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Preface

This text is intended for a one-quarter or one-semester course at the first- or
second-year graduate level. It discusses how symmetry concepts, orbital nodal
patterns, and molecular topology can be used to make statements about
energetics in chemical reactions. It also differs from commonly used texts that
only consider how orbital-symmetry constraints allow or forbid various reac-
tions in its more rigorous approach. Introductory chapters explain the physical
origins of orbital-, configuration-, and state-correlation diagrams, Jahn-Teller
instability, internal conversion, and intersystem crossing. These sections are
for students who desire a rigorous understanding of the physical origins of
these concepts as they relate to thermal and photochemical processes. These
discussions are not unduly long, however, and they contain sufficient physical
interpretations to make them valuable reading for graduate students and
researchers in all areas of chemistry. Following the introduction of the
physical principles, applications to explicit thermal and photochemical reac-
tion problems show the practical uses of these tools. These examples, which
are written in a tutorial style, should appeal to all students of chemistry.

Most one-semester introductory courses on quantum chemistry and two-
quarter combined courses on quantum chemistry and spectroscopy should
provide adequate background to understand the material in this text. Some
concepts of group theory also appear; more advanced topics are taught in the
text as needed. General ideas of Hartree-Fock molecular orbital theory
sometimes come into use, but only to the extent that they are absolutely
necessary. Little is said about numerical application of molecular orbital
methods; instead, emphasis is placed on the conceptual use of orbitals and
their symmetries in chemical reactions. Three appendixes are provided for the
reader to review or to learn the requisite background material dealing with ab
initio molecular theory, molecular-point-group symmetry methods, and the
photon absorption process that prepares molecular reactants for subsequent
photoreaction. For the reader who wishes to test his or her mastery of the
material, two sets of problems are provided.

This text is the result of a one-quarter graduate course taught to first-year
graduate students in physical, organic, and inorganic chemistry at the Univer-
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sity of Utah. I wish to thank the students who have contributed to its develop-
ment. I also wish to acknowledge much helpful input provided by several of
our graduate students and postdoctoral fellows—David Chuljian, Judy Ozment,
Ron Shepard, and Ajit Banerjee—as well as the support and advice given by
my colleagues Poul Jgrgensen, Bill Breckenridge, and Josef Michl.

June 1983 Jack Simons
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Part 1

Underlying
Physical Principles

In the first three chapters of this text we show how to express, in quan-
titative terms, certain concepts that are widely used in a qualitative man-
ner in chemical education and research. Specifically, we analyze how
one defines potential energy surfaces and reaction coordinates, and we
examine the conditions under which these concepts break down. By
observing how the reaction coordinate varies as the reaction proceeds
from reactants, through one or more transition states, to products, the idea
of symmetry conservation is developed. In Chapter 3 we discuss the con-
cepts of orbitals, electronic occupancies (configurations), and electronic
states, and we show why symmetry conservation applies at each of these
three levels.

The ultimate goal of this text Is to permit the reader to predict whether
any postulated chemical reaction should experience a large activation
energy barrier and, thereby, be forbidden. To make such predictions, one
must be able to visualize the reactant molecules moving on a potential
energy surface that Is characteristic of elther the ground state or an ex-
cited electronic state. Such qualitative visualization can be carried out
only after one has achleved a good appreciation of the electronic struc-
tures (l.e., orbital shapes and energies, and orbital occupancies) of the
reactants, products, and likely transition states. The first three chapters of
this text develop these important tools.

The level of presentation in these first three chapters Is substantially
more sophisticated than in most other books that deal with symmetry in
chemical reactions (for example, Pearson, 1976; Woodward and Hoffmann,
1970; Borden, 1975; or Fleming, 1976). This level Is especially relevant to
physical chemists whose research requires a quantitative interpretation of
experimental data—modern research In chemical dynamics and spec-
troscopy often demands the use of such theoretical tools. Likewise, it Is
important also that researchers who wish to make qualitative use of sym-
metry ideas be aware of the origins and limitations of such concepts.
Therefore, although the vast majority of the examples treated in later



chapters make only qualitative use of the theoretical machinery covered
in Chapters 1-3, it Is essential that all modern researchers be well founded
in the physical origins of these valuable symmetry tools. It is recommended
that readers who are not familiar with the foundations of molecular orbital
theory and point-group symmetry read Appendixes A and C before at-
tempting to master these first three chapters.




Chapter 1

Potential Energy Surfaces

As will become clear shortly, a potential energy surface is merely a construct of
one’s imagination. It is an idea that has proved to be of immense value for
conceptualizing chemical reactions but that loses its rigorous content in certain
circumstances. Within its range of approximate validity, a potential energy
surface can be thought of as the topographical map describing the terrain on
which the reactant molecules must move on their route to a transition state and
then onward toward the geometrical arrangement of the product molecules.
To understand better what these potential energy surfaces are, it is useful to
examine how they arise in the quantum mechanical treatment of the motions
of the nuclei and the electrons that comprise the reactant molecules.

The Hamiltonian function describing motion of a collection of nuclei of
masses M, and charges Z,e and electrons of mass m and charge —e is

e 45 ﬁ ZZ;,e
i E[ M, ,; IR, Rﬂ]
g e’ Z.e?
+;[ 2mvi+2 E [ri =1y Zu; |ri =Ra| |’ 1)

where (R,, r;) refers to a coordinate system that is fixed in space and not on

the molecule.

It is convenient to rewrite the Hamiltonian in terms of molecule-fixed
coordinates instead of absolute coordinates. Two such coordinate transforma-
tions might be used. First, one could introduce the fofal center of mass

= ﬂi{r[zn: M,R, + ): mr}.

. in which M is the total mass of all nuclei and electrons and coordinates relative
to R. This is a good and natural choice but one that is not convenient once the
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idea of clamped nuclei, which we will use repeatedly, is introduced. If the
nuclei are held fixed and the electrons move, the center of mass, which is the
coordinate origin, could move; as a result, what was ascribed to electronic mo-
tion would include some center-of-mass motion. As will become clear shortly,
our desire to think of the nuclei as fixed is important; the clamped-nuclei con-
cept rests at the center of our ideas of potential energy surfaces.

A second transformation uses the center of mass of the nuclei to define a
molecule-fixed coordinate origin

R=2 ¥ MR;M =1 M.

Because the electrons are so light, this position will almost be the true center of
mass, and this location will remain fixed if we later clamp the nuclei. Upon ex-
pressing the positions of the nuclei and electrons as R plus internal or relative
position vectors (for which we now use R,, r;), the above Hamiltonian can be
written, for a diatomic molecule,

”=?[(-ﬁ )-E 125 e Vg r,|]

Z.Z,e? #?
+ ﬁT zpv"“ R~ E L[ e
a = Iy

(1.2)

in which p, the reduced mass of the nuclei is M, M, /M. Pack and Hirschfelder
(1967) show the details of how both this transformation and the total-center-
of-mass transformation mentioned above are carried out. For a more com-
plicated molecule, only the fourth and fifth terms would differ; the fourth
would be

Z,Z,
E |R. — ;al

and the fifth would be the internal kinetic energy operator, which we label Ay,
describing the vibrations and rotations of the nuclei. As an example, consider
a triatomic molecule ABC. For such a molecule 3N — 3 = 6 such coordinates
are needed, and these could be the vectors R- — Ry and R, — R or the lengths
|Rc—Rg|, |Rs — Rg|, and the angle 6,pc and three Euler orientation angles.
The choice is up to you and should be made to simplify the treatment of the
vibration/rotation problem, which Wilson, Decius, and Cross (1955) treat in
elegant detail. The seventh term in equation 1.2, the motion of the nuclear
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center of mass, separates exactly. Hence, this motion is uncoupled from the in-
ternal electronic and vibration/rotation motion and will therefore be assumed
to have been removed from further consideration (by separation of variables).

The first four terms and the sixth term in equation 1.2 are usually combined
and called the electronic Hamiltonian (h.) because they contain differential
operators only for the r; coordinates. Notice that the electronic energy will
then contain the repulsion of the nuclei, so the potential energy curves will
become infinitely repulsive as two nuclei approach one another. The sixth
term, sometimes called the mass-polarization term, usually has small effects
because it is multiplied by the inverse of the total nuclear mass M (a small fac-
tor) in contrast with the electronic kinetic energy term, which has a h*/2m
multiplier (a large factor). Hence, it is common (but not necessary) to ignore
this term in writing A.. See Pack and Hirschfelder (1968) for further justifica-
tion of this idea.

In seeking eigenstates y of H = h, + hy, it is usual to introduce the eigen-
functions of 4, as a basis for expressing the r; dependence of . What does this
mean? Since h, is a Hermitian operator in r; space (which also contains
reference to the locations of the nuclei), the eigenfunctions ¢, of A,

he(rl‘] Ra)¢k(ri | Ru) = Ek(R¢)¢k(r!‘ | Ra) (1.3)

form a complete set of functions of r,. Note that A, depends on R, even though
it is not an operator in the R, space. Hence, the E, and ¢, will vary as R,
varies. However, for any specific R,, the set of {¢,} is complete in r; space.
Hence, because it describes motion of electrons and nuclei, the fofal wave
function ¢, which depends on r; and R,, can be expanded to yield

¥, R = Y oa(ri| R)Xk(R,) (1.9)
k

in which, for now, the Xx(R,) can be viewed as ‘‘expansion coefficient func-
tions’’ that are to be determined from the equation Hy = EY.

Substituting the expression for ¢ in equation 1.4 into the fotal Schrodinger
equation, premultiplying by ¢(r;|R,), and integrating over the electronic
coordinates {r;}, we obtain for a diatomic molecule (analysis of polyatomic
molecules is more tedious but gives rise to no new features)

ﬂl
E s (@] [h DXk — EdaXy — A (DxV Xk + Xa Vi
k
(1.5
+2Vl¢,.°VRX;,)]dr1dr2. . .dl‘N =0
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in which the symbol R is now used for the internuclear distanceR = |R, —R,]|.
Recall that the center-of-mass motion has been removed. Using equation 1.3
and the orthonormality of the {¢.], this equation reduces to

& "2 #?
E:—E—z_ﬂvn X,=-!-¥ ;vk¢kdfx1¢§’;

2
+3 %‘- j ¢}'Vn¢kdr-vnx*]. (1.6)

The primary fact to notice in equation 1.6 is that there is coupling between
the electronic states ¢, and ¢, caused by the fact that ¢, and ¢, depend upon
R, and, hence, vary as R, moves. Thus, the ¥ function of equation 1.4 cannot
be expressed as a single product ¢,.X, but requires all of the electronic wave-
functions to describe even a single fotal state wavefunction. Faced with the
problem that it is not possible to express the exact solution as an electronic
wavefunction multiplied by a vibration/rotation function, an approximation
is needed. Two approximations are described in the following section.

1.1. Born-Oppenheimer and Adiabatic Approximations

In the Born-Oppenheimer approximation, al/l of the terms on the right-hand
side of equation 1.6 (including the ¢, = ¢, term) are ignored. This procedure
is equivalent to assuming that y can be approximated as ¢,X; and that ¢; does
not vary (strongly) with R,. Then, equation 1.6 is the Schrodinger equation for
the motion (vibration/rotation) of the nuclei in the potential energy field
E/(R,) = Vi, namely,

ﬁl
(— 5 Vit V,)x, = EX,. | .7

This equation states that the electronic energy, which certainly depends on
where the nuclei are located, provides the potential energy surface on which
the nuclei move. (Note that this potential surface is different for different elec-
tronic states labeled by /.) Thus, equation 1.7 is nothing but the vibration/
rotation (V/R) problem and X, is one of the V/R wavefunctions for the /th
state. In other words, X; = X,,;and E = E,,;; v and J are the vibration and
rotation quantum numbers.

In the adiabatic approximation, the k& = [/ terms on the right-hand side of
equation 1.6 are retained. As a result, the potential surface felt by the nuclei
also includes the terms
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#? fi?
S o! (— % Vﬁdn) dr and S 7 (— = Vg(b;)dr‘vk.

The V/R wavefunctions X; then also depend upon these ‘‘non-Born-Oppen-
heimer (BO) correction terms.’”’ Very few calculations in the literature have
included such corrections. In the nonadiabatic approximation one attempts to
keep all, or at least the most significant, terms in equation 1.6, but ab initio
calculations at this level have been done only on very small systems (see Kolos
and Wolniewicz, 1963, 1964, 1965).

Whenever we have two or more surfaces (E; and E;) that come close
together, we must consider the coupling of their electronic and nuclear mo-
tions. The usual way to think of this is to assume that the two unperturbed
problems (ignoring the right-hand side of equation 1.6) for ¢,X$,; and ¢,X3,, ;.
have been solved. Then we attempt to represent the true y as a combination of
these two most important terms with unknown coefficients. The resulting 2 x 2
secular problem has diagonal elements E$,; and E,.;.; for specific choices of
vJ and v’J’ these elements can be nearly degenerate. The off-diagonal terms
are

ﬁz
g (01X3,s | (VEd2)X3, s + 2(Vrd2) VeX3yu-)-

These non-Born-Oppenheimer coupling matrix elements, which determine the
splitting between the two potential surfaces, will be large in regions of R-space
in which the electronic wavefunctions are expected to undergo large changes in
their bonding characteristics (for example, when changing from ionic to
covalent bonds or when breaking old bonds and forming new bonds).
Although it might not be important to be able to perform quantitative ab
initio quantum calculations that include non-Born-Oppenheimer terms, it is
important to understand when such terms are likely to be large, because it is
under these circumstances that the concept of the separate or uncoupled poten-
tial energy surfaces (V;) breaks down. Alternatively, the idea of potential
energy surfaces can be kept, and the coupling terms on the right-hand side of
equation 1.6 can be viewed as giving rise to transitions from one surface to
another. Such so-called radiationless transitions become important when the
potential energy surfaces of the electronic states ¢, and ¢, approach or in-
tersect one another. This problem of the rate of transitions among surfaces
will be treated in more detail later (Chapters 5 and 6), when photochemical
processes in which a molecule is prepared in an excited state are considered.
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1.2. Intersections of Potential Energy Surfaces

In section 1.1 reference was made to electronic potential energy surfaces that
intersect. Let us now briefly examine the circumstances in which two surfaces
actually can “‘cross’’ one another. Consider a pair of approximate electronic
wavefunctions ¢, and ¢, that might correspond to two different electronic
configurations (e.g., Na*, CI” and Na-, Cl) of the same molecule. Alternatively,
one could be referring to the coupling of zeroth-order Born-Oppenheimer
wavefunctions to yield the full non-Born-Oppenheimer v, as discussed above.
In the former case, the 2 X 2 secular problem that results from using these two
functions as a basis for approximating the correct electronic wavefunctions ¢,
and ¢, has energy levels given by the expression

E, = .;—[h,, + haa £ V(hy — ha)* + 4hf,] (1.8)
in which
y= Sé?h,du dr. (1.9)

To make the two energy levels E, equal (for surface intersection) it is necessary
that h,; = hy; and hy; = 0 at the same geometrical point(s). For a diatomic
molecule, the elements A, are functions of R only, so it is not generally possible
to find R-values at which borh of the above conditions are met. As a result,
potential energy curves of diatomic molecules do not cross (unless ¢, and ¢,
have different symmetry and h,, is identically zero for all R). For a general
molecule with N atoms, there are 3N — 5 (linear) or 3N — 6 (nonlinear) vibra-
tional degrees of freedom upon which E, can depend. By insisting that
hyy = hyy and hy; = 0, the dimension of the space in which E, can intersect is
reduced to 3N — 7 or 3N — 8 (for two states of the same symmetry for a non-
linear molecule). Hence, states of the same symmetry can cross, though they
cross on a surface whose dimension is two less than that of the potential energy
surfaces on which the molecule is moving. As a result, the molecule does not
frequently encounter such crossing geometry, so the fact that the surfaces may
actually cross at special points is not particularly important. The essential
point is that when surfaces approach one another closely (e.g., in the neighbor-
hoods of crossings), transitions are likely to occur. (The rates of these transi-
tions are discussed in Chapter 6.) The extension of the above analysis to
intersections among more than two surfaces is nontrivial and has been given by
Alden Mead (1979).

In summary, the potentral energy surfaoes upon which chemists usually

' ~nd whatnacrhamical
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Figure 1-1

Potential energy surface of X'L ground-state HCN as a function of the location of the H atom for
fixed CN bond length. The minimum on this surface is located at the linear (§ = 180°) geometry
with the H atom bonded to the C atom.

reactions can be thought of as solutions to the Born-Oppenheimer version of
the electronic Schrodinger equation (equation 3). The dependence of these
electronic energy levels {E;} on the internal coordinates of the molecule is what
generates the potential surfaces that are depicted in many texts (for example,
see Eyring, Walter, and Kimball, 1944; Pearson, 1976). This concept is il-
lustrated in Figures 1-1 and 1-2 by contour graphs of the potential energy sur-
faces of the ground (X‘E) and nr* exc:ted (C A’) states of HCN as functions

Y s I Y Falil 2 LR b PR B
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Figure 1-2

Potential energy surface of the C'A’ state of HCN as a function of the location of the H atom for
fixed CN bond length. Note the potential well at an HCN angle near 140 ° and the barrier at 180°.
Dashed contours are lower in energy than the solid contours.




