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Chapter 2. Model Problems That Form Important Starting Points 
 

 The model problems discussed in this Chapter form the basis for chemists’ 

understanding of the electronic states of atoms, molecules, nano-clusters, and solids as 

well as the rotational and vibrational motions and energy levels of molecules. 

 

2.1 Free Electron Model of Polyenes  

 The particle-in-a-box type problems provide important models for several relevant 

chemical situations 

 

 The particle-in-a-box model for motion in one or two dimensions discussed earlier 

can obviously be extended to three dimensions. For two and three dimensions, it provides 

a crude but useful picture for electronic states on surfaces (i.e., when the electron can 

move freely on the surface but cannot escape to the vacuum or penetrate deeply into the 

solid) or in metallic crystals, respectively. I say metallic crystals because it is in such 

systems that the outermost valence electrons are reasonably well treated as moving freely 

rather than being tightly bound to a valence orbital on one of the constituent atoms or 

within chemical bonds localized to neighboring atoms. 

 Free motion within a spherical volume such as we discussed in Chapter 1 gives rise 

to eigenfunctions that are also used in nuclear physics to describe the motions of neutrons 

and protons in nuclei. In the so-called shell model of nuclei, the neutrons and protons fill 

separate s, p, d, etc. orbitals (refer back to Chapter 1 to recall how these orbitals are 

expressed in terms of spherical Bessel functions and what their energies are) with each 

type of nucleon forced to obey the Pauli principle (i.e., to have no more than two 

nucleons in each orbital because protons and neutrons are Fermions). For example, 4He 

has two protons in 1s orbitals and 2 neutrons in 1s orbitals, whereas 3He has two 1s 

protons and one 1s neutron. To remind you, I display in Fig. 2. 1 the angular shapes that 

characterize s, p, and d orbitals. 
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Figure 2.1. The angular shapes of s, p, and d functions 

 

 This same spherical box model has also been used to describe the valence electrons 

in quasi-spherical nano-clusters of metal atoms such as Csn, Cun, Nan, Aun, Agn, and their 

positive and negative ions. Because of the metallic nature of these species, their valence 

electrons are essentially free to roam over the entire spherical volume of the cluster, 

which renders this simple model rather effective. In this model, one thinks of each 

valence electron being free to roam within a sphere of radius R (i.e., having a potential 

that is uniform within the sphere and infinite outside the sphere).  

 The orbitals that solve the Schrödinger equation inside such a spherical box are not 

the same in their radial shapes as the s, p, d, etc. orbitals of atoms because, in atoms, there 
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is an additional attractive Coulomb radial potential V(r) = -Ze2/r present. In Chapter 1, 

we showed how the particle-in-a-sphere radial functions can be expressed in terms of 

spherical Bessel functions. In addition, the pattern of energy levels, which was shown in 

Chapter 1 to be related to the values of x at which the spherical Bessel functions jL(x) 

vanish, are not the same as in atoms, again because the radial potentials differ.  However, 

the angular shapes of the spherical box problem are the same as in atomic structure 

because, in both cases, the potential is independent of θ and φ. As the orbital plots shown 

above indicate, the angular shapes of s, p, and d orbitals display varying number of nodal 

surfaces. The s orbitals have none, p orbitals have one, and d orbitals have two. 

Analogous to how the number of nodes related to the total energy of the particle 

constrained to the x, y plane, the number of nodes in the angular wave functions indicates 

the amount of angular or orbital rotational energy. Orbitals of s shape have no angular 

energy, those of p shape have less then do d orbitals, etc.  

 It turns out that the pattern of energy levels derived from this particle-in-a-spherical-

box model can offer reasonably accurate descriptions of what is observed experimentally. 

In particular, when a cluster (or cluster ion) has a closed-shell electronic configuration in 

which, for a given radial quantum number n, all of the s, p, d orbitals associated with that 

n are doubly occupied, nanoscopic metal clusters are observed to display special stability 

(e.g., lack of chemical reactivity, large electron detachment energy). Clusters that 

produce such closed-shell electronic configurations are sometimes said to have magic-

number sizes. The energy level expression given in Chapter 1 

 

EL,n = V0 + (zL,n)2 
  

€ 


2/2mR2 

 

for an electron moving inside a sphere of radius R (and having a potential relative to the 

vacuum of V0) can be used to model the energies of electron within metallic nano-

clusters. Each electron occupies an orbital having quantum numbers n, L, and M, with the 

energies of the orbitals given above in terms of the zeros {zL,n} of the spherical Bessel 

functions. Spectral features of the nano-clusters are then determined by the energy gap 

between the highest occupied and lowest unoccupied orbital and can be tuned by 
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changing the radius (R) of the cluster or the charge (i.e., number of electrons) of the 

cluster. 

 Another very useful application of the model problems treated in Chapter 1 is the 

one-dimensional particle-in-a-box, which provides a qualitatively correct picture for π-

electron motion along the pπ orbitals of delocalized polyenes. The one Cartesian 

dimension corresponds to motion along the delocalized chain. In such a model, the box 

length L is related to the carbon-carbon bond length R and the number N of carbon 

centers involved in the delocalized network L=(N-1) R. In Fig. 2.2, such a conjugated 

network involving nine centers is depicted. In this example, the box length would be 

eight times the C-C bond length. 

 

  

 

Figure 2.2. The π atomic orbitals of a conjugated chain of nine carbon atoms, so the box 

length L is eight times the C-C bond length. 

 

The eigenstates ψn(x) and their energies En represent orbitals into which electrons are 

placed. In the example case, if nine π electrons are present (e.g., as in the 1,3,5,7-

nonatetraene radical), the ground electronic state would be represented by a total wave 

function consisting of a product in which the lowest four ψ's are doubly occupied and the 

fifth ψ is singly occupied: 

 

Ψ = ψ1αψ1βψ2αψ2βψ3αψ3βψ4αψ4βψ5α. 
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The z-component spin angular momentum states of the electrons are labeled α and β as 

discussed earlier. 

 We write the total wave function above as a product wave function because the total 

Hamiltonian involves the kinetic plus potential energies of nine electrons. To the extent 

that this total energy can be represented as the sum of nine separate energies, one for each 

electron, the Hamiltonian allows a separation of variables  

 

H ≅ Σj=1,9 H(j) 

 

in which each H(j) describes the kinetic and potential energy of an individual electron. Of 

course, the full Hamiltonian contains electron-electron Coulomb interaction potentials 

e2/ri,j that can not be written in this additive form. However, as we will treat in detail in 

Chapter 6, it is often possible to approximate these electron-electron interactions in a 

form that is additive.  

Recall that when a partial differential equation has no operators that couple its 

different independent variables (i.e., when it is separable), one can use separation of 

variables methods to decompose its solutions into products. Thus, the (approximate) 

additivity of H implies that solutions of H ψ = E ψ are products of solutions to 

 

H (j) ψ(rj) = Ej ψ(rj). 

 

The two lowest ππ∗ excited states would correspond to states of the form 

 

ψ* = ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ5β ψ5α , and 

 

ψ'* = ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ4β ψ6α , 


  


  

where the spin-orbitals (orbitals multiplied by α or β) appearing in the above products 

depend on the coordinates of the various electrons. For example, 
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ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ5β ψ5α 

 

denotes 

 

ψ1α(r1) ψ1β (r2) ψ2α (r3) ψ2β (r4) ψ3α  (r5) ψ3β (r6) ψ4α (r7)ψ5β (r8) ψ5α (r9). 

 

The electronic excitation energies from the ground state to each of the above excited 

states within this model would be 

 

 ΔE* = π2 h2/2m [ 52/L2 - 42/L2] and  

 

 ΔE'* = π2 h2/2m [ 62/L2 - 52/L2]. 

 

It turns out that this simple model of π-electron energies provides a qualitatively correct 

picture of such excitation energies. Its simplicity allows one, for example, to easily 

suggest how a molecule’s color (as reflected in the complementary color of the light the 

molecule absorbs) varies as the conjugation length L of the molecule varies. That is, 

longer conjugated molecules have lower-energy orbitals because L2 appears in the 

denominator of the energy expression. As a result, longer conjugated molecules absorb 

light of lower energy than do shorter molecules. 

 This simple particle-in-a-box model does not yield orbital energies that relate to 

ionization energies unless the potential inside the box is specified. Choosing the value of 

this potential V0 that exists within the box such that V0 + π2 h2/2m [ 52/L2] is equal to 

minus the lowest ionization energy of the 1,3,5,7-nonatetraene radical, gives energy 

levels (as E = V0 + π2 h2/2m [ n2/L2]), which can then be used as approximations to 

ionization energies. 

 The individual π-molecular orbitals  

 

 ψn = (2/L)1/2 sin(nπx/L) 
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are depicted in Fig. 2.3 for a model of the 1,3,5 hexatriene π-orbital system for which the 

box length L is five times the distance RCC between neighboring pairs of carbon atoms. 

The magnitude of the kth C-atom centered atomic orbital in the nth π-molecular orbital is 

given by (2/L)1/2 sin(nπ(k-1)RCC/L). 

 

 

 

 

Figure 2.3. The phases of the six molecular orbitals of a chain containing six atoms. 

 

In this figure, positive amplitude is denoted by the clear spheres, and negative amplitude 

is shown by the darkened spheres. Where two spheres of like shading overlap, the wave 

function has enhanced amplitude (i.e. there is a bonding interaction); where two spheres 

of different shading overlap, a node occurs (i.e., there is antibonding interaction). Once 

again, we note that the number of nodes increases as one ranges from the lowest-energy 

orbital to higher energy orbitals. The reader is once again encouraged to keep in mind this 

ubiquitous characteristic of quantum mechanical wave functions. 

 This simple model allows one to estimate spin densities at each carbon center and 

provides insight into which centers should be most amenable to electrophilic or 

nucleophilic attack. For example, radical attack at the C5 carbon of the nine-atom 
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nonatetraene system described earlier would be more facile for the ground state ψ than 

for either ψ* or ψ'*. In the former, the unpaired spin density resides in ψ5 (which varies 

as sin(5πx/8RCC) so is non-zero at x = L/2), which has non-zero amplitude at the C5 site 

x= L/2 = 4RCC. In ψ* and ψ'*, the unpaired density is in ψ4 and ψ6, respectively, both of 

which have zero density at C5 (because sin(nπx/8RCC) vanishes for n = 4 or 6 at x = 

4RCC). Plots of the wave functions for n ranging from 1 to 7 are shown in another format 

in Fig. 2.4 where the nodal pattern is emphasized. 

 

 
 

Figure 2.4. The nodal pattern for a chain containing seven atoms 

 

I hope that by now the student is not tempted to ask how the electron gets from one 

region of high amplitude, through a node, to another high-amplitude region. Remember, 

such questions are cast in classical Newtonian language and are not appropriate when 
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addressing the wave-like properties of quantum mechanics.  

 

2.2 Bands of Orbitals in Solids 

Not only does the particle-in-a-box model offer a useful conceptual representation 

of electrons moving in polyenes, but it also is the zeroth-order model of band structures 

in solids. Let us consider a simple one-dimensional crystal consisting of a large number 

of atoms or molecules, each with a single orbital (the blue spheres shown below) that it 

contributes to the bonding. Let us arrange these building blocks in a regular lattice as 

shown in the Fig. 2.5. 

 

 
Figure 2.5. The energy levels arising from 1, 2, 3, 5, and an infinite number of orbitals 

 

In the top four rows of this figure we show the case with 1, 2, 3, and 5 building blocks. 

To the left of each row, we display the energy splitting pattern into which the building 

blocks’ orbitals evolve as they overlap and form delocalized molecular orbitals. Not 

surprisingly, for n = 2, one finds a bonding and an antibonding orbital. For n = 3, one has 

a bonding, one non-bonding, and one antibonding orbital. Finally, in the bottom row, we 

attempt to show what happens for an infinitely long chain. The key point is that the 

discrete number of molecular orbitals appearing in the 1-5 orbital cases evolves into a 

continuum of orbitals called a band as the number of building blocks becomes large. This 
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band of orbital energies ranges from its bottom (whose orbital consists of a fully in-phase 

bonding combination of the building block orbitals) to its top (whose orbital is a fully 

out-of-phase antibonding combination).  

In Fig. 2.6 we illustrate these fully bonding and fully antibonding band orbitals 

for two cases- the bottom involving s-type building block orbitals, and the top involving 

pσ-type orbitals. Notice that when the energy gap between the building block s and pσ 

orbitals is larger than is the dispersion (spread) in energy within the band of s or band of 

pσ orbitals, a band gap occurs between the highest member of the s band and the lowest 

member of the pσ band. The splitting between the s and pσ orbitals is a property of the 

individual atoms comprising the solid and varies among the elements of the periodic 

table. For example, we teach students that the 2s-2p energy gap in C is smaller than the 

3s-3p gap in Si, which is smaller than the 4s-4p gap in Ge. The dispersion in energies that 

a given band of orbitals is split into as these atomic orbitals combine to form a band is 

determined by how strongly the orbitals on neighboring atoms overlap. Small overlap 

produces small dispersion, and large overlap yields a broad band. So, the band structure 

of any particular system can vary from one in which narrow bands (weak overlap) do not 

span the energy gap between the energies of their constituent atomic orbitals to bands that 

overlap strongly (large overlap). 
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Figure 2.6. The bonding through antibonding energies and band orbitals arising from s 

and from pσ atomic orbitals. 

 

Depending on how many valence electrons each building block contributes, the 

various bands formed by overlapping the building-block orbitals of the constituent atoms 

will be filled to various levels. For example, if each building block orbital shown above 

has a single valence electron in an s-orbital (e.g., as in the case of the alkali metals), the s-

band will be half filled in the ground state with α and β -paired electrons. Such systems 

produce very good conductors because their partially filled s bands allow electrons to 

move with very little (e.g., only thermal) excitation among other orbitals in this same 

band. On the other hand, for alkaline earth systems with two s electrons per atom, the s-

band will be completely filled. In such cases, conduction requires excitation to the lowest 

members of the nearby p-orbital band. Finally, if each building block were an Al (3s2 3p1) 
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atom, the s-band would be full and the p-band would be half filled. In Fig. 2.6 a, we show 

a qualitative depiction of the bands arising from sodium atoms’ 1s, 2s, 2p, and 3s orbitals. 

Notice that the 1s band is very narrow because there is little coupling between 

neighboring 1s orbitals, so they are only slightly stabilized or destabilized relative to their 

energies in the isolated Na atoms. In contrast, the 2s and 2p bands show greater 

dispersion (i.e., are wider), and the 3s band is even wider. The 1s, 2s, and 2p bands are 

full, but the 3s band is half filled, as a result of which solid Na is a good electrical 

conductor.  

 

 

 
Figure 2.6 a. Example of sodium atoms’ 1s, 2s, 2p, and 3s orbitals splitting into filled and 

partially filled bands in sodium metal. 

 

 In describing the band of states that arise from a given atomic orbital within a 

solid, it is common to display the variation in energies of these states as functions of the 

number of sign changes in the coefficients that describe each orbital as a linear 

combination of the constituent atomic orbitals. Using the one-dimensional array of s and 

pσ  orbitals shown in Fig. 2.6 as an example, 
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(1) the lowest member of the band deriving from the s orbitals  

 

€ 

φ0 = s(1) + s(2) + s(3) + s(4) + ...+ s(N)  

 

is a totally bonding combination of all of the constituent s orbitals on the N sites of the 

lattice.  

(2) The highest-energy orbital in this band  

 

€ 

φN = s(1) − s(2) + s(3) − s(4) + ...+ s(N −1) − s(N) 

 

is a totally anti-bonding combination of the constituent s orbitals.  

(3) Each of the intervening orbitals in this band has expansion coefficients that allow the 

orbital to be written as 

 

€ 

φn = cos(n( j −1)π
N

)
j=1

N

∑ s( j) 

 

Clearly, for small values of n, the series of expansion coefficients 

€ 

cos(n( j −1)π
N

)has few 

sign changes as the index j runs over the sites of the one-dimensional lattice. For larger n, 

there are more sign changes. Thus, thinking of the quantum number n as labeling the 

number of sign changes and plotting the energies of the orbitals (on the vertical axis) 

versus n (on the horizontal axis), we would obtain a plot that increases from n = 0 to n 

=N. In fact, such plots tend to display quadratic variation of the energy with n. This 

observation can be understood by drawing an analogy between the pattern of sign 

changes belonging to a particular value of n and the number of nodes in the one-

dimensional particle-in-a-box wave function, which also is used to model electronic 

states delocalized along a linear chain. As we saw in Chapter 1, the energies for this 

model system varied as 
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€ 

E =
j 2π 2

2

2mL2
 

 

with j being the quantum number ranging from 1 to ∞. The lowest-energy state, with j = 

1, has no nodes; the state with j = 2 has one node, and that with j = n has (n-1) nodes. So, 

if we replace j by (n-1) and replace the box length L by (NR), where R is the inter-atom 

spacing and N is the number of atoms in the chain, we obtain 

 

  

€ 

E =
(n −1)2π 2


2

2mN 2R2
 

 

from which on can see why the energy can be expected to vary as (n/N)2. 

(4) In contrast for the pσ orbitals, the lowest-energy orbital is  

 

€ 

φ0 = pσ (1) − pσ (2) + pσ (3) − pσ (4) + ...− pσ (N −1) + pσ (N) 

 

because this alternation in signs allows each 

€ 

pσ orbital on one site to overlap in a bonding 

fashion with the 

€ 

pσ  orbitals on neighboring sites. 

(5) Therefore, the highest-energy orbital in the 

€ 

pσ  band is  

 

€ 

φN = pσ (1) + pσ (2) + pσ (3) + pσ (4) + ...+ pσ (N −1) + pσ (N)  

 

and is totally anti-bonding.  

(6) The intervening members of this band have orbitals given by  

 

€ 

φN−n = cos(n( j −1)π
N

)
j=1

N

∑ s( j) 

 

with low n corresponding to high-energy orbitals (having few inter-atom sign changes but 

anti-bonding character) and high n to low-energy orbitals (having many inter-atom sign 

changes). So, in contrast to the case for the s-band orbitals, plotting the energies of the 
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orbitals (on the vertical axis) versus n (on the horizontal axis), we would obtain a plot 

that decreases from n = 0 to n =N.  

 For bands comprised of pπ orbitals, the energies vary with the n quantum number 

in a manner analogous to how the s band varies because the orbital with no inter-atom 

sign changes is fully bonding. For two- and three-dimensional lattices comprised of s, p, 

and d orbitals on the constituent atoms, the behavior of the bands derived from these 

orbitals follows analogous trends. It is common to describe the sign alternations arising 

from site to site in terms of a so-called k vector. In the one-dimensional case discussed 

above, this vector has only one component with elements labeled by the ratio (n/N) 

whose value characterizes the number of inter-atom sign changes. For lattices containing 

many atoms, N is very large, so n ranges from zero to a very large number. Thus, the 

ratio (n/N) ranges from zero to unity in small fractional steps, so it is common to think of 

these ratios as describing a continuous parameter varying from zero to one. Moreover, it 

is convention to allow the n index to range from –N to +N, so the argument n π /N in the 

cosine function introduced above varies from – π to +π. 

In two- or three-dimensions the k vector has two or three elements and can be 

written in terms of its two or three index ratios, respectively, as 

 

€ 

k2 = ( n
N
, m
M
)  

 

€ 

k3 = ( n
N
, m
M
, l
L
) . 

 

Here, N, M, and L would describe the number of unit cells along the three principal axes 

of the three-dimensional crystal; N and M do likewise in the two-dimensional lattice case. 

 In such two- and three- dimensional crystal cases, the energies of orbitals within 

bands derived from s, p, d, etc. atomic orbitals display variations that also reflect the 

number of inter-atom sign changes. However, now there are variations as functions of the 

(n/N), (n/M) and (l/L) indices, and these variations can display rather complicated shapes 

depending on the symmetry of the atoms within the underlying crystal lattice. That is, as 
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one moves within the three-dimensional space by specifying values of the indices (n/N), 

(n/M) and (l/L), one can move throughout the lattice in different symmetry directions. It 

is convention in the solid-state literature to plot the energies of these bands as these three 

indices vary from site to site along various symmetry elements of the crystal and to 

assign a letter to label this symmetry element. The band that has no inter-atom sign 

changes is labeled as Γ (sometimes G) in such plots of band structures. In much of our 

discussion below, we will analyze the behavior of various bands in the neighborhood of 

the Γ point because this is where there are the fewest inter-atom nodes and thus the wave 

function is easiest to visualize.  

Let’s consider a few examples to help clarify these issues. In Fig. 2.6 b, where we 

see the band structure of graphene, you can see the quadratic variations of the energies 

with k as one moves away from the k = 0 point labeled Γ, with some bands increasing 

with k and others decreasing with k.  

 

 
Figure 2.6 b Band structure plot for graphene.  

 

The band having an energy of ca. -17 eV at the Γ point originates from bonding 

interactions involving 2s orbitals on the carbon atoms, while those having energies near 0 

eV at the Γ point derive from carbon 2pσ bonding interactions. The parabolic increase 
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with k for the 2s-based and decrease with k for the 2pσ-based orbitals is clear and is 

expected based on our earlier discussion of how s and pσ bands vary with k. The band 

having energy near -4 eV at the Γ point involves 2pπ orbitals involved in bonding 

interactions, and this band shows a parabolic increase with k as expected as we move 

away from the Γ point. These are the delocalized π orbitals of the graphene sheet. The 

anti-bonding 2pπ band decreases quadratically with k and has an energy of ca. 15 eV at 

the Γ point. Because there are two atoms per unit cell in this case, there are a total of 

eight valence electrons (four from each carbon atom) to be accommodated in these bands. 

The eight carbon valence electrons fill the bonding 2s and two 2pσ bands fully as well as 

the bonding 2pπ band. Only along the direction labeled P in Fig. 2.6 b do the bonding and 

anti-bonding 2pπ bands become degenerate (near 2.5 eV); the approach of these two 

bands is what allows graphene to be semi-metallic (i.e., to conduct at modest 

temperatures- high enough to promote excitations from the bonding 2pπ to the anti-

bonding 2pπ band).  

It is interesting to contrast the band structure of graphene with that of diamond, 

which is shown in Fig. 2. 6 c.  

 
Figure 2.6 c Band structure of diamond carbon. 
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The band having an energy of ca. – 22 eV at the Γ point derives from 2s bonding 

interactions, and the three bands near 0 eV at the Γ point come from 2pσ bonding 

interactions. Again, each of these bands displays the expected parabolic behavior as 

functions of k. In diamond’s two interpenetrating face centered cubic structure, there are 

two carbon atoms per unit cell, so we have a total of eight valence electrons to fill the 

four bonding bands. Notice that along no direction in k-space do these filled bonding 

bands become degenerate with or are crossed by any of the other bands. The other bands 

remain at higher energy along all k-directions, and thus there is a gap between the 

bonding bands and the others is large (ca. 5 eV or more along any direction in k-space). 

This is why diamond is an insulator; the band gap is very large.  

Finally, let’s compare the graphene and diamond cases with a metallic case such 

as shown in Fig. 2. 6 d for Al and for Ag.  

 

 
Figure 2. 6 d Band structures of Al and Ag. 
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 For Al and Ag, there is one atom per unit cell, so we have three valence electrons 

(3s23p1) and eleven valence electrons (3d10 4s1), respectively, to fill the bands shown in 

Fig. 2. 6 d. Focusing on the Γ points in the Al and Ag band structure plots, we can say the 

following:  

1. For Al, the 3s-based band near -11 eV is filled and the three 3p-based bands near 11 

eV have an occupancy of 1/6 (i.e., on average there is one electron in one of these three 

bands each of which can hold two electrons). 

2. The 3s and 3p bands are parabolic with positive and negative curvature, respectively. 

3. Along several directions (e.g. K, W, X, W, L) there are crossings among the bands; 

these crossings allow electrons to be promoted from occupied to previously unoccupied 

bands. The partial occupancy of the 3p bands and the multiple crossings of bands are 

what allow Al to show metallic behavior.  

4. For Ag, there are six bands between -4 eV and -8 eV. Five of these bands change little 

with k, and one shows somewhat parabolic dependence on k. The former five derive from 

4d atomic orbitals that are contracted enough to not allow them to overlap much, and the 

latter is based on 5s bonding orbital interaction.  

5. Ten of the valence electrons fill the five 4d bands, and the eleventh resides in the 5s-

based bonding band.  

6. If the five 4d-based bands are ignored, the remainder of the Ag band structure looks a 

lot like that for Al. There are numerous band crossings that include, in particular, the 

half-filled 5s band. These crossings and the partial occupancy of the 5s band cause Ag to 

have metallic character.  

 One more feature of band structures that is often displayed is called the band 

density of states. An example of such a plot is shown in Fig. 2. 6 e for the TiN crystal. 
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Figure 2.6 e. Energies of orbital bands in TiN along various directions in k-space (left) 

and densities of states (right) as functions of energy for this same crystal. 

 

The density of states at energy E is computed by summing all those orbitals 

having an energy between E and E  + dE. Clearly, as seen in Fig. 2.6 e, for bands in 

which the orbital energies vary strongly with k (i.e., so-called broad bands), the density 

of states is low; in contrast, for narrow bands, the density of states is high. The densities 

of states are important because their energies and energy spreads relate to electronic 

spectral features. Moreover, just as gaps between the highest occupied bands and the 

lowest unoccupied bands play central roles in determining whether the sample is an 

insulator, a conductor, or a semiconductor, gaps in the density of states suggest what 

frequencies of light will be absorbed or reflected via inter-band electronic transitions. 

The bands of orbitals arising in any solid lattice provide the orbitals that are 

available to be occupied by the number of electrons in the crystal. Systems whose highest 

energy occupied band is completely filled and for which the gap in energy to the lowest 

unfilled band is large are called insulators because they have no way to easily (i.e., with 

little energy requirement) promote some of their higher-energy electrons from orbital to 

orbital and thus effect conduction. The case of diamond discussed above is an example of 
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an insulator. If the band gap between a filled band and an unfilled band is small, it may 

be possible for thermal excitation (i.e., collisions with neighboring atoms or molecules) 

to cause excitation of electrons from the former to the latter thereby inducing conductive 

behavior. The band structures of Al and Ag discussed above offer examples of this case. 

A simple depiction of how thermal excitations can induce conduction is illustrated in Fig. 

2.7.  

 

 
Figure 2.7. The valence and conduction bands and the band gap with a small enough gap 

to allow thermal excitation to excite electrons and create holes in a previously filled band. 

 

Systems whose highest-energy occupied band is partially filled are also conductors 

because they have little spacing among their occupied and unoccupied orbitals so 

electrons can flow easily from one to another. Al and Ag are good examples. 
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 To form a semiconductor, one starts with an insulator whose lower band is filled 

and whose upper band is empty as shown by the broad bands in Fig.2.8.   

 

 
Figure 2.8. The filled and empty bands, the band gap, and empty acceptor or filled donor 

bands. 

 

If this insulator material is synthesized with a small amount of “dopant” whose valence 

orbitals have energies between the filled and empty bands of the insulator, one can 

generate a semiconductor. If the dopant species has no valence electrons (i.e., has an 

empty valence orbital), it gives rise to an empty band lying between the filled and empty 

bands of the insulator as shown below in case a of Fig. 2.8.  In this case, the dopant band 

can act as an electron acceptor for electrons excited (either thermally or by light) from the 

filled band of the insulator into the dopant’s empty band.  Once electrons enter the dopant 

band, charge can flow (because the insulator’s lower band is no longer filled) and the 

system thus becomes a conductor. Another case is illustrated in the b part of Fig. 2.8. 

Here, the dopant has a filled band that lies close in energy to the empty band of the 

insulator. Excitation of electrons from this dopant band to the insulator’s empty band can 
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induce current to flow (because now the insulator’s upper band is no longer empty). 

 

 2.3 Densities of States in 1, 2, and 3 dimensions. 

 When a large number of neighboring orbitals overlap, bands are formed. 

However, the natures of these bands, their energy patterns, and their densities of states 

are very different in different dimensions.  

 

 Before leaving our discussion of bands of orbitals and orbital energies in solids, I 

want to address a bit more the issue of the density of electronic states and what 

determines the energy range into which orbitals of a given band will split. First, let’s 

recall the energy expression for the 1 and 2- dimensional electron in a box case, and let’s 

generalize it to three dimensions. The general result is  

 

E = Σj nj
2 π2 h2/(2mLj

2) 

 

where the sum over j runs over the number of dimensions (1, 2, or 3), and Lj  is the length 

of the box along the jth  direction. For one dimension, one observes a pattern of energy 

levels that grows with increasing n, and whose spacing between neighboring energy 

levels also grows as a result of which the state density decreases with increasing n. 

However, in 2 and 3 dimensions, the pattern of energy level spacing displays a 

qualitatively different character, especially at high quantum number.  

 Consider first the 3-dimensional case and, for simplicity, let’s use a box that has 

equal length sides L. In this case, the total energy E is (h2π2/2mL2) times (nx
2 + ny

2  + nz
2). 

The latter quantity can be thought of as the square of the length of a vector R having three 

components nx, ny, nz. Now think of three Cartesian axes labeled nx, ny, and nz and view a 

sphere of radius R in this space. The volume of the 1/8 th sphere having positive values of 

nx, ny, and nz and having radius R is 1/8 (4/3 πR3). Because each cube having unit length 

along the nx, ny, and nz  axes corresponds to a single quantum wave function and its 

energy, the total number Ntot(E) of quantum states with positive nx, ny, and nz and with 

energy between zero and E = (h2π2/2mL2)R2 is  
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Ntot =  1/8 (4/3 πR3) = 1/8 (4/3 π [2mEL2/( h2π2)]3/2 

 

The number of quantum states with energies between E and E+dE is (dNtot/dE) dE, which 

gives the density Ω(E) of states near energy E: 

 

Ω(E) = (dNtot/dE) = 1/8 (4/3 π [2mL2/( h2π2)]3/2 3/2 E1/2. 

 

Notice that this state density increases as E increases. This means that, in the 3-

dimensional case, the number of quantum states per unit energy grows; in other words, 

the spacing between neighboring state energies decreases, very unlike the 1-dimensioal 

case where the spacing between neighboring states grows as n and thus E grows. This 

growth in state density in the 3-dimensional case is a result of the degeneracies and near-

degeneracies that occur. For example, the states with nx, ny, nz = 2,1,1 and 1, 1, 2, and 1, 

2, 1 are degenerate, and those with nx, ny, nz = 5, 3, 1 or 5, 1, 3 or 1, 3, 5 or 1, 5, 3 or 3, 1, 

5 or 3, 5, 1 are degenerate and nearly degenerate to those having quantum numbers 4, 4, 1 

or 1, 4, 4, or 4, 1, 4. 

 In the 2-dimensional case, degeneracies also occur and cause the density of states 

to possess an E-dependence that differs from the 1- or 3-dimensional case. In this 

situation 

, we think of states having energy E =  (h2π2/2mL2)R2, but with R2 = nx
2 + ny

2. The total 

number of states having energy between zero and E is  

 

Ntotal= 4πR2 = 4π E(2mL2/ h2π2) 

 

So, the density of states between E and E+dE is 

 

Ω(E) = dNtotal/dE = 4π (2mL2/ h2π2) 

 

That is, in this 2-dimensional case, the number of states per unit energy is constant for 

high E values (where the analysis above applies best). 
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This kind of analysis for the 1-dimensional case gives 

 

Ntotal= R =  (2mEL2/ h2π2)1/2 

 

so, the state density between E and E+ dE is: 

 

Ω(E) = 1/2 (2mL2/ h2π2)1/2 E-1/2, 

 

which clearly shows the widening spacing, and thus lower state density, as one goes to 

higher energies. 

 These findings about densities of states in 1-, 2-, and 3- dimensions are important 

because, in various problems one encounters in studying electronic states of extended 

systems such as solids, chains, and surfaces, one needs to know how the number of states 

available at a given total energy E varies with E.  A similar situation occurs when 

describing the translational states of an electron or a photo ejected from an atom or 

molecule into the vacuum; here the 3-dimensional density of states applies. Clearly, the 

state density depends upon the dimensionality of the problem, and this fact is what I want 

the students reading this text to keep in mind. 

Before closing this Section, it is useful to overview how the various particle-in-

box models can be used as qualitative descriptions for various chemical systems.  

1a. The one-dimensional box model is most commonly used to model electronic orbitals 

in delocalized linear polyenes.  

1b. The electron-on-a-circle model is used to describe orbitals in a conjugated cyclic ring 

such as in benzene.  

2a. The rectangular box model can be used to model electrons moving within thin layers 

of metal deposited on a substrate or to model electrons in aromatic sheets such as 

graphene shown below in Fig. 2.8a.  
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Figure 2.8a Depiction of the aromatic rings of graphene extending in two dimensions. 

 

2b. The particle-within-a-circle model can describe states of electrons (or other light 

particles requiring quantum treatment) constrained within a circular corral.  

2c. The particle-on-a-sphere’s surface model can describe states of electrons delocalized 

over the surface of fullerene-type species such as shown in the upper right of Fig. 2.8b. 

 
Figure 2.8b Fullerene (upper right) and tubes of rolled up graphenes (lower three). 
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3a. The particle-in-a-sphere model, as discussed earlier, is often used to treat electronic 

orbitals of quasi-spherical nano-clusters composed of metallic atoms. 

3b. The particle-in-a-cube model is often used to describe the bands of electronic orbitals 

that arise in three-dimensional crystals constructed from metallic atoms.  

In all of these models, the potential V0, which is constant in the region where the electron 

is confined, controls the energies of all the quantum states relative to that of a free 

electron (i.e., an electron in vacuum with no kinetic energy). 

 For some dimensionalities and geometries, it may be necessary to invoke more 

than one of these models to qualitatively describe the quantum states of systems for 

which the valence electrons are highly delocalized (e.g., metallic clusters and conjugated 

organics). For example, for electrons residing on the surface of any of the three graphene 

tubes shown in Fig. 2.8b, one expects quantum states (i) labeled with an angular 

momentum quantum number and characterizing the electrons’ angular motions about the 

long axis of the tube, but also (ii) labeled by a long-axis quantum number characterizing 

the electron’s energy component along the tube’s long axis. For a three-dimensional tube-

shaped nanoparticle composed of metallic atoms, one expects the quantum states to be (i) 

labeled with an angular momentum quantum number and a radial quantum number 

characterizing the electrons’ angular motions about the long axis of the tube and its radial 

(Bessel function) character, but again also (ii) labeled by a long-axis quantum number 

characterizing the electron’s energy component along the tube’s long axis.  

 

2.4 The Most Elementary Model of Orbital Energy Splittings: Hückel or Tight 

Binding Theory 

 

 Now, let’s examine what determines the energy range into which orbitals (e.g., pπ 

orbitals in polyenes, metal, semi-conductor, or insulator; s or pσ orbitals in a solid; or σ or 

π atomic orbitals in a molecule) split. I know that, in our earlier discussion, we talked 

about the degree of overlap between orbitals on neighboring atoms relating to the energy 

splitting, but now it is time to make this concept more quantitative. To begin, consider 

two orbitals, one on an atom labeled A and another on a neighboring atom labeled B; 
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these orbitals could be, for example, the 1s orbitals of two hydrogen atoms, such as 

Figure 2.9 illustrates.  

 

 
 

Figure 2.9. Two 1s orbitals combine to produce a σ bonding and a σ* antibonding 

molecular orbital 

 

However, the two orbitals could instead be two pπ orbitals on neighboring carbon atoms 

such as are shown in Fig. 2.10 as they form π bonding and π* anti-bonding orbitals. 

 

 
 

Figure 2.10. Two atomic pπ orbitals form a bonding π and antibonding π* molecular 

orbital.  
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In both of these cases, we think of forming the molecular orbitals  (MOs) φk as linear 

combinations of the atomic orbitals (AOs) χa on the constituent atoms, and we express 

this mathematically as follows: 

 

φK = Σa CK,a χa, 

 

where the CK,a  are called linear combination of atomic orbital to form molecular orbital 

(LCAO-MO) coefficients. The MOs are supposed to be solutions to the Schrödinger 

equation in which the Hamiltonian H involves the kinetic energy of the electron as well 

as the potentials VL and VR detailing its attraction to the left and right atomic centers (this 

one-electron Hamiltonian is only an approximation for describing molecular orbitals; 

more rigorous N-electron treatments will be discussed in Chapter 6): 

 

H = - h2/2m ∇2 + VL + VR. 

 

In contrast, the AOs centered on the left atom A are supposed to be solutions of the 

Schrödinger equation whose Hamiltonian is H = - h2/2m ∇2 + VL , and the AOs on the 

right atom B have H = - h2/2m ∇2 + VR.  Substituting φK = Σa CK,a χa into the MO’s 

Schrödinger equation  

 

HφK = εK φK  

 

and then multiplying on the left by the complex conjugate of χb  and integrating over the 

r, θ and φ coordinates of the electron produces 

 

Σa <χb| - h2/2m ∇2 + VL + VR |χa> CK,a = εK Σa <χb|χa> CK,a 

 

Recall that the Dirac notation <a|b> denotes the integral of a* and b, and <a| op| b> 

denotes the integral of a* and the operator op acting on b. 

 In what is known as the Hückel model in chemistry or the tight-binding model in 
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solid-state theory, one approximates the integrals entering into the above set of linear 

equations as follows: 

i. The diagonal integral <χb| - h2/2m ∇2 + VL + VR |χb> involving the AO centered on the 

right atom and labeled χb is assumed to be equivalent to <χb| - h2/2m ∇2 + VR |χb>, which 

means that net attraction of this orbital to the left atomic center is neglected. Moreover, 

this integral is approximated in terms of the binding energy (denoted α, not to be 

confused with the electron spin function α) for an electron that occupies the χb  orbital: 

<χb| - h2/2m ∇2 + VR |χb> = αb. The physical meaning of αb is the kinetic energy of the 

electron in χb plus the attraction of this electron to the right atomic center while it resides 

in χb. Of course, an analogous approximation is made for the diagonal integral involving 

χa; <χa| - h2/2m ∇2 + VL |χa> = αa . These α values are negative quantities because, as is 

convention in electronic structure theory, energies are measured relative to the energy of 

the electron when it is removed from the orbital and possesses zero kinetic energy. 

ii. The off-diagonal integrals <χb| - h2/2m ∇2 + VL + VR |χa> are expressed in terms of a 

parameter βa,b which relates to the kinetic and potential energy of the electron while it 

resides in the “overlap region” in which both χa and χb  are non-vanishing. This region is 

shown pictorially above as the region where the left and right orbitals touch or overlap. 

The magnitude of β is assumed to be proportional to the overlap Sa,b between the two 

AOs : Sa,b = <χa|χb>. It turns out that β is usually a negative quantity, which can be seen 

by writing it as <χb| - h2/2m ∇2 + VR |χa> + <χb| VL  |χa>. Since χa  is an eigenfunction of - 

h2/2m ∇2 +  VR having the eigenvalue αa, the first term is equal to αa (a negative quantity) 

times <χb|χa>, the overlap S. The second quantity <χb| VL  |χa> is equal to the integral of 

the overlap density χb(r) χa(r) multiplied by the (negative) Coulomb potential for 

attractive interaction of the electron with the left atomic center. So, whenever χb(r) and 

χa(r) have positive overlap, β will turn out negative.  

iii. Finally, in the most elementary Hückel or tight-binding model, the off-diagonal 

overlap integrals <χa|χb> = Sa,b  are neglected and set equal to zero on the right side of the 

matrix eigenvalue equation. However, in some Hückel models, overlap between 

neighboring orbitals is explicitly treated, so, in some of the discussion below we will 

retain Sa,b. 
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With these Hückel approximations, the set of equations that determine the orbital 

energies εK and the corresponding LCAO-MO coefficients CK,a  are written for the two-

orbital case at hand as in the first 2x2 matrix equations shown below 

 

 

 

which is sometimes written as 

 

 

 

 These equations reduce with the assumption of zero overlap to  

 

 

The α parameters are identical if the two AOs χa and χb are identical, as would be 

the case for bonding between the two 1s orbitals of two H atoms or two 2pπ orbitals of 

two C atoms or two 3s orbitals of two Na atoms. If the left and right orbitals were not 

identical (e.g., for bonding in HeH+ or for the π bonding in a C-O group), their α values 

would be different and the Hückel matrix problem would look like: 

 

 

To find the MO energies that result from combining the AOs, one must find the 

values of ε for which the above equations are valid. Taking the 2x2 matrix consisting of ε 
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times the overlap matrix to the left hand side, the above set of equations reduces to the 

third set displayed earlier. It is known from matrix algebra that such a set of linear 

homogeneous equations (i.e., having zeros on the right hand sides) can have non-trivial 

solutions (i.e., values of C that are not simply zero) only if the determinant of the matrix 

on the left side vanishes. Setting this determinant equal to zero gives a quadratic equation 

in which the ε values are the unknowns: 

 

(α-ε)2 – (β-εS)2 = 0. 

 

This quadratic equation can be factored into a product  

 

(α - β  - ε +εS) (α + β - ε -εS) = 0 

 

which has two solutions 

 

ε = (α + β)/(1 + S), and ε = (α -β)/(1 – S). 

 

As discussed earlier, it turns out that the β values are usually negative, so the 

lowest energy such solution is the ε = (α + β)/(1 + S) solution, which gives the energy of 

the bonding MO.  Notice that the energies of the bonding and anti-bonding MOs are not 

symmetrically displaced from the value α within this version of the Hückel model that 

retains orbital overlap. In fact, the bonding orbital lies less than β below α, and the 

antibonding MO lies more than β above α because of the 1+S and 1-S factors in the 

respective denominators. This asymmetric lowering and raising of the MOs relative to the 

energies of the constituent AOs is commonly observed in chemical bonds; that is, the 

antibonding orbital is more antibonding than the bonding orbital is bonding. This is 

another important thing to keep in mind because its effects pervade chemical bonding and 

spectroscopy. 

 Having noted the effect of inclusion of AO overlap effects in the Hückel model, I 

should admit that it is far more common to utilize the simplified version of the Hückel 

model in which the S factors are ignored. In so doing, one obtains patterns of MO orbital 
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energies that do not reflect the asymmetric splitting in bonding and antibonding orbitals 

noted above. However, this simplified approach is easier to use and offers qualitatively 

correct MO energy orderings. So, let’s proceed with our discussion of the Hückel model 

in its simplified version. 

 To obtain the LCAO-MO coefficients corresponding to the bonding and 

antibonding MOs, one substitutes the corresponding α values into the linear equations  

 

 

and solves for the Ca  coefficients (actually, one can solve for all but one Ca, and then use 

normalization of the MO to determine the final Ca). For example, for the bonding MO, 

we substitute ε = α + β into the above matrix equation and obtain two equations for CL 

and CR: 

 

− β CL + β CR = 0 

 

β CL - β CR  = 0. 

 

These two equations are clearly not independent; either one can be solved for one C in 

terms of the other C to give: 

 

CL = CR, 

 

which means that the bonding MO is 

 

φ = CL (χL + χR). 

  

The final unknown, CL, is obtained by noting that φ is supposed to be a normalized 

function <φ|φ> = 1. Within this version of the Hückel model, in which the overlap S is 

neglected, the normalization of φ leads to the following condition: 
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1 = <φ|φ> = CL
2 (<χL|χL> + <χRχR>) = 2 CL

2 

 

with the final result depending on assuming that each χ is itself also normalized. So, 

finally, we know that CL = (1/2)1/2, and hence the bonding MO is: 

 

φ = (1/2)1/2 (χL + χR). 

 

Actually, the solution of 1 = 2 CL
2 could also have yielded CL = - (1/2)1/2 and then, we 

would have 

 

φ = - (1/2)1/2 (χL + χR). 

 

These two solutions are not independent (one is just –1 times the other), so only one 

should be included in the list of MOs. However, either one is just as good as the other 

because, as shown very early in this text, all of the physical properties that one computes 

from a wave function depend not on ψ but on ψ*ψ. So, two wave functions that differ 

from one another by an overall sign factor as we have here have exactly the same ψ*ψ 

and thus are equivalent.  

In like fashion, we can substitute ε = α - β into the matrix equation and solve for 

the CL can CR values that are appropriate for the antibonding MO. Doing so, gives us: 

 

φ* = (1/2)1/2 (χL - χR) 

 

or, alternatively,  

 

φ* = (1/2)1/2 (χR - χL). 

 

Again, the fact that either expression for φ* is acceptable shows a property of all 

solutions to any Schrödinger equations; any multiple of a solution is also a solution. In 

the above example, the two answers for φ* differ by a multiplicative factor of (-1). 
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Let’s try another example to practice using Hückel or tight-binding theory. In 

particular, I’d like you to imagine two possible structures for a cluster of three Na atoms 

(i.e., pretend that someone came to you and asked what geometry you think such a cluster 

would assume in its ground electronic state), one linear and one an equilateral triangle. 

Further, assume that the Na-Na distances in both such clusters are equal (i.e., that the 

person asking for your theoretical help is willing to assume that variations in bond 

lengths are not the crucial factor in determining which structure is favored). In Fig. 2.11, 

I shown the two candidate clusters and their 3s orbitals. 

 

 

Figure 2.11.  Linear and equilateral triangle structures of sodium trimer. 

 

 Numbering the three Na atoms’ valence 3s orbitals χ1, χ2, and χ3, we then set up 

the 3x3 Hückel matrix appropriate to the two candidate structures: 

 

 

 

for the linear structure (n.b., the zeros arise because χ1 and χ3  do not overlap and thus 

have no β coupling matrix element). Alternatively, for the triangular structure, we find 
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as the Hückel matrix. Each of these 3x3 matrices will have three eigenvalues that we 

obtain by subtracting ε from their diagonals and setting the determinants of the resulting 

matrices to zero. For the linear case, doing so generates 

 

(α-ε)3 – 2 β2 (α-ε) = 0, 

 

and for the triangle case it produces 

 

(α-ε)3 –3 β2 (α-ε) + 2 β2  = 0. 

 

The first cubic equation has three solutions that give the MO energies: 

 

ε = α + (2)1/2 β, ε = α, and ε = α - (2)1/2 β, 

 

for the bonding, non-bonding and antibonding MOs, respectively. The second cubic 

equation also has three solutions 

 

ε = α + 2β, ε = α - β , and ε = α - β. 

 

So, for the linear and triangular structures, the MO energy patterns are as shown in Fig. 

2.12. 
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Figure 2.12. Energy orderings of molecular orbitals of linear and triangular sodium 

trimer. 

For the neutral Na3 cluster about which you were asked, you have three valence 

electrons to distribute among the lowest available orbitals. In the linear case, we place 

two electrons into the lowest orbital and one into the second orbital. Doing so produces a 

3-electron state with a total energy of E= 2(α+21/2 β) + α = 3α +2 21/2β. Alternatively, for 

the triangular species, we put two electrons into the lowest MO and one into either of the 

degenerate MOs resulting in a 3-electron state with total energy E = 3 α + 3β. Because β 

is a negative quantity, the total energy of the triangular structure is lower than that of the 

linear structure since 3 > 2 21/2. 

 The above example illustrates how we can use Hückel or tight-binding theory to 

make qualitative predictions (e.g., which of two shapes is likely to be of lower energy).  

Notice that all one needs to know to apply such a model to any set of atomic orbitals that 

overlap to form MOs is  

(i) the individual AO energies α (which relate to the electronegativity of the AOs),  

(ii) the degree to which the AOs couple (the β parameters which relate to AO overlaps), 

(iii) an assumed geometrical structure whose energy one wants to estimate. 

 This example and the earlier example pertinent to H2 or the π bond in ethylene 

also introduce the idea of symmetry. Knowing, for example, that H2, ethylene, and linear 

Na3 have a left-right plane of symmetry allows us to solve the Hückel problem in terms 

of symmetry-adapted atomic orbitals rather than in terms of primitive atomic orbitals as 

we did earlier. For example, for linear Na3, we could use the following symmetry-adapted 

functions: 

     χ2  and (1/2)1/2 {χ1 + χ3} 

 

both of which are even under reflection through the symmetry plane and 

 

     (1/2)1/2 {χ1 - χ3} 

 

which is odd under reflection. The 3x3 Hückel matrix would then have the form 
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For example, H1,2 and H2,3 are evaluated as follows 

 

  H1,2 = <(1/2)1/2 {χ1 + χ3}|H|χ2> = 2(1/2)1/2 β 

 

  Η2,3 = <(1/2)1/2 {χ1 + χ3}|H|<(1/2)1/2 {χ1 - χ3}> = ½{ α + β - β - α} = 0. 

 

The three eigenvalues of the above Hückel matrix are easily seen to be α, α + 

€ 

2β , and 

α -

€ 

2β , exactly as we found earlier. So, it is not necessary to go through the process of 

forming symmetry-adapted functions; the primitive Hückel matrix will give the correct 

answers even if you do not. However, using symmetry allows us to break the full (3x3 in 

this case) Hückel problem into separate Hückel problems for each symmetry component 

(one odd function and two even functions in this case, so a 1x1 and a 2x2 sub-matrix).  

 While we are discussing the issue of symmetry, let me briefly explain the concept 

of approximate symmetry again using the above Hückel problem as it applies to ethylene 

as an illustrative example.  

 

 
Figure 2.12a Ethylene molecule’s π and π* orbitals showing the σX,Y  reflection plane that 

is a symmetry property of this molecule. 
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Clearly, as illustrated in Fig. 2.12a, at its equilibrium geometry the ethylene molecule has 

a plane of symmetry (denoted σX,Y) that maps nuclei and electrons from its left to its right 

and vice versa. This is the symmetry element that could used to decompose the 2x2 

Hückel matrix describing the π and π* orbitals into two 1x1 matrices. However, if any of 

the four C-H bond lengths or HCH angles is displaced from its equilibrium value in a 

manner that destroys the perfect symmetry of this molecule, or if one of the C-H units 

were replaced by a C-CH3 unit, it might appear that symmetry would no longer be a 

useful tool in analyzing the properties of this molecule’s molecular orbitals. Fortunately, 

this is not the case.  

 Even if there is not perfect symmetry in the nuclear framework of this molecule, 

the two atomic pπ orbitals will combine to produce a bonding π and antibonding π* 

orbital. Moreover, these two molecular orbitals will still possess nodal properties similar 

to those shown in Fig. 2.12a even though they will not possess perfect even and odd 

character relative to the σX,Y plane. The bonding orbital will still have the same sign to the 

left of the σX,Y plane as it does to the right, and the antibonding orbital will have the 

opposite sign to the left as it does to the right, but the magnitudes of these two orbitals 

will not be left-right equal. This is an example of the concept of approximate symmetry. 

It shows that one can use symmetry, even when it is not perfect, to predict the nodal 

patterns of molecular orbitals, and it is the nodal patterns that govern the relative energies 

of orbitals as we have seen time and again.  

Let’s see if you can do some of this on your own. Using the above results, would 

you expect the cation Na3
+ to be linear or triangular? What about the anion Na3

-? Next, I 

want you to substitute the MO energies back into the 3x3 matrix and find the C1, C2, and 

C3 coefficients appropriate to each of the 3 MOs of the linear and of the triangular 

structure. See if doing so leads you to solutions that can be depicted as shown in Fig. 

2.13, and see if you can place each set of MOs in the proper energy ordering. 
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Figure 2.13. The molecular orbitals of linear and triangular sodium trimer (note, they are 

not energy ordered in this figure). 

 

Now, I want to show you how to broaden your horizons and use tight-binding 

theory to describe all of the bonds in a more complicated molecule such as ethylene 

shown in Fig. 2.14. What is different about this kind of molecule when compared with 

metallic or conjugated species is that the bonding can be described in terms of several 

pairs of valence orbitals that couple to form two-center bonding and antibonding 

molecular orbitals.  Within the Hückel model described above, each pair of orbitals that 

touch or overlap gives rise to a 2x2 matrix. More correctly, all n of the constituent 

valence orbitals form an nxn matrix, but this matrix is broken up into 2x2 blocks. Notice 

that this did not happen in the triangular Na3 case where each AO touched two other AOs.  

For the ethlyene case, the valence orbitals consist of (a) four equivalent C sp2 orbitals that 

are directed toward the four H atoms, (b) four H 1s orbitals, (c) two C sp2 orbitals directed 

toward one another to form the C-C σ bond, and (d) two C pπ orbitals that will form the 

C-C π bond. This total of 12 orbitals generates 6 Hückel matrices as shown below the 

ethylene molecule. 
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Figure 2.14 Ethylene molecule with four C-H bonds, one C-C σ bond, and one C-C π 

bond. 

 

We obtain one 2x2 matrix for the C-C σ bond of the form 

 

 

 

 

and one 2x2 matrix for the C-C π bond of the form 

 

 

Finally, we also obtain four identical 2x2 matrices for the C-H bonds: 
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The above matrices produce (a) four identical C-H bonding MOs having energies ε = 

1/2 {(αH + αC) –[(αH-αC)2 + 4β2]1/2}, (b) four identical C-H antibonding MOs having 

energies  ε* = 1/2 {(αH + αC) + [(αH - αC)2  + 4β2]1/2}, (c) one bonding C-C π orbital with 

ε = αpπ + β , (d) a partner antibonding C-C orbital with ε* = αpπ  - β, (e) a C-C σ bonding 

MO with ε = αsp2 + β , and (f) its antibonding partner with ε* = αsp2 - β. In all of these 

expressions, the β parameter is supposed to be that appropriate to the specific orbitals that 

overlap as shown in the matrices.  

If you wish to practice this exercise of breaking a large molecule down into sets 

of interacting valence, try to see what Hückel matrices you obtain and what bonding and 

antibonding MO energies you obtain for the valence orbitals of methane shown in Fig. 

2.15. 

 
 

 

Figure 2.15.  Methane molecule with four C-H bonds. 

  

Before leaving this discussion of the Hückel/tight-binding model, I need to stress 

that it has its flaws (because it is based on approximations and involves neglecting certain 

terms in the Schrödinger equation). For example, it predicts (see above) that ethylene has 

four energetically identical C-H bonding MOs (and four degenerate C-H antibonding 

MOs). However, this is not what is seen when photoelectron spectra are used to probe the 

energies of these MOs. Likewise, it suggests that methane has four equivalent C-H 

bonding and antibonding orbitals, which, again is not true. It turns out that, in each of 

these two cases (ethylene and methane), the experiments indicate a grouping of four 
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nearly iso-energetic bonding MOs and four nearly iso-energetic antibonding MOs. 

However, there is some “splitting” among these clusters of four MOs. The splittings can 

be interpreted, within the Hückel model, as arising from couplings or interactions among, 

for example, one sp2 or sp3 orbital on a given C atom and another such orbital on the 

same atom. Such couplings cause the nxn Hückel matrix to not block-partition into 

groups of 2x2 sub-matrices because now there exist off-diagonal β factors that couple 

one pair of directed valence to another. When such couplings are included in the analysis, 

one finds that the clusters of MOs expected to be degenerate are not but are split just as 

the photoelectron data suggest. 

 

2.5  Hydrogenic Orbitals 

 The Hydrogenic atom problem forms the basis of much of our thinking about 

atomic structure. To solve the corresponding Schrödinger equation requires separation 

of the r, θ, and φ variables. 

 

The Schrödinger equation for a single particle of mass µ moving in a central 

potential (one that depends only on the radial coordinate r) can be written as 

  - 
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 ψ + V( )x2+y2+z2   ψ = Eψ. 

or, introducing the short-hand notation ∇2: 

- h2/2µ ∇2 ψ +  V ψ = E ψ. 

This equation is not separable in Cartesian coordinates (x,y,z) because of the way x,y, 

and z appear together in the square root.  However, it is separable in spherical coordinates 

where it has the form 
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   - 
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
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2µr2
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Sin2θ
∂ 2ψ
∂φ 2 + V(r) ψ = - h2/2µ ∇2 ψ + V ψ = Eψ . 

 

Subtracting V(r) ψ from both sides of the equation and multiplying by - 
2µr2

h−2   then 

moving the derivatives with respect to r to the right-hand side, one obtains 
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Notice that, except for ψ itself, the right-hand side of this equation is a function of r only; 

it contains no θ or φ dependence.  Let's call the entire right hand side F(r) ψ to emphasize 

this fact.  

 To further separate the θ and φ dependence, we multiply by Sin2θ and subtract the 

θ derivative terms from both sides to obtain 
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Now we have separated the φ dependence from the θ and r dependence.  We now 

introduce the procedure used to separate variables in differential equations and assume ψ 

can be written as a function of φ times a function of r and θ: ψ = Φ(φ) Q(r,θ). Dividing by 

Φ Q, we obtain 
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Now all of the φ dependence is isolated on the left hand side; the right hand side contains 

only r and θ dependence. 

 Whenever one has isolated the entire dependence on one variable as we have done 

above for the φ dependence, one can easily see that the left and right hand sides of the 

equation must equal a constant.  For the above example, the left hand side contains no r 

or θ dependence and the right hand side contains no φ dependence.  Because the two 

sides are equal for all values of r, θ, and φ, they both must actually be independent of r, θ, 

and φ dependence; that is, they are constant.  This again is what is done when one 

employs the separations of variables method in partial differential equations.  

 For the above example, we therefore can set both sides equal to a so-called 

separation constant that we call -m2.  It will become clear shortly why we have chosen to 

express the constant in the form of minus the square of an integer. You may recall that we 

studied this same φ - equation earlier and learned how the integer m arises via. the 

boundary condition that φ and φ + 2π represent identical geometries. 

 

2.5.1. The Φ  Equation 

 The resulting Φ equation reads (the “ symbol is used to represent second 

derivative) 

 

    Φ" + m2Φ = 0. 

 

This equation should be familiar because it is the equation that we treated much earlier 

when we discussed z-component of angular momentum. So, its further analysis should 

also be familiar, but for completeness, I repeat much of it. The above equation has as its 
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most general solution 

 

     Φ = Α eimφ + B e-imφ . 

 

Because the wave functions of quantum mechanics represent probability densities, they 

must be continuous and single-valued.  The latter condition, applied to our Φ function, 

means (n.b., we used this in our earlier discussion of z-component of angular momentum) 

that  

 

Φ(φ) = Φ(2π + φ)  or, 

 

Aeimφ( )1 - e2imπ   + Be-imφ( )1 - e-2imπ   = 0. 

 

This condition is satisfied only when the separation constant is equal to an integer m = 0, 

±1, ± 2, ... .  and provides another example of the rule that quantization comes from the 

boundary conditions on the wave function.  Here m is restricted to certain discrete values 

because the wave function must be such that when you rotate through 2π about the z-axis, 

you must get back what you started with.   

 

2.5.2. The Θ  Equation 

 

 Now returning to the equation in which the φ dependence was isolated from the r 

and θ dependence and rearranging the θ terms to the left-hand side, we have   
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In this equation we have separated the θ and r terms, so we can further decompose the 

wave function by introducing Q = Θ(θ) R(r) , which yields 
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where a second separation constant, -λ, has been introduced once the r and θ dependent 

terms have been separated onto the right and left hand sides, respectively.   

 We now can write the θ equation as 
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where m is the integer introduced earlier.  To solve this equation for Θ, we make the 

substitutions z = Cosθ and P(z) = Θ(θ) , so 1-z2  = Sinθ , and   
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The range of values for θ was 0 ≤  θ < π , so the range for z is -1 < z < 1.  The equation 

for Θ, when expressed in terms of P and z, becomes 
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Now we can look for polynomial solutions for P, because z is restricted to be less than 
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unity in magnitude.  If m = 0, we first let 

 

   P = 
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akz
k

k= 0
∑ , 

 

and substitute into the differential equation to obtain 

 

 

€ 

(k + 2)(k + 1)ak+2z
k

k= 0
∑ - 

€ 

(k + 1)k akz
k

k= 0
∑ + λ 

€ 

akz
k

k= 0
∑ = 0. 

 

Equating like powers of z gives 

 

   ak+2 = 
ak(k(k+1)-λ)
(k+2)(k+1)   . 

 

Note that for large values of k 
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  = 1. 

 

Since the coefficients do not decrease with k for large k, this series will diverge for z = ± 

1 unless it truncates at finite order.  This truncation only happens if the separation 

constant λ obeys λ = l(l+1), where l is an integer (you can see this from the recursion 

relation giving ak+2 in terms of ak; only for certain values of λ will the numerator vanish ).  

So, once again, we see that a boundary condition (i.e., that the wave function not diverge 

and thus be normalizable in this case) give rise to quantization.  In this case, the values of 

λ are restricted to l(l+1); before, we saw that m is restricted to 0, ±1, ± 2, .. . 

 Since the above recursion relation links every other coefficient, we can choose to 

solve for the even and odd functions separately.  Choosing a
0
 and then determining all of 

the even ak in terms of this a
0
, followed by rescaling all of these ak to make the function 
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normalized generates an even solution.  Choosing a1 and determining all of the odd ak in 

like manner, generates an odd solution.   

 For l= 0, the series truncates after one term and results in Po(z) = 1.  For l= 1 the 

same thing applies and P1(z) = z.  For l= 2, a2 = -6 
ao
2   = -3ao, so one obtains P2 = 3z2-1, 

and so on.  These polynomials are called Legendre polynomials and are denoted Pl(z).   

 For the more general case where m ≠ 0, one can proceed as above to generate a 

polynomial solution for the Θ function.  Doing so, results in the following solutions: 
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Pl
m (z) = (1− z2)|m | / 2 d

|m |Pl (z)
dz|m |

 

 

These functions are called Associated Legendre polynomials, and they constitute the 

solutions to the Θ problem for non-zero m values.  

 The above P and eimφ functions, when re-expressed in terms of θ and φ, yield the 

full angular part of the wave function for any centrosymmetric potential.  These solutions 

are usually written as  

 

Yl,m(θ,φ)= 

€ 

P l
m(cosθ) (2π)-1/2 exp(imφ),  

 

and are called spherical harmonics.  They provide the angular solution of the r,θ, φ 

Schrödinger equation for any problem in which the potential depends only on the radial 

coordinate.  Such situations include all one-electron atoms and ions (e.g., H, He+, Li++, 

etc.), the rotational motion of a diatomic molecule (where the potential depends only on 

bond length r), the motion of a nucleon in a spherically symmetrical box (as occurs in the 

shell model of nuclei), and the scattering of two atoms (where the potential depends only 

on interatomic distance). 

The Yl,m functions possess varying number of angular nodes, which, as noted 



 144 

earlier, give clear signatures of the angular or rotational energy content of the wave 

function. These angular nodes originate in the oscillatory nature of the Legendre and 

associated Legendre polynomials Pl
m

 (cosθ); the higher l is, the more sign changes occur 

within the polynomial. 

 

2.5.3. The R Equation 

Let us now turn our attention to the radial equation, which is the only place that 

the explicit form of the potential appears.  Using our earlier results for the equation 

obeyed by the R(r) function and specifying V(r) to be the Coulomb potential appropriate 

for an electron in the field of a nucleus of charge +Ze, yields: 
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We can simplify things considerably if we choose rescaled length and energy units 

because doing so removes the factors that depend on µ, h− , and e.  We introduce a new 

radial coordinate ρ and a quantity σ as follows:  
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Notice that if E is negative, as it will be for bound states (i.e., those states with energy 

below that of a free electron infinitely far from the nucleus and with zero kinetic energy), 

ρ and σ are real.  On the other hand, if E is positive, as it will be for states that lie in the 

continuum, ρ and σ will be imaginary.  These two cases will give rise to qualitatively 

different behavior in the solutions of the radial equation developed below. 

 We now define a function S such that S(ρ) = R(r) and substitute S for R to obtain: 
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The differential operator terms can be recast in several ways using 
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The strategy that we now follow is characteristic of solving second order differential 

equations.  We will examine the equation for S at large and small ρ values.  Having 

found solutions at these limits, we will use a power series in ρ to interpolate between 

these two limits.  

 Let us begin by examining the solution of the above equation at small values of ρ 

to see how the radial functions behave at small r.  As ρ→0, the term -L(L+1)/ρ 2 will 

dominate over -1/4 +σ/ρ.  Neglecting these other two terms, we find that, for small values 

of ρ (or r), the solution should behave like ρL and because the function must be 

normalizable, we must have L ≥ 0.  Since l can be any non-negative integer, this suggests 

the following more general form for S(ρ) : 

 

   S(ρ) ≈ ρL e-aρ. 

 

This form will insure that the function is normalizable since S(ρ) → 0 as r → ∞ for all L, 

as long as ρ is a real quantity.  If ρ is imaginary, such a form may not be normalized (see 

below for further consequences). 

 Turning now to the behavior of S for large ρ, we make the substitution of S(ρ) 

into the above equation and keep only the terms with the largest power of ρ (i.e., the -1/4 

term) and we allow the derivatives in the above differential equation to act on ≈ ρL e-aρ.  

Upon so doing, we obtain the equation 
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    a2ρLe-aρ = 
1
4  ρLe-aρ ,  

 

which leads us to conclude that the exponent in the large-ρ behavior of S is a = 
1
2 .   

Having found the small-ρ and large-ρ behaviors of S(ρ), we can take S to have the 

following form to interpolate between large and small ρ-values: 

 

   S(ρ) = ρLe
-
ρ
2   P(ρ), 

 

where the function P is expanded in an infinite power series in ρ as P(ρ) = ∑ak ρk .  

Again substituting this expression for S into the above equation we obtain 

 

   P"ρ + P'(2L+2-ρ) + P(σ-L-l) = 0, 

 

and then substituting the power series expansion of P and solving for the ak's we arrive at 

a recursion relation for the ak coefficients: 

 

   ak+1 = 
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(k −σ + L + l)ak
(k + 1)(k + 2L + 2)

. 

 

For large k, the ratio of expansion coefficients reaches the limit 
ak+1
ak

  = 
1
k  , which, when 

substituted into ∑ak ρk , gives the same behavior as the power series expansion of eρ.  

Because the power series expansion of P describes a function that behaves like eρ for 
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large ρ, the resulting S(ρ) function would not be normalizable because the e
-
ρ
2  factor 

would be overwhelmed by this eρ  dependence.  Hence, the series expansion of P must 

truncate in order to achieve a normalizable S function.  Notice that if ρ is imaginary, as it 

will be if E is in the continuum, the argument that the series must truncate to avoid an 

exponentially diverging function no longer applies.  Thus, we see a key difference 

between bound (with ρ real) and continuum (with ρ imaginary) states.  In the former 

case, the boundary condition of non-divergence arises; in the latter, it does not because 

exp(ρ/2) does  not diverge if ρ is imaginary. 

 To truncate at a polynomial of order n', we must have n' - σ + L+ l= 0.  This 

implies that the quantity σ introduced previously is restricted to σ = n' + L + l, which is 

certainly an integer; let us call this integer n.  If we label states in order of increasing n = 

1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the 

P(ρ) polynomial n' = 0,1,2,... after which the L-value can run from L = 0, in steps of unity 

up to L = n-1.  

 Substituting the integer n for σ, we find that the energy levels are quantized 

because σ is quantized (equal to n): 
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and the scaled distance turns out to be 
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Here, the length ao is the so-called Bohr radius 
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 , which turns out to be 0.529 

Å; it appears once the above E-expression is substituted into the equation for ρ.  Using 

the recursion equation to solve for the polynomial's coefficients ak for any choice of n 
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and L quantum numbers generates a so-called Laguerre polynomial; Pn-L-1(ρ).  They 

contain powers of ρ from zero through n-L-1, and they have n-L-1 sign changes as the 

radial coordinate ranges from zero to infinity. It is these sign changes in the Laguerre 

polynomials that cause the radial parts of the hydrogenic wave functions to have n-L-1 

nodes. For example, 3d orbitals have no radial nodes, but 4d orbitals have one; and, as 

shown in Fig. 2.16, 3p orbitals have one while 3s orbitals have two. Once again, the 

higher the number of nodes, the higher the energy in the radial direction. 

 

 

 
 

Figure 2.16.  Plots of the probability densities r2|R(r)|2 of the radial parts of the 3s and 3p 

orbitals 

 

Let me again remind you about the danger of trying to understand quantum wave 

functions or probabilities in terms of classical dynamics. What kind of potential V(r) 

would give rise to, for example, the 3s P(r) plot shown above? Classical mechanics 

suggests that P should be large where the particle moves slowly and small where it moves 

quickly. So, the 3s P(r) plot suggests that the radial speed of the electron has three regions 

where it is low (i.e., where the peaks in P are) and two regions where it is very large (i.e., 

where the nodes are). This, in turn, suggests that the radial potential V(r) experienced by 
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the 3s electron is high in three regions (near peaks in P) and low in two regions. Of 

course, this conclusion about the form of V(r) is nonsense and again illustrates how one 

must not be drawn into trying to think of the classical motion of the particle, especially 

for quantum states with small quantum number. In fact, the low quantum number states 

of such one-electron atoms and ions have their radial P(r) plots focused in regions of r-

space where the potential –Ze2/r is most attractive (i.e., largest in magnitude). 

 Finally, we note that the energy quantization does not arise for states lying in the 

continuum because the condition that the expansion of P(ρ) terminate does not arise.  The 

solutions of the radial equation appropriate to these scattering states (which relate to the 

scattering motion of an electron in the field of a nucleus of charge Z) are a bit outside the 

scope of this text, so we will not treat them further here. For the interested student, they 

are treated on p. 90 of the text by Eyring, Walter, and Kimball to which I refer in the 

Introductory Remarks to this text. 

To review, separation of variables has been used to solve the full r,θ,φ 

Schrödinger equation for one electron moving about a nucleus of charge Z.  The θ and φ 

solutions are the spherical harmonics YL,m (θ,φ).  The bound-state radial solutions 

 

Rn,L(r) = S(ρ) = ρLe
-
ρ
2  Pn-L-1(ρ) 

 

depend on the n and L quantum numbers and are given in terms of the Laguerre 

polynomials.  

 

2.5.4. Summary 

 To summarize, the quantum numbers L and m arise through boundary conditions 

requiring that ψ(θ) be normalizable (i.e., not diverge) and ψ(φ) = ψ(φ+2π). The radial  

equation, which is the only place the potential energy enters, is found to possess both 

bound-states (i.e., states whose energies lie below the asymptote at which the potential 

vanishes and the kinetic energy is zero) and continuum states lying energetically above 

this asymptote. The former states are spatially confined by the potential, but the latter are 

not. The resulting hydrogenic wave functions (angular and radial) and energies are 
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summarized on pp. 133-136 in the text by L. Pauling and E. B. Wilson for n up to and 

including 6 and L up to 5 (i.e, for s, p, d, f, g, and h orbitals). 

 There are both bound and continuum solutions to the radial Schrödinger equation 

for the attractive coulomb potential because, at energies below the asymptote, the 

potential confines the particle between r=0 and an outer classical turning point, whereas 

at energies above the asymptote, the particle is no longer confined by an outer turning 

point (see Fig. 2.17). This provides yet another example of how quantized states arise 

when the potential spatially confines the particle, but continuum states arise when the 

particle is not spatially confined.  

 

 

Figure 2.17.  Radial Potential for Hydrogenic Atoms and Bound and Continuum Orbital 

Energies. 

 

The solutions of this one-electron problem form the qualitative basis for much of atomic 

and molecular orbital theory. For this reason, the reader is encouraged to gain a firmer 

understanding of the nature of the radial and angular parts of these wave functions. The 

orbitals that result are labeled by n, l, and m quantum numbers for the bound states and 

by l and m quantum numbers and the energy E for the continuum states. Much as the 
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particle-in-a-box orbitals are used to qualitatively describe π- electrons in conjugated 

polyenes, these so-called hydrogen-like orbitals provide qualitative descriptions of 

orbitals of atoms with more than a single electron. By introducing the concept of 

screening as a way to represent the repulsive interactions among the electrons of an atom, 

an effective nuclear charge Zeff can be used in place of Z in the ψn,l,m and En to generate 

approximate atomic orbitals to be filled by electrons in a many-electron atom. For 

example, in the crudest approximation of a carbon atom, the two 1s electrons experience 

the full nuclear attraction so Zeff = 6 for them, whereas the 2s and 2p electrons are 

screened by the two 1s electrons, so Zeff = 4 for them. Within this approximation, one then 

occupies two 1s orbitals with Z = 6, two 2s orbitals with Z = 4 and two 2p orbitals with 

Z=4 in forming the full six-electron wave function of the lowest-energy state of carbon. It 

should be noted that the use of screened nuclear charges as just discussed is different 

from the use of a quantum defect parameter δ as discussed regarding Rydberg orbitals in 

Chapter 1. The Z = 4 screened charge for carbon’s 2s and 2p orbitals is attempting to 

represent the effect of the inner-shell 1s electrons on the 2s and 2p orbitals. The 

modification of the principal quantum number made by replacing n by (n- δ) represents 

the penetration of the orbital with nominal quantum number n inside its inner-shells.  

 

2.6. Electron Tunneling  

 Tunneling is a phenomenon of quantum mechanics, not classical mechanics. It is 

an extremely important subject that occurs in a wide variety of chemical species 

including nano-scale electronic devices and protons moving through water. 

 

As we have seen several times already, solutions to the Schrödinger equation 

display several properties that are very different from what one experiences in Newtonian 

dynamics. One of the most unusual and important is that the particles one describes using 

quantum mechanics can move into regions of space where they would not be allowed to 

go if they obeyed classical equations. We call these classically forbidden regions. Let us 

consider an example to illustrate this so-called tunneling phenomenon. Specifically, we 

think of an electron (a particle that we likely would use quantum mechanics to describe) 

moving in a direction we will call R under the influence of a potential that is: 
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a. Infinite for R < 0 (this could, for example, represent a region of space within a solid 

material where the electron experiences very repulsive interactions with other electrons); 

b. Constant and negative for some range of R between R = 0 and Rmax  (this could 

represent the attractive interaction of the electrons with those atoms or molecules in a 

finite region or surface of a solid); 

c. Constant and repulsive (i.e., positive) by an amount δV + De for another finite region 

from Rmax to Rmax +δ (this could represent the repulsive interactions between the electrons 

and a layer of molecules of thickness δ lying on the surface of the solid at Rmax); 

d. Constant and equal to De from Rmaz +δ to infinity (this could represent the electron 

being removed from the solid, but with a work function energy cost of De, and moving 

freely in the vacuum above the surface and the ad-layer). Such a potential is shown in 

Fig. 2.18. 

 

 

 

 

Figure 2.18.  One-dimensional potential showing a well, a barrier, and the asymptotic 

region. 
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The piecewise nature of this potential allows the one-dimensional Schrödinger equation 

to be solved analytically. For energies lying in the range De < E < De +δV, an especially 

interesting class of solutions exists. These so-called resonance states occur at energies 

that are determined by the condition that the amplitude of the wave function within the 

barrier (i.e., for 0 ≤ R ≤ Rmax ) be large. Let us now turn our attention to this specific 

energy regime, which also serves to introduce the tunneling phenomenon. 

 The piecewise solutions to the Schrödinger equation appropriate to the resonance 

case are easily written down in terms of sin and cos or exponential functions, using the 

following three definitions: 

 

 

The combination of sin(kR) and cos(kR) that solve the Schrödinger equation in the inner 

region and that vanish at R=0 (because the function must vanish within the region where 

V is infinite and because it must be continuous, it must vanish at R=0) is: 

 

ψ = Asin(kR)    (for 0 ≤ R ≤ Rmax ). 

 

Between Rmax and Rmax +δ, there are two solutions that obey the Schrödiger equation, so 

the most general solution is a combination of these two: 

 

ψ = B+ exp(κ'R) + B-
 exp(-κ'R)  (for Rmax ≤ R ≤ Rmax +δ). 

 

Finally, in the region beyond Rmax + δ, we can use a combination of either sin(k’R) and 

cos(k’R) or exp(ik’R) and exp(-ik’R) to express the solution. Unlike the region near R=0, 

where it was most convenient to use the sin and cos functions because one of them could 

be “thrown away” since it could not meet the boundary condition of vanishing at R=0, in 

this large-R region, either set is acceptable. We choose to use the exp(ik’R) and  

  

€ 

k = 2meE /
2 ,k'= 2me (E −De ) /

2 ,κ '= 2me (De + δV − E) /2
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exp(-ik’R) set because each of these functions is an eigenfunction of the momentum 

operator –ih∂/∂R. This allows us to discuss amplitudes for electrons moving with positive 

momentum and with negative momentum. So, in this region, the most general solution is 

 

ψ = C exp(ik'R) + D exp(-ik'R)  (for Rmax +δ ≤ R < ∞). 

 

There are four amplitudes (A, B+, B-, and C) that can be expressed in terms of the 

specified amplitude D of the incoming flux (e.g., pretend that we know the flux of 

electrons that our experimental apparatus shoots at the surface). Four equations that can 

be used to achieve this goal result when ψ and dψ/dR are matched at Rmax and at Rmax + 

δ (one of the essential properties of solutions to the Schrödinger equation is that they and 

their first derivative are continuous; these properties relate to ψ being a probability and 

the momentum –ih∂/∂R being continuous). These four equations are: 

 

Asin(kRmax) = B+ exp(κ'Rmax) + B- exp(-κ'Rmax), 

 

Akcos(kRmax) = κ'B+ exp(κ'Rmax) - κ'B- exp(-κ'Rmax), 

 

 

B+ exp(κ'(Rmax + δ)) + B- exp(-κ'(Rmax + δ)) 

 

= C exp(ik'(Rmax + δ)  + D exp(-ik'(Rmax + δ), 

 

κ'B+ exp(κ'(Rmax + δ)) - κ'B- exp(-κ'(Rmax + δ)) 

 

= ik'C exp(ik'(Rmax + δ))  -ik' D exp(-ik'(Rmax + δ)). 

 

It is especially instructive to consider the value of A/D that results from solving this set of 

four equations in four unknowns because the modulus of this ratio provides information 

about the relative amount of amplitude that exists inside the barrier in the attractive 

region of the potential compared to that existing in the asymptotic region as incoming 
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flux.  

 The result of solving for A/D is: 

 

A/D = 4 κ'exp(-ik'(Rmax+δ)) 

 

{exp(κ'δ)(ik'-κ')(κ'sin(kRmax)+kcos(kRmax))/ik' 

 

+ exp(-κ'δ)(ik'+κ')(κ'sin(kRmax)-kcos(kRmax))/ik' }-1. 

 

 

To simplify this result in a manner that focuses on conditions where tunneling plays a key 

role in creating the resonance states, it is instructive to consider this result under 

conditions of a high (large De + δV - E) and thick (large δ) barrier. In such a case, the 

factor exp(-κ'δ) will be very small compared to its counterpart exp(κ'δ), and so 

 

A/D = 4 
ik'κ'
ik'-κ' exp(-ik'(Rmax+δ)) exp(-κ'δ) {κ'sin(kRmax)+kcos(kRmax) }-1. 

 

The exp(-κ'δ) factor in A/D causes the magnitude of the wave function inside the barrier 

to be small in most circumstances; we say that incident flux must tunnel through the 

barrier to reach the inner region and that exp(-κ'δ) governs the probability of this 

tunneling.  

 Keep in mind that, in the energy range we are considering (E < De+δ), a classical 

particle could not even enter the region Rmax < R < Rmax + δ; this is why we call this the 

classically forbidden or tunneling region. A classical particle starting in the large-R 

region can not enter, let alone penetrate, this region, so such a particle could never end up 

in the 0 <R < Rmax inner region. Likewise, a classical particle that begins in the inner 

region can never penetrate the tunneling region and escape into the large-R region. Were 

it not for the fact that electrons obey a Schrödinger equation rather than Newtonian 

dynamics, tunneling would not occur and, for example, scanning tunneling microscopy 

(STM), which has proven to be a wonderful and powerful tool for imaging molecules on 
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and near surfaces, would not exist. Likewise, many of the devices that appear in our 

modern electronic tools and games, which depend on currents induced by tunneling 

through various junctions, would not be available. But, or course, tunneling does occur 

and it can have remarkable effects.  

Let us examine an especially important (in chemistry) phenomenon that takes 

place because of tunneling and that occurs when the energy E assumes very special 

values. The magnitude of the A/D factor in the above solutions of the Schrödinger 

equation can become large if the energy E is such that the denominator in the above 

expression for A/D approaches zero. This happens when 

 

κ'sin(kRmax)+kcos(kRmax) 

 

or if 

tan(kRmax) = - k/κ’. 

 

It can be shown that the above condition is similar to the energy quantization 

condition  

 

tan(kRmax) = - k/κ 

 

that arises when bound states of a finite potential well similar to that shown above but 

with the barrier between Rmax and Rmax + δ missing and with E below De. There is, 

however, a difference. In the bound-state situation, two energy-related parameters occur 

 

k = 2µE/h2  

 

and 

 

κ =  2µ(De - E)/h2  . 
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In the case we are now considering, k is the same, but 

 

κ' =  2µ(De +δV - E)/h2  ) 

 

rather than κ occurs, so the two equations involving tan(kRmax) are not identical, but they 

are quite similar. 

 Another observation that is useful to make about the situations in which A/D 

becomes very large can be made by considering the case of a very high barrier (so that κ' 

is much larger than k). In this case, the denominator that appears in A/D 

 

κ'sin(kRmax)+kcos(kRmax) ≅ κ' sin(kRmax) 

 

can become small at energies satisfying  

 

sin(kRmax) ≅ 0. 

 

This condition is nothing but the energy quantization condition that occurs for the 

particle-in-a-box potential shown in Fig. 2.19. 

 

Figure 2.19. One-dimensional potential similar to the tunneling potential but without the 

barrier and asymptotic region. 
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This potential is identical to the potential that we were examining for 0 ≤ R ≤ Rmax , but 

extends to infinity beyond Rmax ; the barrier and the dissociation asymptote displayed by 

our potential are absent.  

 Let’s consider what this tunneling problem has taught us.  First, it showed us that 

quantum particles penetrate into classically forbidden regions. It showed that, at certain 

so-called resonance energies, tunneling is much more likely than at energies that are off-

resonance. In our model problem, this means that electrons impinging on the surface with 

resonance kinetic energies will have a very high probability of tunneling to produce an 

electron that is highly localized (i.e., trapped) in the 0 < R < Rmax region. Likewise, it 

means that an electron prepared (e.g., perhaps by photo-excitation from a lower-energy 

electronic state) within the 0 < R < Rmax region will remain trapped in this region for a 

long time (i.e., will have a low probability of tunneling outward). 

In the case just mentioned, it would make sense to solve the four equations for the 

amplitude C of the outgoing wave in the R > Rmax region in terms of the A amplitude. If 

we were to solve for C/A and then examine under what conditions the amplitude of this 

ratio would become small (so the electron cannot escape), we would find the same 

tan(kRmax) = - k/κ' resonance condition as we found from the other point of view. This 

means that the resonance energies tell us for what collision energies the electron will 

tunnel inward and produce a trapped electron and, at these same energies, an electron that 

is trapped will not escape quickly. 

Whenever one has a barrier on a potential energy surface, at energies above the 

dissociation asymptote De but below the top of the barrier (De + δV here), one can expect 

resonance states to occur at special scattering energies E. As we illustrated with the 

model problem, these so-called resonance energies can often be approximated by the 

bound-state energies of a potential that is identical to the potential of interest in the inner 

region (0 ≤ R ≤ Rmax ) but that extends to infinity beyond the top of the barrier (i.e., 

beyond the barrier, it does not fall back to values below E).  

 The chemical significance of resonances is great. Highly rotationally excited 

molecules may have more than enough total energy to dissociate (De), but this energy 

may be stored in the rotational motion, and the vibrational energy may be less than De. In 
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terms of the above model, high rotational angular momentum may produce a significant 

centrifugal barrier in the effective potential that characterizes the molecule’s vibration, 

but the system's vibrational energy may lie significantly below De. In such a case, and 

when viewed in terms of motion on an angular-momentum-modified effective potential 

such as I show in Fig. 2.20 , the lifetime of the molecule with respect to dissociation is 

determined by the rate of tunneling through the barrier.  

  

Figure 2.20. Radial potential for non-rotating (J = 0) molecule and for rotating molecule. 

 

In this case, one speaks of rotational predissociation of the molecule. The lifetime 

τ can be estimated by computing the frequency ν at which flux that exists inside Rmax 

strikes the barrier at Rmax  

 

ν = 
hk

2µRmax
  (sec-1) 
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and then multiplying by the probability P that flux tunnels through the barrier from Rmax 

to Rmax + δ: 

 

P = exp(-2κ'δ). 

 

The result is that  

 

τ -1=  
hk

2µRmax
  exp(-2κ'δ) 

 

with the energy E entering into k and κ' being determined by the resonance condition: 

(κ'sin(kRmax)+kcos(kRmax)) = minimum. We note that the probability of tunneling exp(-

2κ'δ) falls of exponentially with a factor depending on the width δ of the barrier through 

which the particle must tunnel multiplied by κ’, which depends on the height of the 

barrier De + δ above the energy E available. This exponential dependence on thickness 

and height of the barriers is something you should keep in mind because it appears in all 

tunneling rate expressions. 

 Another important case in which tunneling occurs is in electronically metastable 

states of anions. In so-called shape resonance states, the anion’s extra electron 

experiences  

a. an attractive potential due to its interaction with the underlying neutral molecule’s 

dipole, quadrupole, and induced electrostatic moments, as well as 

b. a centrifugal potential of the form L(L+1)h2/8π2meR2 whose magnitude depends on 

the angular character of the orbital the extra electron occupies. 

When combined, the above attractive and centrifugal potentials produce an effective 

radial potential of the form shown in Fig. 2.21 for the N2
- case in which the added 

electron occupies the π* orbital which has L=2 character when viewed from the center of 

the N-N bond. Again, tunneling through the barrier in this potential determines the 

lifetimes of such shape resonance states.  
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Figure  2.21 Effective radial potential for the excess electron in N2
- occupying the π* 

orbital which has a dominant L = 2 component. 

 

 

 Although the examples treated above analytically involved piecewise constant 

potentials (so the Schrödinger equation and the boundary matching conditions could be 

solved exactly), many of the characteristics observed carry over to more chemically 

realistic situations. In fact, one can often model chemical reaction processes in terms of 

motion along a reaction coordinate (s) from a region characteristic of reactant materials 

where the potential surface is positively curved in all direction and all forces (i.e., 

gradients of the potential along all internal coordinates) vanish; to a transition state at 

which the potential surface's curvature along s is negative while all other curvatures are 

positive and all forces vanish; onward to product materials where again all curvatures are 

positive and all forces vanish.  A prototypical trace of the energy variation along such a 

reaction coordinate is in Fig. 2.22. 
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Figure 2.22. Energy profile along a reaction path showing the barrier through which 

tunneling may occur. 

 

Near the transition state at the top of the barrier on this surface, tunneling through the 

barrier plays an important role if the masses of the particles moving in this region are 

sufficiently light. Specifically, if H or D atoms are involved in the bond breaking and 

forming in this region of the energy surface, tunneling must usually be considered in 

treating the dynamics. 

Within the above reaction path point of view, motion transverse to the reaction 

coordinate is often modeled in terms of local harmonic motion although more 

sophisticated treatments of the dynamics is possible. This picture leads one to consider 

motion along a single degree of freedom, with respect to which much of the above 

treatment can be carried over, coupled to transverse motion along all other internal 

degrees of freedom taking place under an entirely positively curved potential (which 

therefore produces restoring forces to movement away from the streambed traced out by 

the reaction path). This point of view constitutes one of the most widely used and 

successful models of molecular reaction dynamics and is treated in more detail in 

Chapters 3 and 8 of this text. 

 

2.7. Angular Momentum 

 

2.7.1. Orbital Angular Momentum 
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 A particle moving with momentum p at a position r relative to some coordinate 

origin has so-called orbital angular momentum equal to L = r x p . The three components 

of this angular momentum vector in a Cartesian coordinate system located at the origin 

mentioned above are given in terms of the Cartesian coordinates of r and p as follows: 

 

Lz = x py - y px , 

 

Lx = y pz - z py , 

 

Ly = z px - x pz . 

 

Using the fundamental commutation relations among the Cartesian coordinates and the 

Cartesian momenta: 

 

[qk,pj] = qk pj - pj qk = ih δj,k ( j,k = x,y,z) , 

 

which are proven by considering quantities of the from  

 

  

€ 

(xpx − pxx) f = −i[x ∂f
∂x

−
∂(xf )
∂x

] = if , 

 

it can be shown that the above angular momentum operators obey the following set of 

commutation relations: 

 

[Lx, Ly] = ih Lz , 

 

[Ly, Lz] = ih Lx , 

 

[Lz, Lx] = ih Ly . 
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Although the components of L do not commute with one another, they can be shown to 

commute with the operator L2 defined by 

 

L2 = Lx2 + Ly2 + Lz2 . 

 

This new operator is referred to as the square of the total angular momentum operator. 

 The commutation properties of the components of L allow us to conclude that 

complete sets of functions can be found that are eigenfunctions of L2 and of one, but not 

more than one, component of L. It is convention to select this one component as Lz, and 

to label the resulting simultaneous eigenstates of L2 and Lz as |l,m> according to the 

corresponding eigenvalues: 

 

L2 |l,m> = h2 l(l+1) |l,m>, l = 0,1,2,3,.... 

 

Lz |l,m> = h m |l,m>, m = ± l, ±(l-1), ±(l-2), ... ±(l-(l-1)), 0. 

 

These eigenfunctions of L2 and of Lz will not, in general, be eigenfunctions of either Lx 

or of Ly. This means that any measurement of Lx or Ly will necessarily change the wave 

function if it begins as an eigenfunction of Lz.  

 The above expressions for Lx, Ly, and Lz can be mapped into quantum 

mechanical operators by substituting x, y, and z as the corresponding coordinate 

operators and -ih∂/∂x, -ih∂/∂y, and -ih∂/∂z for px, py, and pz, respectively. The resulting 

operators can then be transformed into spherical coordinates the results of which are: 

 

Lz =-ih ∂/∂φ , 

 

Lx = ih {sinφ ∂/∂θ + cotθ cosφ ∂/∂φ} , 

 

Ly = -ih {cosφ ∂/∂θ - cotθ sinφ ∂/∂φ} , 
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L2 = - h2 {(1/sinθ) ∂/∂θ (sinθ ∂/∂θ) + (1/sin2θ) ∂2/∂φ2} . 

 

 

2.7.2. Properties of General Angular Momenta 

 

 There are many types of angular momenta that one encounters in chemistry. 

Orbital angular momenta, such as that introduced above, arise in electronic motion in 

atoms, in atom-atom and electron-atom collisions, and in rotational motion in molecules. 

Intrinsic spin angular momentum is present in electrons, H1, H2, C13, and many other 

nuclei. In this Section, we will deal with the behavior of any and all angular momenta and 

their corresponding eigenfunctions. 

 At times, an atom or molecule contains more than one type of angular 

momentum. The Hamiltonian's interaction potentials present in a particular species may 

or may not cause these individual angular momenta to be coupled to an appreciable 

extent (i.e., the Hamiltonian may or may not contain terms that refer simultaneously to 

two or more of these angular momenta). For example, the NH- ion, which has a 2Π 

ground electronic state (its electronic configuration is 1sN22σ23σ22pπx22pπy1) has 

electronic spin, electronic orbital, and molecular rotational angular momenta. The full 

Hamiltonian H contains terms that couple the electronic spin and orbital angular 

momenta, thereby causing them individually to not commute with H. 

 In such cases, the eigenstates of the system can be labeled rigorously only by 

angular momentum quantum numbers j and m belonging to the total angular momentum 

operators J2 and Jz. The total angular momentum of a collection of individual angular 

momenta is defined, component-by-component, as follows: 

 

Jk = Σi Jk(i), 

 

where k labels x, y, and z, and i labels the constituents whose angular momenta couple to 

produce J.  

 For the remainder of this Section, we will study eigenfunction-eigenvalue 
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relationships that are characteristic of all angular momenta and which are consequences 

of the commutation relations among the angular momentum vector's three components. 

We will also study how one combines eigenfunctions of two or more angular momenta 

{J(i)} to produce eigenfunctions of the total J. 

 

a. Consequences of the Commutation Relations 

 

 Any set of three operators that obey   

 

[Jx, Jy] = ih Jz , 

 

[Jy, Jz] = ih Jx , 

 

[Jz, Jx] = ih Jy , 

 

will be taken to define an angular momentum J, whose square J2= Jx2 + Jy2 + Jz2 

commutes with all three of its components. It is useful to also introduce two 

combinations of the three fundamental operators Jx and Jy: 

 

J± = Jx ± i Jy , 

 

and to refer to them as raising and lowering operators for reasons that will be made clear 

below. These new operators can be shown to obey the following commutation relations: 

 

[J2, J±] = 0, 

 

[Jz, J±] = ± h J± . 

 

 Using only the above commutation properties, it is possible to prove important 

properties of the eigenfunctions and eigenvalues of J2 and Jz. Let us assume that we have 
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found a set of simultaneous eigenfunctions of J2 and Jz ; the fact that these two operators 

commute tells us that this is possible. Let us label the eigenvalues belonging to these 

functions: 

 

J2 |j,m> = h2 f(j,m) |j,m>, 

 

Jz |j,m> = h m |j,m>, 

 

in terms of the quantities m and f(j,m). Although we certainly hint that these quantities 

must be related to certain j and m quantum numbers, we have not yet proven this, 

although we will soon do so. For now, we view f(j,m) and m simply as symbols that 

represent the respective eigenvalues. Because both J2 and Jz are Hermitian, 

eigenfunctions belonging to different f(j,m) or m quantum numbers must be orthogonal: 

 

<j,m|j',m'> = δm,m' δj,j' . 

 

 We now prove several identities that are needed to discover the information about 

the eigenvalues and eigenfunctions of general angular momenta that we are after. Later in 

this Section, the essential results are summarized. 

 

i. There is a Maximum and a Minimum Eigenvalue for Jz 

 Because all of the components of J are Hermitian, and because the scalar product 

of any function with itself is positive semi-definite, the following identity holds: 

 

<j,m|Jx2 + Jy2|j,m> = <Jx<j,m| Jx|j,m> + <Jy<j,m| Jy|j,m>  ≥ 0. 

 

However, Jx2 + Jy2 is equal to J2 - Jz2, so this inequality implies that 

 

<j,m| J2 - Jz2 |j,m> = h2 {f(j,m) - m2} ≥ 0, 
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which, in turn, implies that m2 must be less than or equal to f(j,m). Hence, for any value 

of the total angular momentum eigenvalue f, the z-projection eigenvalue (m) must have a 

maximum and a minimum value and both of these must be less than or equal to the total 

angular momentum squared eigenvalue f.  

 

ii. The Raising and Lowering Operators Change the Jz Eigenvalue but not the J2 

Eigenvalue When Acting on |j,m>  

 Applying the commutation relations obeyed by J± to |j,m> yields another useful 

result: 

 

Jz J± |j,m> - J± Jz |j,m> = ± h J± |j,m>, 

 

J2 J± |j,m> - J± J2 |j,m> = 0. 

 

Now, using the fact that |j,m> is an eigenstate of J2 and of Jz, these identities give 

 

Jz J± |j,m>  = (mh ± h) J± |j,m> = h (m±1) |j,m>, 

 

J2 J± |j,m> = h2 f(j,m) J± |j,m>. 

 

These equations prove that the functions J± |j,m> must either themselves be 

eigenfunctions of J2 and Jz, with eigenvalues h2 f(j,m) and h (m+1), respectively, or J± 

|j,m> must equal zero. In the former case, we see that J± acting on |j,m> generates a new 

eigenstate with the same J2 eigenvalue as |j,m> but with one unit of h higher or lower in 

Jz eigenvalue. It is for this reason that we call J± raising and lowering operators. Notice 

that, although J± |j,m> is indeed an eigenfunction of Jz with eigenvalue  (m±1) h, J± |j,m> 

is not identical to |j,m±1>; it is only proportional to |j,m±1>: 

 

J± |j,m> = C±j,m |j,m±1>. 
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Explicit expressions for these C±j,m coefficients will be obtained below. Notice also that 

because the J± |j,m>, and hence |j,m±1>, have the same J2 eigenvalue as |j,m> (in fact, 

sequential application of J± can be used to show that all |j,m'>, for all m', have this same 

J2 eigenvalue), the J2 eigenvalue f(j,m) must be independent of m. For this reason, f can 

be labeled by one quantum number j. 

 

iii. The J2 Eigenvalues are Related to the Maximum and Minimum Jz Eigenvalues, 

Which are Related to One Another 

 

 Earlier, we showed that there exists a maximum and a minimum value for m, for 

any given total angular momentum. It is when one reaches these limiting cases that J± 

|j,m> = 0 applies. In particular,  

 

J+ |j,mmax> = 0, 

 

J- |j,mmin> = 0. 

 

Applying the following identities: 

 

J- J+ = J2 - Jz2 -h Jz , 

 

J+ J- = J2 - Jz2 +h Jz, 

 

respectively, to |j,mmax> and |j,mmin> gives  

 

h2 { f(j,mmax) - mmax2 - mmax} = 0, 

 

h2 { f(j,mmin) - mmin2 + mmin} = 0, 
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which immediately gives the J2  eigenvalue f(j,mmax) and f(j,mmin) in terms of mmax or 

mmin: 

 

f(j,mmax) = mmax (mmax+1), 

 

f(j,mmin) = mmin (mmin-1). 

 

So, we now know the J2 eigenvalues for |j,mmax> and |j,mmin>. However, we earlier 

showed that |j,m> and |j,m-1> have the same J2 eigenvalue (when we treated the effect of 

J± on |j,m>) and that the J2 eigenvalue is independent of m. If we therefore define the 

quantum number j to be mmax , we see that the J2 eigenvalues are given by  

 

J2 |j,m> = h2 j(j+1) |j,m>. 

 

We also see that  

 

f(j,m) = j(j+1) = mmax (mmax+1) = mmin (mmin-1), 

 

from which it follows that  

 

mmin = - mmax . 

 

iv. The j Quantum Number Can Be Integer or Half-Integer  

 

 The fact that the m-values run from j to -j in unit steps (because of the property of 

the J± operators), there clearly can be only integer or half-integer values for j. In the 

former case, the m quantum number runs over -j, -j+1, -j+2, ..., -j+(j-1), 0, 1, 2, ... j; 

in the latter, m runs over -j, -j+1, -j+2, ...-j+(j-1/2), 1/2, 3/2, ...j. Only integer and half-

integer values can range from j to -j in steps of unity. Species whose intrinsic angular 
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momenta are integers are known as Bosons and those with half-integer spin are called 

Fermions.  
 

v. More on J± |j,m> 

 

 Using the above results for the effect of J± acting on |j,m> and the fact that J+ and 

J- are adjoints of one another (two operators F and G are adjoints if <ψ|F|χ> = <Gψ|χ>, 

for all ψ and all χ) allows us to write: 

 

<j,m| J- J+ |j,m> = <j,m| (J2 - Jz2 -h Jz ) |j,m> 

 

= h2 {j(j+1)-m(m+1)} = <J+<j,m| J+|j,m> = (C+j,m)2, 

 

where C+j,m is the proportionality constant between J+|j,m> and the normalized function 

|j,m+1>. Likewise, the effect of J- can be expressed as 

 

<j,m| J+ J- |j,m> = <j,m| (J2 - Jz2 +h Jz) |j,m> 

 

= h2 {j(j+1)-m(m-1)} = <J-<j,m| J-|j,m> = (C-j,m)2, 

 

where C-j,m is the proportionality constant between J- |j,m> and the normalized |j,m-1>. 

Thus, we can solve for C±j,m after which the effect of J± on |j,m> is given by: 

 

J± |j,m> = h {j(j+1) –m(m±1)}1/2 |j,m±1>. 

 

 

2.7.3. Summary 

 

 The above results apply to any angular momentum operators. The essential 

findings can be summarized as follows: 
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(i) J2 and Jz have complete sets of simultaneous eigenfunctions. We label these 

eigenfunctions |j,m>; they are orthonormal in both their m- and j-type indices:  

<j,m| j',m'> = δm,m' δj,j' . 

 

(ii) These |j,m> eigenfunctions obey: 

 

J2 |j,m> = h2 j(j+1) |j,m>, { j= integer or half-integer}, 

 

Jz |j,m> = h m |j,m>, { m = -j, in steps of 1 to +j}. 

 

(iii) The raising and lowering operators J± act on |j,m> to yield functions that are 

eigenfunctions of J2 with the same eigenvalue as |j,m> and eigenfunctions of Jz with 

eigenvalue of (m±1) h : 

 

J± |j,m> = h {j(j+1) - m(m±1)}1/2 |j,m±1>. 

 

(iv) When J± acts on the extremal states |j,j> or |j,-j>, respectively, the result is zero. 

 The results given above are, as stated, general. Any and all angular momenta have 

quantum mechanical operators that obey these equations. It is convention to designate 

specific kinds of angular momenta by specific letters; however, it should be kept in mind 

that no matter what letters are used, there are operators corresponding to J2, Jz, and J± 

that obey relations as specified above, and there are eigenfunctions and eigenvalues that 

have all of the properties obtained above. For electronic or collisional orbital angular 

momenta, it is common to use L2 and Lz ; for electron spin, S2 and Sz are used; for 

nuclear spin I2 and Iz are most common; and for molecular rotational angular momentum, 

N2 and Nz are most common (although sometimes J2 and Jz may be used). Whenever two 

or more angular momenta are combined or coupled to produce a total angular 

momentum, the latter is designated by J2 and Jz. 
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2.7.4. Coupling of Angular Momenta 

 

 If the Hamiltonian under study contains terms that couple two or more angular 

momenta J(i), then only the components of the total angular momentum J = Σi J(i) and 

the total J2 will commute with H. It is therefore essential to label the quantum states of 

the system by the eigenvalues of Jz and J2 and to construct variational trial or model 

wave functions that are eigenfunctions of these total angular momentum operators. The 

problem of angular momentum coupling has to do with how to combine eigenfunctions 

of the uncoupled angular momentum operators, which are given as simple products of the 

eigenfunctions of the individual angular momenta Πi |ji,mi>, to form eigenfunctions of J2 

and Jz. 

 

a. Eigenfunctions of Jz 

 

 Because the individual elements of J are formed additively, but J2 is not, it is 

straightforward to form eigenstates of 

 

Jz = Σi Jz(i); 

 

simple products of the form Πi |ji,mi> are eigenfunctions of Jz: 

 

Jz Πi |ji,mi> = Σk Jz(k) Πi |ji,mi> = Σk h mk Πi |ji,mi>, 

 

and have Jz eigenvalues equal to the sum of the individual mk h eigenvalues. Hence, to 

form an eigenfunction with specified J and M eigenvalues, one must combine only those 

product states Πi |ji,mi> whose mih sum is equal to the specified M value. 

 

b. Eigenfunctions of J2; the Clebsch-Gordon Series 
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 The task is then reduced to forming eigenfunctions |J,M>, given particular values 

for the {ji} quantum numbers. When coupling pairs of angular momenta { |j,m> and 

|j',m'>}, the total angular momentum states can be written, according to what we 

determined above, as  

 

|J,M> = Σm,m' CJ,Mj,m;j',m' |j,m> |j',m'>, 

 

where the coefficients CJ,Mj,m;j',m' are called vector coupling coefficients (because 

angular momentum coupling is viewed much like adding two vectors j and j' to produce 

another vector J), and where the sum over m and m' is restricted to those terms for which 

m+m' = M. It is more common to express the vector coupling or so-called Clebsch-

Gordon (CG) coefficients as <j,m;j'm'|J,M> and to view them as elements of a matrix 

whose columns are labeled by the coupled-state J,M quantum numbers and whose rows 

are labeled by the quantum numbers characterizing the uncoupled product basis j,m;j',m'. 

It turns out that this matrix can be shown to be unitary so that the CG coefficients obey: 

 

Σm,m'  <j,m;j'm'|J,M>* <j,m;j'm'|J',M'> = δJ,J' δM,M' 

 

and  

ΣJ,M    <j,n;j'n'|J,M> <j,m;j'm'|J,M>*  = δn,m δn',m'. 

 

 This unitarity of the CG coefficient matrix allows the inverse of the relation 

giving coupled functions in terms of the product functions: 

 

|J,M> = Σm,m' <j,m;j'm'|J,M> |j,m> |j',m'> 

 

to be written as: 
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|j,m> |j',m'> = ΣJ,M <j,m;j'm'|J,M>* |J,M> 

 

= ΣJ,M <J,M|j,m;j'm'> |J,M>. 

 

This result expresses the product functions in terms of the coupled angular momentum 

functions.    

 

c. Generation of the CG Coefficients 

 

 The CG coefficients can be generated in a systematic manner; however, they can 

also be looked up in books where they have been tabulated (e.g., see Table 2.4 of R. N. 

Zare, Angular Momentum, John Wiley, New York (1988)). Here, we will demonstrate the 

technique by which the CG coefficients can be obtained, but we will do so for rather 

limited cases and refer the reader to more extensive tabulations for more cases. 

 The strategy we take is to generate the |J,J> state (i.e., the state with maximum M-

value) and to then use J- to generate |J,J-1>, after which the state |J-1,J-1> (i.e., the state 

with one lower J-value) is constructed by finding a combination of the product states in 

terms of which |J,J-1> is expressed (because both |J,J-1> and |J-1,J-1> have the same M-

value M=J-1) which is orthogonal to |J,J-1> (because |J-1,J-1>  and |J,J-1> are 

eigenfunctions of the Hermitian operator J2 corresponding to different eigenvalues, they 

must be orthogonal). This same process is then used to generate |J,J-2> |J-1,J-2> and (by 

orthogonality construction) |J-2,J-2>, and so on. 

 

i. The States With Maximum and Minimum M-Values 

 We begin with the state |J,J> having the highest M-value. This state must be 

formed by taking the highest m and the highest m' values (i.e., m=j and m'=j'), and is 

given by: 

 

|J,J> = |j,j> |j'j'>. 
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Only this one product is needed because only the one term with m=j and m'=j' contributes 

to the sum in the above CG series. The state  

 

|J,-J> = |j,-j> |j',-j'> 

 

with the minimum M-value is also given as a single product state. 

Notice that these states have M-values given as ±(j+j'); since this is the maximum M-

value, it must be that the J-value corresponding to this state is J= j+j'.  

 

ii. States With One Lower M-Value But the Same J-Value  

 Applying J- to |J,J> , and expressing J- as the sum of lowering operators for the 

two individual angular momenta: 

 

J- = J-(1) + J-(2) 

 

gives 

J-|J,J> = h{J(J+1) -J(J-1)}1/2 |J,J-1> 

 

= (J-(1) + J-(2)) |j,j> |j'j'> 

 

= h{j(j+1) - j(j-1)}1/2 |j,j-1> |j',j'> + h{j'(j'+1)-j'(j'-1)}1/2 |j,j> |j',j'-1>. 

 

This result expresses |J,J-1> as follows: 

 

|J,J-1>= [{j(j+1)-j(j-1)}1/2 |j,j-1> |j',j'> 

 

+ {j'(j'+1)-j'(j'-1)}1/2 |j,j> |j',j'-1>] {J(J+1) -J(J-1)}-1/2; 
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that is, the |J,J-1> state, which has M=J-1, is formed from the two product states |j,j-1> 

|j',j'> and |j,j> |j',j'-1> that have this same M-value. 

 

iii. States With One Lower J-Value 

 To find the state |J-1,J-1> that has the same M-value as the one found above but 

one lower J-value, we must construct another combination of the two product states with 

M=J-1 (i.e., |j,j-1> |j',j'> and |j,j> |j',j'-1>) that is orthogonal to the combination 

representing |J,J-1>; after doing so, we must scale the resulting function so it is properly 

normalized. In this case, the desired function is: 

 

|J-1,J-1>= [{j(j+1)-j(j-1)}1/2 |j,j> |j',j'-1> 

 

- {j'(j'+1)-j'(j'-1)}1/2 |j,j-1> |j',j'>] {J(J+1) -J(J-1)}-1/2 . 

 

It is straightforward to show that this function is indeed orthogonal to |J,J-1>. 

 

iv. States With Even One Lower J-Value 

 Having expressed |J,J-1> and |J-1,J-1> in terms of |j,j-1> |j',j'> and |j,j> |j',j'-1>, 

we are now prepared to carry on with this stepwise process to generate the states |J,J-2>, 

|J-1,J-2> and |J-2,J-2> as combinations of the product states with M=J-2. These product 

states are |j,j-2> |j',j'>, |j,j> |j',j'-2>, and |j,j-1> |j',j'-1>. Notice that there are precisely as 

many product states whose m+m' values add up to the desired M-value as there are total 

angular momentum states that must be constructed (there are three of each in this case). 

 The steps needed to find the state |J-2,J-2> are analogous to those taken above: 

a. One first applies J- to |J-1,J-1> and to |J,J-1> to obtain |J-1,J-2> and |J,J-2>, 

respectively as combinations of |j,j-2> |j',j'>, |j,j> |j',j'-2>, and  |j,j-1> |j',j'-1>. 

b. One then constructs |J-2,J-2> as a linear combination of the |j,j-2> |j',j'>, |j,j> |j',j'-2>, 

and |j,j-1> |j',j'-1> that is orthogonal to the combinations found for  |J-1,J-2> and |J,J-2>. 

 Once |J-2,J-2> is obtained, it is then possible to move on to form |J,J-3>, |J-1,J-3>, 

and |J-2,J-3> by applying J- to the three states obtained in the preceding application of the 

process, and to then form |J-3,J-3> as the combination of |j,j-3> |j',j'>, |j,j> |j',j'-3>, 
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|j,j-2> |j',j'-1>, |j,j-1> |j',j'-2> that is orthogonal to the combinations obtained for |J,J-3>, 

|J-1,J-3>, and |J-2,J-3>.  

 Again notice that there are precisely the correct number of product states (four 

here) as there are total angular momentum states to be formed. In fact, the product states 

and the total angular momentum states are equal in number and are both members of 

orthonormal function sets (because J2(1), Jz(1), J2(2), and Jz(2) as well as J2 and Jz are 

Hermitian operators which have complete sets of orthonormal eigenfunctions). This is 

why the CG coefficient matrix is unitary; because it maps one set of orthonormal 

functions to another, with both sets containing the same number of functions. 

 

d. An Example 

 

 Let us consider an example in which the spin and orbital angular momenta of the 

Si atom in its 3P ground state can be coupled to produce various 3PJ states. In this case, 

the specific values for j and j' are j=S=1 and j'=L=1. We could, of course take j=L=1 and 

j'=S=1, but the final wave functions obtained would span the same space as those we are 

about to determine. 

 The state with highest M-value is the 3P(Ms=1, ML=1) state, which can be 

represented by the product of an αα  spin function (representing S=1, Ms=1) and a 

3p13p0 spatial function (representing L=1, ML=1), where the first function corresponds to 

the first open-shell orbital and the second function to the second open-shell orbital. Thus, 

the maximum M-value is M= 2 and corresponds to a state with J=2: 

 

|J=2,M=2> = |2,2> = αα 3p13p0 . 

 

Clearly, the state |2,-2> would be given as ββ 3p-13p0. 

 The states |2,1> and |1,1> with one lower M-value are obtained by applying J- = 

S- + L- to |2,2> as follows: 

 

J- |2,2> = h{J(J+1)-M(M-1)}1/2 |2,1> = h{2(3)-2(1)}1/2 |2,1> 
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= (S- + L-) αα 3p13p0 . 

 

To apply S- or L- to αα 3p13p0, one must realize that each of these operators is, in turn, a 

sum of lowering operators for each of the two open-shell electrons: 

 

S- = S-(1) + S-(2), 

 

L- = L-(1) + L-(2). 

 

The result above can therefore be continued as 

 

(S- + L-) αα 3p13p0 = h{1/2(3/2)-1/2(-1/2)}1/2 βα 3p13p0 

 

+ h{1/2(3/2)-1/2(-1/2)}1/2 αβ 3p13p0 

 

+ h{1(2)-1(0)}1/2 αα 3p03p0 

 

+ h{1(2)-0(-1)}1/2 αα 3p13p-1. 

 

So, the function |2,1> is given by 

 

|2,1> = [βα 3p13p0 + αβ 3p13p0 + {2}1/2 αα 3p03p
0
 

 

+ {2}1/2 αα 3p13p-1]/2, 

 

which can be rewritten as: 

 

|2,1> = [(βα + αβ)3p13p0 + {2}1/2 αα (3p03p0 + 3p13p-1)]/2. 
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Writing the result in this way makes it clear that |2,1> is a combination of the product 

states |S=1,MS=0> |L=1,ML=1> (the terms containing |S=1,MS=0> = 2-1/2(αβ+βα)) and 

|S=1,MS=1> |L=1,ML=0> (the terms containing |S=1,MS=1> = αα).  

 There is a good chance that some readers have noticed that some of the terms in 

the |2,1> function would violate the Pauli exclusion principle. In particular, the term αα 

3p
0
3p

0 places two electrons into the same orbitals and with the same spin. Indeed, this 

electronic function would indeed violate the Pauli principle, and it should not be allowed 

to contribute to the final Si 3PJ wave functions we are trying to form. The full resolution 

of how to deal with this paradox is given in the following Subsection, but for now let me 

say the following:  

(i) Once you have learned that all of the spin-orbital product functions shown for |2,1> 

(e.g., αα 3p
0
3p

0 , (βα + αβ)3p13p0 , and αα 3p13p-1) represent Slater determinants (we 

deal with this in the next Subsection) that are antisymmetric with respect to permutation 

of any pair of electrons, you will understand that the Slater determinant corresponding to 

αα 3p
0
3p

0 
vanishes.  

(ii) If, instead of considering the 3s2 3p2 configuration of Si, we wanted to generate wave 

functions for the 3s2 3p1 4p1 3PJ states of Si, the same analysis as shown above would 

pertain, except that now the |2,1> state would have a contribution from αα 3p
0
4p

0
. This 

contribution does not violate the Pauli principle, and its Slater determinant does not 

vanish.  

So, for the remainder of this treatment of the 3PJ states of Si, don’t worry about terms 

arising that violate the Pauli principle; they will not contribute because their Slater 

determinants will vanish.  

 To form the other function with M=1, the |1,1> state, we must find another 

combination of |S=1,MS=0> |L=1,ML=1> and |S=1,MS=1> |L=1,ML=0> that is orthogonal 

to |2,1> and is normalized. Since  

 

|2,1> = 2-1/2 [|S=1,MS=0> |L=1,ML=1> + |S=1,MS=1> |L=1,ML=0>], 

 

we immediately see that the requisite function is 
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|1,1> = 2-1/2 [|S=1,MS=0> |L=1,ML=1> - |S=1,MS=1> |L=1,ML=0>]. 

 

In the spin-orbital notation used above, this state is: 

 

|1,1> = [(βα + αβ)3p13p0 - {2}1/2 αα (3p03p0 + 3p13p-1)]/2. 

 

Thus far, we have found the 3PJ states with J=2, M=2; J=2, M=1; and J=1, M=1. 

 To find the 3PJ states with J=2, M=0; J=1, M=0; and J=0, M=0, we must once 

again apply the J- tool. In particular, we apply J- to |2,1> to obtain |2,0> and we apply J- 

to |1,1> to obtain |1,0>, each of which will be expressed in terms of |S=1,MS=0> 

|L=1,ML=0>,  |S=1,MS=1> |L=1,ML=-1>, and |S=1,MS=-1> |L=1,ML=1>. The |0,0> 

state is then constructed to be a combination of these same product states which is 

orthogonal to |2,0> and to |1,0>. The results are as follows: 

 

|J=2,M=0> = 6-1/2[2 |1,0> |1,0> + |1,1> |1,-1> + |1,-1> |1,1>], 

 

|J=1,M=0> = 2-1/2[|1,1> |1,-1> - |1,-1> |1,1>], 

 

|J=0, M=0> = 3-1/2[|1,0> |1,0> - |1,1> |1,-1> - |1,-1> |1,1>], 

 

where, in all cases, a short hand notation has been used in which the |S,MS> |L,ML> 

product stated have been represented by their quantum numbers with the spin function 

always appearing first in the product. To finally express all three of these new functions 

in terms of spin-orbital products it is necessary to give the |S,MS> |L,ML> products with 

M=0 in terms of these products. For the spin functions, we have: 

 

|S=1,MS=1> = αα, 

 

|S=1,MS=0> = 2-1/2(αβ+βα). 
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|S=1,MS=-1> = ββ. 

 

For the orbital product function, we have: 

 

|L=1, ML=1> = 3p13p0 , 

 

|L=1,ML=0> = 2-1/2(3p03p0 + 3p13p-1), 

 

|L=1, ML=-1> = 3p03p-1. 

 

e. Coupling Angular Momenta of Equivalent Electrons 

 

 If equivalent angular momenta are coupled (e.g., to couple the orbital angular 

momenta of a p2 or d3 configuration), there is a tool one can use to determine which of 

the term symbols violate the Pauli principle. To carry out this step, one forms all possible 

unique (determinental) product states with non-negative ML and MS values and arranges 

them into groups according to their ML and MS values. For example, the “boxes” 

appropriate to the p2 orbital occupancy that we considered earlier for Si are shown below: 

 

 ML 2   1    0 

--------------------------------------------------------- 

MS 1    |p1αp0α|   |p1αp-1α| 

 

 0 |p1αp1β|  |p1αp0β|, |p0αp1β| |p1αp-1β|, 

         |p-1αp1β|, 

         |p0αp0β| 

 

There is no need to form the corresponding states with negative ML or negative MS  

values because they are simply "mirror images" of those listed above. For example, the 

state with ML= -1 and MS = -1 is |p-1βp0β|, which can be obtained from the ML = 1, MS 
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= 1 state |p1αp0α| by replacing α by β and replacing p1 by p-1. 

 Given the box entries, one can identify those term symbols that arise by applying 

the following procedure over and over until all entries have been accounted for: 

i. One identifies the highest MS value (this gives a value of the total spin quantum 

number that arises, S) in the box. For the above example, the answer is S = 1. 

ii. For all product states of this MS value, one identifies the highest ML value (this gives a 

value of the total orbital angular momentum, L, that can arise for this S). For the above 

example, the highest ML within the MS =1 states is ML = 1 (not ML = 2), hence L=1. 

iii. Knowing an S, L combination, one knows the first term symbol that arises from this 

configuration. In the p2 example, this is 3P. 

iv. Because the level with this L and S quantum numbers contains (2L+1)(2S+1) states 

with ML and MS quantum numbers running from -L to L and from -S to S, respectively, 

one must remove from the original box this number of product states. To do so, one 

simply erases from the box one entry with each such ML and MS value. Actually, since 

the box need only show those entries with non-negative ML and MS values, only these 

entries need be explicitly deleted. In the 3P example, this amounts to deleting nine 

product states with ML, MS values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1. 

v. After deleting these entries, one returns to step 1 and carries out the process again. For 

the p2 example, the box after deleting the first nine product states looks as follows (those 

that appear in italics should be viewed as already deleted in counting all of the 3P states): 

 

 ML 2   1    0 

--------------------------------------------------------- 

MS 1    |p1αp0α|   |p1αp-1α| 

 

 0 |p1αp1β|  |p1αp0β|, |p0αp1β| |p1αp-1β|, 

         |p-1αp1β|, 

         |p0αp0β| 

 

It should be emphasized that the process of deleting or crossing off entries in various ML, 
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MS boxes involves only counting how many states there are; by no means do we identify 

the particular L,S,ML,MS wave functions when we cross out any particular entry in a box. 

For example, when the |p1αp0β| product is deleted from the ML= 1, MS=0 box in 

accounting for the states in the 3P level, we do not claim that |p1αp0β| itself is a member 

of the 3P level; the |p0αp1β| product state could just as well been eliminated when 

accounting for the 3P states.  

 Returning to the p2 example at hand, after the 3P term symbol's states have been 

accounted for, the highest MS value is 0 (hence there is an S=0 state), and within this MS 

value, the highest ML value is 2 (hence there is an L=2 state). This means there is a 1D 

level with five states having ML = 2,1,0,-1,-2. Deleting five appropriate entries from the 

above box (again denoting deletions by italics) leaves the following box: 

 

 ML 2   1    0 

--------------------------------------------------------- 

MS 1    |p1αp0α|   |p1αp-1α| 

 

 0 |p1αp1β|  |p1αp0β|, |p0αp1β| |p1αp-1β|, 

         |p-1αp1β|, 

         |p0αp0β| 

 

 

The only remaining entry, which thus has the highest MS and ML values, has MS = 0 and 

ML = 0. Thus there is also a 1S level in the p2 configuration. 

 Thus, unlike the non-equivalent 3p14p1 case, in which 3P, 1P, 3D, 1D, 3S, and 1S 

levels arise, only the 3P, 1D, and 1S arise in the p2 situation. This "box method" is useful 

to carry out whenever one is dealing with equivalent angular momenta.  

 If one has mixed equivalent and non-equivalent angular momenta, one can 

determine all possible couplings of the equivalent angular momenta using this method 

and then use the simpler vector coupling method to add the non-equivalent angular 
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momenta to each of these coupled angular momenta. For example, the p2d1 configuration 

can be handled by vector coupling (using the straightforward non-equivalent procedure) 

L=2 (the d orbital) and S=1/2 (the third electron's spin) to each of 3P, 1D, and 1S arising 

from the p2 configuration. The result is 4F, 4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D. 

 

 

 2.8.  Rotations of Molecules 

 

2.8.1. Rotational Motion For Rigid Diatomic and Linear Polyatomic Molecules 

 This Schrödinger equation relates to the rotation of diatomic and linear 

polyatomic molecules. It also arises when treating the angular motions of electrons in 

any spherically symmetric potential. 

 

 A diatomic molecule with fixed bond length R rotating in the absence of any 

external potential is described by the following Schrödinger equation: 

 

- h2/2µ {(R2sinθ)-1∂/∂θ (sinθ ∂/∂θ) + (R2sin2θ)-1 ∂2/∂φ2 } ψ  = E ψ 

 

or 

 

L2ψ/2µR2 = E ψ, 

 

where L2 is the square of the total angular momentum operator Lx
2 + Ly

2 + Lz
2 expressed 

in polar coordinates above. The angles θ and φ describe the orientation of the diatomic 

molecule's axis relative to a laboratory-fixed coordinate system, and µ is the reduced 

mass of the diatomic molecule µ=m1m2/(m1+m2). The differential operators can be seen 

to be exactly the same as those that arose in the hydrogen-like-atom case discussed earlier 

in this Chapter. Therefore, the same spherical harmonics that served as the angular parts 

of the wave function in the hydrogen-atom case now serve as the entire wave function for 

the so-called rigid rotor: ψ = YJ,M(θ,φ). These are exactly the same functions as we 
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plotted earlier when we graphed the s (L=0), p (L=1), and d (L=2) orbitals. The energy 

eigenvalues corresponding to each such eigenfunction are given as: 

 

EJ = h2 J(J+1)/(2µR2) = B J(J+1) 

 

and are independent of M. Thus each energy level is labeled by J and is 2J+1-fold 

degenerate (because M ranges from -J to J). Again, this is just like we saw when we 

looked at the hydrogen orbitals; the p orbitals are 3-fold degenerate and the d orbitals are 

5-fold degenerate. The so-called rotational constant B (defined as h2/2µR2) depends on 

the molecule's bond length and reduced mass. Spacings between successive rotational 

levels (which are of spectroscopic relevance because, as shown in Chapter 6, angular 

momentum selection rules often restrict the changes ΔJ in J that can occur upon photon 

absorption to 1,0, and -1) are given by 

 

ΔE = B (J+1)(J+2) - B J(J+1) = 2B(J+1). 

 

These energy spacings are of relevance to microwave spectroscopy which probes the 

rotational energy levels of molecules. In fact, microwave spectroscopy offers the most 

direct way to determine molecular rotational constants and hence molecular bond lengths. 

 The rigid rotor provides the most commonly employed approximation to the 

rotational energies and wave functions of linear molecules. As presented above, the 

model restricts the bond length to be fixed. Vibrational motion of the molecule gives rise 

to changes in R, which are then reflected in changes in the rotational energy levels (i.e., 

there are different B values for different vibrational levels). The coupling between 

rotational and vibrational motion gives rise to rotational B constants that depend on 

vibrational state as well as dynamical couplings, called centrifugal distortions, which 

cause the total ro-vibrational energy of the molecule to depend on rotational and 

vibrational quantum numbers in a non-separable manner. 

Within this rigid rotor model, the absorption spectrum of a rigid diatomic 

molecule should display a series of peaks, each of which corresponds to a specific J → J 

+ 1 transition. The energies at which these peaks occur should grow linearly with J as 
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shown above. An example of such a progression of rotational lines is shown in the Fig. 

2.23. 

 

 
Figure 2.23. Typical rotational absorption profile showing intensity vs. J value of the 

absorbing level 

 

The energies at which the rotational transitions occur appear to fit the ΔE = 2B (J+1) 

formula rather well. The intensities of transitions from level J to level J+1 vary strongly 

with J primarily because the population of molecules in the absorbing level varies with J. 

These populations PJ are given, when the system is at equilibrium at temperature T, in 

terms of the degeneracy (2J+1) of the Jth level and the energy of this level B J(J+1) by the 

Boltzmann formula: 

 

PJ = Q-1 (2J+1) exp(-BJ(J+1)/kT), 

 

where Q is the rotational partition function: 

 

Q = ΣJ (2J+1) exp(-BJ(J+1)/kT). 

 

For low values of J, the degeneracy is low and the exp(-BJ(J+1)/kT) factor is near unity. 

As J increases, the degeneracy grows linearly but the exp(-BJ(J+1)/kT) factor decreases 
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more rapidly. As a result, there is a value of J, given by taking the derivative of (2J+1) 

exp(-BJ(J+1)/kT) with respect to J and setting it equal to zero,  

 

2Jmax + 1 = 2kT/B  

 

at which the intensity of the rotational transition is expected to reach its maximum. This 

behavior is clearly displayed in the above figure. 

 The eigenfunctions belonging to these energy levels are the spherical harmonics 

YL,M(θ,φ) which are normalized according to 

 

€ 

(Y *L ,M (θ,φ)YL ',M '
0

2π

∫ (θ,φ)sinθdφdθ
0

π

∫ = δL,L' δM,M'  . 

 

As noted above, these functions are identical to those that appear in the solution of the 

angular part of Hydrogenic atoms. The above energy levels and eigenfunctions also apply 

to the rotation of rigid linear polyatomic molecules; the only difference is that the 

moment of inertia I entering into the rotational energy expression, which is µR2 for a 

diatomic, is given by 

 

I = Σa ma Ra2 

 

where ma is the mass of the ath atom and Ra is its distance from the center of mass of the 

molecule to this atom.  

 

2.8.2. Rotational Motions of Rigid Non-Linear Molecules 

 

a. The Rotational Kinetic Energy 

 

The classical rotational kinetic energy for a rigid polyatomic molecule is 

 

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic 
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where the Ik (k = a, b, c) are the three principal moments of inertia of the molecule (the 

eigenvalues of the moment of inertia tensor). This tensor has elements in a Cartesian 

coordinate system (K, K' = X, Y, Z), whose origin is located at the center of mass of the 

molecule, that can be computed as: 

 

IK,K = Σj mj (Rj2 - R2K,j) (for K = K') 

 

IK,K' = - Σj mj RK,j RK',j (for K ≠ K'). 

 

As discussed in more detail in R. N. Zare, Angular Momentum, John Wiley, New York 

(1988), the components of the corresponding quantum mechanical angular momentum 

operators along the three principal axes are: 

 

Ja = -ih cosχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih sinχ ∂/∂θ 

 

Jb = ih sinχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih cosχ ∂/∂θ 

 

Jc = - ih ∂/∂χ. 

 

The angles θ, φ, and χ are the Euler angles needed to specify the orientation of the rigid 

molecule relative to a laboratory-fixed coordinate system. The corresponding square of 

the total angular momentum operator J2 can be obtained as  

 

J2 = Ja2 + Jb2 + Jc2 

 

=  - h2 ∂2/∂θ2 - h2cotθ ∂/∂θ 

 

+ h2 (1/sin2θ) (∂2/∂φ2 + ∂2/∂χ2 - 2 cosθ∂2/∂φ∂χ), 
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and the component along the lab-fixed Z axis JZ is - ih ∂/∂φ as we saw much earlier in 

this text. 

 

b. The Eigenfunctions and Eigenvalues for Special Cases 

i. Spherical Tops 

 When the three principal moment of inertia values are identical, the molecule is 

termed a spherical top. In this case, the total rotational energy can be expressed in terms 

of the total angular momentum operator J2  

 

Hrot = J2/2I. 

 

As a result, the eigenfunctions of Hrot are those of J2 and Ja as well as JZ both of which 

commute with J2 and with one another.  JZ is the component of J along the lab-fixed Z-

axis and commutes with Ja  because JZ = - ih ∂/∂φ  and Ja = - ih ∂/∂χ act on different 

angles. The energies associated with such eigenfunctions are  

 

E(J,K,M) = h2 J(J+1)/2I2, 

 

for all K (i.e., Ja quantum numbers) ranging from -J to J in unit steps and for all M (i.e., 

JZ quantum numbers) ranging from -J to J. Each energy level is therefore (2J + 1)2 

degenerate because there are 2J + 1 possible K values and 2J + 1 possible M values for 

each J. 

 The eigenfunctions |J,M,K> of J2, JZ and Ja , are given in terms of the set of so-

called rotation matrices DJ,M,K: 

 

|J,M,K> = 
2J + 1
8 π2   D*J,M,K(θ,φ,χ) 

 

which obey  
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J2 |J,M,K> = h2 J(J+1) |J,M,K>, 

 

Ja  |J,M,K> = h K |J,M,K>, 

 

JZ |J,M,K> = h M |J,M,K>. 

 

These DJ,M,K functions are proportional to the spherical harmonics YJ,M(θ,φ) multiplied by 

exp(iKχ), which reflects its χ-dependence. 

 

ii.  Symmetric Tops 

 Molecules for which two of the three principal moments of inertia are equal are 

called symmetric tops. Those for which the unique moment of inertia is smaller than the 

other two are termed prolate symmetric tops; if the unique moment of inertia is larger 

than the others, the molecule is an oblate symmetric top. An American football is prolate, 

and a Frisbee is oblate. 

 Again, the rotational kinetic energy, which is the full rotational Hamiltonian, can 

be written in terms of the total rotational angular momentum operator J2 and the 

component of angular momentum along the axis with the unique principal moment of 

inertia: 

 

Hrot = J2/2I + Ja2{1/2Ia - 1/2I}, for prolate tops 

 

Hrot = J2/2I + Jc2{1/2Ic - 1/2I}, for oblate tops. 

 

Here, the moment of inertia I denotes that moment that is common to two directions; that 

is, I is the non-unique moment of inertia. As a result, the eigenfunctions of Hrot are those 

of J2 and Ja or Jc (and of JZ), and the corresponding energy levels are: 

 

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ia - 1/2I}, 
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for prolate tops 

 

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ic - 1/2I}, 

 

for oblate tops, again for K and M (i.e., Ja or Jc and JZ quantum numbers, respectively) 

ranging from -J to J in unit steps. Since the energy now depends on K, these levels are 

only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each J value. 

Notice that for prolate tops, because Ia is smaller than I, the energies increase with 

increasing K for given J. In contrast, for oblate tops, since Ic is larger than I, the energies 

decrease with K for given J. The eigenfunctions |J, M,K> are the same rotation matrix 

functions as arise for the spherical-top case, so they do not require any further discussion 

at this time. 

 

iii. Asymmetric Tops 

 The rotational eigenfunctions and energy levels of a molecule for which all three 

principal moments of inertia are distinct (a so-called asymmetric top) cannot analytically 

be expressed in terms of the angular momentum eigenstates and the J, M, and K quantum 

numbers. In fact, no one has ever solved the corresponding Schrödinger equation for this 

case.  However, given the three principal moments of inertia Ia, Ib, and Ic, a matrix 

representation of each of the three contributions to the rotational Hamiltonian 

 

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic 

 

can be formed within a basis set of the {|J, M, K>} rotation-matrix functions discussed 

earlier. This matrix will not be diagonal because the |J, M, K> functions are not 

eigenfunctions of the asymmetric top Hrot. However, the matrix can be formed in this 

basis and subsequently brought to diagonal form by finding its eigenvectors {Cn, J,M,K} 

and its eigenvalues {En}. The vector coefficients express the asymmetric top eigenstates 

as 
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ψn (θ, φ, χ) = ΣJ, M, K Cn, J,M,K |J, M, K>. 

 

Because the total angular momentum J2 still commutes with Hrot, each such eigenstate 

will contain only one J-value, and hence ψn can also be labeled by a J quantum number: 

 

ψn,J  (θ, φ, χ) = Σ M, K Cn, J,M,K |J, M, K>. 

 

To form the only non-zero matrix elements of Hrot within the |J, M, K> basis, one 

can use the following properties of the rotation-matrix functions (see, for example, R. N. 

Zare, Angular Momentum, John Wiley, New York (1988)): 

 

<J, M, K| Ja2| J, M, K> = <J, M, K| Jb 2| J, M, K> 

 

= 1/2 <J, M, K| J2 - Jc2 | J, M, K> = h2 [ J(J+1) - K2 ], 

 

<J, M, K| Jc2| J, M, K> = h2 K2, 

 

<J, M, K| Ja2| J, M, K ± 2> = - <J, M, K| Jb 2| J, M, K ± 2> 

 

=  h2 [J(J+1) - K(K± 1)]1/2 [J(J+1) -(K± 1)(K± 2)]1/2 

 

<J, M, K| Jc2| J, M, K ± 2> = 0. 

 

Each of the elements of Jc2, Ja2, and Jb2 must, of course, be multiplied, respectively, by 

1/2Ic, 1/2Ia, and 1/2Ib and summed together to form the matrix representation of Hrot. 

The diagonalization of this matrix then provides the asymmetric top energies and wave 

functions. 
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2.9. Vibrations of Molecules 

 

This Schrödinger equation forms the basis for our thinking about bond stretching and 

angle bending vibrations as well as collective vibrations in solids called phonons. 

 

 The radial motion of a diatomic molecule in its lowest (J=0) rotational level can 

be described by the following Schrödinger equation: 

 

- (h2/2µ) r-2∂/∂r (r2∂/∂r) ψ +V(r) ψ = E ψ, 

 

where µ is the reduced mass µ = m1m2/(m1+m2) of the two atoms. If the molecule is 

rotating, then the above Schrödinger equation has an additional term J(J+1) h2/2µ r-2 ψ 

on its left-hand side. Thus, each rotational state (labeled by the rotational quantum 

number J) has its own vibrational Schrödinger equation and thus its own set of vibrational 

energy levels and wave functions. It is common to examine the J=0 vibrational problem 

and then to use the vibrational levels of this state as approximations to the vibrational 

levels of states with non-zero J values (treating the vibration-rotation coupling via 

perturbation theory). Let us thus focus on the J=0 situation. 

By substituting ψ= F(r)/r into this equation, one obtains an equation for F(r) in 

which the differential operators appear to be less complicated: 

 

- h2/2µ d2F/dr2 + V(r) F = E F. 

 

This equation is exactly the same as the equation seen earlier in this text for the radial 

motion of the electron in the hydrogen-like atoms except that the reduced mass µ replaces 

the electron mass m and the potential V(r) is not the Coulomb potential.  

 If the vibrational potential is approximated as a quadratic function of the bond 

displacement x = r-re expanded about the equilibrium bond length re where V has its 

minimum: 
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V = 1/2 k(r-re)2, 

 

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V 

grows without bound as x approaches ∞ or -∞, only bound-state solutions exist for this 

model problem. That is, the motion is confined by the nature of the potential, so no 

continuum states exist in which the two atoms bound together by the potential are 

dissociated into two separate atoms. 

 In solving the radial differential equation for this potential, the large-r behavior is 

first examined. For large-r, the equation reads: 

 

d2F/dx2 = 1/2 k x2  (2µ/h2) F = (kµ/h2) x2 F, 

 

where x = r-re is the bond displacement away from equilibrium. Defining β2 =(kµ/h2) and 

ξ= β 1/2 x as a new scaled radial coordinate, and realizing that  

 

    d2/dx2  = β d2/dξ2 

allows the large-r Schrödinger equation to be written as: 

 

    d2F/dξ2 = ξ2 F 

 

which has the solution 

 

Flarge-r = exp(- ξ2/2). 

 

 The general solution to the radial equation is then expressed as this large-r 

solution multiplied by a power series in the ζ variable: 

 

F = exp(- ξ2/2)

€ 

ξ nCn
n= 0
∑ , 
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where the Cn are coefficients to be determined. Substituting this expression into the full 

radial equation generates a set of recursion equations for the Cn amplitudes. As in the 

solution of the hydrogen-like radial equation, the series described by these coefficients is 

divergent unless the energy E happens to equal specific values. It is this requirement that 

the wave function not diverge so it can be normalized that yields energy quantization. 

The energies of the states that arise by imposing this non-divergence condition are given 

by:  

 

En = h (k/µ)1/2 (n+1/2), 

 

and the eigenfunctions are given in terms of the so-called Hermite polynomials Hn(y) as 

follows: 

ψn(x) = (n! 2n)-1/2 (β/π)1/4 exp(- βx2/2) Hn(β1/2 x), 

 

where β =(kµ/h2)1/2. Within this harmonic approximation to the potential, the vibrational 

energy levels are evenly spaced: 

 

ΔE = En+1 - En = h (k/µ)1/2 . 

 

In experimental data such evenly spaced energy level patterns are seldom seen; most 

commonly, one finds spacings En+1 - En that decrease as the quantum number n 

increases. In such cases, one says that the progression of vibrational levels displays 

anharmonicity. 

 Because the Hermite functions Hn are odd or even functions of x (depending on 

whether n is odd or even), the wave functions ψn(x) are odd or even. This splitting of the 

solutions into two distinct classes is an example of the effect of symmetry; in this case, 

the symmetry is caused by the symmetry of the harmonic potential with respect to 

reflection through the origin along the x-axis (i.e., changing x to –x). Throughout this 

text, many symmetries arise; in each case, symmetry properties of the potential cause the 

solutions of the Schrödinger equation to be decomposed into various symmetry 
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groupings. Such symmetry decompositions are of great use because they provide 

additional quantum numbers (i.e., symmetry labels) by which the wave functions and 

energies can be labeled. 

The basic idea underlying how such symmetries split the solutions of the 

Schrödinger equation into different classes relates to the fact that a symmetry operator 

(e.g., the reflection plane in the above example) commutes with the Hamiltonian. That is, 

the symmetry operator S obeys 

 

S H  = H S. 

 

So S leaves H unchanged as it acts on H (this allows us to pass S through H in the above 

equation). Any operator that leaves the Hamiltonian (i.e., the energy) unchanged is called 

a symmetry operator. 

If you have never learned about how point group symmetry can be used to help 

simplify the solution of the Schrödinger equation, this would be a good time to interrupt 

your reading and go to Chapter 4 and read the material there. 

 The harmonic oscillator energies and wave functions comprise the simplest 

reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often 

characterized in terms of individual bond-stretching and angle-bending motions, each of 

which is, in turn, approximated harmonically. This results in a total vibrational wave 

function that is written as a product of functions, one for each of the vibrational 

coordinates.  

 Two of the most severe limitations of the harmonic oscillator model, the lack of 

anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation, 

result from the quadratic nature of its potential. By introducing model potentials that 

allow for proper bond dissociation (i.e., that do not increase without bound as x → ∞), 

the major shortcomings of the harmonic oscillator picture can be overcome. The so-called 

Morse potential (see Fig. 2.24) 

 

V(r) = De (1-exp(-a(r-re)))2, 
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is often used in this regard. In this form, the potential is zero at r = re, the equilibrium 

bond length and is equal to De as r →∞. Sometimes, the potential is written as  

 

 V(r) = De (1-exp(-a(r-re)))2 -De 

 

so it vanishes as r →∞ and is equal to –De at r = re. The latter form is reflected in Fig. 

2.24.  

 

 
Figure 2.24. Morse potential energy as a function of bond length 

 

In the Morse potential function, De is the bond dissociation energy, re is the equilibrium 

bond length, and a is a constant that characterizes the steepness of the potential and thus 

affects the vibrational frequencies. The advantage of using the Morse potential to 

improve upon harmonic-oscillator-level predictions is that its energy levels and wave 

functions are also known exactly. The energies are given in terms of the parameters of the 

potential as follows: 

 

En = h(k/µ)1/2 { (n+1/2) - (n+1/2)2 h(k/µ)1/2/4De }, 
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where the force constant is given in terms of the Morse potential’s parameters by k=2De 

a2. The Morse potential supports both bound states (those lying below the dissociation 

threshold for which vibration is confined by an outer turning point) and continuum states 

lying above the dissociation threshold (for which there is no outer turning point and thus 

the no spatial confinement). Its degree of anharmonicity is governed by the ratio of the 

harmonic energy h(k/µ)1/2 to the dissociation energy De.  

 The energy spacing between vibrational levels n and n+1 are given by 

 

   En+1 – En = h(k/µ)1/2 { 1 - (n+1) h(k/µ)1/2/2De }. 

 

These spacings decrease until n reaches the value nmax at which 

 

   { 1 - (nmax+1) h(k/µ)1/2/2De } = 0,  

 

after which the series of bound Morse levels ceases to exist (i.e., the Morse potential has 

only a finite number of bound states) and the Morse energy level expression shown above 

should no longer be used. It is also useful to note that, if [2Deµ]1/2/[a h] becomes too small 

(i.e., < 1.0 in the Morse model), the potential may not be deep enough to support any 

bound levels. It is true that some attractive potentials do not have a large enough De value 

to have any bound states, and this is important to keep in mind. So, bound states are to be 

expected when there is a potential well (and thus the possibility of inner- and outer- 

turning points for the classical motion within this well) but only if this well is deep 

enough.  

 The eigenfunctions of the harmonic and Morse potentials display nodal character 

analogous to what we have seen earlier in the particle-in-boxes model problems. Namely, 

as the energy of the vibrational state increases, the number of nodes in the vibrational 

wave function also increases. The state having vibrational quantum number v has v 

nodes. I hope that by now the student is getting used to seeing the number of nodes 

increase as the quantum number and hence the energy grows. As the quantum number v 
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grows, not only does the wave function have more nodes, but its probability distribution 

becomes more and more like the classical spatial probability, as expected. In particular 

for large-v, the quantum and classical probabilities are similar and are large near the outer 

turning point where the classical velocity is low. They also have large amplitudes near 

the inner turning point, but this amplitude is rather narrow because the Morse potential 

drops off strongly to the right of this turning point; in contrast, to the left of the outer 

turning point, the potential decreases more slowly, so the large amplitudes persist over 

longer ranges near this turning point. 

 

2.10 Chapter Summary 

 In this Chapter, you should have learned about the following things: 

1. Free particle energies and wave functions and their densities of states, as applied to 

polyenes, electron in surfaces, solids, and nanoscopic materials and as applied to bands of 

orbitals in solids. 

2. The tight-binding or Hückel model for chemical bonding. 

3. The hydrogenic radial and angular wave functions. These same angular functions occur 

whenever one is dealing with a potential that depends only on the radial coordinate, not 

the angular coordinates. 

4. Electron tunneling and quasi-bound resonance states. 

5. Angular momentum including coupling two or more angular momenta, and angular 

momentum as applied to rotations of rigid molecules including rigid rotors, symmetric, 

spherical, and asymmetric top rotations. Why half-integral angular momenta cannot be 

thought of as arising from rotational motion of a physical body. 

6. Vibrations of diatomic molecules including the harmonic oscillator and Morse 

oscillator models including harmonic frequencies and anharmonicity.  

 

 


