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Preface

This text is intended for a one-quarter or one-semester course at the first- or
second-year graduale level. It discusses how symmetry concepts, orbital nodal
patterns, and molecular topology can be used to make statements about
energeties in chemieal reactions. It algo differs erom commonly used texts that
only eon sider how orbital-symmetry eonstraints allow or forbid various reae-
tions in its more rigorous approaeh. Introduetory ehapters explain the physieal
origins of orbital-, eonfiguration-, and state-eorrelation diagrams, Jahn-Teller
instability, internal eonversion, and intersystem crossing. These seetions are
for students who desire a rigorous understanding of the physieal origins of
these eoneepts as they relate to thermal and photoehemieal processes. These
diseussions are not unduly long, however, and they eontain sufficient physieal
interpretations to make Lbem valuable reading for graduale students and
researehers in all areas of ehemistry. Following the introduetion of the
physieal principles, applieations to explicit thermal and photoehemieal reae-
tion problem s show the praetieal uses of these tools. These examples, whieh
are written in a tuto rial style, should appeal to all student s of ehemistry.

Most one-semester introduetory eourses on quantum ehemistry and two-
quarter eombined eourses on quantum ehemistry and speetroseopy should
provide adequate baekground to understand the material in this text. Some
eoneepts of group theory algo appear; more advaneed topie s are taught in the
text as needed. General ideas of Hartree-Foek molecular orbital theory
sometimes eome into use, but oniy to the extent that they are absolutely
neeessary. Little is said about numerieal applieation of moleeular orbital
methods; instead, emphasis is plaeed on the eoneeptual use of orbitais and
their symmetries in ehemieal reaetions. Three appendixes are provided for the
reader to review or to learn the requisite baekground material dealing with ob
initio moleeular theory, moleeular-point-group symmetry methods, and the
photon absorption proeess that prepares moleeular reaetants for subsequent
photoreaetion. For the reader who wishes to test his or ber mastery of the
material, two sets of problem s are prov~ded.

This text is the result of a one-quarter graduale eourse taught to first-year
gradu at e students in physieal, organie, and inorganie ehemistry at the Univer-
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sity of Utah. I wish to thank the student s who have contributed to its develop-
ment. I also wish to acknowledge much helpful input provided by several of
aur graduate student s and postdoctoral fellows-David Chuljian, Judy Ozment,
Ron Shepard, and Ajit Banerjee-as well as the support and advice given by
my colleagues Paul J!1Irgensen, Bill Breckenridge, and Josef Michl.

June 1983 Jack Simons
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Part 1

Underlyi ng
Physical Principles

In the flrstthree chaptersof thls text we showhowto express.In quan-
tltatlve terms.certalnconcepts that ara widetyused Ina qualltatlveman-
ner In chemlcal educatlon and research. Speclflcally.we analyze how
one deflnes potentlal energy surfaces and reactlon coordlnates. and we
examlne the condltlons under whlch these concepts break down. By
observlng how the reactlon coordlnate varles as the reactlon proceeds
fromreactants. through one or mora transitlon states. to products. the Idea
of symmetry conservatlon Isdeveloped. In Chapter 3 we dlscuss the con-
cepts of orbitais. electronlc occupancles (conflguratlons).and electronlc
states. and we show why symmetryconservatlon applles at each of these
three levels.

Theultimata goal of thls text Isto permit the reader to predlct whether
cny postulated chemlcal reactlon should experlence a larga actlvatlon
energy barrler and. thereby. be forbidden. Tomoka such predlctlons. one
must be abla to vlsuallze the reactant molecules movlng on a potentlal
energy surface that Ischaracterlstlc of elther the ground $lata or an ex-
clted electronlc stale. Such qualltatlve vlsuallzatlon can be carrled out
only after one has achleved a good appreclatlon of the electronlc struc-
tures (Le..orbita I shapes and energles. and orbita I occupancles) of the
reactants. products. and IIkelytransitlon states. Theflrstthree chapters of
thls text develop these Important tools.

The level of presentatlon In these flrstthree chapters Is substantlally
mora sophlstlcated than In most other books that deal wlth symmetry In
chemlcal reactlons(forexample.Pearson.1976;Woodwardand Hoffmann.
1970;Borden. 1975;or Flemlng, 1976).Thlslevel Is especlally relevant to
physlcal chemlsts whose research requlres a quantltatlve Interpretatlon of
experlmental data-modern research In chemlcal dynamlcs and spec-
troscopy often demands the usa of such theoretlcal tools. Llkewlse.It Is
Important also that researchers who wlshto moka qualltatlve usa of sym-
metry Ideas be aware of the orlglns and IImltatlonsof such concepts.
Therefore. although the vast majority of the examples treated In tatar



chapters moka only qualltatlve usa of the theoretlcal machinery covered
InChapters 1-3. ItIsessentlal that clI modern researchers be wall founded
Inthe physlcal orlglnsof these valuable symmetrytools.IlIsrecommended
that readers who ara not famlllar wlththe foundatlons of molecular orbltal
theory and polnt-group symmetry read Appendlxes A and C before at-
temptlng to master these flrstthree chapters.

~ .-- -------



Chapter 1

Potential Energy Surfaces

As will become elear shortly, a potential energy surface is merely a construct of
one's imagination. It is an idea that bas proved to be of immense value for
oonceptualizing cheinical reactions but that loses its rigorous rontent in certain

~ dmnnstances. Within its range or approximate validit~., a potential eneTg\:
I surface can be thought of as the topograpbicaJ map describing the terrain on
! which the reactant molecuJes musI move on their route to a transition stale and

then eDward toward the geometrical arrangement or the product molecuJes.
To understand better what these potential energy surfaces are, it is useful to
examine how they arise in the quantum mechanical treatment of the motions
oCthe nuelei and the electrons that comprise the reactant molecules.

The Hamiltonian function describing morion oCa collection oCnuclei oC
masses Ma and charges Zae and electrons oC mass m and charge - e is

i
!
~ H = E[- ~v~+1- E ZaZbe2

]p 2Mp 2 b~p IRa - Rb I

+ E
[
- -LVf+ 1-E e2 - E Zae2

]
,

i 2m 2 j~i Ir i - rj I a Iri - Ra I
(1.1)

where (Ra, r i) reCers to a coordinate system that is fixed in space and not on
the molecule.

IL is convenient to rewrite the Hamiltonian in terms of molecule.fixed
coordinates instead oCabsolute coordinates. Two such coordinate transCorma-
tions might be used. Fiest, one could introduce the totol center oCmass

R = ~[~ MaRa + ~mr}

in which Mis the total mass oCsIl nuclei and electrons and coordinates relative
z to R. This is a good and natural choice but one that is not convenient ance the
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idea of elamped nuelei. which we will use repeatedly. is introduced. If the
nuclei are held fixed and the electrons move. the center of mass. which is the
coordinate origin. could move; as a result. what was ascribed to electronic mo-
tion would inelude same center-o f-mass motion. As will become elear shortly,
aur desire to think of the nuelei as fixed is important; the elamped-nuelei con-
cept rests at the center of aur ideas of potential energy surfaces.

A second transformation uses the center oCmass oCthe nuclei to define a
molecule-fixed coordinate origin

R = ~EM..R..;M= E M..... ..

Because the electrons are so light. this position will a1most be the true center of
mass. and this location will remain fIXedif we tatel clamp the nuelei. UpaD ex-
pressing the positions of the nuclei and electrons as R plus internal or relative
position vectors (for which we naw use R... fi). the above Hamiltonian can be
written. for a diatomic molecule.

~
[(

-1;'1 1) ~ Z,.e1 ..!.E e1 ]H = i.;' 2m V, - ': Icl-R..I + 2 J-' Ic,-cJI

z Z e1 1fl fil 1fl
+ ,. b - -Vfa.-R,I-- E V'.VJ--V:

IRa - Rbl 2/l 2M lJ 2M
(1.2)

in which /l, the reduced mass oCthe nuclei isMaMb/M. Pack and HirschCelder
(1967)show the details oChow both this transCormationand the total-center-
ar-mass transformation mentioned above are carried out. For a moce com-
plicated molecule. anty the fourth and fifth terms would differ; the Courth
would be

.!. E ZaZhe1
2 ,..6 IRa- RhI

and the fiCth would be the internal kinetic energy operator, which we labet hN.
describing the vibrations and rotations oCthe nuelei. As an example, consider
a triatomic moletuJe ABC. For soch a molecule 3N - 3 = 6 soch coordinates
are needed. and these could be the vectors Re - RR and RA - RR or the lengths
IRe - RRI. IRA- RRI. and the angle 8ABCand three Euler orientation angles.
The choice is up to you and should be made to simpliCythe treatment of the
vibration/rotation problem. which Wilson, Decius, and Cross (1955)treat in
elegant detail. The seventh term in equation 1.2, the motion oCthe nuclear
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center of mass, separates exactly. Hence, this motion is uncoupled erom the in-
ternal electronicand vibration/rotation motion and will therefore be assumed
to have been removed erom further consideration (by separation of variabies).

The first four terms and the sixth term in equation 1.2 are usually combined
and called the electronic Hamiltonian (he) because they contain differential
operators only for the r i coordinates. Notice that the electronic energy will
then contain the repulsion oCthe nuclei, so the potential energy curves will
become infinitely repulsive as twa nuclei approach one another. The sixth
term, sometimes called the mass-polarization term, usually bas small effects
because it is multiplied by the inverseof the total nuclear mass M (a smalI fac-
tor) in contrast with the electronic kinetic energy term, which bas a h2/2m
multiplier (a large factor). Hence, iUs common (but not necessary)to ignore
this term in writing he. See Pack and Hirschfelder (1968)for further justifica-
tion of this idea.

In seekingeigenstatesI/;of H = he+ hN, it is usual to introduce the eigen-
functions of heas a basis for expressingthe r i dependence of 1/;.What does this
mean? Since he is a Hermitian operator in r i space (which algO contains
reference to the locations of the nuclei), the eigenfunctions ep" of he

he(r i IRG)ep,,(ri IRG) = E,,(RG)ep,,(ri IRG) (1.3)

form a completeset of functions of r i' Note that hedepends on RGeven though
it is not an operator in the RG space. Hence, the E" and ep"will vary as RG
varies. However, for imy specific RG' the set of (ep,,)is complete in ri space.
Hence, because it describes motion of electrons and nuclei, the total wave
function 1/;,which depends on ri and RG' can be expanded to field

I/;(rit RG) = Eep,,(rll RG)X,,(RG)"
(1.4)

in which, for naw, the X,,(R..)can be viewedas "expansion coefficient func-
tions" that are to be determined erom the equation HI/;= El/;.

Substituting the expression for I/;in equation 1.4 into the total Schrodinger
equation, premultiplying by ep~(rIIRG), and integrating,over the electronic
coordinates (rA, we obtain for a diatomit molecule (analysis of polyatomic
molecules is maTe tedious but gives rise to no new features)

E r (ep~[heep"X"- Eep"X" - ~2 (ep"v~x" + x" V~ep"" J Il

(1.5)
+2VRep".VRX,,)]drltfr2' . .drN = O
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in which the symbol R is naw used for the internucIear distance R Si IRa - Rb I.
Recall that the center-of-mass motion bas been removed. Using equation 1.3
and the orthonormality of the (4>A,). this equation reduces to

[El - E - ~; V~]XI = +~[1 4>~V~4>k drXk ~;

+ 2 ~; 1 4>~VR4>kdr,vRxkJ.
(1.6)

The primary fact to notice in equation 1.6 is that there is coupling between
the electronic states 4>kand 4>,caused by the fact that 4>kand 4>,depend opon
Ra and. hence. vary as Ra moves. Thus. the t/1 function of equation 1.4 cannot
be expressedas a single product 4>kXkbut requires all of the electronic wave-
functions to describe even a single total stale wavefunction. Faced with the
problem that it is not possible to express the exact solution as an electronic
wavefunction multiplied by a vibration/rotation function. an approximation
is needed. Two approximations are described in the following section.

1.1. Born-Oppenheimer and Adiabatic ApproximatioDS

In the Bom-Oppenheimer approximation. 011of the terms on the right-hand
side of equation 1.6 (including the 4>k= 4>, term) are ignored. This procedure
is equivalentto assumingthat t/1can be approximated as 4>,X,and that 4>,does
not vary (strongly)with Ra. Then. equation 1.6is the Schrodinger equation for
the motion (vibration/rotation) of the nuclei in the potential energy field
E,(Ra) = v,. namely.

(- ~; V~ + VI)XI = EX,.
(1.7)

This equation states that the electronic energy. which certainly depends on
where the nuclei are located. provides the potential energy surface on which
the nuclei move. (Note that this potential surface is different for different elec-
tronie states labeled by I.) Thus. equation 1.7 is nothing but the vibrationl
rotation (VIR) problem and X, is one of the VIR wavefunctions for the Ith
stale. In other words. X, = x'",Jand E = E"w; v and Jare tbe vibration and
rot~tion quantum numbers.

In the adiabatic approximation. the k = I terms on the right-hand side of
equation 1.6 are retained. As a result. the potential surface Celtby the nuclei
also includes the terms
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r .( fl2 2 )J tP, - 2/LVRtp, dr
and

I tp:(-: VRtp, )dr'VR'

The V/R wavefunctions x, then algOdepend upon these "non-Born-Oppen-
heimer (BO) correction terms." Very rew calculations in the literature have
inc1udedsuch corrections. In the nonadiabatic approximation one attempts to
keep aU, or at least the most significant, terms in equation 1.6, but ab initio
calculations at this levelhave been dane only on very smaHsystems(see Kolos
and Wolniewiez, 1963, 1964, 1965).

Whenever we have twa or more surfaces (Et and E2) that come close
together, we musI consider the coupling of their electronic and nuclear mo-
tions. The usual war to think of this is to assume that the twa unperturbed
problems(ignoringthe right-hand sideof equation 1.6)for tPtxY,vJandtP2X~v'J'
have been solved. Then we attempt to represent the true if; as a combination of
these twa most important terms with unknown coefficients. The resulting 2 x 2
secular problem bas diagonal elements EY,vJand E~v'J'; for specific choiees of
vJ and v' J' these elements tan be nearly degenerate. The orf-diagonal terms
are

-
2,,2 <tPtXY,vJI(V~tP2)X~v'J' +2(VRtP2)'VRX~v'J.)'

/L .

These non-Born-Oppenheimercoupling matrix elements,which determine the
splittingbetween the twa potential surfaces, willbe large in reglonsof R-space
in whiehthe electronicwavefunctionsare expectedto undergo large changesin
their bonding characteristics (for example, when changing erom jonie to
covalent bonds or when breaking old bonds and forming new bonds).

Although it might not be important to be able to perform quantitative ab
initio quantum calculations that inc1udenon-Born-Oppenheimer terms, it is
important to understand when such terms are likely to be large, because it is
under these circumstancesthat the concept of the separate or uncoupled poten-
tial energy surfaces (V,) breaks down. Alternatively, the idea of potential
energysurfaces tan be kept, and the coupling terms on the right-hand side of
equation 1.6 tan be viewed as giving rise to transitions erom one surface to
another. Such so-called radiation/esstransitions become important when the
potential energy surfaces of the electronie states tP/t and tPI approach or in-
tersect one another. This problem of the rate of transitions among surfaces
will be treated in more detail later (Chapters 5 and 6), when photochemical
processesin which a molecule is prepared in an excitedstaLeare considered.
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1.2. Intersections or Potential Energy Sunaces

In section 1.1 reference was made to electronic potential energy surfaces that
intersect. Let us now briet1y examine the circumstances in which two surfaces
actually can "cross" one another. Consider a pair of approximate electronic
wavefunctions cP 1 and cP2 that might correspond to two different electronic
configurations (e.g., Na+, CI- and Na., a.) of the same molecule. Alt~matively,
one could be referring to the coupling of zeroth-order Born-Oppenheimer
wavefunctions to field the fulI non-Born-Oppenheimer 1/;,as discussed above.
In the former case, the 2 x 2 secular problem that results erom using these two
functions as a basis for approximating the correct electronic wavefunctions cPl
and cP2bas energy levels given by the expression

E% = ~ ru + h22:t .J(hu - hu)2 + 4hl~

in which

(1.8)

hi} E I cP~h.cP}dr. (1.9)

To make the two energy levels E % equal (for surface intersection) it is necessary
that hu = hu and hu = Oat the same geometricalpoint(s). For a diatomic
molecule,the elementshi}ale functions of R only, 50it is not generallyposSible
to find R-values at which both of the above conditions ale met. As a result,
potential energy curves of diatomic molecules do not cross (unless cPland cP2
have different symmetry and hu is identically zero for all R). For a general
molecule with Natoms, there ale 3N - S (linear) or 3N - 6 (nonlinear) vibra-
tional degreesof freedomupon which E% can depend. By insistingthat
hu = hu and hu = O,the dimension ofthe space in which E%can intersect is
reduced to 3N - 7 or 3N - 8 (for two states of the same symmetry for a non-
linear molecule). Hence, states of the same symmetry can cross, though they
cross on a surface whose dimension is two less than that of the potential energy
surfaces on which the molecule is moving. As a result, the molecule does not
frequently encounter such crossing geometry, so the fact that the surfaces may
actually cross at specjal points is not particu1arly important. The essential
point is that when surfaces approach one another closely (e.g., in the neighbor-
hoods of crossings), transitions ale likely to occur. (The rates of these transi-
tions ale discussed in Chapter 6.) The extension of the above analysis to
intersections among mOle than two surfaces is nontrivial and bas been given by
Alden Mead (1979).

In summary, the potential energy surfaces upon which chemists usually
, ,"".. , , -."l ~h"',,,.h"m;"~1



POTENTIAL ENERGY SURFACES 9

"gure 1-1
Potential energy surface of XII; ground-state HCN as a function of the location of the H atom for
fixed CN bond length. The minimum on this surface is located at the linear (9 = 180°)geometry
with the H atom bonded to the C atom.

reactions caD be thought of as solutions to the Born-0ppenheimer version of
the electronic Schrodinger equation (equation 3). The dependence of these
electronic energy levels lEkI on the internat coordinates of the molecule is what
generates the potential surfaces that ale depicted in maDYtexts (for exaQlple,
see Eyring, Walter, and Kimball, 1944; Pearson, 1976). This concept is il-
lustrated in Figures l-l and 1-2 by contour graphs of the potential energy sur-
faces of the ground (Xl E) and n1l"*exCited (Ci A') states of HCN as functions
~~ .1- TT ~1 O,h.H'" " . TT~" '-~~ 1 ".."1,, ""
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Flgure 1.1
Potential energy surface of the CI fi{ state of HCN as a function of the location of the H atom for
fixed CN band length. Note the potential well at an HCN ansie near 140° and the barrier at 180°.
Dashed contours are lower in energy than the solid contours.


