,

for which the quantum operator is

F=Σj=1,N Zjexj ,

where Zje is the charge on the jth particle. Notice that in this case, classical and quantum

forms are identical because F contains no momentum operators.

The mapping from F to F is straightforward only in terms of Cartesian

coordinates. To map a classical function F, given in terms of curvilinear coordinates
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(even if they are orthogonal), into its quantum operator is not at all straightforward. The

mapping can always be done in terms of Cartesian coordinates after which a

transformation of the resulting coordinates and differential operators to a curvilinear

system can be performed.

The relationship of these quantum mechanical operators to experimental

measurement lies in the eigenvalues of the quantum operators. Each such operator has a

corresponding eigenvalue equation

F χj = αj χj

in which the χj are called eigenfunctions and the (scalar numbers) αj are called

eigenvalues. All such eigenvalue equations are posed in terms of a given operator (F in

this case) and those functions {χj} that F acts on to produce the function back again but

multiplied by a constant (the eigenvalue). Because the operator F usually contains

differential operators (coming from the momentum), these equations are differential

equations. Their solutions χj depend on the coordinates that F contains as differential

operators. An example will help clarify these points. The differential operator d/dy acts

on what functions (of y) to generate the same function back again but multiplied by a

constant? The answer is functions of the form exp(ay) since

d (exp(ay))/dy = a exp(ay).

So, we say that exp(ay) is an eigenfunction of d/dy and a is the corresponding eigenvalue.
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As I will discuss in more detail shortly, the eigenvalues of the operator F tell us

the only values of the physical property corresponding to the operator F that can be

observed in a laboratory measurement. Some F operators that we encounter possess

eigenvalues that are discrete or quantized. For such properties, laboratory measurement

will result in only those discrete values. Other F operators have eigenvalues that can take

on a continuous range of values; for these properties, laboratory measurement can give

any value in this continuous range.

B. Wave functions

The eigenfunctions of a quantum mechanical operator depend on the coordinates

upon which the operator acts. The particular operator that corresponds to the total

energy of the system is called the Hamiltonian operator. The eigenfunctions of this

particular operator are called wave functions

A special case of an operator corresponding to a physically measurable quantity is

the Hamiltonian operator H that relates to the total energy of the system. The energy

eigenstates of the system Ψ  are functions of the coordinates {qj} that H depends on and

of time t. The function |Ψ(qj,t)|2 = Ψ*Ψ gives the probability density for observing the

coordinates at the values qj at time t. For a many-particle system such as the H2O

molecule, the wave function depends on many coordinates. For H2O, it depends on the x,

y, and z (or r,θ, and φ) coordinates of the ten electrons and the x, y, and z (or r,θ, and φ)

coordinates of the oxygen nucleus and of the two protons; a total of thirty-nine

coordinates appear in Ψ.
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In classical mechanics, the coordinates qj and their corresponding momenta pj are

functions of time. The state of the system is then described by specifying qj(t) and pj(t).

In quantum mechanics, the concept that qj is known as a function of time is replaced by

the concept of the probability density for finding qj at a particular value at a particular

time  |Ψ(qj,t)|2. Knowledge of the corresponding momenta as functions of time is also

relinquished in quantum mechanics; again, only knowledge of the probability density for

finding pj with any particular value at a particular time t remains.

The Hamiltonian eigenstates are especially important in chemistry because many

of the tools that chemists use to study molecules probe the energy states of the molecule.

For example, most spectroscopic methods are designed to determine which energy state a

molecule is in.  However, there are other experimental measurements that measure other

properties (e.g., the z-component of angular momentum or the total angular momentum).

As stated earlier, if the state of some molecular system is characterized by a wave

function Ψ that happens to be an eigenfunction of a quantum mechanical operator F, one

can immediately say something about what the outcome will be if the physical property F

corresponding to the operator F is measured. In particular, since

F χj = λj χj,

where λj is one of the eigenvalues of F, we know that the value λj will be observed if the

property F is measured while the molecule is described by the wave function Ψ = χj. In

fact, once a measurement of a physical quantity F has been carried out and a particular

eigenvalue  λj has been observed, the system's wave function Ψ becomes the
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eigenfunction χj that corresponds to that eigenvalue. That is, the act of making the

measurement causes the system's wave function to become the eigenfunction of the

property that was measured.

What happens if some other property G, whose quantum mechanical operator is G

is measured in such a case? We know from what was said earlier that some eigenvalue µk

of the operator G will be observed in the measurement. But, will the molecule's wave

function remain, after G is measured, the eigenfunction of F, or will the measurement of

G cause Ψ to be altered in a way that makes the molecule's state no longer an

eigenfunction of F? It turns out that if the two operators F and G obey the condition

F G = G F,

then, when the property G is measured, the wave function Ψ = χj will remain unchanged.

This property that the order of application of the two operators does not matter is called

commutation; that is, we say the two operators commute if they obey this property. Let us

see how this property leads to the conclusion about Ψ remaining unchanged if the two

operators commute. In particular, we apply the G operator to the above eigenvalue

equation:

G F χj = G λj χj.

Next, we use the commutation to re-write the left-hand side of this equation, and use the

fact that λj is a scalar number to thus obtain:
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F G χj = λj G χj.

So, now we see that (Gχj) itself is an eigenfunction of F having eigenvalue λj.  So, unless

there are more than one eigenfunction of F corresponding to the eigenvalue λj (i.e., unless

this eigenvalue is degenerate), Gχj must itself be proportional to χj. We write this

proportionality conclusion as

G χj  = µj χj,

which means that χj is also an eigenfunction of G. This, in turn, means that measuring the

property G while the system is described by the wave function Ψ = χj does not change the

wave function; it remains χj.

So, when the operators corresponding to two physical properties commute, once

one measures one of the properties (and thus causes the system to be an eigenfunction of

that operator), subsequent measurement of the second operator will (if the eigenvalue of

the first operator is not degenerate) produce a unique eigenvalue of the second operator

and will not change the system wave function.

If the two operators do not commute, one simply can not reach the above

conclusions. In such cases, measurement of the property corresponding to the first

operator will lead to one of the eigenvalues of that operator and cause the system wave

function to become the corresponding eigenfuction. However, subsequent measurement

of the second operator will produce an eigenvalue of that operator, but the system wave
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function will be changed to become an eigenfuntion of the second operator and thus no

longer the eigenfunction of the first.

C. The Schrödinger Equation

This equation is an eigenvalue equation for the energy or Hamiltonian operator;

its eigenvalues provide the only allowed energy levels of the system

1. The Time-Dependent Equation

If the Hamiltonian operator contains the time variable explicitly, one must solve

the time-dependent Schrödinger equation

Before moving deeper into understanding what quantum mechanics 'means', it is

useful to learn how the wave functions Ψ are found by applying the basic equation of

quantum mechanics, the Schrödinger equation, to a few exactly soluble model problems.

Knowing the solutions to these 'easy' yet chemically very relevant models will then

facilitate learning more of the details about the structure of quantum mechanics.

The Schrödinger equation is a differential equation depending on time and on all

of the spatial coordinates necessary to describe the system at hand (thirty-nine for the

H2O example cited above). It is usually written

H Ψ = i h ∂Ψ/∂t
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where Ψ(qj,t) is the unknown wave function and H is the operator corresponding to the

total energy of the system. This operator is called the Hamiltonian and is formed, as

stated above, by first writing down the classical mechanical expression for the total

energy (kinetic plus potential) in Cartesian coordinates and momenta and then replacing

all classical momenta pj by their quantum mechanical operators pj = - ih∂/∂qj .

For the H2O example used above, the classical mechanical energy of all thirteen

particles is

E = Σi { pi2/2me + 1/2 Σj e2/ri,j - Σa Zae2/ri,a }

+ Σa {pa2/2ma + 1/2 Σb ZaZbe2/ra,b },

where the indices i and j are used to label the ten electrons whose thirty Cartesian

coordinates are {qi} and a and b label the three nuclei whose charges are denoted {Za},

and whose nine Cartesian coordinates are {qa}. The electron and nuclear masses are

denoted me and {ma}, respectively. The corresponding Hamiltonian operator is

H = Σi { - (h2/2me) ∂2/∂qi2 + 1/2 Σj e2/ri,j - Σa Zae2/ri,a }

+ Σa { - (h2/2ma) ∂2/∂qa2+ 1/2 Σb ZaZbe2/ra,b }.

Notice that H is a second order differential operator in the space of the thirty-nine
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Cartesian coordinates that describe the positions of the ten electrons and three nuclei. It is

a second order operator because the momenta appear in the kinetic energy as pj2 and pa2,

and the quantum mechanical operator for each momentum p = -ih ∂/∂q is of first order.

The Schrödinger equation for the H2O example at hand then reads

Σi { - (h2/2me) ∂2/∂qi2 + 1/2 Σj e2/ri,j - Σa Zae2/ri,a } Ψ

+ Σa { - (h2/2ma) ∂2/∂qa2+ 1/2 Σb ZaZbe2/ra,b } Ψ  = i h ∂Ψ/∂t.

The Hamiltonian in this case contains t nowhere. An example of a case where H does

contain t occurs when the an oscillating electric field E cos(ωt) along the x-axis interacts

with the electrons and nuclei and a term

Σa Zze Xa E cos(ωt) - Σj e xj E cos(ωt)

is added to the Hamiltonian. Here, Xa and xj denote the x coordinates of the ath nucleus

and the jth electron, respectively.

2. The Time-Independent Equation

If the Hamiltonian operator does not contain the time variable explicitly, one can

solve the time-independent Schrödinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not
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contain terms that are explicitly time dependent (e.g., interactions with time varying

external electric or magnetic fields would add to the above classical energy expression

time dependent terms), the separations of variables techniques can be used to reduce the

Schrödinger equation to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that Ψ(qj,t) is

of the form (n.b., this step is an example of the use of the separations of variables method

to solve a differential equation)

Ψ(qj,t) = Ψ(qj) F(t).

Substituting this 'ansatz' into the time-dependent Schrödinger equation gives

Ψ(qj) i h ∂F/∂t = F(t)  H Ψ(qj) .

Dividing by Ψ(qj) F(t) then gives

F-1 (i h ∂F/∂t) = Ψ-1 (H Ψ(qj) ).

Since F(t) is only a function of time t, and Ψ(qj) is only a function of the spatial

coordinates {qj}, and because the left hand and right hand sides must be equal for all

values of t and of {qj}, both the left and right hand sides must equal a constant. If this

constant is called E, the two equations that are embodied in this separated Schrödinger

equation read as follows:
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H Ψ(qj) = E Ψ(qj),

 ih dF(t)/dt = E F(t).

The first of these equations is called the time-independent Schrödinger equation; it is a

so-called eigenvalue equation in which one is asked to find functions that yield a constant

multiple of themselves when acted on by the Hamiltonian operator. Such functions are

called eigenfunctions of H and the corresponding constants are called eigenvalues of H.

For example, if H were of the form (- h2/2M) ∂2/∂φ2 = H , then functions of the form

exp(i mφ) would be eigenfunctions because

{ - h2/2M ∂2/∂φ2} exp(i mφ) = { m2 h2 /2M } exp(i mφ).

In this case, m2 h2 /2M is the eigenvalue. In this example, the Hamiltonian contains the

square of an angular momentum operator (recall earlier that we showed the z-component

of angular momentum is to equal – i h d/dφ).

When the Schrödinger equation can be separated to generate a time-independent

equation describing the spatial coordinate dependence of the wave function, the

eigenvalue E must be returned to the equation determining F(t) to find the time dependent

part of the wave function. By solving

ih dF(t)/dt = E F(t)
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once E is known, one obtains

F(t) = exp( -i Et/ h),

and the full wave function can be written as

Ψ(qj,t) = Ψ(qj) exp (-i Et/ h).

For the above example, the time dependence is expressed by

F(t) = exp ( -i t { m2 h2 /2M }/ h).

In summary, whenever the Hamiltonian does not depend on time explicitly, one

can solve the time-independent Schrödinger equation first and then obtain the time

dependence as exp(-i Et/ h) once the energy E is known. In the case of molecular

structure theory, it is a quite daunting task even to approximately solve the full

Schrödinger equation because it is a partial differential equation depending on all of the

coordinates of the electrons and nuclei in the molecule. For this reason, there are various

approximations that one usually implements when attempting to study molecular

structure using quantum mechanics.

3. The Born-Oppenheimer Approximation
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One of the most important approximations relating to applying quantum

mechanics to molecules is known as the Born-Oppenheimer (BO) approximation.

The basic idea behind this approximation involves realizing that in the full electrons-plus-

nuclei Hamiltonian operator introduced above

H = Σi { - (h2/2me) ∂2/∂qi2 + 1/2 Σj e2/ri,j - Σa Zae2/ri,a }

+ Σa { - (h2/2ma) ∂2/∂qa2+ 1/2 Σb ZaZbe2/ra,b }

the time scales with which the electrons and nuclei move are generally quite different. In

particular, the heavy nuclei (i.e., even a H nucleus weighs nearly 2000 times what an

electron weighs) move (i.e., vibrate and rotate) more slowly than do the lighter electrons.

Thus, we expect the electrons to be able to “adjust” their motions to the much more

slowly moving nuclei. This observation motivates us to solve the Schrödinger equation

for the movement of the electrons in the presence of fixed nuclei as a way to represent the

fully-adjusted state of the electrons at any fixed positions of the nuclei.

The electronic Hamiltonian that pertains to the motions of the electrons in the

presence of so-called clamped nuclei

H = Σi { - (h2/2me) ∂2/∂qi2 + 1/2 Σj e2/ri,j - Σa Zae2/ri,a }

produces as its eigenvalues through the equation
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H ψJ(qj|qa) = EJ(qa) ψJ(qj|qa)

energies EK(qa) that depend on where the nuclei are located (i.e., the {qa} coordinates). As

its eigenfunctions, one obtains what are called electronic wave functions {ψK(qi|qa)}

which also depend on where the nuclei are located. The energies EK(qa) are what we

usually call potential energy surfaces. An example of such a surface is shown in Fig. 1.5.

Figure 1. 5. Two dimensional potential energy surface showing local minima, transition

states and paths connecting them.

This surface depends on two geometrical coordinates {qa} and is a plot of one particular

eigenvalue EJ(qa) vs. these two coordinates.
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Although this plot has more information on it than we shall discuss now, a few

features are worth noting. There appear to be three minima (i.e., points where the

derivative of EJ with respect to both coordinates vanish and where the surface has

positive curvature). These points correspond, as we will see toward the end of this

introductory material, to geometries of stable molecular structures. The surface also

displays two first-order saddle points (labeled transition structures A and B) that connect

the three minima. These points have zero first derivative of EJ with respect to both

coordinates but have one direction of negative curvature. As we will show later, these

points describe transition states that play crucial roles in the kinetics of transitions among

the three stable geometries.

Keep in mind that Fig. 1. 5 shows just one of the EJ surfaces; each molecule has a

ground-state surface (i.e., the one that is lowest in energy) as well as an infinite number

of excited-state surfaces. Let’s now return to our discussion of the BO model and ask

what one does once one has such an energy surface in hand.

The motion of the nuclei are subsequently, within the BO model, assumed to obey

a Schrödinger equation in which Σa { - (h2/2ma) ∂2/∂qa2+ 1/2 Σb ZaZbe2/ra,b } + EK(qa)

defines a rotation-vibration Hamiltonian for the particular energy state EK of interest. The

rotational and vibrational energies and wave functions belonging to each electronic state

(i.e., for each value of the index K in EK(qa)) are then found by solving a Schrödinger

equation with such a Hamiltonian.

This BO model forms the basis of much of how chemists view molecular

structure and molecular spectroscopy. For example as applied to formaldehyde H2C=O,

we speak of the singlet ground electronic state (with all electrons spin paired and
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occupying the lowest energy orbitals) and its vibrational states as well as the n→ π* and

π → π* electronic states and their vibrational levels. Although much more will be said

about these concepts later in this text, the student should be aware of the concepts of

electronic energy surfaces (i.e., the {EK(qa)}) and the vibration-rotation states that belong

to each such surface.

Having been introduced to the concepts of operators, wave functions, the

Hamiltonian and its Schrödinger equation, it is important to now consider several

examples of the applications of these concepts. The examples treated below were chosen

to provide the reader with valuable experience in solving the Schrödinger equation; they

were also chosen because they form the most elementary chemical models of electronic

motions in conjugated molecules and in atoms, rotations of linear molecules, and

vibrations of chemical bonds.

II. Your First Application of Quantum Mechanics- Motion of a Particle in One

Dimension.

This is a very important problem whose solutions chemists use to model a wide

variety of phenomena.

Let’s begin by examining the motion of a single particle of mass m in one direction

which we will call x while under the influence of a potential denoted V(x). The classical

expression for the total energy of such a system is E = p2/2m + V(x), where p is the

momentum of the particle along the x-axis. To focus on specific examples, consider how
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this particle would move if V(x) were of the forms shown in Fig. 1. 6, where the total

energy E is denoted by the position of the horizontal line.

Figure 1. 6. Three characteristic potentials showing left and right classical turning points

at energies denoted by the horizontal lines.

A. The Classical Probability Density

I would like you to imagine what the probability density would be for this particle

moving with total energy E and with V(x) varying as the above three plots illustrate. To

conceptualize the probability density, imagine the particle to have a blinking lamp

attached to it and think of this lamp blinking say 100 times for each time it takes for the

particle to complete a full transit from its left turning point, to its right turning point and

back to the former. The turning points xL and xR are the positions at which the particle, if

xL xR
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it were moving under Newton’s laws, would reverse direction (as the momentum changes

sign) and turn around. These positions can be found by asking where the momentum goes

to zero:

0 = p = (2m(E-V(x))1/2.

These are the positions where all of the energy appears as potential energy E = V(x) and

correspond in the above figures to the points where the dark horizontal lines touch the

V(x) plots as shown in the central plot.

The probability density at any value of x represents the fraction of time the

particle spends at this value of x (i.e., within x and x+dx). Think of forming this density

by allowing the blinking lamp attached to the particle to shed light on a photographic

plate that is exposed to this light for many oscillations of the particle between xL  and xR.

Alternatively, one can express this probability amplitude P(x) by dividing the spatial

distance dx by the velocity of the particle at the point x:

P(x) = (2m(E-V(x))-1/2  m dx.

Because E is constant throughout the particle’s motion, P(x) will be small at x values

where the particle is moving quickly (i.e., where V is low) and will be high where the

particle moves slowly (where V is high). So, the photographic plate will show a bright

region where V is high (because the particle moves slowly in such regions) and less

brightness where V is low.
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The bottom line is that the probability densities anticipated by analyzing the

classical Newtonian dynamics of this one particle would appear as the histogram plots

shown in Fig. 1.7 illustrate.

Figure 1. 7 Classical probability plots for the three potentials shown

Where the particle has high kinetic energy (and thus lower V(x)), it spends less time and

P(x) is small. Where the particle moves slowly, it spends more time and P(x) is larger.

For the plot on the right, V(x) is constant within the “box”, so the speed is constant,

hence P(x) is constant for all x values within this one-dimensional box. I ask that you

keep these plots in mind because they are very different from what one finds when one

solves the Schrödinger equation for this same problem. Also please keep in mind that

these plots represent what one expects if the particle were moving according to classical

Newtonian dynamics (which we know it is not!).

xL xR
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B. The Quantum Treatment

To solve for the quantum mechanical wave functions and energies of this same

problem, we first write the Hamiltonian operator as discussed above by replacing p by

-i h d/dx :

H = - h2/2m d2/dx2  + V(x).

We then try to find solutions ψ(x) to Hψ = Eψ that obey certain conditions. These

conditions are related to the fact that |ψ (x)|2 is supposed to be the probability density for

finding the particle between x and x+dx. To keep things as simple as possible, let’s focus

on the “box” potential V shown in the right side of Fig. B. 7. This potential, expressed as

a function of x is: V(x) =  ∞ for x< 0 and for x> L; V(x) = 0 for x between 0 and L.

The fact that V is infinite for x< 0 and for x> L, and that the total energy E must

be finite, says that ψ must vanish in these two regions (ψ = 0 for x< 0 and for x> L). This

condition means that the particle can not access these regions where the potential is

infinite.  The second condition that we make use of is that ψ (x) must be continuous; this

means that the probability of the particle being at x can not be discontinuously related to

the probability of it being at a nearby point.

C. The Energies and Wave functions

The second-order differential equation
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- h 2/2m d2ψ/dx2  + V(x) ψ = E ψ

has two solutions (because it is a second order equation)  in the region between x= 0 and

x= L:

ψ = sin(kx) and ψ = cos(kx), where k is defined as k=(2mE/h 2)1/2.

Hence, the most general solution is some combination of these two:

ψ = A sin(kx) + B cos(kx).

The fact that ψ must vanish at x= 0 (n.b., ψ vanishes for x< 0 and is continuous, so it

must vanish at the point x= 0) means that the weighting amplitude of the cos(kx) term

must vanish because cos(kx) = 1 at x = 0. That is,

B = 0.

The amplitude of the sin(kx) term is not affected by the condition that ψ vanish at x= 0,

since sin(kx) itself vanishes at x= 0. So, now we know that ψ is really of the form:

ψ (x) = A sin(kx).



41

The condition that ψ also vanish at x= L has two possible implications. Either A = 0 or k

must be such that sin(kL) = 0. The option A = 0 would lead to an answer ψ that vanishes

at all values of x and thus a probability that vanishes everywhere. This is unacceptable

because it would imply that the particle is never observed anywhere.

The other possibility is that sin(kL) = 0. Let’s explore this answer because it

offers the first example of energy quantization that you have probably encountered. As

you know, the sin function vanishes at integral multiples of π. Hence kL must be some

multiple of π; let’s call the integer n and write L k = n π (using the definition of k) in the

form:

L (2mE/h2)1/2  = n π.

Solving this equation for the energy E, we obtain:

E = n2 π2 h2/(2mL2)

This result says that the only energy values that are capable of giving a wave function ψ

(x) that will obey the above conditions are these specific E values. In other words, not all

energy values are “allowed” in the sense that they can produce ψ functions that are

continuous and vanish in regions where V(x) is infinite. If one uses an energy E that is

not one of the allowed values and substitutes this E into sin(kx), the resultant function

will not vanish at x = L. I hope the solution to this problem reminds you of the violin
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string that we discussed earlier. Recall that the violin string being tied  down at x = 0 and

at x = L gave rise to quantization of the the wavelength just as the conditions that ψ be

continuous at x = 0 and x = L gave energy quantization.

Substituting k = nπ/L into ψ = A sin(kx) gives

ψ (x) = A sin(nπx/L).

The value of A can be found by remembering that |Ψ|2  is supposed to represent the

probability density for finding the particle at x. Such probability densities are supposed to

be normalized, meaning that their integral over all x values should amount to unity. So,

we can find A by requiring that

1 = ∫ |ψ(x)|2  dx = |A|2  ∫ sin2(nπx/L) dx

where the integral ranges from x = o to x = L. Looking up the integral of sin2(ax) and

solving the above equation for the so-called normalization constant A gives

A = (2/L)1/2  and so

ψ(x) = (2/L)1/2  sin(nπx/L).

The values that n can take on are n = 1, 2, 3, ….; the choice n = 0 is unacceptable because

it would produce a wave function ψ(x) that vanishes at all x.
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The full x- and t- dependent wave functions are then given as

Ψ(x,t) = (2/L)1/2  sin(nπx/L) exp[-it n2 π2 h2/(2mL2)/ h].

Notice that the spatial probability density |Ψ(x,t)|2 is not dependent on time and is equal

to |ψ(x)|2 because the complex exponential disappears when Ψ*Ψ is formed. This means

that the probability of finding the particle at various values of x is time-independent.

Another thing I want you to notice is that, unlike the classical dynamics case, not

all energy values E are allowed. In the Newtonian dynamics situation, E could be

specified and the particle’s momentum at any x value was then determined to within a

sign. In contrast, in quantum mechanics, one must determine, by solving the Schrödinger

equation, what the allowed values of E are. These E values are quantized, meaning that

they occur only for discrete values E = n2 π2h2/(2mL2) determined by a quantum number

n, by the mass of the particle m, and by characteristics of the potential (L in this case).

D. The Probability Densities

Let’s now look at some of the wave functions Ψ(x) and compare the probability

densities |Ψ(x)|2 that they represent to the classical probability densities discussed earlier.

The n = 1 and n = 2 wave functions are shown in the top of Fig. 1.8. The corresponding

probability densities are shown below the wave functions in two formats

(as x-y plots and shaded plots that could relate to the flashing light way of monitoring the

particle’s location that we discussed earlier).
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Figure 1. 8.  The two lowest wave functions and probability densities

A more complete set of wave functions (for n ranging from 1 to 7) are shown in Fig. 1. 9.
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Figure 1. 9. Seven lowest wave functions and energies

Notice that as the quantum number n increases, the energy E also increases

(quadratically with n in this case) and the number of nodes in Ψ also increases. Also

notice that the probability densities are very different from what we encountered earlier
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for the classical case. For example, look at the n = 1 and n = 2 densities and compare

them to the classical density illustrated in Fig. 1.10.

Figure 1. 10. Classical probability density for potential shown

The classical density is easy to understand because we are familiar with classical

dynamics. In this case, we say that P(x) is constant within the box because the fact that

V(x) is constant causes the kinetic energy and hence the speed of the particle to remain

constant. In contrast, the n = 1 quantum wave function’s P(x) plot is peaked in the middle

of the box and falls to zero at the walls. The n = 2 density P(x) has two peaks (one to the

left of the box midpoint, and one to the right), a node at the box midpoint, and falls to

zero at the walls. One thing that students often ask me is “how does the particle get from

being in the left peak to being in the right peak if it has zero chance of ever being at the

midpoint where the node is?” The difficulty with this question is that it is posed in a

terminology that asks for a classical dynamics answer. That is, by asking “how does the

particle get...” one is demanding an answer that involves describing its motion (i.e, it



47

moves from here at time t1 to there at time t2). Unfortunately, quantum mechanics does

not deal with issues such as a particle’s trajectory (i.e., where it is at various times) but

only with its probabilty of being somewhere (i.e., |Ψ|2). The next section will treat such

paradoxical issues even further.

E. Classical and Quantum Probability Densities

As just noted, it is tempting for most beginning students of quantum mechanics to

attempt to interpret the quantum behavior of a particle in classical terms. However, this

adventure is full of danger and bound to fail because small light particles simply do not

move according to Newton’s laws. To illustrate, let’s try to “understand” what kind of

(classical) motion would be consistent with the n = 1 or n = 2 quantum P(x) plots shown

in Fig. B. 8. However, as I hope you anticipate, this attempt at gaining classical

understanding of a quantum result will not “work” in that it will lead to nonsensical

results. My point in leading you to attempt such a classical understanding is to teach you

that classical and quantum results are simply different and that you must resist the urge to

impose a classical understanding on quantum results.

 For the n = 1 case, we note that P(x) is highest at the box midpoint and vanishes

at x = 0 and x = L. In a classical mechanics world, this would mean that the particle

moves slowly near x = L/2 and more quickly near x = 0 and x = L. Because the particle’s

total energy E must remain constant as it moves, in regions where it moves slowly, the

potential it experiences must be high, and where it moves quickly, V must be small. This

analysis (n.b., based on classical concepts) would lead us to conclude that the n =1 P(x)
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arises from the particle moving in a potential that is high near x = L/2 and low as x

approaches 0 or L.

A similar analysis of the n = 2 P(x) plot would lead us to conclude that the

particle for which this is the correct P(x) must experience a potential that is high midway

between x = 0 and x = L/2, high midway between x = L/2 and x = L,. and very low near x

= L/2 and near x = 0 and x = L. These conclusions are “crazy” because we know that the

potential V(x) for which we solved the Schrödinger equation to generate both of the wave

functions (and both probability densities) is constant between x = 0 and x = L. That is, we

know the same V(x) applies to the particle moving in the n = 1 and n = 2 states, whereas

the classical motion analysis offered above suggests that V(x) is different for these two

cases.

What is wrong with our attempt to understand the quantum P(x) plots? The

mistake we made was in attempting to apply the equations and concepts of classical

dynamics to a P(x) plot that did not arise from classical motion. Simply put, one can not

ask how the particle is moving (i.e., what is its speed at various positions) when the

particle is undergoing quantum dynamics. Most students, when first experiencing

quantum wave functions and quantum probabilities, try to think of the particle moving in

a classical way that is consistent with the quantum P(x). This attempt to retain a degree of

classical understanding of the particle’s movement is always met with frustration, as I

illustrated with the above example and will illustrate later in other cases.

Continuing with this first example of how one solves the Schrödinger equation

and how one thinks of the quantized E values and wave functions Ψ, let me offer a little

more optimistic note than offered in the preceding discussion. If we examine the Ψ(x)
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plot shown in Fig. B.9 for n = 7, and think of the corresponding P(x) = |Ψ(x)|2, we note

that the P(x) plot would look something like that shown in Fig. 1. 11.
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Figure 1. 11. Quantum probability density for n = 7 showing seven peaks and six nodes

It would have seven maxima separated by six nodes. If we were to plot |Ψ(x)|2  for a very

large n value such as n = 55, we would find a P(x) plot having 55 maxima separated by

54 nodes, with the maxima separated approximately by distances of (1/55L). Such a plot,

when viewed in a “coarse grained” sense (i.e., focusing with somewhat blurred vision on

the positions and heights of the maxima) looks very much like the classical P(x) plot in

which P(x) is constant for all x. In fact, it is a general result of quantum mechanics that

the quantum P(x) distributions for large quantum numbers take on the form of the
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classical P(x) for the same potential V that was used to solve the Schrödinger equation. It

is also true that classical and quantum results agree when one is dealing with heavy

particles. For example, a given particle-in-a-box energy En = n2 h2/(2mL2) would be

achieved for a heavier particle at higher n-values than for a lighter particle. Hence,

heavier particles, moving with a given energy E, have higher n and thus more classical

probability distributions.

We will encounter this so-called quantum-classical correspondence principal

again when we examine other model problems. It is an important property of solutions to

the Schrödinger equation because it is what allows us to bridge the “gap” between using

the Schrödinger equation to treat small light particles and the Newton equations for

macroscopic (big, heavy) systems.

Another thing I would like you to be aware of concerning the solutions ψ and E to

this Schrödinger equation is that each pair of wave functions ψn and ψn’ belonging to

different quantum numbers n and n’ (and to different energies) display a property termed

orthonormality. This property means that not only are ψn and ψn’ each normalized

1= ∫ |ψn|
2 dx =   ∫ |ψn’|

2 dx,

but they are also orthogonal to each other

0 = ∫ (ψn)* ψn’ dx
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where the complex conjugate * of the first function appears only when the ψ solutions

contain imaginary components (you have only seen one such case thus far- the exp(imφ)

eigenfunctions of the z-component of angular momentm). It is common to write the

integrals displaying the normalization and orthogonality conditions in the following so-

called Dirac notation

1 = <ψn | ψn> 0 = <ψn | ψn’>,

where the | > and < | symbols represent ψ  and ψ*, respectively, and putting the two

together in the < | > construct implies the integration over the variable that ψ depends

upon.

The orthogonality conditon can be viewed as similar to the condition of two

vectors v1 and v2 being perpendicular, in which case their scalar (sometimes called “dot”)

product vanishes v1 • v2  = 0. I want you to keep this property in mind because you will

soon see that it is a characteristic not only of these particle-in-a-box wave functions but

of all wave functions obtained from any Schrödinger equation.

In fact, the orthogonality property is even broader than the above discussion

suggests. It turns out that all quantum mechanical operators formed as discussed earlier

(replacing Cartesian momenta p by the corresponding -i h ∂/∂q operator and leaving all

Cartesian coordinates as they are) can be shown to be so-called Hermitian operators. This

means that they form Hermitian matrices when they are placed between pairs of functions

and the coordinates are integrated over. For example, the matrix representation of an

operator F when acting on a set of functions denoted {φJ} is:



52

FI,J = <φI | F |φJ> = ∫ φI* F φJ dq.

For all of the operators formed following the rules stated earlier, one finds that these

matrices have the following property:

FI,J = FJ,I*

which makes the matrices what we call Hermitian. If the functions upon which F acts and

F itself have no imaginary parts (i.e., are real), then the matrices turn out to be

symmetric:

FI,J  = FJ,I .

The importance of the Hermiticity or symmetry of these matrices lies in the fact that it

can be shown that such matrices have all real (i.e., not complex) eigenvalues and have

eigenvectors that are orthogonal.

So, all quantum mechanical operators, not just the Hamiltonian, have real

eigenvalues (this is good since these eigenvalues are what can be measured in any

experimental observation of that property) and orthogonal eigenfunctions. It is important

to keep these facts in mind because we make use of them many times throughout this

text.
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F. Time Propagation of Wave functions

For a system that exists in an eigenstate Ψ(x) = (2/L)1/2  sin(nπx/L) having an

energy En = n2 π2h2/(2mL2), the time-dependent wave function is

Ψ(x,t) = (2/L)1/2  sin(nπx/L) exp(-itEn/h),

which can be generated by applying the so-called time evolution operator U(t,0) to the

wave function at t = 0:

Ψ(x,t) = U(t,0) Ψ(x,0)

where an explicit form for U(t,t’) is:

U(t,t’) = exp[-i(t-t’)H/ h].

The function Ψ(x,t) has a spatial probability density that does not depend on time because

Ψ*(x,t) Ψ(x,t) = (2/L)  sin2(nπx/L);

since exp(-itEn/h) exp(itEn/h) = 1. However, it is possible to prepare systems (even in real

laboratory settings) in states that are not single eigenstates; we call such states

superposition states. For example, consider a particle moving along the x- axis within the

“box” potential but in a state whose wave function at some initial time t = 0 is
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Ψ(x,0) = 2-1/2  (2/L)1/2  sin(1πx/L) – 2-1/2  (2/L)1/2  sin(2πx/L).

This is a superposition of the n =1 and n = 2 eigenstates. The probability density

associated with this function is

|Ψ|2  = 1/2{(2/L) sin2(1πx/L)+ (2/L) sin2(2πx/L) -2(2/L) sin(1πx/L)sin(2πx/L)}.

The n = 1 and n = 2 components, the superposition Ψ, and the probability density at t = 0

|Ψ|2  are shown in the first three panels of Fig. 1.12.
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Figure 1. 12. The n = 1 and n = 2 wave functions, their superposition, and the t = 0 and

time-evolved probability densities of the superposition

It should be noted that the probability density associated with this superposition state is

not symmetric about the x=L/2 midpoint even though the n = 1 and n = 2 component

wave functions and densities are. Such a density describes the particle localized more

strongly in the large-x region of the box than in the small-x region.

Now, let’s consider the superposition wave function and its density at later times.

Applying the time evolution operator exp(-itH/h) to Ψ(x,0) generates this time-evolved

function at time t:

Ψ(x,t) = exp(-itH/h) {2-1/2  (2/L)1/2  sin(1πx/L) – 2-1/2  (2/L)1/2  sin(2πx/L)}

= {2-1/2  (2/L)1/2  sin(1πx/L) ) exp(-itE1/h).  – 2-1/2  (2/L)1/2  sin(2πx/L) ) exp(-itE2/h) }.

The spatial probability density associated with this Ψ is:

|Ψ(x,t)|2  =  1/2{(2/L) sin2(1πx/L)+ (2/L) sin2(2πx/L)

-2(2/L) cos(E2-E1)t/h) sin(1πx/L)sin(2πx/L)}.
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At t = 0, this function clearly reduces to that written earlier for Ψ(x,0). Notice that as time

evolves, this density changes because of the cos(E2-E1)t/h) factor it contains. In particular,

note that as t moves through a period of length δt = π h/(E2-E1), the cos factor changes

sign. That is, for t = 0, the cos factor is +1; for t = π h/(E2-E1), the cos factor is –1; for t =

2 π h/(E2-E1), it returns to +1. The result of this time-variation in the cos factor is that |Ψ|2

changes in form from that shown in the bottom left panel of Fig. B. 12 to that shown in

the bottom right panel (at t = π h/(E2-E1)) and then back to the form in the bottom left

panel (at t = 2 π h/(E2-E1)). One can interpret this time variation as describing the

particle’s probability density (not its classical position!), initially localized toward the

right side of the box, moving to the left and then back to the right. Of course, this time

evolution will continue over more and more cycles as time evolves further.

This example illustrates once again the difficulty with attempting to localize

particles that are being described by quantum wave functions. For example, a particle that

is characterized by the eigenstate (2/L)1/2  sin(1πx/L) is more likely to be detected near x

= L/2 than near x = 0 or x = L because the square of this function is large near x = L/2. A

particle in the state (2/L)1/2  sin(2πx/L) is most likely to be found near x = L/4 and x =

3L/4, but not near x = 0, x = L/2, or x =L. The issue of how the particle in the latter state

moves from being near x = L/4 to x = 3L/4 is not something quantum mechanics deals

with. Quantum mechanics does not allow us to follow the particle’s trajectory which is

what we need to know when we ask how it moves from one place to another.

Nevertheless, superposition wave functions can offer, to some extent, the opportunity to

follow the motion of the particle. For example, the superposition state written above as
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2-1/2  (2/L)1/2  sin(1πx/L) – 2-1/2  (2/L)1/2  sin(2πx/L) has a probability amplitude that changes

with time as shown in the figure. Moreover, this amplitude’s major peak does move from

side to side within the box as time evolves. So, in this case, we can say with what

frequency the major peak moves back and forth. In a sense, this allows us to “follow” the

particle’s movements, but only to the extent that we are satisfied with ascribing its

location to the position of the major peak in its probability distribution. That is, we can

not really follow its “precise” location, but we can follow the location of where it is very

likely to be found. This is an important observation that I hope the student will keep fresh

in mind. It is also an important ingredient in modern quantum dynamics in which

localized wave packets, similar to superposed eigenstates, are used to detail the position

and speed of a particle’s main probability density peak.

The above example illustrates how one time-evolves a wave function that can be

expressed as a linear combination (i.e., superposition) of eigenstates of the problem at

hand. As noted above, there is a large amount of current effort in the theoretical

chemistry community aimed at developing efficient approximations to the exp(-itH/h)

evolution operator that do not require Ψ(x,0) to be explicitly written as a sum of

eigenstates. This is important because, for most systems of direct relevance to molecules,

one can not solve for the eigenstates; it is simply too difficult to do so. You can find a

significantly more detailed treatment of the research-level treatment of this subject in my

Theory Page web site and my QMIC text book. However, let’s spend a little time on a

brief introduction to what is involved.
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The problem is to express exp(-itH/ h) Ψ(qj), where Ψ(qj) is some initial wave

function but not an eigenstate, in a manner that does not require one to first find the

eigenstates {ΨJ} of H and to expand Ψ in terms of these eigenstates:

Ψ = ΣJ CJ ΨJ

after which the desired function is written as

exp(-itH/ h) Ψ(qj) = ΣJ CJ ΨJ exp(-itEJ/h).

The basic idea is to break H into its kinetic T and potential V energy components and to

realize that the differential operators appear in T only. The importance of this observation

lies in the fact that T and V do not commute which means that TV is not equal to VT

(n.b., for two quantities to commute means that their order of appearance does not

matter). Why do they not commute? Because T contains second derivatives with respect

to the coordinates {qj} that V depends on, so, for example, d2/dq2(V(q) Ψ(q)) is not equal

to V(q)d2/dq2Ψ(q). The fact that T and V do not commute is important because the most

common approaches to approximating exp(-itH/ h) is to write this single exponential in

terms of exp(-itT/ h) and exp(-itV/ h). However, the identity

exp(-itH/ h) = exp(-itV/ h) exp(-itT/ h)
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is not fully valid as one can see by expanding all three of the above exponential factors as

exp(x) = 1 + x + x2/2! + ..., and noting that the two sides of the above equation only agree

if one can assume that TV = VT, which, as we noted, is not true.

In most modern approaches to time propagation, one divides the time interval t

into many (i.e., P of them) small time “slices” τ = t/P. One then expresses the evolution

operator as a product of P short-time propagators:

exp(-itH/ h) = exp(-iτH/ h) exp(-iτH/ h) exp(-iτH/ h) ... = [exp(-iτH/ h) ]P.

If one can then develop an efficient means of propagating for a short time τ, one can then

do so over and over again P times to achieve the desired full-time propagation.

It can be shown that the exponential operator involving H can better be

approximated in terms of the T and V exponential operators as follows:

exp(-iτH/ h) ≈ exp(-τ2 (TV-VT)/ h2) exp(-iτV/ h) exp(-iτT/ h).

So, if one can be satisfied with propagating for very short time intervals (so that the τ2

term can be neglected), one can indeed use

exp(-iτH/ h) ≈ exp(-iτV/ h) exp(-iτT/ h)

as an approximation for the propagator U(τ,0).
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To progress further, one then expresses exp(-iτT/ h) acting on the initial function

Ψ(q) in terms of the eigenfunctions of the kinetic energy operator T. Note that these

eigenfunctions do not depend on the nature of the potential V, so this step is valid for any

and all potentials. The eigenfunctions of T = - h2/2m d2/dq2 are

ψp(q) = (1/2π)1/2 exp(ipq/ h)

and they obey the following orthogonality

∫ ψp'*(q) ψp(q) dq = δ(p'-p)

and completeness relations

∫ ψp(q) ψp*(q') dp = δ(q-q').

Writing Ψ(q) as

Ψ(q) = ∫ δ(q-q') Ψ(q'),

and using the above expression for δ(q-q') gives:

Ψ(q) = ∫∫ ψp(q) ψp*(q') Ψ(q') dq' dp.
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Then inserting the explicit expressions for ψp(q) and ψp*(q') in terms of

ψp(q) = (1/2π)1/2 exp(ipq/ h) gives

Ψ(q) = ∫∫ (1/2π)1/2 exp(ipq/ h) (1/2π)1/2 exp(-ipq'/ h) Ψ(q') dq' dp.

Now, allowing exp(-iτT/ h) to act on this form for Ψ(q) produces

exp(-iτT/ h) Ψ(q) = ∫∫ exp(-iτp2h2/2mh) (1/2π)1/2 exp(ip(q-q')/ h) (1/2π)1/2 Ψ(q') dq' dp.

The integral over p above can be carried out analytically and gives

exp(-iτT/ h) Ψ(q) = (m/2πτh)1/2 ∫   exp(im(q-q')2/2τh)  Ψ(q') dq'.

So, the final expression for the short-time propagated wave function is:

Ψ(q.τ) = exp(-iτV(q)/ h) (m/2πτh)1/2 ∫   exp(im(q-q')2/2τh)  Ψ(q') dq',

which is the working equation one uses to compute Ψ(q,τ) knowing Ψ(q). Notice that all

one needs to know to apply this formula is the potential V(q) at each point in space. One

does not to know any of the eigenfunctions of the Hamiltonian to apply this method.

However, one does have to use this formula over and over again to propagate the initial
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wave function through many small time steps τ to achieve full propagation for the desired

time interval t = P τ.

Because this type of time propagation technique is a very active area of research

in the theory community, it is likely to continue to be refined and improved. Further

discussion of it is beyond the scope of this book, so I will not go further into this

direction.

III. Free Particle Motions in More Dimensions

The number of dimensions depends on the number of particles and the number of

spatial (and other) dimensions needed to characterize the position and motion of each

particle

A. The Schrödinger Equation

Consider an electron of mass m and charge e moving on a two-dimensional

surface that defines the x,y plane (e.g., perhaps an electron is constrained to the surface of

a solid by a potential that binds it tightly to a narrow region in the z-direction), and

assume that the electron experiences a constant and not time-varying potential V0 at all

points in this plane. The pertinent time independent Schrödinger equation is:

- h2/2m (∂2/∂x2 +∂2/∂y2)ψ(x,y) +V0ψ(x,y) = E ψ(x,y).



63

The task at hand is to solve the above eigenvalue equation to determine the “allowed”

energy states for this electron. Because there are no terms in this equation that couple

motion in the x and y directions (e.g., no terms of the form xayb or ∂/∂x ∂/∂y or x∂/∂y),

separation of variables can be used to write ψ as a product ψ(x,y)=A(x)B(y). Substitution

of this form into the Schrödinger equation, followed by collecting together all x-

dependent and all y-dependent terms, gives;

- h2/2m A-1∂2A/∂x2 - h2/2m B-1∂2B/∂y2 =E-V0.

Since the first term contains no y-dependence and the second contains no x-dependence,

and because the right side of the equation is independent of both x and y, both terms on

the left must actually be constant (these two constants are denoted Ex and Ey,

respectively). This observation allows two separate Schrödinger equations to be written:

- h2/2m A-1∂2A/∂x2 =Ex, and

- h2/2m B-1∂2B/∂y2 =Ey.

The total energy E can then be expressed in terms of these separate energies Ex and Ey as

Ex + Ey = E-V0. Solutions to the x- and y- Schrödinger equations are easily seen to be:

A(x) = exp(ix(2mEx/h2)1/2) and exp(-ix(2mEx/h2)1/2) ,
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B(y) = exp(iy(2mEy/h2)1/2) and exp(-iy(2mEy/h2)1/2).

Two independent solutions are obtained for each equation because the x- and y-space

Schrödinger equations are both second order differential equations (i.e., a second order

differential equation has two independent solutions).

B. Boundary Conditions

The boundary conditions, not the Schrödinger equation, determine whether the

eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the x,y plane, the energies Ex and Ey

can assume any values; this means that the experimenter can 'inject' the electron onto the

x,y plane with any total energy E and any components Ex and Ey along the two axes as

long as Ex + Ey = E. In such a situation, one speaks of the energies along both

coordinates as being 'in the continuum' or 'not quantized'.

In contrast, if the electron is constrained to remain within a fixed area in the x,y

plane (e.g., a rectangular or circular region), then the situation is qualitatively different.

Constraining the electron to any such specified area gives rise to boundary conditions that

impose additional requirements on the above A and B functions. These constraints can

arise, for example, if the potential V0(x,y) becomes very large for x,y values outside the

region, in which case, the probability of finding the electron outside the region is very
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small. Such a case might represent, for example, a situation in which the molecular

structure of the solid surface changes outside the enclosed region in a way that is highly

repulsive to the electron (e.g., as in the case of molecular corrals on metal surfaces). This

case could then represent a simple model of so-called “corrals” in which the particle is

constrained to a finite region of space.

For example, if motion is constrained to take place within a rectangular region

defined by 0 ≤ x ≤ Lx; 0 ≤ y ≤ Ly, then the continuity property that all wave functions

must obey (because of their interpretation as probability densities, which must be

continuous) causes A(x) to vanish at 0 and at Lx. That is, because A must vanish for x < 0

and must vanish for x > Lx, and because A is continuous, it must vanish at x = 0 and at x

= Lx. Likewise, B(y) must vanish at 0 and at Ly. To implement these constraints for A(x),

one must linearly combine the above two solutions exp(ix(2mEx/h2)1/2) and

exp(-ix(2mEx/h2)1/2) to achieve a function that vanishes at x=0:

A(x) = exp(ix(2mEx/h2)1/2) - exp(-ix(2mEx/h2)1/2).

One is allowed to linearly combine solutions of the Schrödinger equation that have the

same energy (i.e., are degenerate) because Schrödinger equations are linear differential

equations. An analogous process must be applied to B(y) to achieve a function that

vanishes at y=0:

B(y) = exp(iy(2mEy/h2)1/2) - exp(-iy(2mEy/h2)1/2).
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Further requiring A(x) and B(y) to vanish, respectively, at x=Lx and y=Ly, gives

equations that can be obeyed only if Ex and Ey assume particular values:

exp(iLx(2mEx/h2)1/2) - exp(-iLx(2mEx/h2)1/2) = 0, and

exp(iLy(2mEy/h2)1/2) - exp(-iLy(2mEy/h2)1/2) = 0.

These equations are equivalent (i.e., using exp(ix) = cos(x) + i sin(x)) to

sin(Lx(2mEx/h2)1/2) = sin(Ly(2mEy/h2)1/2) = 0.

Knowing that sin(θ) vanishes at θ = nπ, for n=1,2,3,..., (although the sin(nπ) function

vanishes for n=0, this function vanishes for all x or y, and is therefore unacceptable

because it represents zero probability density at all points in space) one concludes that the

energies Ex and Ey can assume only values that obey:

Lx(2mEx/h2)1/2 =nxπ,

Ly(2mEy/h2)1/2 =nyπ, or

Ex = nx2π2 h2/(2mLx2), and
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Ey = ny2π2 h2/(2mLy2), with nx and ny =1,2,3, ...

It is important to stress that it is the imposition of boundary conditions, expressing the

fact that the electron is spatially constrained, that gives rise to quantized energies. In the

absence of spatial confinement, or with confinement only at x =0 or Lx or only at y =0 or

Ly, quantized energies would not be realized.

In this example, confinement of the electron to a finite interval along both the x and

y coordinates yields energies that are quantized along both axes. If the electron were

confined along one coordinate (e.g., between 0 ≤ x ≤ Lx) but not along the other (i.e.,

B(y) is either restricted to vanish at y=0 or at y=Ly or at neither point), then the total

energy E lies in the continuum; its Ex component is quantized but Ey is not. Analogs of

such cases arise, for example, when a linear triatomic molecule has more than enough

energy in one of its bonds to rupture it but not much energy in the other bond; the first

bond's energy lies in the continuum, but the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation

energy is excited to a level that is not enough to break it but that is in excess of the

dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the

strong bond having high internal energy and the weak bond having low energy (ψ1), and

ii. the strong bond having little energy and the weak bond having more than enough

energy to rupture it (ψ2). Although an experiment may prepare the molecule in a state

that contains only the former component (i.e., ψ= C1ψ1 + C2ψ2 with C1 = 1, C2 = 0),

coupling between the two degenerate functions (induced by terms in the Hamiltonian H

that have been ignored in defining ψ1 and ψ2) usually causes the true wave function
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Ψ = exp(-itH/h) ψ to acquire a component of the second function as time evolves. In such

a case, one speaks of internal vibrational energy relaxation (IVR) giving rise to

unimolecular decomposition of the molecule.

C. Energies and Wave functions for Bound States

For discrete energy levels, the energies are specified functions that depend on

quantum numbers, one for each degree of freedom that is quantized

Returning to the situation in which motion is constrained along both axes, the

resultant total energies and wave functions (obtained by inserting the quantum energy

levels into the expressions for A(x) B(y)) are as follows:

Ex = nx2π2 h2/(2mLx2), and

Ey = ny2π2 h2/(2mLy2),

E = Ex + Ey  +V0

ψ(x,y) = (1/2Lx)1/2 (1/2Ly)1/2[exp(inxπx/Lx) -exp(-inxπx/Lx)]

[exp(inyπy/Ly) -exp(-inyπy/Ly)], with nx and ny =1,2,3, ...  .

The two (1/2L)1/2 factors are included to guarantee that ψ is normalized:
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∫ |ψ(x,y)|2 dx dy = 1.

Normalization allows |ψ(x,y)|2  to be properly identified as a probability density for

finding the electron at a point x, y.

Shown in Fig. 1. 13 are plots of four such two dimensional wave functions for nx and

ny values of (1,1), (2,1), (1.2) and (2,2), respectively.
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Figure 1. 13. Plots of the (1,1), (2,1), (1,2) and (2,2) wave functions

Note that the functions vanish on the boundaries of the box, and notice how the number

of nodes (i.e., zeroes encountered as the wave function oscillates from positive to

negative) is related to the nx and ny quantum numbers and to the energy. This pattern of

more nodes signifying higher energy is one that we encounter again and again in quantum

mechanics and is something the student should be able to use to “guess” the relative

energies of wave functions when their plots are at hand. Finally, you should also notice

that, as in the one-dimensional box case, any attempt to classically interpret the

probabilities P(x,y) corresponding to the above quantum wave functions will result in

failure. As in the one-dimensional case, the classical P(x,y) would be constant along

slices of fixed x and varying y or slices of fixed y and varying x within the box because

the speed is constant there. However, the quantum P(x,y) plots, at least for small quantum

numbers, are not constant. For large nx and ny  values, the quantum P(x,y) plots will again,

via the quantum-classical correspondence principle, approach the (constant) classical

P(x,y) form.

D. Quantized Action Can  Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levels and is especially

straightforward to use for systems whose Schrödinger equations are separable. The so-

called classical action (denoted S) of a particle moving with momentum p along a path
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leading from initial coordinate qi at initial time ti to a final coordinate qf at time tf is

defined by:

S = ⌡⌠
qi;ti

 qf;tf
 p•dq .

Here, the momentum vector p contains the momenta along all coordinates of the system,

and the coordinate vector q likewise contains the coordinates along all such degrees of

freedom. For example, in the two-dimensional particle in a box problem considered

above, q = (x, y) has two components as does p = (px, py), and the action integral is:

S = ⌡⌠
xi;yi;ti

 xf;yf;tf
 (px dx + py dy) .

In computing such actions, it is essential to keep in mind the sign of the momentum as the

particle moves from its initial to its final positions. An example will help clarify these

matters.

For systems such as the above particle in a box example for which the Hamiltonian

is separable, the action integral decomposes into a sum of such integrals, one for each

degree of freedom. In this two-dimensional example, the additivity of H:

H = Hx + Hy  = px2/2m + py2/2m + V(x) + V(y)
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= - h2/2m ∂2/∂x2 + V(x) - h2/2m ∂2/∂y2 + V(y)

means that px and py can be independently solved for in terms of the potentials V(x) and

V(y) as well as the energies Ex and Ey associated with each separate degree of freedom:

px = ± 2m(Ex - V(x))  

py = ± 2m(Ey - V(y))  ;

the signs on px and py must be chosen to properly reflect the motion that the particle is

actually undergoing. Substituting these expressions into the action integral yields:

S = Sx + Sy

=  ⌡⌠

xi;ti

 xf;tf

  ± 2m(Ex - V(x)) dx   + ⌡⌠

yi;ti

 yf;tf

 ± 2m(Ey - V(y)) dy  .

The relationship between these classical action integrals and existence of quantized

energy levels has been shown to involve equating the classical action for motion on a

closed path to an integral multiple of Planck's constant:
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Sclosed = ⌡⌠
qi;ti

qf=qi;tf
p•dq  = n h. (n = 1, 2, 3, 4, ...)

Applied to each of the independent coordinates of the two-dimensional particle in a box

problem, this expression reads:

nx h = ⌡⌠

x=0

x=Lx

 2m(Ex - V(x)) dx  + ⌡⌠

x=Lx

x=0

 - 2m(Ex - V(x)) dx  

ny h = ⌡⌠

y=0

y=Ly

 2m(Ey - V(y)) dy  + ⌡⌠

y=Ly

y=0

 - 2m(Ey - V(y)) dy  .

Notice that the sign of the momenta are positive in each of the first integrals appearing

above (because the particle is moving from x = 0 to x = Lx, and analogously for y-

motion, and thus has positive momentum) and negative in each of the second integrals

(because the motion is from x = Lx to x = 0 (and analogously for y-motion) and thus the

particle has negative momentum). Within the region bounded by 0 ≤ x ≤ Lx; 0 ≤ y ≤ Ly,

the potential vanishes, so V(x) = V(y) = 0. Using this fact, and reversing the upper and

lower limits, and thus the sign, in the second integrals above, one obtains:
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nx h = 2 ⌡⌠

x=0

x=Lx

 2mEx dx  = 2 2mEx  Lx

ny h = 2 ⌡⌠

y=0

y=Ly

 2mEy dy  = 2 2mEy  Ly.

Solving for Ex and Ey, one finds:

Ex = 
(nxh)2

8mLx2 

Ey = 
(nyh)2

8mLy2   .

These are the same quantized energy levels that arose when the wave function boundary

conditions were matched at x = 0, x = Lx and y = 0, y = Ly. In this case, one says that the

Bohr-Sommerfeld quantization condition:

n h =  ⌡⌠
qi;ti

qf=qi;tf
p•dq  
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has been used to obtain the result.

The use of action quantization as illustrated above has become a very important tool.

It has allowed scientists to make great progress toward bridging the gap between classical

and quantum descriptions of molecular dynamics. In particular, by using classical

concepts such as trajectories and then appending quantal action conditions, people have

been able to develop so-called semi-classical models of molecular dynamics. In such

models, one is able to retain a great deal of classical understanding while building in

quantum effects such as energy quantization, zero-point energies, and interferences.

E. Quantized Action Does Not Always Work

Unfortunately, the approach of quantizing the action does not always yield the

correct expression for the quantized energies. For example, when applied to the so-called

harmonic oscillator problem that we will study in quantum form later, which serves as the

simplest reasonable model for vibration of a diatomic molecule AB, one expresses the

total energy as

E = p2/2µ + k/2 x2

where µ = mAmB/(mA + mB) is the reduced mass of the AB diatom, k is the force constant

describing the bond between A and B, x is the bond-length displacement,  and p is the

momentum along the bond length. The quantized action requirement then reads
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n h = ∫ p dx = ∫ [2µ(E-k/2 x2)]1/2 dx.

This integral is carried out between x = - (2E/k)1/2  and (2E/k)1/2 the left and right turning

points of the oscillatory motion and back again to form a closed path. Carrying out this

integral and equating it to n h gives the following expression for the energy E:

E = n (h/2π) [k/µ]1/2

where the quantum number n is allowed to assume integer values ranging from n = 0, 1,

2, to infinity. The problem with this result is that it is wrong! As experimental data

clearly show, the lowest-energy level for the vibrations of a molecule do not have E = 0;

they have a “zero-point” energy that is approximately equal to 1/2 (h/2π) [k/µ]1/2. So,

although the action quantization condition yields energies whose spacings are reasonably

in agreement with laboratory data for low-energy states (e.g., such states have

approximately constant spacings), it fails to predict the zero-point energy content of such

vibrations. As we will see later, a proper quantum mechanical treatment of the harmonic

oscillator yields energies of the form

E = (n + 1/2) (h/2π) [k/µ]1/2

which differs from the action-based result by the proper zero-point energy.

Even with such difficulties known, much progress has been made in extending the

most elementary action-based methods to more and more systems by introducing, for
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example, rules that allow the quantum number n to assume half-integer as well as integer

values. Clearly, if n were allowed to equal 1/2, 3/2, 5/2, ..., the earlier action integral

would have produced the correct result. However, how does one know when to allow n to

assume only integer or only half-integer or both integer and half-integer values. The

answers to this question are beyond the scope of this text and constitute an active area of

research. For now, it is enough for the student to be aware that one can often find energy

levels by using action integrals, but one must be careful in doing so because sometimes

the answers are wrong.

Before leaving this section, it is worth noting that the appearance of half-integer

quantum numbers does not only occur in the harmonic oscillator case. To illustrate, let us

consider the Lz angular momentum operator discussed earlier. As we showed, this

operator, when computed as the z-component of r x p, can be written in polar (r, θ, φ)

coordinates as

Lz  = - i h d/dφ.

The eigenfunctions of this operator have the form exp(iaφ), and the eigenvalues are a h.

Because geometries with azimuthal angles equal to φ or equal to φ + 2π are exactly the

same geometries, the function exp(iaφ) should be exactly the same as exp(ia(φ+2π)). This

can only be the case if a is an integer. Thus, one concludes that only integral multiples of

h  can be “allowed” values of the z-component of angular momentum. Experimentally,

one measures the z-component of an angular momentum by placing the system

possessing the angular momentum in a magnetic field of strength B and observing how
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many z-component energy states arise. For example, a boron atom with its 2p orbital has

one unit of orbital angular momentum, so one finds three separate z-component values

which are usually denoted m = -1, m=0, and m=1. Another example is offered by the

scandium atom with one unpaired electron in a d orbital; this atom’s states split into five

(m = -2, -1, 0, 1, 2) z-component states. In each case, one finds 2L + 1 values of the m

quantum number, and, because L is an integer, 2L + 1 is an odd integer. Both of these

observations are consistent with the expectation that only integer values can occur for Lz

eigenvalues.

However, it has been observed that some species do not possess 3 or 5 or 7 or 9 z-

component states but an even number of such states. In particular, when electrons,

protons, or neutrons are subjected to the kind of magnetic field experiment mentioned

above, these particles are observed to have only two z-component eigenvalues. Because,

as we discuss later in this text, all angular momenta have z-component eigenvalues that

are separated from one aother by unit multiples of h, one is forced to conclude that these

three fundamental building-block particles have z-component eigenvalues of 1/2 h and

– 1/2 h. The appearance of half-integral angular momenta is not consistent with the

observation made earlier that φ and φ + 2π correspond to exactly the same physical point

in coordinate space, which, in turn, implies that only full-integer angular momenta are

possible.

The resolution of the above paradox (i.e., how can half-integer angular momenta

exist?) involved realizing that some angular momenta correspond not to the r x p angular

momenta of a physical mass rotating, but, instead, are intrinsic properties of certain

particles. That is, the intrinsic angular momenta of electrons, protons, and neutrons can
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not be viewed as arising from rotation of some mass that comprises these particles.

Instead, such intrinsic angular momenta are fundamental “built in” characteristics of

these particles. For example, the two 1/2 h and – 1/2 h angular momentum states of an

electron, usually denoted α and β, respectively, are two internal states of the electron that

are degenerate in the absence of a magnetic field but which represent two distinct states

of the electron. Analogously, a proton has 1/2 h and – 1/2 h states, as do neutrons. All

such half-integral angular momentum states can not be accounted for using classical

mechanics but are known to arise in quantum mechanics.

Chapter 2. Model Problems That Form Important Starting Points

The model problems discussed in this Section form the basis for chemists’

understanding of the electronic states of atoms, molecules, clusters, and solids as well as

the rotational and vibrational motions of molecules.

I. Free Electron Model of Polyenes

The particle-in-a-box problem provides an important model for several relevant

chemical situations

The  'particle in a box' model for motion in two dimensions discussed earlier can

obviously be extended to three dimensions or to one. For two and three dimensions, it

provides a crude but useful picture for electronic states on surfaces or in metallic crystals,

respectively. I say metallic crystals because it is in such systems that the outermost
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valence electrons are reasonably well treated as moving freely. Free motion within a

spherical volume gives rise to eigenfunctions that are used in nuclear physics to describe

the motions of neutrons and protons in nuclei. In the so-called shell model of nuclei, the

neutrons and protons fill separate s, p, d, etc. orbitals with each type of nucleon forced to

obey the Pauli principle (i.e., to have no more than two nucleons in each orbital because

protons and neutrons are Fermions). To remind you, I display in Fig. 2. 1 the angular

shapes that characterize s, p, and d orbitals.
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Figure 2.1. The angular shapes of s, p, and d functions

This same spherical box model has also been used to describe the orbitals of valence

electrons in clusters of metal atoms such as Csn, Cun, Nan and their positive and negative

ions. Because of the metallic nature of these species, their valence electrons are

essentially free to roam over the entire spherical volume of the cluster, which renders this

simple model rather effective. In this model, one thinks of each electron being free to

roam within a sphere of radius R (i.e., having a potential that is uniform within the sphere

and infinite outside the sphere). Finally, as noted above, this same spherical box model

forms the basis of the so-called shell model of nuclear structure. In this model, one

assumes that the protons and neutrons that make up a nucleus, both of which are

Fermions, occupy spherical-box orbitals (one set of orbitals for protons, another set for

neutrons because they are distinguishable from one another). By placing the protons and

neutrons into these orbitals, two to an orbital, one achieves a description of the energy

levels of the nucleus. Excited states are achieved by promoting a neutron or proton from
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an occupied orbital to a virtual (i.e., previously unoccupied) orbital. In such a model,

especially stable nuclei are achieved when “closed-shell” configurations such as 1s2 or

1s22s22p6 are realized (e.g., 4He has both neutrons and protons in 1s2 configurations).

The orbitals that solve the Schrödinger equation inside such a spherical box are not

the same in their radial 'shapes' as the s, p, d, etc. orbitals of atoms because, in atoms,

there is an additional radial potential V(r) = -Ze2/r present. However, their angular shapes

are the same as in atomic structure because, in both cases, the potential is independent of

θ and φ. As the orbital plots shown above indicate, the angular shapes of s, p, and d

orbitals display varying number of nodal surfaces. The s orbitals have none, p orbitals

have one, and d orbitals have two. Analogous to how the number of nodes related to the

total energy of the particle constrained to the x, y plane, the number of nodes in the

angular wave functions indicates the amount of angular or rotational energy. Orbitals of s

shape have no angular energy, those of p shape have less then do d orbitals, etc.

One-dimensional free particle motion provides a qualitatively correct picture for π-

electron motion along the pπ orbitals of delocalized polyenes. The one Cartesian

dimension then corresponds to motion along the delocalized chain. In such a model, the

box length L is related to the carbon-carbon bond length R and the number N of carbon

centers involved in the delocalized network L=(N-1) R. In Fig. 2.2, such a conjugated

network involving nine centers is depicted. In this example, the box length would be

eight times the C-C bond length.
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Figure 2.2. The π atomic orbitals of a conjugated chain of nine carbon atoms

The eigenstates ψn(x) and their energies En represent orbitals into which electrons are

placed. In the example case, if nine π electrons are present (e.g., as in the 1,3,5,7-

nonatetraene radical), the ground electronic state would be represented by a total wave

function consisting of a product in which the lowest four ψ's are doubly occupied and the

fifth ψ is singly occupied:

Ψ = ψ1αψ1βψ2αψ2βψ3αψ3βψ4αψ4βψ5α.

The z-component angular momentum states of the electrons are labeled α and β as

discussed earlier.

A product wave function is appropriate because the total Hamiltonian involves the

kinetic plus potential energies of nine electrons. To the extent that this total energy can be

represented as the sum of nine separate energies, one for each electron, the Hamiltonian

allows a separation of variables

H ≅ Σj H(j)

Conjugated π Network with 9 Centers Involved
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in which each H(j) describes the kinetic and potential energy of an individual electron.

Recall that when a partial differential equation has no operators that couple its different

independent variables (i.e., when it is separable), one can use separation of variables

methods to decompose its solutions into products. Thus, the (approximate) additivity of H

implies that solutions of H Ψ = E Ψ are products of solutions to

H (j) ψ(rj) = Ej ψ(rj).

The two lowest π-excited states would correspond to states of the form

Ψ* = ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ5β ψ5α , and

Ψ'* = ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ4β ψ6α ,

 

 

where the spin-orbitals (orbitals multiplied by α or β) appearing in the above products

depend on the coordinates of the various electrons. For example,

ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ5β ψ5α

denotes
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ψ1α(r1) ψ1β (r2) ψ2α (r3) ψ2β (r4) ψ3α  (r5) ψ3β (r6) ψ4α (r7)

ψ5β (r8) ψ5α (r9).

The electronic excitation energies from the ground state to each of the above excited

states within this model would be

∆E* = π2 h2/2m [ 52/L2 - 42/L2] and

∆E'* = π2 h2/2m [ 62/L2 - 52/L2].

It turns out that this simple model of π-electron energies provides a qualitatively correct

picture of such excitation energies. Its simplicity allows one, for example, to easily

suggest how a molecule’s color (as reflected in the complementary color of the light the

molecule absorbs) varies as the conjugation length L of the molecule varies. That is,

longer conjugated molecules have lower-energy orbitals because L2 appears in the

denominator of the energy expression. As a result, longer conjugated molecules absorb

light of lower energy than do shorter molecules.

This simple particle-in-a-box model does not yield orbital energies that relate to

ionization energies unless the potential 'inside the box' is specified. Choosing the value of

this potential V0 such that V0 + π2 h2/2m [ 52/L2] is equal to minus the lowest ionization

energy of the 1,3,5,7-nonatetraene radical, gives energy levels (as E = V0 + π2 h2/2m
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[ n2/L2]) which can then be used as approximations to ionization energies.

The individual π-molecular orbitals

ψn = (2/L)1/2 sin(nπx/L)

are depicted in Fig. 2.3 for a model of the 1,3,5 hexatriene π-orbital system for which the

'box length' L is five times the distance RCC between neighboring pairs of carbon atoms.

The magnitude of the kth C-atom centered atomic orbital in the nth π-molecular orbital is

given by (2/L)1/2 sin(nπkRCC/L).

Figure 2.3. The phases of the six molecular orbitals of a chain containing six atoms.

n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

(2/L)1/2 sin(nπx/L); L = 5 x RCC
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In this figure, positive amplitude is denoted by the clear spheres, and negative amplitude

is shown by the darkened spheres. Where two spheres of like shading overlap, the wave

function has enhanced amplitude; where two spheres of different shading overlap, a node

occurs. Once again, we note that the number of nodes increases as one ranges from the

lowest-energy orbital to higher energy orbitals. The reader is once again encouraged to

keep in mind this ubiquitous characteristic of quantum mechanical wave functions.

This simple model allows one to estimate spin densities at each carbon center and

provides insight into which centers should be most amenable to electrophilic or

nucleophilic attack. For example, radical attack at the C5 carbon of the nine-atom

nonatetraene system described earlier would be more facile for the ground state Ψ than

for either Ψ* or Ψ'*. In the former, the unpaired spin density resides in ψ5, which has

non-zero amplitude at the C5 site x=L/2. In Ψ* and Ψ'*, the unpaired density is in ψ4 and

ψ6, respectively, both of which have zero density at C5. These densities reflect the values

(2/L)1/2 sin(nπkRCC/L) of the amplitudes for this case in which L = 8 x RCC for n = 5, 4,

and 6, respectively. Plots of the wave functions for n ranging from 1 to 7 are shown in

another format in Fig. 2.4 where the nodal pattern is emphasized.
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Figure 2.4. The nodal pattern for a chain containing seven atoms

I hope that by now the student is not tempted to ask how the electron “gets” from one

region of high amplitude, through a node, to another high-amplitude region. Remember,
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such questions are cast in classical Newtonian language and are not appropriate when

addressing the wave-like properties of quantum mechanics.

II. Bands of Orbitals in Solids

Not only does the particle in a box model offer a useful conceptual representation of

electrons moving in polyenes, but it also is the zeroth-order model of band structures in

solids. Let us consider a simple one-dimensional “crystal” consisting of a large number of

atoms or molecules, each with a single orbital (the blue spheres shown below) that it

contributes to the bonding. Let us arrange these building blocks in a regular “lattice” as

shown in the Fig. 2.5.
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Figure  2.5. The energy levels arising from 1, 2, 3, 4, and an infinite number of orbitals

In the top four rows of this figure we show the case with 1, 2, 3, and 4 building blocks.

To the left of each row, we display the energy splitting pattern into which the building

blocks’ orbitals evolve as they overlap and form delocalized molecular orbitals. Not

surprisingly, for n = 2, one finds a bonding and an antibonding orbital. For n = 3, one has

a bonding, one non-bonding, and one antibonding orbital. Finally, in the bottom row, we

attempt to show what happens for an infinitely long chain. The key point is that the
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discrete number of molecular orbitals appearing in the 1-4 orbital cases evolves into a

continuum of orbitals called a band. This band of orbital energies ranges from its bottom

(whose orbital consists of a fully in-phase bonding combination of the building block

orbitals) to its top (whose orbital is a fully out-of-phase antibonding combination).

In Fig. 2.6 we illustrate these fully bonding and fully antibonding band orbitals for two

cases- the bottom involving s-type building block orbitals, and the top involving p-type

orbitals. Notice that when the energy gap between the building block s and p orbitals is

larger than is the dispersion (spread) in energy within the band or s or band of p orbitals,

a band gap occurs between the highest member of the s band and the lowest member of

the p band. The splitting between the s and p orbitals is a property of the individual atoms

comprising the solid and varies among the elements of the periodic table. The dispersion

in energies that a given band of orbitals is split into as these atomic orbitals combine to

form a band is determined by how strongly the orbitals on neighboring atoms overlap.

Small overlap produces small dispersion, and large overlap yields a broad band.
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Figure 2.6. The bonding through antibonding energies and band orbitals arising from s

and from p orbitals

Depending on how many valence electrons each building block contributes, the various

bands formed by overlapping the building-block orbitals of the constituent atoms will be

filled to various levels. For example, if each orbital shown above has a single valence

electron in an s-orbital (e.g., as in the case of the alkali metals), the s-band will be half

filled in the ground state with α and β -paired electrons. Such systems produce very good

conductors because their partially filled bands allow electrons to move with very little

(e.g., only thermal) excitation among other orbitals in this same band. On the other hand,
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for alkaline earth systems with two s electrons per atom, the s-band will be completely

filled. In such cases, conduction requires excitation to the lowest members of the nearby

p-orbital band. Finally, if each building block were an Al (3s2 3p1) atom, the s-band

would be full and the p-band would be half filled. Systems whose highest energy

occupied band is completely filled and for which the gap in energy to the lowest unfilled

band is large are called insulators because they have no way to easily (i.e., with little

energy requirement) promote some of their higher-energy electrons from orbital to orbital

and thus effect conduction. If the band gap between a filled band and an unfilled band is

small, it may be possible for thermal excitation (i.e., collisions with neighboring atoms or

molecules) to cause excitation of electrons from the former to the latter thereby inducing

conductive behavior. An example of such a case is illustrated in Fig. 2.7.
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Figure 2.7. The valence and conduction bands and the band gap.

In contrast, systems whose highest energy occupied band is partially filled are conductors

because the have little spacing among their occupied and unoccupied orbitals.



95

To form a semiconductor, one starts with an insulator as shown in Fig.2.8 with its

filled (dark) band and a band gap between this band and its empty (clear) upper band.

Figure 2.8. The filled and empty bands, the band gap, and exmpty acceptor or filled

donor bands.

If this insulator material were synthesized with a small amount of “dopant” whose

valence orbitals have energies between the filled and empty bands of the insulator, one

may generate a semiconductor. If the dopant species has no valence electrons (i.e., has an
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empty valence orbital), it gives rise to an empty band lying between the filled and empty

bands of the insulator as shown below in case a.  In this case, the dopant band can act as

an electron acceptor for electrons excited (either thermally or by light) from the filled

band into the dopant band.  Once electrons enter the dopant band, charge can flow and

the system becomes a conductor. Another case is illustrated in the b part of the figure.

Here, the dopant has its own band filled but lies close to the empty band of the insulator.

Hence excitation of electrons from the dopant band to the empty band can induce current

to flow.

III. Densities of States in 1, 2, and 3 dimensions.

When a large number of neighboring orbitals overlap, band are formed.

However, the nature of these bands is very different in different dimensions.

Before leaving our discussion of bands of orbitals and orbital energies in solids, I

want to address the issue of the density of electronic states and the issue of what

determines the energy range into which orbitals of a given band will split. First, let’s

recall the energy expression for the 1 and 2- dimensional electron in a box case, and let’s

generalize it to three dimensions. The general result is

E = Σj nj
2 π2 h2/(2mLj

2)

where the sum over j runs over the number of dimensions (1, 2, or 3), and Lj  is the length

of the box along the jth  direction. For one dimension, one observes a pattern of energy
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levels that grows with increasing n, and whose spacing between neighboring energy

levels also grows. However, in 2 and 3 dimensions, the pattern of energy level spacing

displays a qualitatively different character at high quantum number.

Consider first the 3-dimensional case and, for simplicity, let’s use a “box” that has

equal length sides L. In this case, the total energy E is (h2π2/2mL2) times (nx
2 + ny

2  + nz
2).

The latter quantity can be thought of as the square of the length of a vector R having three

components nx, ny, nz. Now think of three Cartesian axes labeled nx, ny, and nz and view a

sphere of radius R in this space. The volume of the 1/8 th sphere having positive values of

nx, ny, and nz and having radius R is 1/8 (4/3 πR3). Because each cube having unit length

along the nx, ny, and nz  axes corresponds to a single quantum wave function and its

energy, the total number Ntot(E) of quantum states with positive nx, ny, and nz and with

energy between zero and E = (h2π2/2mL2)R2 is

Ntot =  1/8 (4/3 πR3) = 1/8 (4/3 π [2mEL2/( h2π2)]3/2

The number of quantum states with energies between E and E+dE is (dNtot/dE) dE, which

is the density Ω(E)  of states near energy E:

Ω(E) = 1/8 (4/3 π [2mL2/( h2π2)]3/2 3/2 E1/2.

Notice that this state density increases as E increases. This means that, in the 3-

dimensional case, the number of quantum states per unit energy grows; in other words,

the spacing between neighboring state energies decreases, very unlike the 1-dimensioal
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case where the spacing between neighboring states grows as n and thus E grows. This

growth in state density in the 3-dimensional case is a result of the degenacies and near-

degenracies that occur. For example, the states with nx, ny, nz = 2,1,1 and 1, 1, 2, and 1, 2,

1 are degenerate, and those with nx, ny, nz = 5, 3, 1 or 5, 1, 3 or 1, 3, 5 or 1, 5, 3 or 3, 1, 5

or 3, 5, 1 are degenerate and nearly degenerate to those having quantum numbers 4, 4, 1

or 1, 4, 4, or 4, 1, 4.

In the 2-dimensional case, degeracies also occur and cause the density of states to

possess an interesting E dependence. In this case, we think of states having energy

E =  (h2π2/2mL2)R2, but with R2 = nx
2 + ny

2. The total number of states having energy

between zero and E is

Ntotal= 4πR2 = 4π E(2mL2/ h2π2)

So, the density of states between E and E+dE is

Ω(E) = dNtotal/dE = 4π (2mL2/ h2π2)

That is, in this 2-dimensional case, the number of states per unit energy is constant for

high E values (where the analysis above applies best).

This kind of analysis for the 1-dimensional case gives

Ntotal= R =  (2mEL2/ h2π2)1/2
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so, the state density between E and E+ dE is:

Ω(E) = 1/2 (2mL2/ h2π2)1/2 E-1/2,

which clearly shows the widening spacing, and thus lower density, as one goes to higher

energies.

These findings about densities of states in 1-, 2-, and 3- dimensions are important

because, in various problems one encounters in studying electronic states of extended

systems such as solids and surfaces,  one needs to know how the number of states

available at a given total energy E varies with E.  Clearly, the answer to this question

depends upon the dimensionality of the problem, and this fact is what I want the students

reading this text to keep in mind.

IV. The Most Elementary Model of Orbital Energy Splittings: Hückel or Tight

Binding Theory

Now, let’s examine what determines the energy range into which orbitals (e.g., pπ

orbitals in polyenes or metal s or p orbitals in a solid) split. To begin, consider two

orbitals, one on an atom labeled A and another on a neighboring atom labeled B; these

orbitals could be, for example, the 1s orbitals of two hydrogen atoms, such as Figure 2.9

illustrates.
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Figure 2.9. Two 1s orbitals combine to produce a σ bonding and a σ* antibonding

molecular orbital

However, the two orbitals could instead be two pπ  orbitals on neighboring carbon atoms

such as are shown in Fig. 2.10 as they form  bonding and π* anti-bonding orbitals.
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Figure 2.10. Two atomic pπ orbitals form a bonding π and antibonding π* molecular

orbital.

In both of these cases, we think of forming the molecular orbitals  (MOs) φk as linear

combinations of the atomic orbitals (AOs) χa on the constituent atoms, and we express

this mathematically as follows:

φK = Σa CK,a χa,

where the CK,a  are called linear combination of atomic orbital to form molecular orbital

(LCAO-MO) coefficients. The MOs are supposed to be solutions to the Schrödinger

equation in which the Hamiltonian H involves the kinetic energy of the electron as well

as the potentials VL and VR detailing its attraction to the left and right atomic centers:
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H = - h2/2m ∇2 + VL + VR.

In contrast, the AOs centered on the left atom A are supposed to be solutions of the

Schrödinger equation whose Hamiltonian is H = - h2/2m ∇2 + VL , and the AOs on the

right atom B have H = - h2/2m ∇2 + VR.  Substituting φK = Σa CK,a χa into the MO’s

Schrödinger equation HφK = εK φK and then multiplying on the left by the complex

conjugate of χb  and integrating over the r, θ and φ coordinates of the electron produces

Σa <χb| - h
2/2m ∇2 + VL + VR |χa> CK,a = εK Σa <χb|χa> CK,a

Recall that the Dirac notation <a|b> denotes the integral of a* and b, and <a| op| b>

denotes the integral of a* and the operator op acting on b.

In what is known as the Hückel model in organic chemistry or the tight-binding

model in solid-state theory, one approximates the integrals entering into the above set of

linear equations as follows:

i. The diagonal integral <χb| - h
2/2m ∇2 + VL + VR |χb> involving the AO centered on the

right atom and labeled χb is assumed to be equivalent to <χb| - h
2/2m ∇2 + VR |χb>, which

means that net attraction of this orbital to the left atomic center is neglected. Moreover,

this integral is approximated in terms of the binding energy (denoted α, not to be

confused with the electron spin function α) for an electron that occupies the χb  orbital:

<χb| - h
2/2m ∇2 + VR |χb> = αb. The physical meaning of αb  is the kinetic energy of the
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electron in χb plus the attraction of this electron to the right atomic center while it resides

in χb. Of course, an analogous approximation is made for the diagonal integral involving

χa; <χa| - h
2/2m ∇2 + VL |χa> = αa .

ii. The off-diagonal integrals <χb| - h
2/2m ∇2 + VL + VR |χa> are expressed in terms of a

parameter βa,b which relates to the kinetic and potential energy of the electron while it

resides in the “overlap region” in which both χa and χb  are non-vanishing. This region is

shown pictorially above as the region where the left and right orbitals touch or overlap.

The magnitude of β is assumed to be proportional to the overlap Sa,b between the two

AOs : Sa,b = <χa|χb>. It turns out that β is usually a negative quantity, which can be seen

by writing it as <χb| - h
2/2m ∇2 + VR |χa> + <χb|  VL  |χa>. Since χa  is an eigenfunction of -

h2/2m ∇2 +  VR having the eigenvalue αa, the first term is equal to αa (a negative quantity)

times <χb|χa>, the overlap S. The second quantity <χb|  VL  |χa> is equal to the integral of

the overlap density χb(r) χa(r) multiplied by the (negative) Coulomb potential for

attractive interaction of the electron with  the left atomic center. So, whenever χb(r) and

χa(r) have positive overlap, β will turn out negative.

iii. Finally, in the most elementary Hückel or tight-binding model, the overlap integrals

<χa|χb> = Sa,b  are neglected and set equal to zero on the right side of the matrix

eigenvalue equation. However, in some Hückel models, overlap between neighboring

orbitals is explictly treated, so, in some of the discussion below we will retain Sa,b.
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With these Hückel approximations, the set of equations that determine the orbital

energies εK and the corresponding LCAO-MO coefficients CK,a  are written for the two-

orbital case at hand as in the first 2x2 matrix equations shown below

which is sometimes written as

 These equations reduces with the assumption of zero overlap to

The α parameters are identical if the two AOs χa and χb are identical, as would be

the case for bonding between the two 1s orbitals of two H atoms or two 2pπ orbitals of

two C atoms or two 3s orbitals of two Na atoms. If the left and right orbitals were not

identical (e.g., for bonding in HeH+ or for the π bonding in a C-O group), their α values

would be different and the Hückel matrix problem would look like:

α β
β α

 

 
 
 

 

 
 
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CL

CR

 

 
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 
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S 0

0 S
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 
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α − ε β − εS

β − εS α − ε
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 
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 
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 

 
 
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0

0

 

 
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α β
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 

 

 
 
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 = ε

1 0

0 1
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 
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CL
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 

 
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 
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To find the MO energies that result from combining the AOs, one must find the

values of ε for which the above equations are valid. Taking the 2x2 matrix consisting of ε

times the overlap matrix to the left hand side, the above set of equations reduces to the

third set displayed earlier. It is known from matrix algebra that such a set of linear

homogeneous equations (i.e., having zeros on the right hand sides) can have non-trivial

solutions (i.e., values of C that are not simply zero) only if the determinant of the matrix

on the left side vanishes. Setting this determinant equal to zero gives a quadratic equation

in which the ε values are the unknowns:

(α-ε)2 – (β-εS)2 = 0.

This quadratic equation can be factored into a product

(α - β  - ε +εS) (α + β - ε -εS) = 0

which has two solutions

ε = (α + β)/(1 + S), and ε = (α -β)/(1 – S).

α β
β α'

 
  

 
  

CL

CR

 
  

 
  = ε

1 S

S 1
 
  

 
  

CL

CR

 
  

 
  
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As discussed earlier, it turns out that the β values are usually negative, so the

lowest energy such solution is the ε = (α + β)/(1 + S) solution, which gives the energy of

the bonding MO.  Notice that the energies of the bonding and anti-bonding MOs are not

symmetrically displaced from the value α within this version of the Hückel model that

retains orbital overlap. In fact, the bonding orbital lies less than β below α, and the

antibonding MO lies more than β above α because of the 1+S and 1-S factors in the

respective denominators. This asymmetric lowering and raising of the MOs relative to the

energies of the constituent AOs is commonly observed in chemical bonds; that is, the

antibonding orbital is more antibonding than the bonding orbital is bonding. This is

another important thing to keep in mind because its effects pervade chemical bonding and

spectroscopy.

Having noted the effect of inclusion of AO overlap effects in the Hückel model, I

should admit that it is far more common to utilize the simplified version of the Hückel

model in which the S factors are ignored. In so doing, one obtains patterns of MO orbital

energies that do not reflect the asymmetric splitting in bonding and antibonding orbitals

noted above. However, this simplified approach is easier to use and offers qualitatively

correct MO energy orderings. So, let’s proceed with our discussion of the Hückel model

in its simplified version.

To obtain the LCAO-MO coefficients corresponding to the bonding and

antibonding MOs, one substitutes the corresponding α values into the linear equations

α − ε β
β α −ε

 
  

 
  

CL

CR

 
  

 
  =

0

0
 
  

 
  
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and solves for the Ca  coefficients (acutally, one can solve for all but one Ca, and then use

normalization of the MO to determine the final Ca). For example, for the bonding MO,

we substitute ε = α + β into the above matrix equation and obtain two equations for CL

and CR:

− β CL + β CR = 0

β CL - β CR  = 0.

These two equations are clearly not independent; either one can be solved for one C in

terms of the other C to give:

CL = CR,

which means that the bonding MO is

φ = CL (χL + χR).

The final unknown, CL, is obtained by noting that φ is supposed to be a normalized

function <φ|φ> = 1. Within this version of the Hückel model, in which the overlap S is

negleted, the normalization of φ leads to the following condition:
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1 = <φ|φ> = CL
2 (<χL|χL> + <χRχR>) = 2 CL

2

with the final result depending on assuming that each χ is itself also normalized. So,

finally, we know that CL = (1/2)1/2, and hence the bonding MO is:

φ = (1/2)1/2 (χL + χR).

Actually, the solution of 1 = 2 CL
2 could also have yielded CL = - (1/2)1/2 and then, we

would have

φ = - (1/2)1/2 (χL + χR).

These two solutions are not independent (one is just –1 time the other), so only one

should be included in the list of MOs. However, either one is just as good as the other

because, as shown very early in this text, all of the physical properties that one computes

from a wave function depend not on ψ but on ψ*ψ. So, two wave functions that differ

from one another by an overall sign factor as we have here have exactly the same ψ*ψ

and thus are equivalent.

In like fashion, we can substitute ε = α - β into the matrix equation and solve for

the CL can CR  values that are appropriate for the antibonding MO. Doing so, gives us:

φ* = (1/2)1/2 (χL - χR)
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or, alternatively,

φ* = (1/2)1/2 (χR - χL).

Again, the fact that either expression for φ* is acceptable shows a property of all

solutions to any Scrrödinger equations; any multiple of a solution is also a solution. In the

above example, the two “answers” for φ* differ by a multiplicative factor of (-1).

Let’s try another example to practice using Hückel or tight-binding theory. In

particular, I’d like you to imagine two possible structures for a cluster three Na atoms

(i.e., pretend that someone came to you and asked what geometry you think such a cluster

would assume in its ground electronic state), one linear and one an equilateral triangle.

Further, assume that the Na-Na distances in both such clusters are equal (i.e., that the

person asking for your theoretical help is willing to assume that variations in bond

lengths are not the crucial factor in determining which structure is favored). In Fig. 2.11,

I shown the two candidate clusters and their 3s orbitals.

Figure 2.11.  Linear and equilateral triangle structures of sodium trimer.

Na Na Na Na

Na

Na



110

Numbering the three Na atoms’ valence 3s orbitals χ1, χ2, and χ3, we then set up

the 3x3 Hückel matrix appropriate to the two candidate structures:

for the linear structure (n.b., the zeros arise because χ1 and χ3  do not overlap and thus

have no β coupling matrix element). Alternatively, for the triangular structure, we find’

as the Hückel matrix. Each of these 3x3 matrices will have three eigenvalues that we

obtain by subtracting ε from their diagonals and setting the determinants of the resulting

matrices to zero. For the linear case, doing so generates

(α-ε)3 – 2 β2 (α-ε) = 0,

and for the triangle case it produces

(α-ε)3 –3 β2 (α-ε) + 2 β2  = 0.

α β 0

β α β
0 β α

 

 

 
 

 

 

 
 

α β β
β α β
β β α

 

 

 
 
 

 

 

 
 
 
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The first cubic equation has three solutions that give the MO energies:

ε = α + (2)1/2 β, ε = α, and ε = α - (2)1/2 β,

for the bonding, non-bonding and antibonding MOs, respectively. The second cubic

equation also has three solutions

ε = α + 2β, ε = α - β , and ε = α - β.

So, for the linear and triangular structures, the MO energy patterns are as shown in Fig.

2.12.
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Figure 2.12. Energy orderings of molecular orbitals of linear and triangular

sodium trimer

For the neutral Na3 cluster about which you were asked, you have three valence

electrons to distribute among the lowest available orbitals. In the linear case, we place

two electrons into the lowest orbital and one into the second orbital. Doing so produces a

3-electron state with a total energy of E= 2(α+21/2 β) + α = 3α +2 21/2β. Alternatively, for

the triangular species, we put two electrons into the lowest MO and one into either of the

degenerate MOs resulting in a 3-electron state with total energy E = 3 α + 3β. Because β

is a negative quantity, the total energy of the triangular structure is lower than that of the

linear structure since 3 > 2 21/2.

The above example illustrates how we can use Hückel/tight-binding theory to

make qualitative predictions (e.g., which of two “shapes” is likely to be of lower energy).

Notice that all one needs to know to apply such a model to any set of atomic orbitals that

overlap to form MOs is

α

α + (2)1/2β

α − (2)1/2β

Linear Na3 Cluster MO Energies

α + 2β

α − β

Triangle Na3 Cluster MO Energies
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(i) the individual AO energies α (which relate to the electronegativity of the AOs) and

(ii) the degree to which the AOs couple (the β parameters which relate to AO overlaps).

Let’s see if you can do some of this on your own. Using the above results, would

you expect the cation Na3
+  to be linear or triangular? What about the anion Na3

-? Next, I

want you to substitute the MO energies back into the 3x3 matrix and find the C1, C2, and

C3 coefficients appropriate to each of the 3 MOs of the linear and of the triangular

structure. See if doing so leads you to solutions that can be depicted as shown in Fig.

2.13, and see if you can place each set of MOs in the proper energy ordering.

Figure 2.13. The molecular orbitals of linear and triangular sodium trimer (note,

they are not energy ordered).
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Now, I want to show you how to broaden your horizons and use tight-binding

theory to describe all of the bonds in a more complicated molecule such as ethylene

shown in Fig. 2.14. Within the model described above, each pair of orbitals that “touch”

or overlap gives rise to a 2x2 matrix. More correctly, all n of the constituent AOs form an

nxn matrix, but this matrix is broken up into 2x2 blocks whenever each AO touches only

one other AO. Notice that this did not happen in the triangular Na3 case where each AO

touched two other AOs.  For the ethlyene case, the valence AO’s consist of (a) four

equivalent C sp2 orbitals that are directed toward the four H atoms, (b) four H 1s orbitals,

(c) two C sp2 orbitals directed toward one another to form the C-C σ bond, and (d) two C

pπ orbitals that will form the C-C π bond. This total of 12 AOs generates 6 Hückel

matrices as shown below the ethylene molecule.

Figure 2.14 Ethylene molecule with four C-H bonds, one C-C σ bond, and one C-C π

bond.
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We obtain one 2x2 matrix for the C-C σ bond of the form

and one 2x2 matrix for the C-C π bond of the form

Finally, we also obtain four identical 2x2 matrices for the C-H bonds:

The above matrices will then produce (a) four identical C-H bonding MOs having

energies ε = 1/2 {(αH + αC) –[(αH-αC)2 + 4β2]1/2}, (b) four identical C-H antibonding MOs

having energies  ε* = 1/2 {(αH + αC) + [(αH - αC)2  + 4β2]1/2}, (c) one bonding C-C

π orbital with ε = αpπ + β , (d) a partner antibonding C-C orbital with ε* = αpπ  - β, (e) a

C-C σ bonding MO with ε = αsp2 + β , and (f) its antibonding partner with ε* = αsp2 - β. In

all of these expressions, the β parameter is supposed to be that appropriate to the specific

orbitals that overlap as shown in the matrices.
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If you wish to practice this exercise of breaking a large molecule down into sets

of interacting AOs, try to see what Hückel matrices you obtain and what bonding and

antibonding MO energies you obtain for the valence orbitals of methane shown in Fig.

2.15.

Figure 2.15.  Methane molecule with four C-H bonds.

Before leaving this discussion of the Hückel/tight-binding model, I need to stress

that it has its flaws (because it is based on approximations and involves neglecting certain

terms in the Schrödinger equation). For example, it predicts (see above) that ethylene has

four energetically identical C-H bonding MOs (and four degenerate C-H antibonding

MOs).  However, this is not what is seen when photoelectron spectra are used to probe

the energies of these MOs. Likewise, it suggests that methane has four equivalent C-H

bonding and antibonding orbitals, which, again is not true. It turns out that, in each of

these two cases (ethylene and methane), the experiments indicate a grouping of four

nearly iso-energetic bonding MOs and four nearly iso-energetic antibonding MOs.

However, there is some “splitting” among these clusters of four MOs. The splittings can
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be interpreted, within the Hückel model, as arising from couplings or interactions among,

for example, one sp2 or sp3 orbital on a given C atom and another such orbital on the

same atom. Such couplings cause the nxn Hückel matrix to not block-partition into

groups of 2x2 sub-matrices because now there exist off-diagonal β factors that couple

one pair of directed AOs to another. When such couplings are included in the analysis,

one finds that the clusters of MOs expected to be degenerate are not but are split just as

the photoelectron data suggest.

V. Hydrogenic Orbitals

The Hydrogenic atom problem forms the basis of much of our thinking about

atomic structure. To solve the corresponding Schrödinger equation requires separation

of the r, θ, and φ variable.

The Schrödinger equation for a single particle of mass µ moving in a central

potential (one that depends only on the radial coordinate r) can be written as

- 
h−2

2µ 





∂2

∂x2 + 
∂2

∂y2 + 
∂2

∂z2  ψ + V x2+y2+z2   ψ = Eψ.

or, introducing the short-hand notation ∇2:

- h2/2m ∇2 ψ +  V ψ = E ψ.
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This equation is not separable in Cartesian coordinates (x,y,z) because of the way x,y,

and z appear together in the square root.  However, it is separable in spherical coordinates

where it has the form

-
h−2

2µr2 



∂

∂r 
 


r2 

∂ψ
∂r   + 

1
r2Sinθ 

∂
∂θ 





Sinθ 
∂ψ
∂θ  

 + 
1

r2Sin2θ 
∂2ψ
∂φ2   + V(r)ψ = - h2/2m ∇2 ψ +  V ψ = Eψ .

Subtracting V(r)ψ from both sides of the equation and multiplying by - 
2µr2

h−2   then

moving the derivatives with respect to r to the right-hand side, one obtains

1
Sinθ 

∂
∂θ 





Sinθ 
∂ψ
∂θ   + 

1
Sin2θ 

∂2ψ
∂φ2  

       = -
2µr2

h−2  ( )E-V(r)  ψ - 
∂
∂r 

 


r2 
∂ψ
∂r  .

Notice that, except for ψ itself, the right-hand side of this equation is a function of r only;
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it contains no θ or φ dependence.  Let's call the entire right hand side F(r) ψ to emphasize

this fact.

To further separate the θ and φ dependence, we multiply by Sin2θ and subtract the

θ derivative terms from both sides to obtain

∂2ψ
∂φ2   = F(r)ψSin2θ - Sinθ 

∂
∂θ 





Sinθ 
∂ψ
∂θ  .

Now we have separated the φ dependence from the θ and r dependence.  We now

introduce the procedure used to separate variables in differntial equations and assume ψ

can be written as a function of φ times a function of r and θ: ψ = Φ(φ) Q(r,θ). Dividing by

Φ Q, we obtain

 
1
Φ  

∂2Φ
∂φ2   = 

1
Q 





F(r)Sin2θ Q - Sinθ 
∂
∂θ 





Sinθ 
∂Q
∂θ   .

Now all of the φ dependence is isolated on the left hand side; the right hand side contains

only r and θ dependence.

Whenever one has isolated the entire dependence on one variable as we have done

above for the φ dependence, one can easily see that the left and right hand sides of the

equation must equal a constant.  For the above example, the left hand side contains no r

or θ dependence and the right hand side contains no φ dependence.  Because the two
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sides are equal, they both must actually contain no r, θ, or φ dependence; that is, they are

constant.

For the above example, we therefore can set both sides equal to a so-called

separation constant that we call -m2.  It will become clear shortly why we have chosen to

express the constant in the form of minus the square of an integer. You may recall that we

studied this same φ - equation earlier and learned how the integer m arises via. the

boundary condition that φ and φ + 2π represent identical geometries.

1. The Φ Equation

The resulting Φ equation reads (the “ symbol is used to represent second

derivative)

Φ" + m2Φ = 0 .

This equation should be familiar because it is the equation that we treated much earlier

when we discussed z-component of angular momentum. So, its further analysis should

also be familiar, but for completeness, I repeat much of it. The above equation has as its

most general solution

 Φ = Αeimφ + Be-imφ .
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Because the wave functions of quantum mechanics represent probability densities, they

must be continuous and single-valued.  The latter condition, applied to our Φ function,

means (n.b., we used this in our earlier discussion of z-component of angular momentum)

that

Φ(φ) = Φ(2π + φ) or,

Aeimφ( )1 - e2imπ   + Be-imφ( )1 - e-2imπ   = 0.

This condition is satisfied only when the separation constant is equal to an integer m = 0,

±1, ± 2, ... .  and provides another example of the rule that quantization comes from the

boundary conditions on the wave function.  Here m is restricted to certain discrete values

because the wave function must be such that when you rotate through 2π about the z-axis,

you must get back what you started with.

2. The Θ Equation

Now returning to the equation in which the φ dependence was isolated from the r

and θ dependence.and rearranging the θ terms to the left-hand side, we have
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1
Sinθ 

∂
∂θ 





Sinθ 
∂Q
∂θ   - 

m2Q
Sin2θ  = F(r)Q.

In this equation we have separated θ and r variations so we can further decompose the

wave function by introducing Q = Θ(θ) R(r) , which yields

1
Θ 

1
Sinθ 

∂
∂θ 





Sinθ 
∂Θ
∂θ   - 

m2

Sin2θ  = 
F(r)R

R   = -λ,

where a second separation constant, -λ, has been introduced once the r and θ dependent

terms have been separated onto the right and left hand sides, respectively.

We now can write the θ equation as

1
Sinθ 

∂
∂θ 





Sinθ 
∂Θ
∂θ   - 

m2Θ
Sin2θ  = -λ Θ,

where m is the integer introduced earlier.  To solve this equation for Θ , we make the

substitutions z = Cosθ and P(z) = Θ(θ) , so 1-z2  = Sinθ , and

∂
∂θ  = 

∂z
∂θ 

∂
∂z  = - Sinθ 

∂
∂z  .
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The range of values for θ was 0 ≤  θ < π , so the range for z is -1 < z < 1.  The equation

for Θ , when expressed in terms of P and z, becomes

d
dz 





(1-z2) 
dP
dz   - 

m2P
1-z2  + λP = 0.

Now we can look for polynomial solutions for P, because z is restricted to be less than

unity in magnitude.  If m = 0, we first let

P = ∑
k=0

∞
akzk  ,

and substitute into the differential equation to obtain

∑
k=0

∞
(k+2)(k+1) ak+2 zk  - ∑

k=0

∞
(k+1) k akzk  + λ ∑

k=0

∞
akzk  = 0.

Equating like powers of z gives

ak+2 = 
ak(k(k+1)-λ)
(k+2)(k+1)   .
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Note that for large values of k

ak+2
ak

  → 
k2





1+
1
k

k2





1+
2
k 





1+
1
k

  = 1.

Since the coefficients do not decrease with k for large k, this series will diverge for z = ±

1 unless  it truncates at finite order.  This truncation only happens if the separation

constant λ obeys λ = l(l+1), where l is an integer.  So, once again, we see that a boundary

condition (i.e., that the wave function not diverge and thus be normalizable in this case)

give rise to quantization.  In this case, the values of λ are restricted to l(l+1); before, we

saw that m is restricted to 0, ±1, ± 2, .. .

Since the above recursion relation links every other coefficient, we can choose to

solve for the even and odd functions separately.  Choosing a0 and then determining all of

the even ak in terms of this a0, followed by rescaling all of these ak to make the function

normalized generates an even solution.  Choosing a1 and determining all of the odd ak in

like manner, generates an odd solution.

For l= 0, the series truncates after one term and results in Po(z) = 1.  For l= 1 the

same thing applies and P1(z) = z.  For l= 2, a2 = -6 
ao
2   = -3ao , so one obtains P2 = 3z2-1,

and so on.  These polynomials are called Legendre polynomials.

For the more general case where m ≠ 0, one can proceed as above to generate a

polynomial solution for the Θ function.  Doing so, results in the following solutions:
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P
l
m(z)  = (1-z2)

|m|
2

 
 d|m| P

l
 (z)

dz|m|  .

These functions are called Associated Legendre polynomials, and they constitute the

solutions to the Θ problem for non-zero m values.

The above P and eimφ functions, when re-expressed in terms of θ and φ, yield the

full angular part of the wave function for any centrosymmetric potential.  These solutions

are usually written as Yl,m(θ,φ) = P
l
m(Cosθ) (2π)

-
1
2
  exp(imφ), and are called spherical

harmonics.  They provide the angular solution of the r,θ, φ Schrödinger equation for any

problem in which the potential depends only on the radial coordinate.  Such situations

include all one-electron atoms and ions (e.g., H, He+, Li++ , etc.), the rotational motion of

a diatomic molecule (where the potential depends only on bond length r), the motion of a

nucleon in a spherically symmetrical "box" (as occurs in the shell model of nuclei), and

the scattering of two atoms (where the potential depends only on interatomic distance).

The Yl,m functions possess varying number of angular nodes, which, as noted earlier, give

clear signatures of the angular or rotational energy content of the wave function. These

angular nodes originate in the oscillatory nature of the Legendre and associated Legendre

polynomials Pl
M

 (cosθ); the higher l is, the more sign changes occur within the

polynomial.

3. The R Equation

Let us now turn our attention to the radial equation, which is the only place that
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the explicit form of the potential appears.  Using our earlier results for the equation

obeyed by the R(r) function and specifying V(r) to be the coulomb potential appropriate

for an electron in the field of a nucleus of charge +Ze, yields:

1
r2 

d
dr 

 


r2 
dR
dr   + 






2µ

h−2 





E + 
Ze2

r  - 
l(l + 1)

r2   R = 0.

We can simplify things considerably if we choose rescaled length and energy units

because doing so removes the factors that depend on µ, h− , and e.  We introduce a new

radial coordinate ρ and a quantity σ as follows:

ρ = 





-8µE

h−2

1
2
  r,  and σ2 = -

µZ2e4

2Eh−2   .

Notice that if E is negative, as it will be for bound states (i.e., those states with energy

below that of a free electron infinitely far from the nucleus and with zero kinetic energy),

ρ is real.  On the other hand, if E is positive, as it will be for states that lie in the

continuum, ρ will be imaginary.  These two cases will give rise to qualitatively different

behavior in the solutions of the radial equation developed below.

We now define a function S such that S(ρ) = R(r) and substitute S for R to obtain:
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1
ρ2 

d
dρ 





ρ2 
dS
dρ   + 





- 
1
4 - 

l(l+1)
ρ2  + 

σ
ρ   S = 0.

The differential operator terms can be recast in several ways using

1
ρ2 

d
dρ 





ρ2 
dS
dρ   = 

d2S
dρ2  + 

2
ρ 

dS
dρ  = 

1
ρ 

d2

dρ2 (ρS) .

The strategy that we now follow is characteristic of solving second order

differential equations.  We will examine the equation for S at large and small ρ values.

Having found solutions at these limits, we will use a power series in ρ to "interpolate"

between these two limits.

Let us begin by examining the solution of the above equation at small values of ρ

to see how the radial functions behave at small r.  As ρ→0, the second term in the

brackets will dominate.  Neglecting the other two terms in the brackets, we find that, for

small values of ρ (or r), the solution should behave like ρL and because the function must

be normalizable, we must have L ≥ 0.  Since L can be any non-negative integer, this

suggests the following more general form for S(ρ) :

S(ρ) ≈ ρL e-aρ.

This form will insure that the function is normalizable since S(ρ) → 0 as r → ∞ for all L,
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as long as ρ is a real quantity.  If ρ is imaginary, such a form may not be normalized (see

below for further consequences).

Turning now to the behavior of S for large ρ, we make the substitution of S(ρ)

into the above equation and keep only the terms with the largest power of ρ (e.g., the first

term in brackets).  Upon so doing, we obtain the equation

 a2ρLe-aρ = 
1
4  ρLe-aρ ,

which leads us to conclude that the exponent in the large-ρ behavior of S is a = 
1
2 .

Having found the small- and large-ρ behaviors of S(ρ), we can take S to have the

following form to interpolate between large and small ρ-values:

S(ρ) = ρLe
-
ρ
2
   P(ρ),

where the function P is expanded in an infinite power series in ρ as P(ρ) = ∑ak ρk .

Again substituting this expression for S into the above equation we obtain

P"ρ + P'(2L+2-ρ) + P(σ-L-l) = 0,
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and then substituting the power series expansion of P and solving for the ak's we arrive at

a recursion relation for the ak coefficients:

ak+1 = 
(k-σ+L+l) ak

(k+1)(k+2L+2)  .

For large k, the ratio of expansion coefficients reaches the limit 
ak+1
ak

  = 
1
k  , which has the

same behavior as the power series expansion of eρ.  Because the power series expansion

of P describes a function that behaves like eρ for large ρ, the resulting S(ρ) function

would not be normalizable because the e
-
ρ
2
  factor would be overwhelmed by this eρ

dependence.  Hence, the series expansion of P must truncate in order to achieve a

normalizable S function.  Notice that if ρ is imaginary, as it will be if E is in the

continuum, the argument that the series must truncate to avoid an exponentially diverging

function no longer applies.  Thus, we see a key difference between bound (with ρ real)

and continuum (with ρ imaginary) states.  In the former case, the boundary condition of

non-divergence arises; in the latter, it does not because exp(ρ/2) does  not diverge if ρ is

imaginary.

To truncate at a polynomial of order n', we must have n' - σ + L+ l= 0.  This

implies that the quantity σ introduced previously is restricted to σ = n' + L + l , which is

certainly an integer; let us call this integer n.  If we label states in order of increasing n =

1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the

P(ρ) polynomial n' = 0,1,2,... after which the L-value can run from L = 0, in steps of unity
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up to L = n-1.

Substituting the integer n for σ , we find that the energy levels are quantized

because σ is quantized (equal to n):

E = -  
µZ2e4

2h−2n2  

and the scaled distance turns out to be

ρ = 
Zr
aon .

Here, the length ao is the so called Bohr radius 







ao = 
h−2

µe2  ; it appears once the above E-

expression is substituted into the equation for ρ.  Using the recursion equation to solve

for the polynomial's coefficients ak for any choice of n and l quantum numbers generates

a so-called Laguerre polynomial; Pn-L-1(ρ).  They contain powers of ρ from zero through

n-L-1, and they have n-L-1 sign changes as the radial coordinate ranges from zero to

infinity. It is these sign changes in the Laguerre polynomials that cause the radial parts of

the hydrogenic wave functions to have n-L-1 nodes. For example, 3d orbitals have no

radial nodes, but 4d orbitals have one; and, as shown in Fig. 2.16, 3p orbitals have one

while 3s orbitals have two. Once again, the higher the number of nodes, the higher the

energy in the radial direction.
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Figure 2.16.  Plots of the Radial Parts of the 3s and 3p Orbitals

Let me again remind you about the danger of trying to understand quantum wave

functions or probabilities in tems of classical dynamics. What kind of potential V(r)

would give rise to, for example, the 3s P(r) plot shown above? Classical mechanics

suggests that P should be large where the particle moves slowly and small where it moves

quickly. So, the 3s P(r) plot suggests that the radial speed of the electron has three regions

where it is low (i.e., where the peaks in P are) and two regions where it is very large (i.e.,

where the nodes are). This, in turn, suggests that the radial potential V(r) experienced by

the 3s electron is high in three regions (near peaks in P) and low in two regions (and at

the nucleus). Of course, this conclusion about the form of V(r) is nonsense and again

illustrates how one must not be drawn into trying to think of the classical motion of the
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particle, especially for quantum states with small quantum number. In fact, the low

quantum number states of such one-electron atoms and ions have their radial P(r) plots

focused in regions of r-space where the potential –Ze2/r is most attractive (i.e., largest in

magnitude).

Finally, we note that the energy quantization does not arise for states lying in the

continuum because the condition that the expansion of P(ρ) terminate does not arise.  The

solutions of the radial equation appropriate to these scattering states (which relate to the

scattering motion of an electron in the field of a nucleus of charge Z) are a bit outside the

scope of this text, so we will not treat them further here. For the interested student, they

are treated on p. 90 of the text by Eyring, Walter, and Kimball.

To review, separation of variables has been used to solve the full r,θ,φ

Schrödinger equation for one electron moving about a nucleus of charge Z.  The θ and φ

solutions are the spherical harmonics YL,m (θ,φ).  The bound-state radial solutions

Rn,L(r) = S(ρ) = ρLe
-
ρ
2
  Pn-L-1(ρ)

depend on the n and l quantum numbers and are given in terms of the Laguerre

polynomials.

4. Summary

To summarize, the quantum numbers L and m arise through boundary conditions

requiring that ψ(θ) be normalizable (i.e., not diverge) and ψ(φ) = ψ(φ+2π). The radial
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equation, which is the only place the potential energy enters, is found to possess both

bound-states (i.e., states whose energies lie below the asymptote at which the potential

vanishes and the kinetic energy is zero) and continuum states lying energetically above

this asymptote. The resulting hydrogenic wave functions (angular and radial) and

energies are summarized on pp. 133-136 in the text by L. Pauling and E. B. Wilson for n

up to and including 6 and L up to 5.

There are both bound and continuum solutions to the radial Schrödinger equation

for the attractive coulomb potential because, at energies below the asymptote, the

potential confines the particle between r=0 and an outer turning point, whereas at

energies above the asymptote, the particle is no longer confined by an outer turning point

(see Fig. 2.17).

-Zee/r

r
0.0

Continuum State

Bound
States
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Figure 2.17.  Radial Potential for Hydrogenic Atoms and Bound and Continuum Orbital

Energies.

The solutions of this one-electron problem form the qualitative basis for much of atomic

and molecular orbital theory. For this reason, the reader is encouraged to gain a firmer

understanding of the nature of the radial and angular parts of these wave functions. The

orbitals that result are labeled by n, L, and m quantum numbers for the bound states and

by L and m quantum numbers and the energy E for the continuum states. Much as the

particle-in-a-box orbitals are used to qualitatively describe π- electrons in conjugated

polyenes, these so-called hydrogen-like orbitals provide qualitative descriptions of

orbitals of atoms with more than a single electron. By introducing the concept of

screening as a way to represent the repulsive interactions among the electrons of an atom,

an effective nuclear charge Zeff can be used in place of Z in the ψn,L,m and En to generate

approximate atomic orbitals to be filled by electrons in a many-electron atom. For

example, in the crudest approximation of a carbon atom, the two 1s electrons experience

the full nuclear attraction so Zeff = 6 for them, whereas the 2s and 2p electrons are

screened by the two 1s electrons, so Zeff = 4 for them. Within this approximation, one then

occupies two 1s orbitals with Z = 6, two 2s orbitals with Z = 4 and two 2p orbitals with

Z=4 in forming the full six-electron wave function of the lowest-energy state of carbon.

VI. Electron Tunneling
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Tunneling is a phenomenon of quantum mechanics,  not classical mechanics. It is

an extremely important subject that occurs in a wide variety of chemical species.

Solutions to the Schrödinger equation display several properties that are very different

from what one experiences in Newtonian dynamics. One of the most unusual and

important is that the particles one describes using quantum mechanics can move into

regions of space where they would not be “allowed” to go if they obeyed classical

equations. Let us consider an example to illustrate this so-called tunneling phenomenon.

Specifically, we think of an electron (a particle that we likely would use quantum

mechanics to describe) moving in a direction we will call R under the influence of a

potential that is:

a. Infinite for R < 0 (this could, for example, represent a region of space within a solid

material where the electron experiences very repulsive interactions with other electrons);

b. Constant and negative for some range of R between R = 0 and Rmax  (this could

represent the attractive interaction of the electrons with those atoms or molecules in a

finite region of a solid);

c. Constant and repulsive by an amount δV + De for another finite region from Rmax to

Rmax +δ (this could represent the repulsive interactions between the electrons and a layer

of molecules of thickness δ lying on the surface of the solid at Rmax);

d. Constant and equal to De from Rmaz +δ to infinity (this could represent the electron

being removed from the solid, but with a “work function energy cost of De, and moving

freely in the vacuum above the surface and the ad-layer). Such a potential is shown in

Fig. 2.18.
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Figure 2.18.  One-dimensional potential showing a well, a barrier, and the asymptotic

region.

The piecewise nature of this potential allows the one-dimensional Schrödinger equation

to be solved analytically. For energies lying in the range De < E < De +δV, an especially

interesting class of solutions exists. These so-called resonance states occur at energies

δV

Rmax  + δRmax

Electron Position Coordinate R

De

0.0

V(R)
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that are determined by the condition that the amplitude of the wave function within the

barrier (i.e., for 0 ≤ R ≤ Rmax ) be large. Let us now turn our attention to this specific

energy regime, which also serves to introduce the tunneling phenomenon.

The piecewise solutions to the Schrödinger equation appropriate to the resonance

case are easily written down in terms of sin and cos or exponential functions, using the

following three definitions:

The combination of sin(kR) and cos(kR) that solve the Schrödinger equation in the inner

region and that vanish at R=0 (because the function must vanish within the region where

V is infinite and because it must be continuous, it must vanish at R=0) is:

Ψ = Asin(kR) (for 0 ≤ R ≤ Rmax ).

Between Rmax and Rmax +δ, there are two solutions that obey the Schrödiger equation, so

the most general solution is a combination of these two:

Ψ = B+ exp(κ'R) + B-
 exp(-κ'R) (for Rmax ≤ R ≤ Rmax +δ).

Finally, in the region beyond Rmax + δ, we can use a combination of either sin(k’R) and

cos(k’R) or exp(ik’R) and exp(-ik’R) to express the solution. Unlike the region near R=0,

where it was most convenient to use the sin and cos functions because one of them could

  k = 2meE / h2 ,k' = 2me(E − De) / h2 ,κ' = 2me(De + δV − E) / h2
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be “thrown away” since it could not meet the boundary condition of vanishing at R=0, in

this large-R region, either set is acceptable. We choose to use the exp(ik’R) and

exp(-ik’R) set because each of these functions is an eigenfunction of the momentum

operator –ih∂/∂R. This allows us to discuss amplitudes for electrons moving with positive

momentum and with negative momentum. So, in this region,  the most general solution is

Ψ = C exp(ik'R) + D exp(-ik'R) (for Rmax +δ ≤ R < ∞).

There are four amplitudes (A, B+, B-, and C) that can be expressed in terms of the

specified amplitude D of the incoming flux (e.g., pretend that we know the flux of

electrons that our experimental apparatus “shoots” at the surface). Four equations that can

be used to achieve this goal result when Ψ and dΨ/dR are matched at Rmax and at Rmax +

δ (one of the essential properties of solutions to the Schrödinger equation is that they and

their first derivative are continuous; these properties relate to Ψ being a probability and

–ih∂/∂R being a momentum operator). These four equations are:

Asin(kRmax) = B+ exp(κ'Rmax) + B- exp(-κ'Rmax),

Akcos(kRmax) = κ'B+ exp(κ'Rmax) - κ'B- exp(-κ'Rmax),

B+ exp(κ'(Rmax + δ)) + B- exp(-κ'(Rmax + δ))
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= C exp(ik'(Rmax + δ)  + D exp(-ik'(Rmax + δ),

κ'B+ exp(κ'(Rmax + δ)) - κ'B- exp(-κ'(Rmax + δ))

= ik'C exp(ik'(Rmax + δ))  -ik' D exp(-ik'(Rmax + δ)).

It is especially instructive to consider the value of A/D that results from solving this set of

four equations in four unknowns because the modulus of this ratio provides information

about the relative amount of amplitude that exists inside the barrier in the attractive

region of the potential compared to that existing in the asymptotic region as incoming

flux.

The result of solving for A/D is:

A/D = 4 κ'exp(-ik'(Rmax+δ))

{exp(κ'δ)(ik'-κ')(κ'sin(kRmax)+kcos(kRmax))/ik'

+ exp(-κ'δ)(ik'+κ')(κ'sin(kRmax)-kcos(kRmax))/ik' }-1.

Further, it is instructive to consider this result under conditions of a high (large De + δV -

E) and thick (large δ) barrier. In such a case, the "tunneling factor" exp(-κ'δ) will be very

small compared to its counterpart exp(κ'δ), and so
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A/D = 4 
ik'κ'
ik'-κ' exp(-ik'(Rmax+δ)) exp(-κ'δ) {κ'sin(kRmax)+kcos(kRmax) }-1.

The exp(-κ'δ) factor in A/D causes the magnitude of the wave function inside the barrier

to be small in most circumstances; we say that incident flux must tunnel through the

barrier to reach the inner region and that exp(-κ'δ) gives the probability of this tunneling.

Keep in mind that, in the energy range we are considering (E < De+δ), a classical

particle could not even enter the region Rmax < R < Rmax + δ; this is why we call this the

classically forbidden or tunneling region. A classical particle starting in the large-R

region can not enter, let alone penetrate, this region, so such a particle could never end up

in the 0 <R < Rmax inner region. Likewise, a classical particle that begins in the inner

region can never penetrate the tunneling region and escape into the large-R region. Were

it not for the fact that electrons obey a Schrödinger equation rather than Newtonian

dynamics, tunneling would not occur and, for example, scanning tunneling microscopy

(STM), which has proven to be a wonderful and powerful tool for imaging molecules on

and near surfaces, would not exist. Likewise, many of the devices that appear in our

modern electronic tools and games, which depend on currents induced by tunneling

through various junctions, would not be available. But, or course, tunneling does occur

and it can have remarkable effects.

Let us examine an especially important (in chemistry) phenomenon that takes

place because of tunneling and that occurs when the energy E assumes very special

values. The magnitude of the A/D factor in the above solutions of the Schrödinger

equation can become large if the energy E is such that
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κ'sin(kRmax)+kcos(kRmax)

is small. In fact, if

tan(kRmax) = - k/κ'

the denominator factor in A/D will vanish and A/D will become infinite. It can be shown

that the above condition is similar to the energy quantization condition

tan(kRmax) = - k/κ

that arises when bound states of a finite potential well are examined. There is, however, a

difference. In the bound-state situation, two energy-related parameters occur

k = 2µE/h2 

and

κ =  2µ(De - E)/h2  .

In the case we are now considering, k is the same, but
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κ' =  2µ(De +δV - E)/h2  )

rather than κ occurs, so the two tan(kRmax) equations are not identical, but they are quite

similar.

Another observation that is useful to make about the situations in which A/D

becomes very large can be made by considering the case of a very high barrier (so that κ'

is much larger than k). In this case, the denominator that appears in A/D

κ'sin(kRmax)+kcos(kRmax) ≅ κ' sin(kRmax)

can become small if

sin(kRmax) ≅ 0.

This condition is nothing but the energy quantization condition that occurs for the

particle-in-a-box potential shown in Fig. 2.19.

Rmax

Electron Coordinate R

De

0.0

V(R)
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Figure 2.19. One-dimensional potential similar to the tunneling potential but without the

barrier and asymptotic region.

This potential is identical to the potential that we were examining for 0 ≤ R ≤ Rmax , but

extends to infinity beyond Rmax ; the barrier and the dissociation asymptote displayed by

our potential are absent.

Let’s consider what this tunneling problem has taught us.  First, it showed us that

quantum particles penetrate into classically forbidden regions. It showed that, at certain

so-called resonance energies, tunneling is much more likely that at energies that are “off

resonance”. In our model problem, this means that electrons impinging on the surface

with resonance energies will have a very high probability of tunneling to produce an

electron that is trapped in the 0 < R < Rmax region.

By the way, we could have solved the four equations for the amplitude C of the

outgoing wave in the R > Rmax region in terms of the A amplitude. We might want to take

this approach if wanted to model an experiment in which the electron began in the 0 < R

< Rmax  region and we wanted to compute the relative amplitude for the electron to escape.

However, if we were to solve for C/A and then examined under what conditions the

amplitude of this ratio would become small (so the electron can not escape), we would

find the same tan(kRmax) = - k/κ' resonance condition as we found from the other point of

view. This means that the resonance energies tell us for what collision energies the

electron will tunnel inward and produce a trapped electron and, at these same energies, an

electron that is trapped will not escape quickly.
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Whenever one has a barrier on a potential energy surface, at energies above the

dissociation asymptote De but below the top of the barrier (De + δV here), one can expect

resonance states to occur at "special" scattering energies E. As we illustrated with the

model problem, these so-called resonance energies can often be approximated by the

bound-state energies of a potential that is identical to the potential of interest in the inner

region (0 ≤ R ≤ Rmax ) but that extends to infinity beyond the top of the barrier (i.e.,

beyond the barrier, it does not fall back to values below E).

The chemical significance of resonances is great. Highly rotationally excited

molecules may have more than enough total energy to dissociate (De), but this energy

may be "stored" in the rotational motion, and the vibrational energy may be less than De.

In terms of the above model, high angular momentum may produce a significant

centrifugal  barrier in the effective potential that characterizes the molecule’s vibration,

but the system's vibrational energy may lie significantly below De. In such a case, and

when viewed in terms of motion on an angular-momentum-modified effective potential

such as I show in Fig. 2.20 , the lifetime of the molecule with respect to dissociation is

determined by the rate of tunneling through the barrier.
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Figure 2.20. Radial potential for non-rotating (J = 0) molecule and for rotating molecule.

In that case, one speaks of "rotational predissociation" of the molecule. The

lifetime τ can be estimated by computing the frequency ν at which flux that exists inside

Rmax strikes the barrier at Rmax

ν = 
hk

2µRmax
 (sec-1)

R

V(R) for non-rotating molecule

V(R) +h2(J(J+1))/8π2I

Metastable rotational level
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and then multiplying by the probability P that flux tunnels through the barrier from Rmax

to Rmax + δ:

P = exp(-2κ'δ).

The result is that

τ -1=  
hk

2µRmax
  exp(-2κ'δ)

with the energy E entering into k and κ' being determined by the resonance condition:

(κ'sin(kRmax)+kcos(kRmax)) = minimum. By looking back at the defintion of κ’, we note

that the probability of tunneling falls of exponentially with a factor depending on the

width δ of the barrier through which the particle must tunnel multiplied by κ’, which

depends on the height of the barrier De + δ above the energy E available. This exponential

dependence on thickness and height of the barriers is something you should keep in mind

because it appears in all tunneling rate expressions.

Another important case in which tunneling occurs is in electronically metastable

states of anions. In so-called shape resonance states, the anion’s “extra” electron

experiences

a. an attractive potential due to its interaction with the underlying neutral molecule’s

dipole, quadrupole, and induced electrostatic moments, as well as
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b. a centrifugal potential of the form L(L+1)h2/8π2meR
2 whose magnitude depends on

the angular character of the orbital the extra electron occupies.

When combined, the above attractive and centrifugal potentials produce an effective

radial potential of the form shown in Fig. 2.21 for the N2
- case in which the added

electron occupies the π* orbital which has L=2 character when viewed from the center of

the N-N bond. Again, tunneling through the barrier in this potential determines the

lifetimes of such shape resonance states.

Figure  2.21 Effective radial potential for the excess electron in N2
- occupying the π*

orbital which has a dominant L = 2 component.

N N

R

N2 π* orbital
having d angular
symmetry

Effective radial potential
for electron in the π* 
orbital
with the L=2 
L(L+1)h2/8π2mR2
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Although the examples treated above involved piecewise constant potentials (so

the Schrödinger equation and the boundary matching conditions could be solved exactly),

many of the characteristics observed carry over to more chemically realistic situations. In

fact, one can often model chemical reaction processes in terms of motion along a

"reaction coordinate" (s) from a region characteristic of reactant materials where the

potential surface is positively curved in all direction and all forces (i.e., gradients of the

potential along all internal coordinates) vanish; to a transition state at which the potential

surface's curvature along s is negative while all other curvatures are positive and all

forces vanish; onward to product materials where again all curvatures are positive and all

forces vanish.  A prototypical trace of the energy variation along such a reaction

coordinate is in Fig. 2.22.

Figure 2.22. Energy profile along a reaction path showing the barrier through which

tunneling may occur.
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Near the transition state at the top of the barrier on this surface, tunneling through the

barrier plays an important role if the masses of the particles moving in this region are

sufficiently light. Specifically, if H or D atoms are involved in the bond breaking and

forming in this region of the energy surface, tunneling must usually be considered in

treating the dynamics.

Within the above "reaction path" point of view, motion transverse to the reaction

coordinate s is often modeled in terms of local harmonic motion although more

sophisticated treatments of the dynamics is possible. This picture leads one to consider

motion along a single degree of freedom (s), with respect to which much of the above

treatment can be carried over, coupled to transverse motion along all other internal

degrees of freedom taking place under an entirely positively curved potential (which

therefore produces restoring forces to movement away from the "streambed" traced out

by the reaction path s). This point of view constitutes one of the most widely used and

successful models of molecular reaction dynamics and is treated in more detail in Chapter

8 of this text.

VII. Angular Momentum

1. Orbital Angular Momentum

A particle moving with momentum p at a position r relative to some coordinate

origin has so-called orbital angular momentum equal to L = r x p . The three components
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of this angular momentum vector in a Cartesian coordinate system located at the origin

mentioned above are given in terms of the Cartesian coordinates of r and p as follows:

Lz = x py - y px ,

Lx = y pz - z py ,

Ly = z px - x pz .

Using the fundamental commutation relations among the Cartesian coordinates

and the Cartesian momenta:

[qk,pj] = qk pj - pj qk = ih δj,k ( j,k = x,y,z) ,

it can be shown that the above angular momentum operators obey the following set of

commutation relations:

[Lx, Ly] = ih Lz ,

[Ly, Lz] = ih Lx ,

[Lz, Lx] = ih Ly .
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Although the components of L do not commute with one another, they can be shown to

commute with the operator L2 defined by

L2 = Lx2 + Ly2 + Lz2 .

This new operator is referred to as the square of the total angular momentum operator.

The commutation properties of the components of L allow us to conclude that

complete sets of functions can be found that are eigenfunctions of L2 and of one, but not

more than one, component of L. It is convention to select this one component as Lz, and

to label the resulting simultaneous eigenstates of L2 and Lz as |l,m> according to the

corresponding eigenvalues:

L2 |l,m> = h2 l(l+1) |l,m>, l = 0,1,2,3,....

Lz |l,m> = h m |l,m>, m = ± l, ±(l-1), ±(l-2), ... ±(l-(l-1)), 0.

These eigenfunctions of L2 and of Lz will not, in general, be eigenfunctions of either Lx

or of Ly. This means that any measurement of Lx or Ly will necessarily change the

wavefunction if it begins as an eigenfunction of Lz.

The above expressions for Lx, Ly, and Lz can be mapped into quantum

mechanical operators by substituting x, y, and z as the corresponding coordinate

operators and -ih∂/∂x, -ih∂/∂y, and -ih∂/∂z for px, py, and pz, respectively. The resulting

operators can then be transformed into spherical coordinates the results of which are:
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Lz =-ih ∂/∂φ ,

Lx = ih {sinφ ∂/∂θ + cotθ cosφ ∂/∂φ} ,

Ly = -ih {cosφ ∂/∂θ - cotθ sinφ ∂/∂φ} ,

L2 = - h2 {(1/sinθ) ∂/∂θ (sinθ ∂/∂θ) + (1/sin2θ) ∂2/∂φ2} .

2. Properties of General Angular Momenta

There are many types of angular momenta that one encounters in chemistry.

Orbital angular momenta, such as that introduced above, arise in electronic motion in

atoms, in atom-atom and electron-atom collisions, and in rotational motion in molecules.

Intrinsic spin angular momentum is present in electrons, H1, H2, C13, and many other

nuclei. In this section, we will deal with the behavior of any and all angular momenta and

their corresponding eigenfunctions.

At times, an atom or molecule contains more than one type of angular

momentum. The Hamiltonian's interaction potentials present in a particular species may

or may not cause these individual angular momenta to be coupled to an appreciable

extent (i.e., the Hamiltonian may or may not contain terms that refer simultaneously to

two or more of these angular momenta). For example, the NH- ion, which has a 2Π
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ground electronic state (its electronic configuration is 1sN22σ23σ22pπx22ppy1) has

electronic spin, electronic orbital, and molecular rotational angular momenta. The full

Hamiltonian H contains terms that couple the electronic spin and orbital angular

momenta, thereby causing them individually to not commute with H.

In such cases, the eigenstates of the system can be labeled rigorously only by

angular momentum quantum numbers j and m belonging to the total angular momentum

J. The total angular momentum of a collection of individual angular momenta is defined,

component-by-component, as follows:

Jk = Σi Jk(i),

where k labels x, y, and z, and i labels the constituents whose angular momenta couple to

produce J.

For the remainder of this Section, we will study eigenfunction-eigenvalue

relationships that are characteristic of all angular momenta and which are consequences

of the commutation relations among the angular momentum vector's three components.

We will also study how one combines eigenfunctions of two or more angular momenta

{J(i)} to produce eigenfunctions of the the total J.

a. Consequences of the Commutation Relations

Any set of three operators that obey
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[Jx, Jy] = ih Jz ,

[Jy, Jz] = ih Jx ,

[Jz, Jx] = ih Jy ,

will be taken to define an angular momentum J, whose square J2= Jx2 + Jy2 + Jz2

commutes with all three of its components. It is useful to also introduce two

combinations of the three fundamental operators:

J± = Jx ± i Jy ,

and to refer to them as raising and lowering operators for reasons that will be made clear

below. These new operators can be shown to obey the following commutation relations:

[J2, J±] = 0,

[Jz, J±] = ± h J± .

Using only the above commutation properties, it is possible to prove important

properties of the eigenfunctions and eigenvalues of J2 and Jz. Let us assume that we have

found a set of simultaneous eigenfunctions of J2 and Jz ; the fact that these two operators
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commute tells us that this is possible. Let us label the eigenvalues belonging to these

functions:

J2 |j,m> = h2 f(j,m) |j,m>,

Jz |j,m> = h m |j,m>,

in terms of the quantities m and f(j,m). Although we certainly "hint" that these quantities

must be related to certain j and m quantum numbers, we have not yet proven this,

although we will soon do so. For now, we view f(j,m) and m simply as symbols that

represent the respective eigenvalues. Because both J2 and Jz are Hermitian,

eigenfunctions belonging to different f(j,m) or m quantum numbers must be orthogonal:

<j,m|j',m'> = δm,m' δj,j' .

We now prove several identities that are needed to discover the information about

the eigenvalues and eigenfunctions of general angular momenta that we are after. Later in

this Section, the essential results are summarized.

i. There is a Maximum and a Minimum Eigenvalue for Jz

Because all of the components of J are Hermitian, and because the scalar product

of any function with itself is positive semi-definite, the following identity holds:
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<j,m|Jx2 + Jy2|j,m> = <Jx<j,m| Jx|j,m> + <Jy<j,m| Jy|j,m>  ≥ 0.

However, Jx2 + Jy2 is equal to J2 - Jz2, so this inequality implies that

<j,m| J2 - Jz2 |j,m> = h2 {f(j,m) - m2} ≥ 0,

which, in turn, implies that m2 must be less than or equal to f(j,m). Hence, for any value

of the total angular momentum eigenvalue f, the z-projection eigenvalue (m) must have a

maximum and a minimum value and both of these must be less than or equal to the total

angular momentum squared eigenvalue f.

ii. The Raising and Lowering Operators Change the Jz Eigenvalue but not the J2

Eigenvalue When Acting on |j,m>

Applying the commutation relations obeyed by J± to |j,m> yields another useful

result:

Jz J± |j,m> - J± Jz |j,m> = ± h J± |j,m>,

J2 J± |j,m> - J± J2 |j,m> = 0.

Now, using the fact that |j,m> is an eigenstate of J2 and of Jz, these identities give

Jz J± |j,m>  = (mh ± h) J± |j,m> = h (m±1) |j,m>,
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J2 J± |j,m> = h2 f(j,m) J± |j,m>.

These equations prove that the functions J± |j,m> must either themselves be

eigenfunctions of J2 and Jz, with eigenvalues h2 f(j,m) and h (m+1) or J± |j,m> must

equal zero. In the former case, we see that J± acting on |j,m> generates a new eigenstate

with the same J2 eigenvalue as |j,m> but with one unit of h higher or lower in Jz

eigenvalue. It is for this reason that we call J± raising and lowering operators. Notice that,

although J± |j,m> is indeed an eigenfunction of Jz with eigenvalue  (m±1) h, J± |j,m> is

not identical to |j,m±1>; it is only proportional to |j,m±1>:

J± |j,m> = C±j,m |j,m±1>.

Explicit expressions for these C±j,m coefficients will be obtained below. Notice also that

because the J± |j,m>, and hence |j,m±1>, have the same J2 eigenvalue as |j,m> (in fact,

sequential application of J± can be used to show that all |j,m'>, for all m', have this same

J2 eigenvalue), the J2 eigenvalue f(j,m) must be independent of m. For this reason, f can

be labeled by one quantum number j.

iii. The J2 Eigenvalues are Related to the Maximum and Minimum Jz Eigenvalues Which

are Related to One Another
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Earlier, we showed that there exists a maximum and a minimum value for m, for

any given total angular momentum. It is when one reaches these limiting cases that J±

|j,m> = 0 applies. In particular,

J+ |j,mmax> = 0,

J- |j,mmin> = 0.

Applying the following identities:

J- J+ = J2 - Jz2 -h Jz ,

J+ J- = J2 - Jz2 +h Jz,

respectively, to |j,mmax> and |j,mmin> gives

h2 { f(j,mmax) - mmax2 - mmax} = 0,

h2 { f(j,mmin) - mmin2 + mmin} = 0,

which immediately gives the J2  eigenvalue f(j,mmax) and f(j,mmin) in terms of mmax or

mmin:
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f(j,mmax) = mmax (mmax+1),

f(j,mmin) = mmin (mmin-1).

So, we now know the J2 eigenvalues for |j,mmax> and |j,mmin>. However, we earlier

showed that |j,m> and |j,m-1> have the same J2 eigenvalue (when we treated the effect of

J± on |j,m>) and that the J2 eigenvalue is independent of m. If we therefore define the

quantum number j to be mmax , we see that the J2 eigenvalues are given by

J2 |j,m> = h2 j(j+1) |j,m>.

We also see that

f(j,m) = j(j+1) = mmax (mmax+1) = mmin (mmin-1),

from which it follows that

mmin = - mmax .

iv. The j Quantum Number Can Be Integer or Half-Integer
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The fact that the m-values run from j to -j in unit steps (because of the property of

the J± operators), there clearly can be only integer or half-integer values for j. In the

former case, the m quantum number runs over -j, -j+1, -j+2, ..., -j+(j-1), 0, 1, 2, ... j;

in the latter, m runs over -j, -j+1, -j+2, ...-j+(j-1/2), 1/2, 3/2, ...j. Only integer and half-

interger values can range from j to -j in steps of unity. Species with integer spin are

known as Bosons and those with half-integer spin are called Fermions.

v. More on J± |j,m>

Using the above results for the effect of J± acting on |j,m> and the fact that J+ and

J- are adjoints of one another, allows us to write:

<j,m| J- J+ |j,m> = <j,m| (J2 - Jz2 -h Jz ) |j,m>

= h2 {j(j+1)-m(m+1)} = <J+<j,m| J+|j,m> = (C+j,m)2,

where C+j,m is the proportionality constant between J+|j,m> and the normalized function

|j,m+1>. Likewise, the effect of J- can be expressed as

<j,m| J+ J- |j,m> = <j,m| (J2 - Jz2 +h Jz) |j,m>

= h2 {j(j+1)-m(m-1)} = <J-<j,m| J-|j,m> = (C-j,m)2,
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where C-j,m is the proportionality constant between J- |j,m> and the normalized |j,m-1>.

Thus, we can solve for C±j,m after which the effect of J± on |j,m> is given by:

J± |j,m> = h {j(j+1) –m(m-1)}1/2 |j,m±1>.

3. Summary

The above results apply to any angular momentum operators. The essential

findings can be summarized as follows:

(i) J2 and Jz have complete sets of simultaneous eigenfunctions. We label these

eigenfunctions |j,m>; they are orthonormal in both their m- and j-type indices:

<j,m| j',m'> = δm,m' δj,j' .

(ii) These |j,m> eigenfunctions obey:

J2 |j,m> = h2 j(j+1) |j,m>, { j= integer or half-integer},

Jz |j,m> = h m |j,m>, { m = -j, in steps of 1 to +j}.
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(iii) The raising and lowering operators J± act on |j,m> to yield functions that are

eigenfunctions of J2 with the same eigenvalue as |j,m> and eigenfunctions of Jz with

eigenvalue of (m±1) h :

J± |j,m> = h {j(j+1) - m(m±1)}1/2 |j,m±1>.

(iv) When J± acts on the "extremal" states |j,j> or |j,-j>, respectively, the result is zero.

The results given above are, as stated, general. Any and all angular momenta have

quantum mechanical operators that obey these equations. It is convention to designate

specific kinds of angular momenta by specific letters; however, it should be kept in mind

that no matter what letters are used, there are operators corresponding to J2, Jz, and J±

that obey relations as specified above, and there are eigenfunctions and eigenvalues that

have all of the properties obtained above. For electronic or collisional orbital angular

momenta, it is common to use L2 and Lz ; for electron spin, S2 and Sz are used; for

nuclear spin I2 and Iz are most common; and for molecular rotational angular momentum,

N2 and Nz are most common (although sometimes J2 and Jz may be used). Whenever two

or more angular momenta are combined or coupled to produce a "total" angular

momentum, the latter is designated by J2 and Jz.

4. Coupling of Angular Momenta
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If the Hamiltonian under study contains terms that couple two or more angular

momenta J(i), then only the components of the total angular momentum J = Σi J(i) and

J2 will commute with H. It is therefore essential to label the quantum states of the system

by the eigenvalues of Jz and J2 and to construct variational trial or model wavefunctions

that are eigenfunctions of these total angular momentum operators. The problem of

angular momentum coupling has to do with how to combine eigenfunctions of the

uncoupled angular momentum operators, which are given as simple products of the

eigenfunctions of the individual angular momenta Πi |ji,mi>, to form eigenfunctions of J2

and Jz.

a. Eigenfunctions of Jz

Because the individual elements of J are formed additively, but J2 is not , it is

straightforward to form eigenstates of

Jz = Σi Jz(i);

simple products of the form Πi |ji,mi> are eigenfunctions of Jz:

Jz Πi |ji,mi> = Σk Jz(k) Πi |ji,mi> = Σk h mk Πi |ji,mi>,



164

and have Jz eigenvalues equal to the sum of the individual mk h eigenvalues. Hence, to

form an eigenfunction with specified J and M eigenvalues, one must combine only those

product states Πi |ji,mi> whose mih sum is equal to the specified M value.

b. Eigenfunctions of J2; the Clebsch-Gordon Series

The task is then reduced to forming eigenfunctions |J,M>, given particular values

for the {ji} quantum numbers. When coupling pairs of angular momenta { |j,m> and

|j',m'>}, the total angular momentum states can be written, according to what we

determined above, as

|J,M> = Σm,m' CJ,Mj,m;j',m' |j,m> |j',m'>,

where the coefficients CJ,Mj,m;j',m' are called vector coupling coefficients (because

angular momentum coupling is viewed much like adding two vectors j and j' to produce

another vector J), and where the sum over m and m' is restricted to those terms for which

m+m' = M. It is more common to express the vector coupling or so-called Clebsch-

Gordon (CG) coefficients as <j,m;j'm'|J,M> and to view them as elements of a "matrix"

whose columns are labeled by the coupled-state J,M quantum numbers and whose rows

are labeled by the quantum numbers characterizing the uncoupled "product basis"

j,m;j',m'. It turns out that this matrix can be shown to be unitary so that the CG

coefficients obey:
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Σm,m'  <j,m;j'm'|J,M>* <j,m;j'm'|J',M'> = δJ,J' δM,M'

and

ΣJ,M    <j,n;j'n'|J,M> <j,m;j'm'|J,M>* = δn,m δn',m'.

This unitarity of the CG coefficient matrix allows the inverse of the relation

giving coupled functions in terms of the product functions:

|J,M> = Σm,m' <j,m;j'm'|J,M> |j,m> |j',m'>

to be written as:

|j,m> |j',m'> = ΣJ,M <j,m;j'm'|J,M>* |J,M>

= ΣJ,M <J,M|j,m;j'm'> |J,M>.

This result expresses the product functions in terms of the coupled angular momentum

functions. 

c. Generation of the CG Coefficients

The CG coefficients can be generated in a systematic manner; however, they can



166

also be looked up in books where they have been tabulated (e.g., see Table 2.4 of Dick

Zare's book on angular momentum). Here, we will demonstrate the technique by which

the CG coefficients can be obtained, but we will do so for rather limited cases and refer

the reader to more extensive tabulations.

The strategy we take is to generate the |J,J> state (i.e., the state with maximum M-

value) and to then use J- to generate |J,J-1>, after which the state |J-1,J-1> (i.e., the state

with one lower J-value) is constructed by finding a combination of the product states in

terms of which |J,J-1> is expressed (because both |J,J-1> and |J-1,J-1> have the same M-

value M=J-1) which is orthogonal to |J,J-1> (because |J-1,J-1>  and |J,J-1> are

eigenfunctions of the Hermitian operator J2 corresponding to different eigenvalues, they

must be orthogonal). This same process is then used to generate |J,J-2> |J-1,J-2> and (by

orthogonality construction) |J-2,J-2>, and so on.

i. The States With Maximum and Minimum M-Values

We begin with the state |J,J> having the highest M-value. This state must be

formed by taking the highest m and the highest m' values (i.e., m=j and m'=j'), and is

given by:

|J,J> = |j,j> |j'j'>.

Only this one product is needed because only the one term with m=j and m'=j' contributes

to the sum in the above CG series. The state
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|J,-J> = |j,-j> |j',-j'>

with the minimum M-value is also given as a single product state.

Notice that these states have M-values given as ±(j+j'); since this is the maximum M-

value, it must be that the J-value corresponding to this state is J= j+j'.

ii. States With One Lower M-Value But the Same J-Value

Applying J- to |J,J> , and expressing J- as the sum of lowering operators for the

two individual angular momenta:

J- = J-(1) + J-(2)

gives

J-|J,J> = h{J(J+1) -J(J-1)}1/2 |J,J-1>

= (J-(1) + J-(2)) |j,j> |j'j'>

= h{j(j+1) - j(j-1)}1/2 |j,j-1> |j',j'> + h{j'(j'+1)-j'(j'-1)}1/2 |j,j> |j',j'-1>.

This result expresses |J,J-1> as follows:

|J,J-1>= [{j(j+1)-j(j-1)}1/2 |j,j-1> |j',j'>
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+ {j'(j'+1)-j'(j'-1)}1/2 |j,j> |j',j'-1>] {J(J+1) -J(J-1)}-1/2;

that is, the |J,J-1> state, which has M=J-1, is formed from the two product states |j,j-1>

|j',j'> and |j,j> |j',j'-1> that have this same M-value.

iii. States With One Lower J-Value

To find the state |J-1,J-1> that has the same M-value as the one found above but

one lower J-value, we must construct another combination of the two product states with

M=J-1 (i.e., |j,j-1> |j',j'> and |j,j> |j',j'-1>) that is orthogonal to the combination

representing |J,J-1>; after doing so, we must scale the resulting function so it is properly

normalized. In this case, the desired function is:

|J-1,J-1>= [{j(j+1)-j(j-1)}1/2 |j,j> |j',j'-1>

- {j'(j'+1)-j'(j'-1)}1/2 |j,j-1> |j',j'>] {J(J+1) -J(J-1)}-1/2 .

It is straightforward to show that this function is indeed orthogonal to |J,J-1>.

iv. States With Even One Lower J-Value

Having expressed |J,J-1> and |J-1,J-1> in terms of |j,j-1> |j',j'> and |j,j> |j',j'-1>,

we are now prepared to carry on with this stepwise process to generate the states |J,J-2>,

|J-1,J-2> and |J-2,J-2> as combinations of the product states with M=J-2. These product

states are |j,j-2> |j',j'>, |j,j> |j',j'-2>, and |j,j-1> |j',j'-1>. Notice that there are precisely as
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many product states whose m+m' values add up to the desired M-value as there are total

angular momentum states that must be constructed (there are three of each in this case).

The steps needed to find the state |J-2,J-2> are analogous to those taken above:

a. One first applies J- to |J-1,J-1> and to |J,J-1> to obtain |J-1,J-2> and |J,J-2>,

respectively as combinations of |j,j-2> |j',j'>, |j,j> |j',j'-2>, and  |j,j-1> |j',j'-1>.

b. One then constructs |J-2,J-2> as a linear combination of the |j,j-2> |j',j'>, |j,j> |j',j'-2>,

and |j,j-1> |j',j'-1> that is orthogonal to the combinations found for  |J-1,J-2> and |J,J-2>.

Once |J-2,J-2> is obtained, it is then possible to move on to form |J,J-3>, |J-1,J-3>,

and |J-2,J-3> by applying J- to the three states obtained in the preceding application of the

process, and to then form |J-3,J-3> as the combination of |j,j-3> |j',j'>, |j,j> |j',j'-3>,

|j,j-2> |j',j'-1>, |j,j-1> |j',j'-2> that is orthogonal to the combinations obtained for |J,J-3>,

|J-1,J-3>, and |J-2,J-3>.

Again notice that there are precisely the correct number of product states (four

here) as there are total angular momentum states to be formed. In fact, the product states

and the total angular momentum states are equal in number and are both members of

orthonormal function sets (because J2(1), Jz(1), J2(2), and Jz(2) as well as J2 and Jz are

Hermitian operators). This is why the CG coefficient matrix is unitary; because it maps

one set of orthonormal functions to another, with both sets containing the same number

of functions.
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d. An Example

Let us consider an example in which the spin and orbital angular momenta of the

Si atom in its 3P ground state can be coupled to produce various 3PJ states. In this case,

the specific values for j and j' are j=S=1 and j'=L=1. We could, of course take j=L=1 and

j'=S=1, but the final wavefunctions obtained would span the same space as those we are

about to determine.

The state with highest M-value is the 3P(Ms=1, ML=1) state, which can be

represented by the product of an αα  spin function (representing S=1, Ms=1) and a

3p13p0 spatial function (representing L=1, ML=1), where the first function corresponds to

the first open-shell orbital and the second function to the second open-shell orbital. Thus,

the maximum M-value is M= 2 and corresponds to a state with J=2:

|J=2,M=2> = |2,2> = αα 3p13p0 .

Clearly, the state |2,-2> would be given as ββ 3p-13p0.

The states |2,1> and |1,1> with one lower M-value are obtained by applying J- =

S- + L- to |2,2> as follows:

J- |2,2> = h{2(3)-2(1)}1/2 |2,1>

= (S- + L-) αα 3p13p0 .
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To apply S- or L-  to αα 3p13p0, one must realize that each of these operators is, in turn,

a sum of lowering operators for each of the two open-shell electrons:

S- = S-(1) + S-(2),

L- = L-(1) + L-(2).

The result above can therefore be continued as

(S- + L-) αα 3p13p0 = h{1/2(3/2)-1/2(-1/2)}1/2 βα 3p13p0

+ h{1/2(3/2)-1/2(-1/2)}1/2 αβ 3p13p0

+ h{1(2)-1(0)}1/2 αα 3p03p0

+ h{1(2)-0(-1)}1/2 αα 3p13p-1.

So, the function |2,1> is given by

|2,1> = [βα 3p13p0 + αβ 3p13p0 + {2}1/2 αα 3p03p0

+ {2}1/2 αα 3p13p-1]/2,
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which can be rewritten as:

|2,1> = [(βα + αβ)3p13p0 + {2}1/2 αα (3p03p0 + 3p13p-1)]/2.

Writing the result in this way makes it clear that |2,1> is a combination of the product

states |S=1,MS=0> |L=1,ML=1> (the terms containing |S=1,MS=0> = 2-1/2(αβ+βα)) and

|S=1,MS=1> |L=1,ML=0> (the terms containing |S=1,MS=1> = αα).

To form the other function with M=1, the |1,1> state, we must find another

combination of |S=1,MS=0> |L=1,ML=1> and |S=1,MS=1> |L=1,ML=0> that is orthogonal

to |2,1> and is normalized. Since

|2,1> = 2-1/2 [|S=1,MS=0> |L=1,ML=1> + |S=1,MS=1> |L=1,ML=0>],

we immediately see that the requisite function is

|1,1> = 2-1/2 [|S=1,MS=0> |L=1,ML=1> - |S=1,MS=1> |L=1,ML=0>].

In the spin-orbital notation used above, this state is:

|1,1> = [(βα + αβ)3p13p0 - {2}1/2 αα (3p03p0 + 3p13p-1)]/2.

Thus far, we have found the 3PJ states with J=2, M=2; J=2, M=1; and J=1, M=1.
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To find the 3PJ states with J=2, M=0; J=1, M=0; and J=0, M=0, we must once

again apply the J- tool. In particular, we apply J- to |2,1> to obtain |2,0> and we apply J-

to |1,1> to obtain |1,0>, each of which will be expressed in terms of |S=1,MS=0>

|L=1,ML=0>,  |S=1,MS=1> |L=1,ML=-1>, and |S=1,MS=-1> |L=1,ML=1>. The |0,0>

state is then constructed to be a combination of these same product states which is

orthogonal to |2,0> and to |1,0>. The results are as follows:

|J=2,M=0> = 6-1/2[2 |1,0> |1,0> + |1,1> |1,-1> + |1,-1> |1,1>],

|J=1,M=0> = 2-1/2[|1,1> |1,-1> - |1,-1> |1,1>],

|J=0, M=0> = 3-1/2[|1,0> |1,0> - |1,1> |1,-1> - |1,-1> |1,1>],

where, in all cases, a short hand notation has been used in which the |S,MS> |L,ML>

product stated have been represented by their quantum numbers with the spin function

always appearing first in the product. To finally express all three of these new functions

in terms of spin-orbital products it is necessary to give the |S,MS> |L,ML> products with

M=0 in terms of these products. For the spin functions, we have:

|S=1,MS=1> = αα,

|S=1,MS=0> = 2-1/2(αβ+βα).
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|S=1,MS=-1> = ββ.

For the orbital product function, we have:

|L=1, ML=1> = 3p13p0 ,

|L=1,ML=0> = 2-1/2(3p03p0 + 3p13p-1),

|L=1, ML=-1> = 3p03p-1.

e. Coupling Angular Momenta of Equivalent Electrons

If equivalent angular momenta are coupled (e.g., to couple the orbital angular

momenta of a p2 or d3 configuration), one must use the following "box" method to

determine which of the term symbols violate the Pauli principle. To carry out this step,

one forms all possible unique (determinental) product states with non-negative ML and

MS values and arranges them into groups according to their ML and MS values. For

example, the boxes appropriate to the p2 orbital occupancy are shown below:



175

ML 2 1 0

---------------------------------------------------------

MS 1 |p1αp0α| |p1αp-1α|

0 |p1αp1β| |p1αp0β|, |p0αp1β| |p1αp-1β|,

|p-1αp1β|,

|p0αp0β|

There is no need to form the corresponding states with negative ML or negative MS

values because they are simply "mirror images" of those listed above. For example, the

state with ML= -1 and MS = -1 is |p-1βp0β|, which can be obtained from the ML = 1, MS

= 1 state |p1αp0α| by replacing α by β and replacing p1 by p-1.

Given the box entries, one can identify those term symbols that arise by applying

the following procedure over and over until all entries have been accounted for:

i. One identifies the highest MS value (this gives a value of the total spin quantum

number that arises, S) in the box. For the above example, the answer is S = 1.

ii. For all product states of this MS value, one identifies the highest ML value (this gives a

value of the total orbital angular momentum, L, that can arise for this S). For the above

example, the highest ML within the MS =1 states is ML = 1 (not ML = 2), hence L=1.

iii. Knowing an S, L combination, one knows the first term symbol that arises from this

configuration. In the p2 example, this is 3P.

iv. Because the level with this L and S quantum numbers contains (2L+1)(2S+1) states
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with ML and MS quantum numbers running from -L to L and from -S to S, respectively,

one must remove from the original box this number of product states. To do so, one

simply erases from the box one entry with each such ML and MS value. Actually, since

the box need only show those entries with non-negative ML and MS values, only these

entries need be explicitly deleted. In the 3P example, this amounts to deleting nine

product states with ML, MS values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

v. After deleting these entries, one returns to step 1 and carries out the process again. For

the p2 example, the box after deleting the first nine product states looks as follows (those

that appear in italics should be viewed as already cancelled in counting all of the 3P

states):

ML 2 1 0

---------------------------------------------------------

MS 1 |p1αp0α| |p1αp-1α|

0 |p1αp1β| |p1αp0β|, |p0αp1β| |p1αp-1β|,

|p-1αp1β|,

|p0αp0β|

It should be emphasized that the process of deleting or crossing off entries in various ML,

MS boxes involves only counting how many states there are; by no means do we identify

the particular L,S,ML,MS wavefunctions when we cross out any particular entry in a box.

For example, when the |p1αp0β| product is deleted from the ML= 1, MS=0 box in
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accounting for the states in the 3P level, we do not claim that |p1αp0β| itself is a member

of the 3P level; the |p0αp1β| product state could just as well been eliminated when

accounting for the 3P states.

Returning to the p2 example at hand, after the 3P term symbol's states have been

accounted for, the highest MS value is 0 (hence there is an S=0 state), and within this MS

value, the highest ML value is 2 (hence there is an L=2 state). This means there is a 1D

level with five states having ML = 2,1,0,-1,-2. Deleting five appropriate entries from the

above box (again denoting deletions by italics) leaves the following box:

ML 2 1 0

---------------------------------------------------------

MS 1 |p1αp0α| |p1αp-1α|

0 |p1αp1β| |p1αp0β|, |p0αp1β| |p1αp-1β|,

|p-1αp1β|,

|p0αp0β|

The only remaining entry, which thus has the highest MS and ML values, has MS = 0 and

ML = 0. Thus there is also a 1S level in the p2 configuration.
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Thus, unlike the non-equivalent 2p13p1 case, in which 3P, 1P, 3D, 1D, 3S, and 1S

levels arise, only the 3P, 1D, and 1S arise in the p2 situation. This "box method" is

necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can

determine all possible couplings of the equivalent angular momenta using this method

and then use the simpler vector coupling method to add the non-equivalent angular

momenta to each of these coupled angular momenta. For example, the p2d1 configuration

can be handled by vector coupling (using the straightforward non-equivalent procedure)

L=2 (the d orbital) and S=1/2 (the third electron's spin) to each of 3P, 1D, and 1S. The

result is 4F, 4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D.

 VIII.  Rotations of Molecules

1. Rotational Motion For Rigid Diatomic and Linear Polyatomic Molecules

This Schrödinger equation relates to the rotation of diatomic and linear

polyatomic molecules. It also arises when treating the angular motions of electrons in

any spherically symmetric potential.

A diatomic molecule with fixed bond length R rotating in the absence of any

external potential is described by the following Schrödinger equation:

h2/2µ {(R2sinθ)-1∂/∂θ (sinθ ∂/∂θ) + (R2sin2θ)-1 ∂2/∂φ2 } ψ  = E ψ
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or

L2ψ/2µR2 = E ψ,

where L2 is the square of the total angular momentum operator Lx
2 + Ly

2 + Lz
2 expressed

in polar coordinates above. The angles θ and φ describe the orientation of the diatomic

molecule's axis relative to a laboratory-fixed coordinate system, and µ is the reduced

mass of the diatomic molecule µ=m1m2/(m1+m2). The differential operators can be seen

to be exactly the same as those that arose in the hydrogen-like-atom caseas discussed

above. Therefore, the same spherical harmonics that served as the angular parts of the

wave function in the hydrogen-atom case now serve as the entire wave function for the

so-called rigid rotor: ψ = YJ,M(θ,φ). These are exactly the same functions as we plotted

earlier when we graphed the s (L=0), p (L=1), and d (L=2) orbitals. As detailed in

Chapter 6 of this text, the energy eigenvalues corresponding to each such eigenfunction

are given as:

EJ = h2 J(J+1)/(2µR2) = B J(J+1)

and are independent of M. Thus each energy level is labeled by J and is 2J+1-fold

degenerate (because M ranges from -J to J). Again, this is just like we saw when we

looked at the hydrogen orbitals; the p orbitals are 3-fold degenerate and the d orbitals are

5-fold degenerate. The so-called rotational constant B (defined as h2/2µR2) depends on

the molecule's bond length and reduced mass. Spacings between successive rotational
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levels (which are of spectroscopic relevance because, as shown in Chapter 6, angular

momentum selection rules often restrict the changes ∆J in J that can occur upon photon

absorption to 1,0, and -1) are given by

∆E = B (J+1)(J+2) - B J(J+1) = 2B(J+1).

These energy spacings are of relevance to microwave spectroscopy which probes the

rotational energy levels of molecules. In fact, microwave spectroscopy offers the most

direct way to determine molecular rotational constants and hence molecular bond lengths.

The rigid rotor provides the most commonly employed approximation to the

rotational energies and wave functions of linear molecules. As presented above, the

model restricts the bond length to be fixed. Vibrational motion of the molecule gives rise

to changes in R which are then reflected in changes in the rotational energy levels. The

coupling between rotational and vibrational motion gives rise to rotational B constants

that depend on vibrational state as well as dynamical couplings, called centrifugal

distortions, that cause the total ro-vibrational energy of the molecule to depend on

rotational and vibrational quantum numbers in a non-separable manner.

Within this "rigid rotor" model, the absorption spectrum of a rigid diatomic

molecule should display a series of peaks, each of which corresponds to a specific J ==>

J + 1 transition. The energies at which these peaks occur should grow linearly with J. An

example of such a progression of rotational lines is shown in the Fig. 2.23.



181

Figure 2.23. Typical rotational absorption profile showing intensity vs. J value of the

absorbing level

The energies at which the rotational transitions occur appear to fit the ∆E = 2B (J+1)

formula rather well. The intensities of transitions from level J to level J+1 vary strongly

with J primarily because the population of molecules in the absorbing level varies with J.

These populations PJ are given, when the system is at equilibrium at temperature T, in

terms of the degeneracy (2J+1) of the Jth level and the energy of this level B J(J+1) by the

Boltzmann formula:

PJ = Q-1 (2J+1) exp(-BJ(J+1)/kT),

where Q is the rotational partition function:

Q = ΣJ (2J+1) exp(-BJ(J+1)/kT).
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For low values of J, the degeneracy is low and the exp(-BJ(J+1)/kT) factor is near unity.

As J increases, the degeracy grows linearly but the exp(-BJ(J+1)/kT) factor decreases

more rapidly. As a result, there is a value of J, given by taking the derivative of (2J+1)

exp(-BJ(J+1)/kT) with respect to J and setting it equal to zero,

2Jmax + 1 = 2kT/B 

at which the intensity of the rotational transition is expected to reach its maximum. This

behavior is clearly displayed in the above figure.

The eigenfunctions belonging to these energy levels are the spherical harmonics

YL,M(θ,φ) which are normalized according to

⌡


⌠

0

π

( ⌡⌠
0

2π
(Y*L,M(θ,φ) YL',M'(θ,φ) sinθ dθ dφ))  = δL,L' δM,M'  .

As noted above, these functions are identical to those that appear in the solution of the

angular part of Hydrogen-like atoms. The above energy levels and eigenfunctions also

apply to the rotation of rigid linear polyatomic molecules; the only difference is that the

moment of inertia I entering into the rotational energy expression is given by

I = Σa ma Ra2
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where ma is the mass of the ath atom and Ra is its distance from the center of mass of the

molecule. This moment of inertia replaces µR2 in the earlier rotational energy level

expressions.

2. Rotational Motions of Rigid Non-Linear Molecules

a. The Rotational Kinetic Energy

The rotational kinetic energy operator for a rigid polyatomic molecule is

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic

where the Ik (k = a, b, c) are the three principal moments of inertia of the molecule (the

eigenvalues of the moment of inertia tensor). This tensor has elements in a Cartesian

coordinate system (K, K' = X, Y, Z), whose origin is located at the center of mass of the

molecule, that can be computed as:

IK,K = Σj mj (Rj2 - R2K,j) (for K = K')

IK,K' = - Σj mj RK,j RK',j (for K ≠ K').
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As discussed in more detail in Chapter 6, the components of the quantum mechanical

angular momentum operators along the three principal axes are:

Ja = -ih cosχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih sinχ ∂/∂θ

Jb = ih sinχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih cosχ ∂/∂θ

Jc = - ih ∂/∂χ.

The angles θ, φ, and χ are the Euler angles needed to specify the orientation of the rigid

molecule relative to a laboratory-fixed coordinate system. The corresponding square of

the total angular momentum operator J2 can be obtained as

J2 = Ja2 + Jb2 + Jc2

=  - ∂2/∂θ2 - cotθ ∂/∂θ

+ (1/sinθ) (∂2/∂φ2 + ∂2/∂χ2 - 2 cosθ∂2/∂φ∂χ),

and the component along the lab-fixed Z axis JZ is - ih ∂/∂φ as we saw much earlier in

this text.

b. The Eigenfunctions and Eigenvalues for Special Cases
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i. Spherical Tops

When the three principal moment of inertia values are identical, the molecule is

termed a spherical top. In this case, the total rotational energy can be expressed in terms

of the total angular momentum operator J2

Hrot = J2/2I.

As a result, the eigenfunctions of Hrot are those of J2 and Ja as well as JZ both of which

commute with J2 and with one another.  JZ is the component of J along the lab-fixed Z-

axis and commutes with Ja  because JZ = - ih ∂/∂φ  and Ja = - ih ∂/∂χ act on different

angles. The energies associated with such eigenfunctions are

E(J,K,M) = h2 J(J+1)/2I2,

for all K (i.e., Ja quantum numbers) ranging from -J to J in unit steps and for all M (i.e.,

JZ quantum numbers) ranging from -J to J. Each energy level is therefore (2J + 1)2

degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for

each J.

The eigenfunctions |J,M,K> of J2, JZ and Ja , are given in terms of the set of so-

called rotation matrices DJ,M,K:

|J,M,K> = 
2J + 1
8 π2   D*J,M,K(θ,φ,χ)
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which obey

J2 |J,M,K> = h2 J(J+1) |J,M,K>,

Ja  |J,M,K> = h K |J,M,K>,

JZ |J,M,K> = h M |J,M,K>.

These DJ,M,K functions are propotional to the spherical harmonics YJ,M(θ,φ) multiplied by

exp(iKχ), which reflects its χ-dependence.

ii.  Symmetric Tops

Molecules for which two of the three principal moments of inertia are equal are

called symmetric tops. Those for which the unique moment of inertia is smaller than the

other two are termed prolate symmetric tops; if the unique moment of inertia is larger

than the others, the molecule is an oblate symmetric top. An American football is prolate,

and a frisbee is oblate.

Again, the rotational kinetic energy, which is the full rotational Hamiltonian, can

be written in terms of the total rotational angular momentum operator J2 and the

component of angular momentum along the axis with the unique principal moment of

inertia:
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Hrot = J2/2I + Ja2{1/2Ia - 1/2I}, for prolate tops

Hrot = J2/2I + Jc2{1/2Ic - 1/2I}, for oblate tops.

Here, the moment of inertia I denotes that moment that is common to two directions; that

is, I is the non-unique moment of inertia. As a result, the eigenfunctions of Hrot are those

of J2 and Ja or Jc (and of JZ), and the corresponding energy levels are:

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ia - 1/2I},

for prolate tops

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ic - 1/2I},

for oblate tops, again for K and M (i.e., Ja or Jc and JZ quantum numbers, respectively)

ranging from -J to J in unit steps. Since the energy now depends on K, these levels are

only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each J value.

Notice that for prolate tops, because Ia is smaller than I, the energies increase with

increasing K for given J. In contrast, for oblate tops, since Ic is larger than I, the energies

decrease with K for given J. The eigenfunctions |J, M,K> are the same rotation matrix

functions as arise for the spherical-top case, so they do not require any further discussion

at this time.
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iii. Asymmetric Tops

The rotational eigenfunctions and energy levels of a molecule for which all three

principal moments of inertia are distinct (a so-called asymmetric top) can not easily be

expressed in terms of the angular momentum eigenstates and the J, M, and K quantum

numbers. In fact, no one has ever solved the corresponding Schrödinger equation for this

case.  However, given the three principal moments of inertia Ia, Ib, and Ic, a matrix

representation of each of the three contributions to the rotational Hamiltonian

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic

can be formed within a basis set of the {|J, M, K>} rotation-matrix functions discussed

earlier. This matrix will not be diagonal because the |J, M, K> functions are not

eigenfunctions of the asymmetric top Hrot. However, the matrix can be formed in this

basis and subsequently brought to diagonal form by finding its eigenvectors {Cn, J,M,K}

and its eigenvalues {En}. The vector coefficients express the asymmetric top eigenstates

as

Ψn (θ, φ, χ) = ΣJ, M, K Cn, J,M,K |J, M, K>.

Because the total angular momentum J2 still commutes with Hrot, each such eigenstate

will contain only one J-value, and hence Ψn can also be labeled by a J quantum number:
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Ψn,J  (θ, φ, χ) = Σ M, K Cn, J,M,K |J, M, K>.

To form the only non-zero matrix elements of Hrot within the |J, M, K> basis, one

can use the following properties of the rotation-matrix functions (see, for example, R. N.

Zare, Angular Momentum, John Wiley, New York (1988)):

<J, M, K| Ja2| J, M, K> = <J, M, K| Jb 2| J, M, K>

= 1/2 <J, M, K| J2 - Jc2 | J, M, K> = h2 [ J(J+1) - K2 ],

<J, M, K| Jc2| J, M, K> = h2 K2,

<J, M, K| Ja2| J, M, K ± 2> = - <J, M, K| Jb 2| J, M, K ± 2>

=  h2 [J(J+1) - K(K± 1)]1/2 [J(J+1) -(K± 1)(K± 2)]1/2

<J, M, K| Jc2| J, M, K ± 2> = 0.

Each of the elements of Jc2, Ja2, and Jb2 must, of course, be multiplied, respectively, by

1/2Ic, 1/2Ia, and 1/2Ib and summed together to form the matrix representation of Hrot.

The diagonalization of this matrix then provides the asymmetric top energies and wave

functions.
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IX. Vibrations of Molecules

This Schrödinger equation forms the basis for our thinking about bond stretching and

angle bending vibrations as well as collective vibrations called phonons in solids.

The radial motion of a diatomic molecule in its lowest (J=0) rotational level can

be described by the following Schrödinger equation:

- (h2/2µ) r-2∂/∂r (r2∂/∂r) ψ +V(r) ψ = E ψ,

where µ is the reduced mass µ = m1m2/(m1+m2) of the two atoms. If the molecule is

rotating, then the above Schrödinger equation has an additional term J(J+1) h2/2µ r-2 ψ

on its left-hand side. Thus, each rotational state (labeled by the rotational quantum

number J) has its own vibrational Schrödinger equantion and thus its own set of

vibrational energy levels and wave functions. It is common to examine the J=0

vibrational problem and then to use the vibrational levels of this state as approximations

to the vibrational levels of states with non-zero J values (treating the vibration-rotation

coupling via perturbation theory introduced in Sec. VII.). Let us thus focus on the J=0

situation.

By substituting ψ= F(r)/r into this equation, one obtains an equation for F(r) in

which the differential operators appear to be less complicated:

- h2/2µ d2F/dr2 + V(r) F = E F.
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This equation is exactly the same as the equation seen earlier in this text for the radial

motion of the electron in the hydrogen-like atoms except that the reduced mass µ replaces

the electron mass m and the potential V(r) is not the Coulomb potential.

If the vibrational potential is approximated as a quadratic function of the bond

displacement x = r-re expanded about the equilibrium bond length re where V has its

minimum:

V = 1/2 k(r-re)2,

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V

grows without bound as x approaches ∞ or -∞, only bound-state solutions exist for this

model problem. That is, the motion is confined by the nature of the potential, so no

continuum states exist in which the two atoms bound together by the potential are

dissociated into two separate atoms.

In solving the radial differential equation for this potential, the large-r behavior is

first examined. For large-r, the equation reads:

d2F/dx2 = 1/2 k x2  (2µ/h2) F,

where x = r-re is the bond displacement away from equilibrium. Defining ξ= (µk/h2)1/4 x

as a new scaled radial coordinate allows the solution of the large-r equation to be written

as:
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Flarge-r = exp(- ξ2/2).

The general solution to the radial equation is then expressed as this large-r

solution multiplied by a power series in the ζ variable:

F = exp(- ξ2/2) ∑
n=0

∞
 ξn Cn ,

where the Cn are coefficients to be determined. Substituting this expression into the full

radial equation generates a set of recursion equations for the Cn amplitudes. As in the

solution of the hydrogen-like radial equation, the series described by these coefficients is

divergent unless the energy E happens to equal specific values. It is this requirement that

the wave function not diverge so it can be normalized that yields energy quantization.

The energies of the states that arise are given by:

En = h (k/µ)1/2 (n+1/2),

and the eigenfunctions are given in terms of the so-called Hermite polynomials Hn(y) as

follows:

ψn(x) = (n! 2n)-1/2 (α/π)1/4 exp(- αx2/2) Hn(α1/2 x),
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where α =(kµ/h2)1/2. Within this harmonic approximation to the potential, the vibrational

energy levels are evenly spaced:

∆E = En+1 - En = h (k/µ)1/2 .

In experimental data such evenly spaced energy level patterns are seldom seen; most

commonly, one finds spacings En+1 - En that decrease as the quantum number n

increases. In such cases, one says that the progression of vibrational levels displays

anharmonicity.

Because the Hermite functions Hn are odd or even functions of x (depending on

whether n is odd or even), the wave functions ψn(x) are odd or even. This splitting of the

solutions into two distinct classes is an example of the effect of symmetry; in this case,

the symmetry is caused by the symmetry of the harmonic potential with respect to

reflection through the origin along the x-axis (i.e., changing x to –x). Throughout this

text, many symmetries arise; in each case, symmetry properties of the potential cause the

solutions of the Schrödinger equation to be decomposed into various symmetry

groupings. Such symmetry decompositions are of great use because they provide

additional quantum numbers (i.e., symmetry labels) by which the wave functions and

energies can be labeled.

The basic idea underlying how such symmetries split the solutions of the

Schrödinger equation into different classes relates to the fact that a symmetry operator

(e.g., the reflection plane in the above example) commutes with the Hamiltonian. That is,

the symmetry operator S obeys
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S H Ψ = H S Ψ.

So S leaves H unchanged as it acts on H (this allows us to pass S through H in the above

equation). Any operator that leaves the Hamiltonian (i.e., the energy) unchanged is called

a symmetry operator.

If you have never learned about how point group symmetry can be used to hjelp

simplify the solution of the Schrödinger equation, this would be a good time to interrupt

your reading and go to Sec. VIII and read the material there.

The harmonic oscillator energies and wave functions comprise the simplest

reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often

characterized in terms of individual bond-stretching and angle-bending motions, each of

which is, in turn, approximated harmonically. This results in a total vibrational wave

function that is written as a product of functions, one for each of the vibrational

coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of

anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation,

result from the quadratic nature of its potential. By introducing model potentials that

allow for proper bond dissociation (i.e., that do not increase without bound as x=>∞), the

major shortcomings of the harmonic oscillator picture can be overcome. The so-called

Morse potential (see Fig. 2.24)

V(r) = De (1-exp(-a(r-re)))2,
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is often used in this regard.
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Figure 2.24. Morse potential energy as a function of bond length

In the Morse potential function, De is the bond dissociation energy, re is the equilibrium

bond length, and a is a constant that characterizes the 'steepness' of the potential and thus

affects the vibrational frequencies. The advantage of using the Morse potential to

improve upon harmonic-oscillator-level predictions is that its energy levels and wave

functions are also known exactly. The energies are given in terms of the parameters of the

potential as follows:

En = h(k/µ)1/2 { (n+1/2) - (n+1/2)2 h(k/µ)1/2/4De },
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where the force constant is given by k=2De a2. The Morse potential supports both bound

states (those lying below the dissociation threshold for which vibration is confined by an

outer turning point) and continuum states lying above the dissociation threshold. Its

degree of anharmonicity is governed by the ratio of the harmonic energy h(k/µ)1/2 to the

dissociation energy De.

The eigenfunctions of the harmonic and Morse potentials display nodal character

analogous to what we have seen earlier in the particle-in-boxes model problems. Namely,

as the energy of the vibrational state increases, the number of nodes in the vibrational

wave function also increases. The state having vibrational quantum number v has v

nodes. I hope that by now the student is getting used to seeing the number of nodes

increase as the quantum number and hence the energy grows.

 Chapter 3. Characteristics of Energy Surfaces

Born-Oppenheimer energy surfaces (or the empirical functions often used to

represent them) possess important critical points that detail the properties of stable

molecular structures, transition states, and reaction paths, all of which play central roles

in the theoretical description of molecular properties. In this Chapter, you will learn

about these special points on the surfaces, how to find them, and what to do with them

once you know them.

I. Strategies for Geometry Optimization
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The extension of the harmonic and Morse vibrational models to polyatomic

molecules requires that the multidimensional energy surface be analyzed in a manner

that allows one to approximate the molecule’s motions in terms of many nearly

independent vibrations. In this Section, we will explore the tools that one uses to carry

out such an analysis of the surface.

Many strategies that attempt to locate minima on molecular potential energy

landscapes begin by approximating the potential energy V for geometries (collectively

denoted in terms of 3N Cartesian coordinates {qj}) in a Taylor series expansion about

some “starting point” geometry (i.e., the current molecular geometry in an iterative

process):

V (qk) = V(0) + Σk (∂V/∂qk) qk + 1/2 Σj,k qj Hj,k qk + ...  .

Here, V(0) is the energy at the current geometry, (∂V/∂qk) = gk is the gradient of the

energy along the qk  coordinate, Hj,k = (∂2V/∂qj∂qk) is the second-derivative or Hessian

matrix, and qk is the length of the “step” to be taken along this Cartesian direction. An

example of an energy surface in only two dimensions is given in the Figure 3.1 where

various special aspects are illustrated. For example, minima corresponding to stable

molecular structures, transition states (first order saddle points) connecting such minima,

and higher order saddle points are displayed.
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Figure 3.1. Two-dimensional potential surface showing minima, transition states, and

paths connecting them.

If the only knowledge that is available is V(0) and the gradient components (e.g.,

computation of the second derivatives is usually much more computationally taxing than

is evaluation of the gradient), the linear approximation

V (qk) = V(0) + Σk gK qk

suggests that one should choose “step” elements qk that are opposite in sign from that of

the corresponding gradient elements gk = (∂V/∂qk). The magnitude of the step elements is

usually kept small in order to remain within the “trust radius” within which the linear

approximation to V is valid to some predetermined desired precision.

When second derivative data is available, there are different approaches to
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predicting what step {qk} to take in search of a minimum. We first write the quadratic

Taylor expansion

V (qk) = V(0) + Σk gk qk + 1/2 Σj,k qj Hj,k qk

in matrix-vector notation

V(q) = V(0) + qT • g + 1/2 qT • H • q

with the elements{qk} collected into the column vector q whose transpose is denoted qT.

Introducing the unitary matrix U that diagonalizes the symmetric H matrix, the above

equation becomes

V(q) = V(0) + gT U  UT q + 1/2 qT  U UTHU UT q.

Because UTHU is diagonal

(UTHU)k,l = δk,l  λk

and has eigenvalues λk. For non-linear molecules, 3N-6 of these eigenvalues will be non-

zero; for linear molecules, 3N-5 will be non-zero. The 5 or 6 zero eigenvalues of H have

eigenvectors that describe translation and rotation of the entire molecule; they are zero
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because the energy surface V does not change if the molecule is rotated or translated.

The eigenvectors of H form the columns of the array U that brings H to diagonal form:

Σλ Hk,l  Ul,m  = λm Uk,m

Therefore, if we define

Qm  = Σk U
T

m,k qk and Gm  = Σk U
Y

m,k gk

to be the component of the step {qk} and of the gradeint along the mth eigenvector of H,

the quadratic expansion of V can be written in terms of steps along the 3N-5 or 3N-6

{Qm} directions that correspond to non-zero Hessian eigenvalues:

V (qk) = V(0) + Σm G
T

m Qm + 1/2 Σm Qm λm Qm.

The advantage to transforming the gradient, step, and Hessian to the eigenmode basis is

that each such mode (labeled m) appears in an independent uncoupled form in the

expansion of V. This allows us to take steps along each of the Qm  directions in an

independent manner with each step designed to lower the potential energy (as we search

for minima).

For each eigenmode direction, one can ask for what step Q would the quantity GQ

+ 1/2 λ Q2 be a minimum. Differentiating this quadratic form with respect to Q and

setting the result equal to zero gives
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Qm = - Gm/λm ;

that is, one should take a step opposite the gradient but with a magnitude given by the

gradient divided by the eigenvalue of the Hessian matrix. If the current molecular

geometry is one that has all positive λm values, this indicates that one may be “close” to a

minimum on the energy surface (because all λm are positive at minima). In such case, the

step Qm = - Gm/λm  is opposed to the gradient along all 3N-5  or 3N-6 directions. The

energy change that is expected to occur if the step {Qm} is taken can be computed by

substituting Qm = - Gm/λm  into the quadratic equation for V:

V(after step) = V(0) + Σm G
T

m (- Gm/λm) + 1/2 Σm λm (- Gm/λm)2

= V(0) -  1/2 Σm λm (- Gm/λm)2.

This clearly suggests that the step will lead “downhill” in energy as long as all of the λm

values are positive.

However, if one or more of the λm are negative at the current geometry, one is in a

region of the energy surface that is not close to a minimum. In fact, if only one λm is

negative, one anticipates being near a transition state (at which all gradient components

vanish and all but one λm are positive with one λm negative). In such a case, the above

analysis suggests taking a step Qm = - Gm/λm  along all of the modes having positive λm,

but taking a step of opposite direction  Qn = + Gn/λn along the direction having negative
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λn.

In any event, once a step has been suggested within the eigenmode basis, one

needs to express that step in terms of the original Cartesian coordinates qk so that these

Cartesian values can be altered within the software program to effect the predicted step.

Given values for the 3N-5 or 3N-6 step components Qm (n.b., the step components Qm

along the 5 or 6 modes having zero Hessian eigenvalues can be taken to be zero because

the would simply translate or rotate the molecule), one must compute the {qk}. To do so,

we use the relationship

Qm  = Σk U
T

m,k qk

and write its inverse (using the unitary nature of the U matrix):

qk = Σm  Uk,m Qm

to compute the desired Cartesian step components.

In using the Hessian-based approaches outlined above, one has to take special

care when one or more of the Hessian eigenvalues is small. This often happens when

i. one has a molecule containing “soft modes” (i.e., degrees of freedom along which the

energy varies little), or

ii. as one moves from a region of negative curvature into a region of positive curvature

(or vice versa)- in such cases, the the curvature must move through or near zero.
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For these situations, the expression Qm = - Gm/λm can produce a very large step along the

mode having small curvature. Care must be taken to not allow such incorrect artificially

large steps to be taken.

Before closing this Section, I should note that there are other important regions of

potential energy surfaces that one must be able to locate and characterize. Above, we

focused on local minima and transition states. In Chapter 8, we will discuss how to

follow so-called reaction paths that connect these two kinds of stationary points using the

type of gradient and Hessian information that we introduced earlier in this Chapter.

Finally, it is sometimes important to find geometries at which two Born-

Oppenheimer energy surfaces V1(q) and V2(q) intersect. First, let’s spend a few minutes

thinking about whether such surfaces can indeed intersect because students often hear

that surfaces do not intersect but, instead, undergo “avoided crossings”. To understand

the issue, let us assume that we have two wave functions Φ1 and Φ2 both of which depend

on 3N-6 coordinates {q}. These two functions are not assumed to be exact eigenfunctions

of the Hamiltonian H, but likely are chosen to approximate such eigenfunctions. To find

the improved functions Ψ1 and Ψ2 that more accurately represent the eigenstates, one

usually forms linear combinations of Φ1 and Φ2,

ΨK = CK,1 Φ1 + CK,2 Φ2

from which a 2x2 matrix eigenvalue problem arises:

H1,1 − E H1,2

H2,1 H2,2 − E
= 0 .
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This quadratic equation has two solutions

2E± = (H1,1 + H2,2) ± (H1,1 − H2,2 )2 + 4H1,2
2 .

These two solutions can be equal (i.e., the two state energies can cross) only if the square

root factor vanishes. Because this factor is a sum of two squares (each thus being positive

quantities), this can only happen if two identities hold:

H1,1 = H2,2

and

H1,2 = 0.

The main point then is that in the 3N-6 dimensional space, the two states will generally

not have equal energy. However, in a space of two lower dimensions (because there are

two conditions that must simultaneously be obeyed- H1,1 = H2,2 and H1,2 = 0), their

energies may be equal. They do not have to be equal, but it is possible that they are. It is

based upon such an analysis that one usually says that potential energy surfaces in 3N-6

dimensions may undergo intersections in spaces of dimension 3N-8. If the two states are

of different symmetry, the off-diagonal element H1,2 vanishes automatically, so only one
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other condition is needed to realize crossing. So, we say that two states of different

symmetry can cross in a space of dimension 3N-7.

To find the lower-dimensional space in which two surfaces cross, one must have

available information about the gradients and Hessians of both functions V1 and V2. One

then uses this information to locate a geometry at which the difference function F = [V1

–V2]
2 passes through zero by using conventional “root finding” methods designed to

locate where F = 0.  Once one such geometry (q0) has been located, one subsequently

tries to follow the “seam” along which the function F remains zero. This is done by

parameterizng steps away from (q0) in a manner that constrains such steps to have no

component along the gradient of F (i.e., to lie in the tangent plane where F is constant).

For a system with 3N-6 geometrical degrees of freedom, this seam will be a subsurface of

lower dimension (3N-8 or 3N-7 as noted earlier). Such intersection seam location

procedures are becoming more commonly employed, but are still under very active

development. Locating these intersections is an important ingredient when one is

interested in studying, for example, photochemical reactions in which the reactants and

products may move from one electronic surface to another.

II. Normal Modes of Vibration

Having seen how one can use information about the gradients and Hessians on a

Born-Oppenheimer surface to locate geometries corresponding to stable species, let us

now move on to see how this same data is used to treat vibrations on this surface.

For a polyatomic molecule whose electronic energy's dependence on the 3N
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Cartesian coordinates of its N atoms, the potential energy V can be expressed

(approximately) in terms of a Taylor series expansion about any of the local minima. Of

course, different local minima (i.e., different isomers) will have different values for the

equilibrium coordinates and for the derivatives of the energy with respect to these

coordinates. The Taylor series expansion of the electronic energy is written as:

V (qk) = V(0) + Σk (∂V/∂qk) qk + 1/2 Σj,k qj Hj,k qk + ...  ,

where V(0) is the value of the electronic energy at the stable geometry under study, qk is

the displacement of the kth Cartesian coordinate away from this starting position,

(∂V/∂qk) is the gradient of the electronic energy along this direction, and the Hj,k are the

second derivative or Hessian matrix elements along these directions Hj,k = (∂2V/∂qj∂qk).

If the geometry corresponds to a stable species, the gradient terms will all vanish

(meaning this geometry corresponds to a minimum, maximum, or saddle point), and the

Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear

molecules) positive eigenvalues and 5 or 6 zero eigenvalues (corresponding to 3

translational and 2 or 3 rotational motions of the molecule). If the Hessian has one

negative eigenvalue, the geometry corresponds to a transition state. From now on, we

assume that the geometry under study corresponds to that of a stable minimum about

which vibrational motion occurs. The treatment of unstable geometries is of great

importance to chemistry, but this material will be limited to vibrations of stable species.

A. The Newton Equations of Motion for Vibration
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1. The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms

dominate because only small displacements from the equilibrium geometry are of

interest), one has the so-called harmonic potential:

V (qk) = V(0) + 1/2 Σj,k qj Hj,k qk.

The classical mechanical equations of motion for the 3N {qk} coordinates can be written

in terms of the above potential energy and the following kinetic energy function:

T = 1/2 Σj mj q
•

 j2,

where q
•
 j   denotes the time rate of change of the coordinate qj and mj is the mass of the

atom on which the jth Cartesian coordinate resides. The Newton equations thus obtained

are:

mj q
••

j = - Σk Hj,k qk 

where the force along the jth coordinate is given by minus the derivative of the potential

V along this coordinate (∂V/∂qj) = Σk Hj,k qk within the harmonic approximation.
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These classical equations can more compactly be expressed in terms of the time

evolution of a set of so-called mass weighted Cartesian coordinates defined as:

xj = qj (mj)1/2,

in terms of which the above Newton equations become

x
••

j = - Σk H'j,k xk 

and the mass-weighted Hessian matrix elements are

H'j,k = Hj,k (mjmk)-1/2.

2. The Harmonic Vibrational Energies and Normal Mode Eigenvectors

Assuming that the xj undergo some form of sinusoidal time evolution:

xj(t) = xj (0) cos(ωt),

and substituting this into the Newton equations produces a matrix eigenvalue equation:

ω2 xj = Σk H'j,k xk
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in which the eigenvalues are the squares of the so-called normal mode vibrational

frequencies and the eigenvectors give the amplitudes of motion along each of the 3N

mass weighted Cartesian coordinates that belong to each mode. Hence, to perform a

normal-mode analysis of a molecule, one forms the mass-weighted Hessian matrix and

then finds the 3N-5 or 3N-6 non-zero eigenvalues ωj
2 as well as the corresponding

eigenvectors xk
(j).

Within this harmonic treatment of vibrational motion, the total vibrational energy

of the molecule is given as

E(v1, v2, ··· v3N-5 or 6) = ∑
j=1

3N-5or6
hωj (vj + 1/2) 

a sum of 3N-5 or 3N-6 independent contributions one for each normal mode.  The

corresponding total vibrational wave function

Ψ =   Πj=1,3N-5or 6  ψvj
 (x(j))

is a product of 3N-5 or 3N-6 harmonic oscillator functions ψvj
 (x(j)) one for each normal

mode. The energy gap between one vibrational level and another in which one of the vj

quantum numbers is increased by unity (i.e., for fundamental vibrational transitions) is

∆Evj → vj + 1 = h ωj
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The harmonic model thus predicts that the "fundamental" (v=0 → v = 1) and "hot band"

(v=1 → v = 2) transitions should occur at the same energy, and the overtone (v=0 → v=2)

transitions should occur at exactly twice this energy.

B. The Use of Symmetry

1.  Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and

eigenvectors by exploiting molecular point group symmetry. For molecules that possess

symmetry at a particular stable geometry, the electronic potential V(qj) displays

symmetry with respect to displacements of symmetry equivalent Cartesian coordinates.

For example, consider the water molecule at its C2v equilibrium geometry as illustrated in

Fig. 3.2. A very small movement of the H2O molecule's left H atom in the positive x

direction (∆xL) produces the same change in the potential V as a correspondingly small

displacement of the right H atom in the negative x direction

(-∆xR). Similarly, movement of the left H in the positive y direction (∆yL) produces an

energy change identical to movement of the right H in the positive y direction (∆yR).

H

O

Hθ
r2 r1

y

x 
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Figure 3.2. Water molecule showing its two bond lengths and angle

The equivalence of the pairs of Cartesian coordinate displacements is a result of

the fact that the displacement vectors are connected by the point group operations of the

C2v group. In particular, reflection of ∆xL through the yz plane (the two planes are

depicted in Fig. 3.3) produces - ∆xR, and reflection of ∆yL through this same plane yields

∆yR.

Figure 3.3. Two planes of symmetry of the water molecule.

More generally, it is possible to combine sets of Cartesian displacement

coordinates {qk} into so-called symmetry adapted coordinates {QΓ,j}, where the index Γ

labels the irreducible representation in the appropriate point group and j labels the
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particular combination of that symmetry.  These symmetry adapted coordinates can be

formed by applying the point group projection operators (that are treated in detail in Sec.

VIII) to the individual Cartesian displacement coordinates.

To illustrate, again consider the H2O molecule in the coordinate system described

above.  The 3N = 9 mass weighted Cartesian displacement coordinates (XL, YL, ZL, XO,

YO, ZO, XR, YR, ZR) can be symmetry adapted by applying the following four projection

operators:

PA1 = 1 + σyz + σxy + C2

Pb1 = 1 + σyz - σxy - C2

Pb2 = 1 - σyz + σxy - C2

Pa2 = 1 - σyz - σxy + C2

to each of the 9 original coordinates (the symbol σ denotes reflection through a plane and

C2 means rotation about the molecule’s C2 axis).  Of course, one will not obtain  9 x 4 =

36 independent symmetry adapted coordinates in this manner; many identical

combinations will arise, and only 9 will be independent.

The independent combination of a1 symmetry (normalized to produce vectors of

unit length) are

Qa1,1  = 2-1/2 [XL - XR]

Qa1,2  = 2-1/2 [YL + YR]
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Qa1,3  =  [YO]

Those of b2 symmetry are

Qb2,1  = 2-1/2 [XL + XR]

Qb2,2  = 2-1/2 [YL - YR]

Qb2,3  =  [XO],

and the combinations

Qb1,1  = 2-1/2 [ZL + ZR]

Qb1,2 =  [ZO]

are of b1 symmetry, whereas

Qa2,1 = 2-1/2 [ZL - ZR]

is of a2 symmetry.

2.  Point Group Symmetry of the Harmonic Potential
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These nine QΓ,j are expressed as unitary transformations of the original mass

weighted Cartessian coordinates:

QΓ,j = ∑
k

 
   CΓ,j,k Xk

These transformation coefficients {CΓ,j,k} can be used to carry out a unitary

transformation of the 9x9 mass-weighted Hessian matrix.  In so doing, we need only form

blocks

HΓj,l = 
∑

k k'
     CΓ,j,k  Hk,k'  (mk mk')-1/2  CΓ,l,k'

within which the symmetries of the two modes are identical.  The off-diagonal elements

H 
Γ Γ'

j l     = Σk,k’  CΓ,j,k  Hk,k'  (mk mk')-1/2   CΓ',l,k'

vanish because the potential V (qj) (and the full vibrational Hamiltonian H = T + V)

commutes with the C2V point group symmetry operations.

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be sub

divided into two 3x3 matrix problems (of a1 and b2 symmetry), one 2x2 matrix of b1

symmetry and one 1x1 matrix of a2 symmetry.  For example, the a1 symmetry block H
a

1

j l
   

is formed as follows:
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The b2, b1 and a2 blocks are formed in a similar manner.  The eigenvalues of each of

these blocks provide the squares of the harmonic vibrational frequencies, the eigenvectors

provide the normal mode displacements as linear combinations of the symmetry adapted

{QΓj}.

Regardless of whether symmetry is used to block diagonalize the mass-weighted

Hessian, six (for non-linear molecules) or five (for linear species) of the eigenvalues will

equal zero.  The eigenvectors belonging to these zero eigenvalues describe the 3

translations and 2 or 3 rotations of the molecule.  For example,

1

3
   [XL + XR + XO]

1

3
   [YL + YR + YO]

1

3
   [ZL +ZR + ZO]

are three translation eigenvectors of b2, a1 and b1 symmetry, and
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1

2
 (ZL - ZR) 

is a rotation (about the Y-axis in the figure shown above) of a2 symmetry. This rotation

vector can be generated by applying the a2 projection operator to ZL or to ZR. The other

two rotations are of b1 and b2 symmetry and involve spinning of the molecule about the

X- and Z- axes of the Fig. B.39, respectively.

So, of the 9 Cartesian displacements, 3 are of a1 symmetry, 3 of b2 , 2 of b1, and 1

of a2. Of these, there are three translations (a1, b2, and b1) and three rotations (b2, b1, and

a2). This leaves two vibrations of a1 and one of b2 symmetry. For the H2O example

treated here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of

a1 b2 , and a1 symmetry.  They describe the symmetric and asymmetric stretch vibrations

and the bending mode, respectively as illustrated in Fig. 3.4.

H

O

H H

O

H H

O

H

Figure 3.4. Symmetric and asymmetric stretch modes and bending mode of water

The method of vibrational analysis presented here can work for any polyatomic

molecule.  One knows the mass-weighted Hessian and then computes the non-zero
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eigenvalues, which then provide the squares of the normal mode vibrational frequencies.

Point group symmetry can be used to block diagonalize this Hessian and to label the

vibrational modes according to symmetry as we show in Fig. 3.5 for the CF4 molecule in

tetrahedral symmetry.

Figure 3.5. Symmetries of vibrations of methane

Chapter 4. Some Important Tools of Theory
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For all but the most elementary problems, many of which serve as fundamental

approximations to the real behavior of molecules (e.g., the Hydrogenic atom, the

harmonic oscillator, the rigid rotor, particles in boxes), the Schrödinger equation can not

be solved exactly. It is therefore extremely useful to  have tools that allow one to

approach these insoluble problems by solving other Schrödinger equations that can be

trusted to reasonably describe the solutions of the impossible problem. The tools

discussed in this Chapter are the most important tools of this type.

I. Perturbation Theory and the Variational Method

In most practical applications of quantum mechanics to molecular problems, one

is faced with the harsh reality that the Schrödinger equation pertinent to the problem at

hand can not be solved exactly. To illustrate how desperate this situation is, I note that

neither of the following two Schrödinger equations have ever been solved exactly

(meaning analytically):

1. The Schrödinger equation for the two electrons moving about the He nucleus:

[- h2/2me ∇l2 - h2/2me ∇22 – 2e2/r1 – 2e2/r2 + e2/r1,2]ψ = E ψ,

2. The Schrödinger equation for the two electrons moving in an H2 molecule even if the

locations of the two nuclei (labeled A and B) are held clamped:

[- h2/2me ∇l2 - h2/2me ∇22 – e2/r1,A – e2/r2,A – e2/r1,B – e2/r2,B + e2/r1,2]ψ = E ψ.
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These two problems are examples of what is called the “three-body problem” meaning

solving for the behavior of three bodies moving relative to one another. Motions of the

sun, earth, and moon (even neglecting all the other planets and their moons) constitute

another three-body problem. None of these problems, even the classical Newton’s

equation for the sun, earth, and moon, have ever been solved exactly.  So, what does one

do when faced with trying to study real molecules using quantum mechanics?

There are two very powerful tools that one can use to “sneak up” on the solutions

to the desired equations by first solving an easier “model” problem and then using the

solutions to this problem to approximate the solutions to the real Schrödinger problem of

interest. For example, to solve for the energies and wave functions of a boron atom, one

could use hydrogenic 1s orbitals (but with Z = 5) and hydrogenic 2s and 2p orbitals with

Z = 3 to account for the screening of the full nuclear charge by the two 1s electrons as a

starting point. To solve for the vibrational energies of a diatomic molecule whose energy

vs. bond length E(R) is known, one could use the Morse oscillator wave functions as

starting points. But, once one has decided on a reasonable “starting point” model to use,

how does one connect this model to the real system of interest? Perturbation theory and

the variational method are the two tools that are most commonly used for this purpose.

A. Perturbation Theory

In this method,  one has available a set of equations for generating a sequence of

approximations to the true energy E and true wave function ψ. I will now briefly outline
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the derivation of these working equations for you. First, one decomposes the true

Hamiltonian H into a so-called zeroth-order part H0 (this is the Hamiltonian of the model

problem one has chosen to use to represent the real system) and the difference (H-H0)

which is called the perturbation and often denoted V:

H = H0 + V.

The fundamental assumption of perturbation theory is that the wave functions and

energies can be expanded in a Taylor series involving various powers of the perturbation.

That is, one expands the energy E and the wave function ψ into zeroth-, first-, second,

etc, order pieces which form the unknowns in this method:

E = E0 + E1  +E2 + E3 + ...

ψ = ψ0 + ψ1 + ψ2 + ψ3 + ...

Next, one substitutes these expansions of E of H and of ψ into Hψ = Eψ. This produces

one equation whose right and left hand sides both contain terms of various “powers” in

the perturbation. For example, terms of the form E1 ψ2 and V ψ2 and E0 ψ3 are all of third

power (also called third order). Next, one equates the terms on the left and right sides that

are of the same order. This produces a set of equations, each containing all the terms of a

given order. The zeroth, first, and second order such equations are given below:
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H0 ψ0 = E0 ψ0,

H0 ψ1 + V ψ0 = E0 ψ1 + E1 ψ0

H0 ψ2 + V ψ1 = E0 ψ2 + E1 ψ1 + E2 ψ0.

The zeroth order equation simply instructs us to solve the zeroth-order Schrödinger

equation to obtain the zeroth-order wave function ψ0 and its zeroth-order energy E0.

In the first-order equation, the unknowns are ψ1 and E1 (recall that V is assumed to be

known because it is the difference between the Hamiltonian one wants to solve and the

model Hamiltonian H0).

To solve the first-order and higher-order equations, one expands each of the

corrections to the wave function ψK in terms of the complete set of wave functions of the

zeroth-order problem {ψ0
J}. This means that one must be able to solve H0 ψ0

J = E0
J ψ0

J not

just for the zeroth-order state one is interested in (denoted ψ0 above) but for all of the

other (e.g., excited states if ψ0 is the ground state) zeroth-order states {ψ0
J}. For example,

expanding ψ1 in this manner gives:

ψ1 = ΣJ C
1
J ψ0

J.

Now, the unknowns in the first-order equation become E1 and the C1
J expansion

coefficients. Substituting this expansion into H0 ψ1 + V ψ0 = E0 ψ1 + E1 ψ0 and solving for

these unknows produces the following final first-order working equations:
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E1 = <ψ0 | V | ψ0>

ψ1 = ΣJ ψ0
J {<ψ0 | V | ψ0

J>/(E0 – E0
J)},

where the index J is restricted such that ψJ
0 not equal the state ψ0 you are interested in.

These are the fundamental working equations of first-order perturbation theory. They

instruct us to compute the average value of the perturbation taken over a probability

distrubution equal to ψ0* ψ0 to obtain the first-order correction to the energy E1. They also

tell us how to compute the first-order correction to the wave function in terms of

coefficients multiplying various other zeroth-order wave functions ψJ
0.

An analogous approach is used to solve the second- and higher-order equations.

Although modern quantum mechanics does indeed use high-order perturbation theory in

some cases, much of what the student needs to know is contained in the first- and second-

order results to which I will therefore restrict our attention. The expression for the

second- order energy correction is found to be:

E2 = ΣJ <ψ0 | V | ψ0
J>

2/(E0 – E0
J),

where again, the index J is restricted as noted above. Let’s now consider an example

problem that illustrates how perturbation theory is used.

Example Problem for Perturbation Theory
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As we discussed earlier, an electron moving in a conjugated bond framework can

be modeled as a particle in a box.  An externally applied electric field of strength ε

interacts with the electron in a fashion that can described by adding the perturbation V =

eε





x - 
L
2    to the zeroth-order Hamiltonian. Here, x is the position of the electron in the

box, e is the electron's charge, and L is the length of the box.

First, we will compute the first order correction to the energy of the n=1 state and

the first order wave function for the n=1 state.  In the wave function calculation,  we will

only compute the contribution to ψ made by ψ0
2 (this is just an approximation to keep

things simple in this example) .  Let me now do all the steps needed to solve this part of

the problem. Try to make sure you can do the algebra but also make sure you understand

how we are using the first-order perturbation equations.

V = eε





x - 
L
2   , Ψ

(0)
n   = 



2

L

1
2
  Sin



nπx

L   , and

  E
(0)
n   = 

h−2π2n2

2mL2   .

E
(1)
n=1  = < >Ψ

(0)
n=1|V|Ψ

(0)
n=1   = < >Ψ

(0)
n=1|eε x - 

L
2 |Ψ

(0)
n=1  

       = 



2

L ⌡⌠

0

L

Sin2 
πx
L eε x - 

L
2 dx 
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       = 



2eε

L ⌡
⌠

0

L

Sin2



πx

L xdx  - 



2eε

L
L
2⌡

⌠

0

L

Sin2



πx

L dx 

The first integral can be evaluated using the following identity with a = 
π
L :

⌡⌠

0

L

Sin2
( )ax xdx  = 

x2

4   - 
x Sin(2ax)

4a   - 
Cos(2ax)

8a2  


L

0
  = 

L2

4  

The second integral can be evaluated using the following identity with θ = 
πx
L   

and dθ = 
π
L  dx :

⌡
⌠

0

L

Sin2



πx

L dx  = 
L
π⌡⌠

0

π
Sin2θdθ 

⌡⌠
0

π
Sin2θdθ  = -

1
4 Sin(2θ) + 

θ
2 



π

0
  = 

π
2 .

Making all of these appropriate substitutions we obtain:

E
(1)
n=1  = 



2eε

L 



L2

4  - 
L
2 

L
π 

π
2   = 0
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Ψ
(1)
n=1  = 

< >Ψ
(0)
n=2|eε x - 

L
2 |Ψ

(0)
n=1  Ψ

(0)
n=2

E
(0)
n=1 - E

(0)
n=2

 

Ψ
(1)
n=1  = 





2

L ⌡
⌠

0

L

Sin



2πx

L eε





x - 
L
2 Sin



πx

L dx 

h−2π2

2mL2( )12 - 22
 



2

L

1
2
 Sin



2πx

L  

The two integrals in the numerator need to be evaluated:

⌡
⌠

0

L

xSin



2πx

L Sin



πx

L dx  , and ⌡
⌠

0

L

Sin



2πx

L Sin



πx

L dx  .

Using the integral identities ⌡⌠xCos(ax)dx  = 
1
a2 Cos(ax) + 

x
a Sin(ax), and ⌡⌠Cos(ax)dx  

= 
1
a  Sin(ax), we obtain the following:

⌡
⌠

0

L

Sin



2πx

L Sin



πx

L dx  = 
1
2





⌡
⌠

0

L

Cos



πx

L dx - ⌡
⌠

0

L

Cos



3πx

L dx  

    = 
1
2





L

πSin



πx

L 

L

0
 - 

L
3πSin



3πx

L 

L

0
   = 0
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⌡
⌠

0

L

xSin



2πx

L Sin



πx

L dx  = 
1
2





⌡
⌠

0

L

xCos



πx

L dx - ⌡
⌠

0

L

xCos



3πx

L dx  

= 
1
2













L2

π2Cos



πx

L  + 
Lx
π Sin



πx

L 

L

0
 - 






L2

9π2Cos



3πx

L  + 
Lx
3πSin



3πx

L 

L

0
  

= 
-2L2

2π2   - 
-2L2

18π2  = 
L2

9π2  - 
L2

π2  = -
8L2

9π2 

Making all of these appropriate substitutions we obtain:

Ψ
(1)
n=1  = 





2

L (eε)







-
8L2

9π2 - 
L
2(0)  

-3h−2π2

2mL2

 



2

L

1
2
 Sin



2πx

L  

Ψ
(1)
n=1  = 

32mL3eε
27h−2π4  



2

L

1
2
 Sin



2πx

L  

Now, let’s compute the induced dipole moment caused by the polarization of the electron

density due to the electric field effect using the equation µinduced = - e⌡
⌠

Ψ*





x - 
L
2 Ψdx

with Ψ now being the sum of our zeroth- and first-order wave functions. In computing

this integral,  we neglect the term proportional to ε2 because we are interested in only the

term linear in ε because this is what gives the dipole moment. Again, allow me to do the

algebra and see if you can follow.
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µinduced = - e⌡
⌠

Ψ*





x - 
L
2 Ψdx ,  where, Ψ = 

 Ψ
(0)
1  + Ψ

(1)
1  .

µinduced = - e⌡
⌠

0

L

 Ψ
(0)
1  + Ψ

(1)
1

*






x - 
L
2  Ψ

(0)
1  + Ψ

(1)
1 dx 

     = -e⌡
⌠

0

L

Ψ
(0)
1

*






x - 
L
2 Ψ

(0)
1 dx  - e⌡

⌠

0

L

Ψ
(0)
1

*






x - 
L
2 Ψ

(1)
1 dx 

- e⌡
⌠

0

L

Ψ
(1)
1

*






x - 
L
2 Ψ

(0)
1 dx  - e⌡

⌠

0

L

Ψ
(1)
1

*






x - 
L
2 Ψ

(1)
1 dx 

The first integral is zero (see the evaluation of this integral for E
(1)
1   above). The fourth

integral is neglected since it is proportional to ε2.  The second and third integrals are the

same and are combined to give:

µinduced = -2e⌡
⌠

0

L

Ψ
(0)
1

*






x - 
L
2 Ψ

(1)
1 dx 

Substituting Ψ
(0)
1   = 



2

L

1
2
  Sin



πx

L   and Ψ
(1)
1   = 

32mL3eε
27h−2π4  



2

L

1
2
 Sin



2πx

L   , we obtain:

µinduced = -2e
32mL3eε
27h−2π4 



2

L ⌡
⌠

0

L

Sin



πx

L 





x - 
L
2 Sin



2πx

L dx 
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These integrals are familiar from what we did to compute Ψ1; doing them we finally

obtain:

µinduced = -2e
32mL3eε
27h−2π4 



2

L 







-
8L2

9π2  

µinduced = 
mL4e2ε

h−2π6  
210

35  

Now. Let’s compute the polarizability, α, of the electron in the n=1 state of the

box, and try to undestand physically why α should depend as it does upon the length of

the box L.  To compute the polarizability, we need to know that α = 
∂µ
∂ε 





ε=0

 
 .Using our

induced moment result above, we then find

α = 



∂µ

∂ε ε=0
  = 

mL4e2

h−2π6  
210

35  

Notice that this finding suggests that the larger the box (molecule), the more polarizable

the electron density. This result also suggests that the polarizability of conjugated

polyenes should vary non-linearly with the length of the congugated chain.

B. The Variational Method

Let us now turn to the other method that is used to solve Schrödinger equations
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approximately, the variational method. In this approach, one must again have some

reasonable wave function ψ0 that is used to approximate the true wave function. Within

this approximate wave function, one imbeds one or more variables {αJ} that one

subsequently varies to achieve a minimum in the energy of ψ0 computed as an

expectation value of the true Hamiltonian H:

E({αJ}) = <ψ0| H | ψ0>/<ψ0 | ψ0>.

The optimal values of the αJ parameters are determined by making

dE/dαJ = 0

To achieve the desired energy minimum (n.b., we also should verify that the second

derivative matrix (∂2E/∂αJ∂αL) has all positive eigenvalues).

The theoretical basis underlying the variational method can be understood through

the following derivation. Suppose the someone knew the exact eigenstates (i.e., true ΨK

and true EK) of the true Hamiltonian H. These states obey

H ΨK = EK ΨK.

Because these true states form a complete set (it can be shown that the eigenfunctions of
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all the Hamiltonian operators we ever encounter have this property), our so-called “trial

wave function” ψ0 can, in principle, be expanded in terms of these ΨK:

ψ0  = ΣK CK ΨK.

Before proceeding further, allow me to overcome one likely misconception. What I am

going through now is only a derivation of the working formula of the variational method.

The final formula will not require us to ever know the exact ΨK or the exact EK, but we

are allowed to use them as tools in our derivation because we know they exist even if we

never know them.

With the above expansion of our trial function in terms of the exact

eigenfunctions, let us now substitute this into the quantity <ψ0| H | ψ0>/<ψ0 | ψ0> that the

varitational method instructs us to compute:

E = <ψ0| H | ψ0>/<ψ0 | ψ0> = <ΣK CK ΨK | H | ΣL CL ΨL>/<ΣK CK ΨK|ΣL CL ΨL>.

Using the fact that the ΨK obey HΨK = EKΨK and that the ΨK are orthonormal (I hope you

remember this property of solutions to all Schrödinger equations that we discussed

earlier)

<ΨK|ΨL> = δK.L
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the above expression reduces to

E = ΣΚ < CK ΨK | H | CK ΨK>/(ΣK< CK ΨK| CK ΨK>) = ΣK |CK|2 EK/ΣK|CK|2.

One of the basic properties of the kind of Hamiltonia we encounter is that they have a

lowest-energy state. Sometimes we say they are bounded from below, which means their

energy states do not continue all the way to minus infinity. There are systems for which

this is not the case, but we will now assume that we are not dealing with such systems.

This allows us to introduce the inequality EK ≥ E0 which says that all of the energies are

higher than or equal to the energy of the lowest state which we denote E0. Introducing

this inequality into the above expression gives

E ≥ ΣK |CK|2 E0 /ΣK|CK|2 = E0.

This means that the variational energy, computed as <ψ0| H | ψ0>/<ψ0 | ψ0> will lie above

the true ground-state energy no matter what trial function ψ0 we use.

The significance of the above result that E ≥ E0 is as follows. We are allowed to

imbed into our trial wave function ψ0 parameters that we can vary to make E, computed

as <ψ0| H | ψ0>/<ψ0 | ψ0> as low as possible because we know that we can never make

<ψ0| H | ψ0>/<ψ0 | ψ0> lower than the true ground-state energy. The philosophy then is to

vary the parameters in ψ0 to render E as low as possible, because the closer E is to E0 the
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“better” is our variational  wave function. Let me now demonstrate how the variational

method is used in such a manner by solving an example problem.

Example Variational Problem

Suppose you are given a trial wave  function of the form:

φ = 
Ze3

πa03  exp





-Zer1

a0
  exp






-Zer2

a0
 

to represent a two-electron ion of nuclear charge Z and suppose that you are lucky

enough that I have already evaluated the <ψ0| H | ψ0>/<ψ0 | ψ0>  integral, which I’ll call

W, for you and found

W = 





Ze2 - 2ZZe + 
5
8 Ze  

e2

a0
  .

Now, let’s find the optimum value of the variational parameter Ze for an arbitrary nuclear

charge Z by setting 
dW
dZe

  = 0 .  After finding the optimal value of Ze, we’ll then find the

optimal energy by plugging this Ze into the above W expression. I’ll do the algebra and

see if you can follow.

W = 





Ze2 - 2ZZe + 
5
8 Ze  

e2

a0
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dW
dZe

  = 





2Ze - 2Z + 
5
8  

e2

a0
  = 0

2Ze - 2Z + 
5
8  = 0

2Ze = 2Z - 
5
8 

Ze = Z - 
5
16  = Z - 0.3125

(n.b., 0.3125 represents the shielding factor of one 1s electron to the other).

Now, using this optimal Ze in our energy expression gives

W = Ze





Ze - 2Z + 
5
8  

e2

a0 

W = 





Z - 
5
16 











Z - 
5
16  - 2Z + 

5
8  

e2

a0
 

W = 





Z - 
5
16 





-Z + 
5
16  

e2

a0
 

W = -





Z - 
5
16 





Z - 
5
16  

e2

a0
  = -





Z - 
5
16

2
 
e2

a0
 

    = - (Z - 0.3125)2(27.21) eV

(n.b., since a0 is the Bohr radius 0.529 Å, e2/a0 = 27.21 eV, or one atomic unit of energy).

Is this energy “any good”? The total energies of some two-electron atoms and ions have

been experimentally determined to be:
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Z = 1 H- -14.35 eV

Z = 2 He -78.98 eV

Z = 3 Li+ -198.02 eV

Z = 4 Be+2 -371.5 eV

Z = 5 B+3 -599.3 eV

Z = 6 C+4 -881.6 eV

Z = 7 N+5 -1218.3 eV

Z = 8 O+6 -1609.5 eV

Using our optimized expression for W, let’s now calculate the estimated total energies of

each of these atoms and ions as well as the percent error in our estimate for each ion.

Z Atom Experimental Calculated % Error

Z = 1 H- -14.35 eV -12.86 eV 10.38%



235

Z = 2 He -78.98 eV -77.46 eV 1.92%

Z = 3 Li+ -198.02 eV -196.46 eV 0.79%

Z = 4 Be+2 -371.5 eV -369.86 eV 0.44%

Z = 5 B+3 -599.3 eV -597.66 eV 0.27%

Z = 6 C+4 -881.6 eV -879.86 eV 0.19%

Z = 7 N+5 -1218.3 eV -1216.48 eV 0.15%

Z = 8 O+6 -1609.5 eV -1607.46 eV 0.13%

The energy errors are essentially constant over the range of Z, but produce a larger

percentage error at small Z.

In 1928, when quantum mechanics was quite young, it was not known whether

the isolated, gas-phase hydride ion, H-, was stable with respect to loss of an electrn ot

form a hydrogen atom.  Let’s compare our estimated total energy for H- to the ground

state energy of a hydrogen atom and an isolated electron (which is known to be

-13.60 eV). When we use our expression for W and take Z = 1, we obtain W = -12.86 eV,

which  is greater than -13.6 eV (H + e-), so this simple variational calculation erroneously

predicts H- to be unstable. More complicated variational treatments give a ground state

energy of H- of -14.35 eV, in agreement with experiment.

II. Point Group Symmetry
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It is assumed that the reader has previously learned, in undergraduate inorganic or

physical chemistry classes, how symmetry arises in molecular shapes and structures and

what symmetry elements are (e.g., planes, axes of rotation, centers of inversion, etc.). For

the reader who feels, after reading this appendix, that additional background is needed,

the text by Eyring, Walter, and Kimball or by Atkins and Friedman can be consulted. We

review and teach here only that material that is of direct application to symmetry analysis

of molecular orbitals and vibrations and rotations of molecules. We use a specific

example, the ammonia molecule, to introduce and illustrate the important aspects of point

group symmetry.

A. The C3v Symmetry Group of Ammonia - An Example

The ammonia molecule NH3 belongs, in its ground-state equilibrium geometry, to

the C3v point group.  Its symmetry operations consist of two C3 rotations, C3, C32

(rotations by 120° and 240°, respectively about an axis passing through the nitrogen atom

and lying perpendicular to the plane formed by the three hydrogen atoms), three vertical

reflections, σv, σv', σv", and the identity operation.  Corresponding to these six operations

are symmetry elements:  the three-fold rotation axis, C3 and the three symmetry planes

σv, σv' and σv" that contain the three NH bonds and the z-axis (see Fig. 4.1).
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N

σv'

σv

σxz is σv'' H3

H2

H1

C3 axis (z)

x- axis

y- axis

Figure 4.1 Ammonia Molecule and its Symmetry Elements

These six symmetry operations form a mathematical group.  A group is defined as

a set of objects satisfying four properties.

1. A combination rule is defined through which two group elements are combined to

give a result which we call the product.  The product of two elements in the group

must also be a member of the group (i.e., the group is closed under the

combination rule).

2. One special member of the group, when combined with any other member of the

group, must leave the group member unchanged (i.e., the group contains an

identity element).
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3. Every group member must have a reciprocal in the group.  When any group

member is combined with its reciprocal, the product is the identity element.

4. The associative law must hold when combining three group members (i.e., (AB)C

must equal A(BC)).

The members of symmetry groups are symmetry operations; the combination rule

is successive operation.  The identity element is the operation of doing nothing at all.

The group properties can be demonstrated by forming a multiplication table.  Let us label

the rows of the table by the first operation and the columns by the second operation.

Note that this order is important because most groups are not commutative.  The C3v

group multiplication table is as follows:

E C3 C32 σv σv' σv" second operation

E E C3 C32 σv σv' σv"

C3 C3 C32 E σv' σv" σv

C32 C32 E C3 σv" σv σv'

σv σv σv" σv' E C32 C3

σv' σv' σv σv" C3 E C32

σv" σv" σv' σv C32 C3 E

First

operation
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Note the reflection plane labels do not move. That is, although we start with H1 in the σv

plane, H2 in σv'', and H3 in σv", if H1 moves due to the first symmetry operation, σv

remains fixed and a different H atom lies in the σv plane.

B. Matrices as Group Representations

In using symmetry to help simplify molecular orbital (mo) or vibration/rotation

energy level identifications, the following strategy is followed:

1. A set of M objects belonging to the constituent atoms (or molecular fragments, in a

more general case) is introduced. These objects are the orbitals of the individual atoms

(or of the fragments) in the m.o. case; they are unit vectors along the x, y, and z directions

located on each of the atoms, and representing displacements along each of these

directions, in the vibration/rotation case.

2. Symmetry tools are used to combine these M objects into M new objects each of which

belongs to a specific symmetry of the point group. Because the Hamiltonian (electronic in

the m.o. case and vibration/rotation in the latter case) commutes with the symmetry

operations of the point group, the matrix representation of H within the symmetry

adapted basis will be "block diagonal". That is, objects of different symmetry will not

interact; only interactions among those of the same symmetry need be considered.

To illustrate such symmetry adaptation, consider symmetry adapting the 2s orbital

of N and the three 1s orbitals of the three H atoms. We begin by determining how these
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orbitals transform under the symmetry operations of the C3v point group.  The act of each

of the six symmetry operations on the four atomic orbitals can be denoted as follows:

(SN,S1,S2,S3) →
E

 (SN,S1,S2,S3)

→
C3

 (SN,S3,S1,S2)

→
C32

 (SN,S2,S3,S1)

→
σv

 (SN,S1,S3,S2)

→
σv"

 (SN,S3,S2,S1)

→
σv'

 (SN,S2,S1,S3)

Here we are using the active view that a C3 rotation rotates the molecule by 120°.  The

equivalent passive view is that the 1s basis functions are rotated -120°.  In the C3

rotation, S3 ends up where S1 began, S1, ends up where S2 began and S2 ends up where

S3 began.

These transformations can be thought of in terms of a matrix multiplying a

vector with elements (SN,S1,S2,S3).  For example, if D(4) (C3) is the representation

matrix giving the C3 transformation, then the above action of C3 on the four basis orbitals

can be expressed as:
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D(4)(C3) 









SN

S1

S2

S3

  = 









1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 









SN

S1

S2

S3

  = 









SN

S3

S1

S2

 

We can likewise write matrix representations for each of the symmetry operations of the

C3v point group:

D(4)(C32) = 









1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

   ,  D(4)(E) = 









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

D(4)(σv) = 









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

   ,  D(4)(σv') = 









1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 

D(4)(σv") = 









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
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It is easy to verify that a C3 rotation followed by a σv reflection is equivalent to a σv'

reflection alone.  In other words

σv C3 = σv' , or, 

 S1  

   

S2  S3

    →
C3

    

 S3  

   

S1  S2

    →
σv

    

 S3  

   

S2  S1

 

Note that this same relationship is carried by the matrices:

D(4)(σv) D(4)(C3) = 







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 







1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

  = 







1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

  = D(4)(σv')

Likewise we can verify that C3  σv = σv" directly and we can notice that the matrices also

show the same identity:

D(4)(C3) D(4)(σv) = 







1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

  = 







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

  = D(4)(σv").

In fact, one finds that the six matrices, D(4)(R), when multiplied together in all 36

possible ways obey the same multiplication table as did the six symmetry operations. We
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say the matrices form a representation of the group because the matrices have all the

properties of the group.

1. Characters of Representations

One important property of a matrix is the sum of its diagonal elements which is

called the trace of the matrix D and is denoted Tr(D):

Tr(D) = ∑
i

 Dii  = χ.

So, χ is called the trace or character of the matrix.  In the above example

χ(E) = 4

χ(C3) = χ(C32) = 1

χ(σv) = χ(σv') = χ(σv") = 2.

The importance of the characters of the symmetry operations lies in the fact that they do

not depend on the specific basis used to form them. That is, they are invariant to a unitary

or orthorgonal transformation of the objects used to define the matrices. As a result, they

contain information about the symmetry operation itself and about the space spanned by

the set of objects. The significance of this observation for our symmetry adaptation

process will become clear later.



244

Note that the characters of both rotations are the same as are those of all three

reflections. Collections of operations having identical characters are called classes.  Each

operation in a class of operations has the same character as other members of the class.

The character of a class depends on the space spanned by the basis of functions on which

the symmetry operations act.

2. Another Basis and Another Representation

Above we used (SN,S1,S2,S3) as a basis. If, alternatively, we use the one-

dimensional basis consisting of the 1s orbital on the N-atom, we obtain different

characters, as we now demonstrate.

The act of the six symmetry operations on this SN can be represented as follows:

SN →
E

  SN; SN →
C3

  SN; SN →
C32

   SN;

SN →
σv

  SN; SN →
σv'

  SN; SN →
σv"

   SN.

We can represent this group of operations in this basis by the one-dimensional set of

matrices:

D(1) (E) = 1; D(1) (C3) = 1; D(1) (C32) = 1,

D(1) (σv) = 1; D(1)(σv") = 1; D(1) (σv') = 1.
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Again we have

D(1) (σv) D(1) (C3) = 1 ⋅ 1 = D(1) (σv"), and

D(1) (C3) D(1) (σv) = 1 ⋅ 1 = D(1) (σv').

These six matrices form another representation of the group. In this basis, each character

is equal to unity. The representation formed by allowing the six symmetry operations to

act on the 1s N-atom orbital is clearly not the same as that formed when the same six

operations acted on the (SN,S1,S2,S3) basis. We now need to learn how to further analyze

the information content of a specific representation of the group formed when the

symmetry operations act on any specific set of objects.

C. Reducible and Irreducible Representations

1. A Reducible Representation

Note that every matrix in the four dimensional group representation labeled D(4)

has the so-called block diagonal form
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1 0 0 0

0

0 3 x 3 matrix

0

This means that these D(4) matrices are really a combination of two separate group

representations (mathematically, it is called a direct sum representation). We say that D(4)

is reducible into a one-dimensional representation D(1) and a three-dimensional

representation formed by the 3x3 submatrices that we will call D(3).

D(3)(E) = 





1 0 0

0 1 0

0 0 1
 ;   D(3)(C3) = 






0 0 1

1 0 0

0 1 0
 ;   D(3)(C32) = 






0 1 0

0 0 1

1 0 0
 

D(3)(σv) = 





1 0 0

0 0 1

0 1 0
 ;   D(3)(σv') = 






0 0 1

0 1 0

1 0 0
 ;   D(3)(σv") = 






0 1 0

1 0 0

0 0 1
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The characters of D(3) are χ(E) = 3, χ(2C3) = 0, χ(3σv) = 1. Note that we would have

obtained this D(3) representation directly if we had originally chosen to examine the basis

(S1,S2,S3); also note that these characters are equal to those of D(4) minus those of D(1).

2. A Change in Basis

Now let us convert to a new basis that is a linear combination of the original

S1,S2,S3 basis:

T1 = S1 + S2 + S3

T2 = 2S1 - S2 - S3

T3 = S2 - S3

(Don't worry about how we construct T1, T2, and T3 yet.  As will be demonstrated later,

we form them by using symmetry projection operators defined below). We determine

how the "T" basis functions behave under the group operations by allowing the

operations to act on the Sj and interpreting the results in terms of the Ti. In particular,

(T1,T2 ,T3) →
σv

  (T1,T2,-T3); (T1,T2,T3) →
E

 (T1,T2,T3) ;

(T1,T2,T3) →
σv'

 (S3+S2+S1,2S3-S2-S1,S2-S1)  = (T1, -
1
2 T2 - 

3
2 T3, -

1
2 T2 + 

1
2 T3);
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(T1,T2,T3) →
σv"

 (S2+S1+S3,2S2-S1-S3,S1-S3)  = (T1, -
1
2 T2 + 

3
2 T3, 

1
2 T2 + 

1
2 T3);

(T1,T2,T3) →
C3

 (S3+S1+S2,2S3-S1-S2,S1-S2)  = (T1, -
1
2 T2 - 

3
2 T3, 

1
2 T2 - 

1
2 T3);

(T1,T2,T3) →
C32

 (S2+S3+S1,2S2-S3-S1,S3-S1)  = (T1, -
1
2 T2 + 

3
2 T3, -

1
2 T2 - 

1
2 T3).

So the matrix representations in the new Ti basis are:

D(3)(E) = 








1 0 0

0 1 0

0 0 1

 ;D(3)(C3) = 







1 0 0

0 -
1
2 -

3
2

0 +
1
2 -

1
2

 ;

D(3)(C32) = 







1 0 0

0 -
1
2 +

3
2

0 -
1
2 -

1
2

 ; D(3)(σv) = 








1 0 0

0 1 0

0 0 -1

 ;

D(3)(σv') = 







1 0 0

0 -
1
2 -

3
2

0 -
1
2 +

1
2

 ; D(3)(σv") =







1 0 0

0 -
1
2 +

3
2

0 +
1
2 +

1
2

 .



249

3. Reduction of the Reducible Representation

These six matrices can be verified to multiply just as the symmetry operations

do; thus they form another three-dimensional representation of the group. We see that in

the Ti basis the matrices are block diagonal. This means that the space spanned by the Ti

functions, which is the same space as the Sj span, forms a reducible representation that

can be decomposed into a one dimensional space and a two dimensional space (via

formation of the Ti functions). Note that the characters (traces) of the matrices are not

changed by the change in bases.

The one-dimensional part of the above reducible three-dimensional

representation is seen to be the same as the totally symmetric representation we arrived at

before, D(1).  The two-dimensional representation that is left can be shown to be

irreducible ; it has the following matrix representations:

D(2)(E) = 




1 0

0 1
 ; D(2)(C3) = 






-

1
2 -

3
2

+
1
2 -

1
2

 ; D(2)(C32) = 





-

1
2 +

3
2

-
1
2 -

1
2

 ;

D(2)(σv) = 




1 0

0 -1
 ;  D(2)(σv') = 






-

1
2 -

3
2

-
1
2 +

1
2

 ; D(2)(σv'') = 





-

1
2 -

3
2

-
1
2 +

1
2
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The characters can be obtained by summing diagonal elements:

χ(E) = 2, χ (2C3) = -1, χ (3σv) = 0.

4. Rotations as a Basis

Another one-dimensional representation of the group can be obtained by taking

rotation about the Z-axis (the C3 axis) as the object on which the symmetry operations

act:

Rz →
E

  Rz; Rz →
C3

  Rz; Rz →
C32

  Rz;

Rz →
σv

  -Rz; Rz →
σv"

  -Rz; Rz →
σv'

  -Rz.

In writing these relations, we use the fact that reflection reverses the sense of a rotation.

The matrix representations corresponding to this one-dimensional basis are:

D(1)(E) = 1; D(1)(C3) = 1; D(1)(C32) = 1;

D(1)(σv) = -1;D(1)(σv") = -1; D(1) (σv') = -1.

These one-dimensional matrices can be shown to multiply together just like the symmetry

operations of the C3v group. They form an irreducible representation of the group
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(because it is one-dimensional, it can not be further reduced). Note that this one-

dimensional representation is not identical to that found above for the 1s N-atom orbital,

or the T1 function.

5. Overview

We have found three distinct irreducible representations for the C3v symmetry

group; two different one-dimensional and one two dimensional representations.  Are

there any more?  An important theorem of group theory shows that the number of

irreducible representations of a group is equal to the number of classes.  Since there are

three classes of operation (i.e., E, C3 and σv), we have found all the irreducible

representations of the C3v point group. There are no more.

The irreducible representations have standard names; the first D(1) (that arising

from the T1 and 1sN orbitals) is called A1, the D(1) arising from Rz is called A2 and D(2)

is called E (not to be confused with the identity operation E). We will see shortly where

to find and identify these names.

Thus, our original D(4) representation was a combination of two A1

representations and one E representation. We say that D(4) is a direct sum representation:

D(4) = 2A1 ⊕ E. A consequence is that the characters of the combination representation

D(4) can be obtained by adding the characters of its constituent irreducible

representations.
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E 2C3 3σv

A1 1  1 1

A1 1  1 1

E 2 -1 0

2A1 ⊕ E 4  1 2

6. How to Decompose Reducible Representations in General

Suppose you were given only the characters (4,1,2).  How can you find out

how many times A1, E, and A2 appear when you reduce D(4) to its irreducible parts?

You want to find a linear combination of the characters of A1, A2 and E that add up

(4,1,2).  You can treat the characters of matrices as vectors and take the dot product of A1

with D(4)







1 1 1 1 1 1

E C3  σv     ⋅ 











4 E

1 C3

1  

2 σv

2  

2  

  = 4 + 1 + 1 + 2 + 2 + 2 = 12.

The vector (1,1,1,1,1,1) is not normalized; hence to obtain the component of (4,1,1,2,2,2)

along a unit vector in the (1,1,1,1,1,1) direction, one must divide by the norm of
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(1,1,1,1,1,1); this norm is 6. The result is that the reducible representation contains 
12
6   =

2 A1 components. Analogous projections in the E and A2 directions give components of 1

and 0, respectively. In general, to determine the number nΓ of times irreducible

representation Γ appears in the reducible representation with characters χred, one

calculates

nΓ = 
1
g ∑

R

χ
Γ(R)χred(R) ,

where g is the order of the group and χΓ(R) are the characters of the Γth irreducible

representation.

7. Commonly Used Bases

We could take any set of functions as a basis for a group representation.

Commonly used sets include: coordinates (x,y,z) located on the atoms of a polyatomic

molecule (their symmetry treatment is equivalent to that involved in treating a set of p

orbitals on the same atoms), quadratic functions such as d orbitals - xy,yz,xz,x2-y2,z2, as

well as rotations about the x, y and z axes.  The transformation properties of these very

commonly used bases are listed in the character tables shown at the end of this Section.

8. Summary
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 The basic idea of symmetry analysis is that any basis of orbitals,

displacements, rotations, etc. transforms either as one of the irreducible representations or

as a direct sum (reducible) representation. Symmetry tools are used to first determine

how the basis transforms under action of the symmetry operations. They are then used to

decompose the resultant representations into their irreducible components.

D. Another Example

1. The 2p Orbitals of Nitrogen

For a function to transform according to a specific irreducible representation

means that the function, when operated upon by a point-group symmetry operator, yields

a linear combination of the functions that transform according to that irreducible

representation.  For example, a 2pz orbital (z is the C3 axis of NH3) on the nitrogen atom

belongs to the A1 representation because it yields unity times itself when C3, C32, σv ,

σv',σv"  or the identity operation act on it.  The factor of 1 means that 2pz has A1

symmetry since the characters (the numbers listed opposite A1 and below E, 2C3, and

3σv in the C3v character table shown at the end of this Section) of all six symmetry

operations are 1 for the A1 irreducible representation.

The 2px and 2py orbitals on the nitrogen atom transform as the E representation

since C3, C32, σv, σv', σv" and the identity operation map 2px and 2py among one

another.  Specifically,
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         C3 




2px

2py
  = 





Cos120° -Sin120°

Sin120° Cos120°
 




2px

2py
 ;

        C32




2px

2py
  = 





Cos240° -Sin240°

Sin240° Cos240°
 




2px

2py
 ;

          E 




2px

2py
  = 





1 0

0 1
 




2px

2py
 ;

        σv 




2px

2py
  = 





-1 0

0 1
 




2px

2py
 ;

        σv' 




2px

2py
  = 





+

1
2 +

3
2

+
3

2 -
1
2

 




2px

2py
 ;

        σv" 




2px

2py
  = 





+

1
2 -

3
2

-
3

2 -
1
2

 




2px

2py
 .
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The 2 x 2 matrices, which indicate how each symmetry operation maps 2px and 2py into

some combinations of 2px and 2py, are the representation matrices ( D(IR)) for that

particular operation and for this particular irreducible representation (IR).  For example,





+

1
2 +

3
2

+
3

2 -
1
2

  = D(E)(σv')

This set of matrices have the same characters as the D(2) matrices obtained earlier when

the Ti displacement vectors were analyzed, but the individual matrix elements are

different because we used a different basis set (here 2px and 2py ; above it was T2 and

T3). This illustrates the invariance of the trace to the specific representation; the trace

only depends on the space spanned, not on the specific manner in which it is spanned.

2. A Short-Cut

A short-cut device exists for evaluating the trace of such representation

matrices (that is, for computing the characters). The diagonal elements of the

representation matrices are the projections along each orbital of the effect of the

symmetry operation acting on that orbital.  For example, a diagonal element of the C3

matrix is the component of C32py along the 2py direction.  More rigorously, it
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is ∫ 2py* C3 2py dτ.  Thus, the character of the C3 matrix is the sum of  ∫ 2py* C3 2py dτ

and ∫ 2px* C3 2px dτ. In general, the character χ of any symmetry operation S can be

computed by allowing S to operate on each orbital φi, then projecting Sφi along φi (i.e.,

forming ⌡⌠φi*Sφidτ ), and summing these terms,

 ∑
i

 ⌡⌠φi*Sφidτ  = χ(S).

If these rules are applied to the 2px and 2py orbitals of nitrogen within the C3v

point group, one obtains

χ(E) = 2, χ(C3) = χ(C32) = -1, χ(σv) = χ(σv") = χ(σv') = 0.

This set of characters is the same as D(2) above and agrees with those of the E

representation for the C3v point group. Hence, 2px and 2py belong to or transform as the

E representation.  This is why (x,y) is to the right of the row of characters for the E

representation in the C3v character table shown at the end of this Section. In similar

fashion, the C3v character table (please refer to this table now) states that dx2−y2 and dxy

orbitals on nitrogen transform as E, as do dxy and dyz, but dz2 transforms as A1.

Earlier, we considered in some detail how the three 1sH orbitals on the

hydrogen atoms transform.  Repeating this analysis using the short-cut rule just

described, the traces (characters) of the 3 x 3 representation matrices are computed by
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allowing E, 2C3, and 3σv to operate on 1sH1, 1sH2, and 1sH3 and then computing the

component of the resulting function along the original function. The resulting characters

are χ(E) = 3, χ(C3) = χ(C32) = 0, and χ(σv) = χ(σv') = χ(σv") = 1, in agreement with

what we calculated before.

Using the orthogonality of characters taken as vectors we can reduce the above

set of characters to A1 + E.  Hence, we say that our orbital set of three 1sH orbitals forms

a reducible representation consisting of the sum of A1 and E IR's.  This means that the

three 1sH orbitals can be combined to yield one orbital of A1 symmetry and a pair that

transform according to the E representation.

E.  Projector Operators:  Symmetry Adapted Linear Combinations of Atomic

Orbitals

To generate the above A1 and E symmetry-adapted orbitals, we make use of

so-called symmetry projection operators PE and PA1.  These operators are given in terms

of linear combinations of products of characters times elementary symmetry operations

as follows:

PA1 = ∑
S

 χA(S) S 
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PE = ∑
S

 χE(S) S 

where S ranges over C3, C32, σv, σv' and σv" and the identity operation.  The result of

applying PA1 to say 1sH1 is

PA1 1sH1 = 1sH1 + 1sH2 + 1sH3 + 1sH2 + 1sH3 + 1sH1

   = 2(1sH1 + 1sH2 + 1sH3) = φA1,

which is an (unnormalized) orbital having A1 symmetry.  Clearly, this same φA1  would

be generated by PA1 acting on 1sH2 or 1sH3.  Hence, only one A1 orbital exists.

Likewise,

PE1sH1 = 2 ⋅ 1sH1 - 1sH2 - 1sH3 ≡ φE,1

which is one of the symmetry adapted orbitals having E symmetry.  The other E orbital

can be obtained by allowing PE to act on 1sH2 or 1sH3:

PE1sH2 = 2 ⋅ 1sH2 - 1sH1 - 1sH3 ≡ φE,2
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PE1sH3 = 2 ⋅ 1sH3 - 1sH1 - 1sH2 = φE,3 .

It might seem as though three orbitals having E symmetry were generated, but only two

of these are really independent functions.  For example, φE,3 is related to φE,1 and φE,2

as follows:

φE,3 = -(φE,1 + φE,2).

Thus, only φE,1 and φE,2 are needed to span the two-dimensional space of the E

representation.  If we include φE,1 in our set of orbitals and require our orbitals to be

orthogonal, then we must find numbers a and b such that φ'E = aφE,2 + bφE,3 is

orthogonal to φE,1: ⌡⌠φ'E φE,1dτ = 0.  A straightforward calculation gives a = -b or φ'E =

a (1sH2 - 1sH3) which agrees with what we used earlier to construct the Ti functions in

terms of the Sj functions.

F. Summary

Let us now summarize what we have learned.  Any given set of atomic

orbitals {φi}, atom-centered displacements or rotations can be used as a basis for the

symmetry operations of the point group of the molecule.  The characters χ(S) belonging

to the operations S of this point group within any such space can be found by summing
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the integrals ⌡⌠φi*Sφidτ  over all the atomic orbitals (or corresponding unit vector

atomic displacements).  The resultant characters will, in general, be reducible to a

combination of the characters of the irreducible representations χi(S).  To decompose

the characters χ(S) of the reducible representation to a sum of characters χi(S) of the

irreducible representation

χ(S) = ∑
i

 ni χi(S) ,

it is necessary to determine how many times, ni, the i-th irreducible representation

occurs in the reducible representation.  The expression for ni is

ni = 
1
g ∑

S
 χ(S) χi(S) 

in which g is the order of the point group- the total number of symmetry operations in

the group (e.g., g = 6 for C3v).

For example, the reducible representation χ(E) = 3, χ(C3) = 0, and χ(σv) = 1

formed by the three 1sH orbitals discussed above can be decomposed as follows:

nA1 = 
1
6 (3 ⋅ 1 + 2 ⋅ 0 ⋅ 1 + 3 ⋅ 1 ⋅ 1)  = 1,
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nA2 = 
1
6 (3 ⋅ 1 + 2 ⋅ 0 ⋅ 1 + 3 ⋅ 1 ⋅ (-1))  = 0,

nE = 
1
6 (3 ⋅ 2 + 2 ⋅ 0 ⋅ (-1) + 3 ⋅ 1 ⋅ 0)  = 1.

These equations state that the three 1sH orbitals can be combined to give one A1 orbital

and, since E is degenerate, one pair of E orbitals, as established above.  With

knowledge of the ni, the symmetry-adapted orbitals can be formed by allowing the

projectors

Pi = ∑
i

 χi(S) S 

to operate on each of the primitive atomic orbitals.  How this is carried out was

illustrated for the 1sH  orbitals in our earlier discussion. These tools allow a symmetry

decomposition of any set of atomic orbitals into appropriate symmetry-adapted orbitals.

Before considering other concepts and group-theoretical machinery, it should

once again be stressed that these same tools can be used in symmetry analysis of the

translational, vibrational and rotational motions of a molecule.  The twelve motions of

NH3 (three translations, three rotations, six vibrations) can be described in terms of

combinations of displacements of each of the four atoms in each of three (x,y,z)

directions.  Hence, unit vectors placed on each atom directed in the x, y, and z

directions form a basis for action by the operations {S} of the point group.  In the case
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of NH3, the characters of the resultant 12 x 12 representation matrices form a reducible

representation in the C2v point group:  χ(E) = 12, χ(C3) = χ(C32) = 0,  χ(σv) = χ(σv') =

χ (σv") = 2.  For example under σv, the H2 and H3 atoms are interchanged, so unit

vectors on either one will not contribute to the trace.  Unit z-vectors on N and H1

remain unchanged as well as the corresponding y-vectors.  However, the x-vectors on N

and H1 are reversed in sign.  The total character for σv' the H2 and H3 atoms are

interchanged, so unit vectors on either one will not contribute to the trace.  Unit z-

vectors on N and H1 remain unchanged as well as the corresponding y-vectors.

However, the x-vectors on N and H1 are reversed in sign.  The total character for σv is

thus 4 - 2 = 2.  This representation can be decomposed as follows:

nA1 = 
1
6  [1⋅1⋅12 + 2⋅1⋅0 + 3⋅1⋅2] = 3,

nA2 = 
1
6  [1⋅1⋅12 + 2⋅1⋅0 + 3⋅(-1)⋅2] = 1,

nE   = 
1
6  [1⋅2⋅12 + 2⋅(-1)⋅0 + 3⋅0⋅2] = 4.

From the information on the right side of the C3v character table, translations of all four

atoms in the z, x and y directions transform as A1(z) and E(x,y), respectively, whereas

rotations about the z(Rz), x(Rx), and y(Ry) axes transform as A2 and E.  Hence, of the
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twelve motions, three translations have A1 and E symmetry and three rotations have A2

and E symmetry.  This leaves six vibrations, of which two have A1 symmetry, none

have A2 symmetry, and two (pairs) have E symmetry.  We could obtain symmetry-

adapted vibrational and rotational bases by allowing symmetry projection operators of

the irreducible representation symmetries to operate on various elementary cartesian

(x,y,z) atomic displacement vectors.

G.  Direct Product Representations

1. Direct Products in N-Electron Wave functions

We now turn to the symmetry analysis of orbital products.  Such knowledge

is important because one is routinely faced with constructing symmetry-adapted N-

electron configurations that consist of products of N individual spin orbitals, one for

each electron.  A point-group symmetry operator S, when acting on such a product of

orbitals, gives the product of S acting on each of the individual orbitals

S(φ1φ2φ3...φN) = (Sφ1) (Sφ2) (Sφ3) ... (SφN).

For example, reflection of an N-orbital product through the σv plane in NH3 applies the

reflection operation to all N electrons.

Just as the individual orbitals formed a basis for action of the point-group

operators, the configurations (N-orbital products) form a basis for the action of these
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same point-group operators.  Hence, the various electronic configurations can be treated

as functions on which S operates, and the machinery illustrated earlier for decomposing

orbital symmetry can then be used to carry out a symmetry analysis of configurations.

Another shortcut makes this task easier. Since the symmetry adapted

individual orbitals {φi, i = 1, ..., M} transform according to irreducible representations,

the representation matrices for the N-term products shown above consist of products of

the matrices belonging to each φi. This matrix product is not a simple product but what

is called a direct product.  To compute the characters of the direct product matrices, one

multiplies the characters of the individual matrices of the irreducible representations of

the N orbitals that appear in the electron configuration.  The direct-product

representation formed by the orbital products can therefore be symmetry-analyzed

(reduced) using the same tools as we used earlier.

For example, if one is interested in knowing the symmetry of an orbital

product of the form a12a22e2  (note: lower case letters are used to denote the symmetry

of electronic orbitals, whereas capital letters are reserved to label the overall

configuration’s symmetry) in C3v symmetry, the following procedure is used. For each

of the six symmetry operations in the C2v point group, the product of the characters

associated with each of the six spin orbitals (orbital multiplied by α or β spin) is formed

χ(S) = ∏
i

 χi(S)  = (χA1(S))2 (χA2(S))2 (χE(S))2.
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In the specific case considered here, χ(E) = 4, χ(2C3) = 1, and χ(3σv) = 0. Notice that

the contributions of any doubly occupied nondegenerate orbitals (e.g., a12, and a22) to

these direct product characters χ(S) are unity because for all operators (χk(S))2 = 1 for

any one-dimensional irreducible representation.  As a result, only the singly occupied

or degenerate orbitals need to be considered when forming the characters of the

reducible direct-product representation χ(S).  For this example this means that the

direct-product characters can be determined from the characters χE(S) of the two active

(i.e., nonclosed-shell) orbitals - the e2 orbitals.  That is, χ(S) = χE(S) ⋅ χE(S).

From the direct-product characters χ(S) belonging to a particular electronic

configuration (e.g., a12a22e2), one must still decompose this list of characters into a

sum of irreducible characters.  For the example at hand, the direct-product characters

χ(S) decompose into one A1, one A2, and one E representation.  This means that the e2

configuration contains A1, A2, and E symmetry elements. Projection operators

analogous to those introduced earlier for orbitals can be used to form symmetry-

adapted orbital products from the individual basis orbital products of the form

a12a22exmeym' , where m and m' denote the occupation (1 or 0) of the two degenerate

orbitals ex and ey. When dealing with indistinguishable particles such as electrons, it is

also necessary to further project the resulting orbital products to make them

antisymmetric (for Fermions) or symmetric (for Bosons) with respect to interchange of

any pair of particles. This step reduces the set of N-electron states that can arise. For

example, in the above e2 configuration case, only 3A2, 1A1, and 1E states arise; the 3E,

3A1, and 1A2 possibilities disappear when the antisymmetry projector is applied. In
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contrast, for an e1e'1 configuration, all states arise even after the wave function has

been made antisymmetric. The steps involved in combining the point group symmetry

with permutational antisymmetry are illustrated in Chapter 10 of my QMIC text. In

Appendix III of Electronic Spectra and Electronic Structure of Polyatomic Molecules ,

G. Herzberg, Van Nostrand Reinhold Co., New York, N.Y. (1966) the resolution of

direct products among various representations within many point groups are tabulated.

2. Direct Products in Selection Rules

Two states ψa and ψb that are eigenfunctions of a Hamiltonian Ho in the

absence of some external perturbation (e.g., electromagnetic field or static electric field

or potential due to surrounding ligands) can be "coupled" by the perturbation V only if

the symmetries of V and of the two wave functions obey a so-called selection rule. In

particular, only if the coupling integral

⌡⌠ ψa* V ψb dτ  = Va,b

is non-vanishing will the two states be coupled by V .

The role of symmetry in determining whether such integrals are non-zero can

be demonstrated by noting that the integrand, considered as a whole, must contain a

component that is invariant under all of the group operations (i.e., belongs to the totally

symmetric representation of the group) if the integral is to not vanish. In terms of the

projectors introduced above we must have
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 ∑
S

 χA(S) S ψa* V ψb 

not vanish. Here the subscript A denotes the totally symmetric representation of

whatever point group applies. The symmetry of the product ψa* V ψb is, according to

what was covered earlier, given by the direct product of the symmetries of ψa*  of V

and of ψb. So, the conclusion is that the integral will vanish unless this triple direct

product contains, when it is reduced to its irreducible components, a component of the

totally symmetric representation.

To see how this result is used, consider the integral that arises in formulating

the interaction of electromagnetic radiation with a molecule within the electric-dipole

approximation:

⌡⌠ψa*  r ψb dτ .

Here, r is the vector giving, together with e, the unit charge, the quantum mechanical

dipole moment operator

r = e∑
n

 Zn Rn  - e∑
j

 rj ,

where Zn and Rn are the charge and position of the nth nucleus and rj is the position of

the jth electron. Now, consider evaluating this integral for the singlet n→π* transition in
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formaldehyde. Here, the closed-shell ground state is of 1A1 symmetry and the singlet

excited state, which involves promoting an electron from the non-bonding b2 lone pair

orbital on the Oxygen into the π* b1 orbital on the CO moiety, is of 1A2 symmetry (b1x

b2 = a2). The direct product of the two wave function symmetries thus contains only a2

symmetry. The three components (x, y, and z) of the dipole operator have, respectively,

b1, b2, and a1 symmetry. Thus, the triple direct products give rise to the following

possibilities:

a2 x b1 = b2,

a2 x b2 = b1,

a2 x a1 = a2 .

There is no component of a1 symmetry in the triple direct product, so the integral

vanishes. This allows us to conclude that the n→π* excitation in formaldehyde is

electric dipole forbidden.

H. Overview

We have shown how to make a symmetry decomposition of a basis of atomic

orbitals (or cartesian displacements or orbital products) into irreducible representation

components.  This tool is very helpful when studying spectroscopy and when
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constructing the orbital correlation diagrams that form the basis of the Woodward-

Hoffmann rules.  We also learned how to form the direct-product symmetries that arise

when considering configurations consisting of products of symmetry-adapted spin

orbitals. Finally, we learned how the direct product analysis allows one to determine

whether or not integrals of products of wave functions with operators between them

vanish.  This tool is of utmost importance in determining selection rules in spectroscopy

and for determining the effects of external perturbations on the states of the species under

investigation.


