Chapter 6

Internal Conversion
and Intersystem Crossing

6.1. The States Between Which Transitions Occur

To understand the mechanisms by which a molecule can undergo a radiation-
less transition (Yardley, 1980; Lin, 1980) from one potential energy surface to
another, the Schrodinger equation for combined electronic and nuclear motion
given in Chapter 1 is needed. The electronic wavefunctions {¢.(r|R)] corre-
sponding to the two interacting states between which transitions occur obey
the equations

he¢50 = ESQ(R)¢SU (6'1)
and

h. = EAR)¢, (x = S, 0or Ty). 6.2)
Within the Born-Oppenheimer approximation, the internal (vibrational-
rotational) wavefunctions belonging to the S, and excited potential surfaces
obey the equations

(D% + Es)X? = €2x? (6.3)

and

(D& + E)X;:

Xy, (6.4)

in which D3 is the kinetic energy operator for all of the nuclear vibration and
rotation. The energies €? and € are the fotal Born-Oppenheimer energies of
b sox?. and ¢,X3., respectively. e) can be decomposed into the electronic energy
at the minimum of the S, surface plus the X internal energy (e?)

€2 = Es, (min) + e?. ' 6.5)
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An analogous expression can be written for €
er = E, (min) + e; (6.6)

where E, (min) is the electronic energy at the minimum of the excited-state sur-
face. E,(min) — Es (min) gives the adiabatic electronic energy difference for
the S, — X excitation; e? and e? are simply the vibration/rotation energies
(labeled by the quantum number v) on the S and x surfaces, respectively.

In the approximation that the internal vibrations and rotations may be
uncoupled, the functions X2, and X} consist of products of appropriate rota-
tional functions and of 3V — 6 vibrational wavefunctions—one for each of the
normal or local vibrational coordinates (Yardley, 1980) including the reaction
coordinate Q,. As pointed out in Chapter 1, motion along coordinates ortho-
gonal to Q, can often be thought of as involving approximately harmonic
vibration. However, the components of X2 and XZ. that describe motion along
Q, cannot be approximated by harmonic motion except near local minima. In
regions of Q, space in which S, has negative curvature, the Q, component of
x°looks like a continuum wavefunction rather than a bound vibrational wave-
function.

We now consider the transitions used when a molecule hops from S, or T;
to So. The S, or T, state has been populated by the mechanism So + hv —
S, — (S1, T1). In the Born-Oppenheimer approximation, the wavefunction of
this excited state is given by

V. = o.(r| R)XJ(R). 6.7)

The vibrational energy level ;- may be high or quite low (e.g., in condensed-
phase situations). Although €. also contains rotational and, perhaps, relative
translational energy, we will, for brevity, speak of this energy as being vibra-
tional. If the density of states (states per cm™" of energy) in the So manifold is
high at this energy level (¢}), it is likely that there is a state of the S manifold

Yo = ¢s5,(r| RIXAR) (6.8)

that is nearly degenerate with y,. These two zeroth-order states will be coupled
by the terms in the true Hamiltonian that give rise to non-Born-Oppenheimer
corrections. This coupling will be strong if the off-diagonal matrix elements
(Vx| H|yo) are nonnegligible when compared to the energy difference e} — €
(Yardley, 1980). Therefore, in this situation the non-Born-Oppenheimer
coupling is said to give rise to transitions between V. and ¥, and these transi-
tions are the hopping that has been discussed. If the excited state is a triplet,
the non-Born-Oppenheimer terms alone would not couple ¥, and y,o; H must
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6.2. Rates of Transitions

To evaluate rates of such transitions, the conventional Fermi ‘‘golden rule”
can be used (Yardley, 1980; Lin, 1980); this rule states that transitions starting
in ¢,X}. and going to q&sox.? and caused by the non-Born-Oppenheimer parts of
H — h, occur at a rate given in sec™" by

i % E 1<¢Sox?|H_. he|¢.\'x:')|za{fe_ Eﬁ')- (6'9)

The 6 function guarantees that the states ¢, X7 contributing to the total radia-
tionless transition rate have the same Born-Oppenheimer energy as ¢.X;..
When many vibrational or rotational modes are present, there may be many X;
functions, each having the same energy 2. The number of such states is referred
to as the density of states p at this total energy (3]

pler) = Y 8(ed— €X). (6.10)

If there is reason to believe that all of the states {¢5,X?} in this degenerate
manifold couple to the same extent with the initial state ¢.X7-, then the sum
over v in the above expression for W can be replaced by the appropriate state
density

W= zﬁi K5 Xo| H — | ;X5 2p(e2) 6.11)

in which X}. is any one of the degenerate states. Modern research on the
behavior of electronically excited molecules indicates that, even for systems
with high state densities, often only a small fraction of the modes play an ac-
tive role in the radiationless transition. As a result, it may not be wise to use
equation 6.11 when trying to understand radiationless transition rates; it is
probably more appropriate to think in terms of equation 6.9.

Internal Conversion Rates

We now consider how equation 6.9 depends on the electronic energy difference
and the vibrational wavefunctions X° and x*. for the internal conversion case
in which ¢, is a singlet state. The terms in H — A, that couple the initial state
¢s,X; to the final state ¢5 X} are the non-Born-Oppenheimer terms, and the
off-diagonal coupling matrix element described in Chapter 1 is

P L G 2 et S Ut e 8 U L [ 7 B e SRR T T S I o T (6 1M
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As discussed in Chapter 1, the second term in this expression is usually larger
than the first (except when the second term vanishes, owing to symmetry);
hence, the analysis will proceed using only this term. The analysis of the first
term can be performed in analogous fashion (Berry, 1966); to do so would not
shed further light on the physical origins of internal conversion.

An expression for the above coupling matrix element that is more
physically useful can be obtained by applying the Dy operator to the Born-
Oppenheimer Schrodinger equation, which ¢, obeys:

Dgr(heps, — Es,¢s,) = 0. (6.13)

Multiplying on the left by ¢, and integrating over the electronic coordinates
only yields

(bs,| Drhe| ¢s,) + (bs,|h. Drebs,) — DrEs, (s, |9s,)
— Es5,($s,| Drds,) = 0. (6.14)

Equation 6.14 can be solved for (¢s, | Drés,), which can then be used to reex-
press the coupling matrix element and, therefore, to write the transition rate as

W= 2%‘-’ Y 82— €2)

[{X?|[Es, = Es)] " ($s, | Drhe| bs,) 2D X5 )|? 6.15)

This analysis shows that W is likely to be large if regions of nuclear con-
figuration space (R) exist for which the electronic energy gap is small
(Es,(R) = Es (R)) and the product XJ(R)DgX:.(R) is nonvanishing.
Therefore, molecular deformations that bring the two singlet-state potential
surfaces close to one another should be sought. If X2 and DgXZ. have ap-
preciable overlap in the region in which Es, = Ej,, then internal conversion is
likely. However, the electronic force matrix element (#s,| Drh.|ds,) must also
be substantial; this integral will be large if (in the orbital-following sense in-
troduced in Chapter 4) the distortion tends to evolve the orbital structure of
és, into that of ¢5,. Where symmetry is present, the direct product of the S,
and §; symmetries must match that of Dgh,. For example, in H,CO, the nr*
state is achieved by excitation from an occupied b,(n) orbital to the vacant
b(w*) orbital. The kind of motion that is symmetry-consistent with b, x b, is
a,. H,CO does not have any vibration with a, symmetry. As a result, the
(¢bs,| Drh.|¢s,) matrix element should be small for nx* states in C,, sym-
metry. In contrast, r7* S, states have b, X b; = a, symmetry and, hence, Dy
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Figure 6-1
Energy surfaces that do not approach closely.

pected to have the largest effect on mapping the «* orbital into the = orbital
because the nature of these two orbitals is affected by the distance from C to O.

Let us review the procedure developed so far. If a coordinate exists along
which Ej, approaches Es,, the hopping rate for internal conversion is increased.
Near this avoided crossing or near approach of the Sy and S, surfaces, one con-
siders whether symmetry or physical force are likely to make (¢s,| Drh.|®s,)
significant for deformations either along Q, (Dr = Dg ) or along some direc-
tion perpendicular to Q,. Directions in which both this electronic force matrix
element is large and the vibrational product X% DX} is substantial will play
important roles as modes that digest the excess electronic energy Es, — Ef,.
That is, the direction along which E5, and E5, come close is important because
this motion brings the molecule to the funnel geometry. Once the molecule is
near the funnel, it can use other degrees of freedom (orthogonal to Q,) to
digest the excess electronic energy.

Energy-Digesting Modes

Two extreme cases of how the Es, and E, surfaces might appear may be
distinguished. The first case pertains to situations in which Es, and E, do not
approach one another closely—in other words, within an energy gap that is ap-
proximately equal to a non-Born-Oppenheimer matrix element. The shapes of
two such surfaces are shown in Figure 6-1. Efficient internal conversion may
still be possible by transfer of electronic energy to internal vibrational energy.
To analyze the rates of such processes in this case, note first that the energy-
denominator factor in equation 6.15—[Es (Q)— ESI(Q)]"—is small and
never undergoes rapid growth near some critical geometry as it would, for ex-
ample, in the near-crossing situations (a second special case that will be treated
shortly). Therefore, Es, — Es, is approximated as a part that depends on the
reaction coordinate Q,, plus a part that describes the (approximately har-
monic) motion perpendicular to Q,:
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Furthermore, the shapes of Es (R) and Es (R) are assumed to be sufficiently
similar that E5 (R) — Es(R) can be neglected relative to the presumed large
value of E5(Q,) — Es,(Q,) splitting.

To continue the analysis, two additional assumptions are made: (1) Only
one mode, whose spatial coordinate is R, plays an active role as an energy ac-
ceptor (Yardley, 1980). (2) In the initial S, state, the active mode is in its
v’ = 0level. Assumption 2 is by no means fully justified or even necessary. In
condensed media situations, it might be more justified, since vibrational
energy would probably have been dissipated to the surroundings prior to the
internal conversion process. This assumption is made only so the resulting in-
tegral containing XJ(R,) and Dg X3(R.) can be physically interpreted more
easily. We will then argue that essentially the same physical picture would be
obtained, after more tedious algebraic manipulation, if the more general
(v’ # 0) case were analyzed (see Yardley, 1980). Under the above outlined
limitations, the rate expression (equation 6.15) becomes

W= %’I Y 8(e2 — €3) [ {XAQIIEs,(Q,) — Es,(@))'X34Q.))

(TTCXE1%33) s, | D el 65,0 20X,

bza

Dg | X3 )2 (6.17)

Here the product I1, extends over all modes other than Q, and the active R,
and gives rise to simple Franck-Condon overlap factors for the passive modes.
If these modes are fully passive, then the shapes of the Sy and §; surfaces
along these directions should be identical, in which case the (XJ, | ;) overlap
factors would reduce to products of simple é-functions I, é,, ;. In writing the
above expression for W, we assumed that the electronic force matrix element is
rather insensitive to R,. Consequently, <¢s° |Dg h.| o S.) was evaluated at the
equilibrium value of the S, state of R, (R, = RZ), which was denoted by the
subscript ‘‘eq’’ in this integral. The vibrational quantum numbers appearing in
€2 and €l are underlined because they contain the quantum numbers of all
modes (for example, v = vg , Vo, vis b =1...).
With all of these observations, W reduces to

W = gﬁi Y. (el + Es,(min) + e}, — e, — Es,(min) — e))

VaVeVe

| (X2 (Q) | [Esy(Q)) = Es (@17 X352 |
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Figure 6-2
Energies relevant to internal conversion.

~ in which e)_and e}, are the internal energies in the Q, mode in the two states.
The energy-conservation é-function requires that the excess energy

Esy(min) — E5 (min) + ) — e}, = AE,,

which is equal to an adiabatic electronic energy difference plus the amount of
energy along Q, that has to be ‘‘digested,”’ is balanced by the change in vibra-
tional energy of the energy-accepting mode. This modified energy gap is shown
in Figure 6-2.

If X7 and X}, are approximated by simple harmonic oscillator functions
having identical frequencies w but equilibrium bond lengths that differ by
AR,, the evaluation of the XJ |Dg_|X3. integral is straightforward. For the
case of v, = 0 (Yardley, 1980)

.| D, X6} = «/%[ﬁ/% (= VX)) (v — 1))V2
5 —v"; L (= X)"(v, + 1)!)““]exp(—X/2) (6.19)

is obtained. in which X = /(A R?2. Substitution of this resnlt into equa-
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W = 4_;;12 l(d?SoIDR_hel(bS.)mll

vV,

(XS (QIIEs,(Q.) — Es (QI17'X:(Q.)) |2

s AE? 172
I RiAAE, — fiw)
AE, — hw ( AE, — hw ]
- I 4 )
cxp[ == (In( 22— 1) (6.20)

in which AE, is the excess energy or gap defined earlier.

Notice that A E, depends upon e — eZ., the energy change along the mode
Q.. Since for this special case E5(Q,) — Es,(Q,) does not become small for
any value of Q,, the element (X3,| (Es,—Es)™"| x:;) is likely to be small unless
xf_ and X have very similar shapes. This will not be the case if AE, = 0, since
then x‘,’r would correspond to a wave packet having high kinetic energy and a
short de Broglie wavelength (as in Figure 6-2). This function could have little
overlap with any low-energy Xj.. Hence, the dominant contribution is for
v, = 0 and small v,, and therefore it is reasonable to set v/ = v, = 0 in
equation 6.20.

Notice that equation 6.20 leads to the conclusion that high frequency
vibrational modes should be most effective in digesting the excess energy. For
such modes, (AE, —fiw)/fiw is as small as possible. The exponential depen-
dence of W on the energy gap AE, is thought to give rise to the observations
leading to the Kasha rule. For most molecules the S, — S, spacing (near the S,
equilibrium geometry populated in the Franck-Condon absorption process) is
larger than the S; — S;, S; — S3, . . . splittings. Hence, internal conversion
from S, to S, is slower than between higher states, since AE, is larger for the
S§; — Sy transition.

Equation 6.20 also shows that if experimentally one desired to modify the
rate of internal conversion by isotopic substitution, the high frequency varia-
tions should be modified. For example, substitution of deuterium for hydro-
gen should produce substantial changes in the rate of internal conversion.

In the other extreme case (see Figure 6-3) in which E; (Q)— Es,(Q)
becomes small along Q, (of the order of magnitude of the non-Born-
Oppenheimer matrix elements), we assume for motion along directions
perpendicular to Q, that Es, — Es, can be written as two components—one
consisting of motion along Q, and a second comprised of harmonic segments
(having the same geometries and frequencies). These harmonic potentials are
assumed to be identical on S, and S; and, hence, cancel yielding

Fe —Ec = F-(OY-F_.(N) e
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Figure 6-3
Energy surfaces that do approach closely.

In this case, Q, itself is the energy-digesting mode.
The treatment in this section of the special case in which Es, and E, do

not approach closely can also be made for this case in Figure 6-3 to the point at
which

W = Zﬁfw Ea(ESDI(min) +e) — Eg (min) — e};)

4|(X0, | (Eso(Q0) — Es,(Q.)) ' s, | Do e | 65,) Dr | X3;) | (6.22)

Because (Es, — J’:?.«;.)'l enhances contributions to the integral over Q, near the
point of closest-approach Qf, the electronic force matrix element and the
energy difference can be approximated by their values at Qf to obtain

W= %i-’f Y 8(Es,(min) + e, — Es,(min) — e%,)

r

|[Eso(Q7) — Es,(QI172[{¢s0| Do, hc| #51) | 2(X?, | Do, | X3, )|* (6.23)

Unfortunately, an energy-gap law is not easily obtained for this case because
the (x? |Dg |X3.) integral does not include two bound harmonic oscillator
functions; X, describes free (unbound) motion along the S, surface. However,
transitions will be favored if the electronic energy gap Es (Q7) — Es,(Q7) is
small and the electronic-force matrix element is large. Moreover, the kinetic
energy of motion along Q, in the product Sy state is Eg,(min) + e7, — E5 (Q7),

at Q = Q.

The Landau-Zener Point of View

Before discussing the rates of intersystem crossing, it is useful to point out the
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looking at rates of surface hopping (Eyring, Walter, and Kimball, 1944), a
method that pertains only to the second case treated above (the close approach
of So and S, depicted in Figure 6-3). In the Landau-Zener approach the near
crossing of the So and S, surfaces is parameterized by the slopes (fo and f;) of
the surfaces near their avoided crossing and the closest-approach energy
2¢10 = 2(Es,(Q7) — Es,(Q7)). The probability of a surface hop (per vibration
along Q,, as dictated by X3.) is then expressed as

P = 1—exp[—@xelo)ho|fo—f1])7"] (6.24)

in which v is the velocity of the nuclei as they pass through the avoided-
crossing region. The dependence of P on the vibrational level (X3.) of the initial
S, state comes from this velocity—if v, is large, the velocity is high. Equation
6.24 shows that three things—a close approach (small ¢,,), fast-moving nuclei
(high frequency vibration), and a small difference in slope (small change in
force)—favor surface hopping. This influence of the change in slope (which is
the change in the forces felt by the nuclear framework of the molecule along
the Q, direction) is obscured somewhat in the earlier expression for W (equa-
tion 6.23). This force effect is contained in the X{ (Q,) Dg XX,(Q,) factor. If So
and S, have very different slopes near Q7, the wavefunctions X and X;, will
have greatly different /ocal de Broglie wavelengths in this region, and X} and X},
are not likely to have large local overlap. In contrast, similar slopes of So and
S, near Qs will lead to large overlap of X and Xj; (i.e., similar shapes in X)
and X:;).

6.3. Intersystem Crossing Rates

In intersystem crossing rates the electronic wavefunctions ¢, and ¢, are singlet
and triplet, respectively. However, the spin-orbital operator

2 —P. -
B o %{E ,ZT X P)S, + Y [QJ':'—)""‘L]-S.-} (6.25)

w8 ief Fij

couples ¢ and ¢, to give perturbed wavefunctions ¢, and &, that contain both
singlet and triplet components. Intersystem crossing is viewed as occurring be-
tween these perturbed functions by a mechanism similar to that just discussed
for internal conversion. The perturbed electronic wavefunctions are approx-
imated by

650 = ¢s, + (¢’so|hsot¢rl) (Es, — ET,)-1¢‘T| (6.26)
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and
ér, = b1, + @1, | hso| bs)(Er, — Esy) ' ds, 6.27)

(Eyring, Walter, and Kimball, 1944; Pilar, 1968). These functions can now be
used in the Fermi golden-rule formula to evaluate W for intersystem crossing.
In doing so, the electronic-force matrix element (or even the second non-Born-
Oppenheimer factor ($s,|Dgh.|ér,) that was not analyzed earlier) is
modified because ¢s, and ¢, are now of mixed spin character:

(@s,|Doh.|b7r,) = (bs,| Doh.|dr,)
+ <ps,| Doh.| ¢s.,)@n | Asol ¢so>(Erl ~ )
+ (5ol hso| 1,) {b1,| Dohe| b1, (Es, - Ex))”™"
+ terms second order in Ag,. (6.28)

The first term vanishes because of spin orthogonality since Dgh, contains no
spin-dependent terms. The other two terms contain electronic-force expecta-
tion values, Es, — Er, energy denominators, and spin-orbit matrix elements.
When squared and substituted into the expression for W (equation 6.23), these
integrals give an expression for the rate of intersystem crossing. The treatment
of digesting modes other than Q, (if So and T remain far apart) and the treat-
ment of the case of Q, accepting the excess energy (when S¢ and T, cross or
come very close) proceed in the same way as that for intersystem crossing;
therefore, we need not repeat the analysis of the dependence of this radiation-
less rate on the energy gap, accepting-mode frequencies, and so forth.

The primary difference between the expressions for internal conversion
(W,c) and intersystem crossing (Wgc) is contained in the spin-orbit integrals
{bs,|hso| 1,y whose squares enter into W;sc. These integrals require further
discussion (Turro, 1978). The spin-orbit operator Ao, consists of the dot prod-
uct (L+S- + L_S: + 2L,S,) of a spatial electronic angular-momentum operator
and an electric spin operator. Clearly, it is the spin-operator components (S,
S-, but not S,) that map the triplet spin function into the singlet spin function
in the (s, | hso| b7, integral. When operating on ¢r,, the corresponding spatial
angular-momentum operator components can alter the angular characteristics
of the spatial wavefunction in ¢,. More specifically, since the components L,,
L, L,(orL,,L.,L,)of theangular-momentum operator transform like rota-
tion operators under point-group symmetry (see Appendix C or Cotton, 1963),
the direct product of the spatial symmetries of ¢, and ¢, must match that of
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at least one of the components L,, L, or L, for the spin-orbit matrix element to
be nonvanishing. This is another important factor to keep in mind when decid-
ing when intersystem crossing is likely to occur. For example, in H,CO, the in-
tersystem crossing transitions (xx*)! — (nx*)® or (nx*)®> — n? are spin-orbit
Jfavored because they utilize transitions between w(b,;) and n(b;) orbitals or
x*(b,) and n(b;) orbitals whose direct product a; has the symmetry of a rotation
about the symmetry axis of the molecule. Pictorially, this is represented by
noting that a 90° rotation of the n(b,;) orbital maps it into a =-like b, orbital.
Likewise, the intersystem crossing rates (rx*)' — (x7*)? and (n7*)' — (n7*)?
should be smaller because they are forbidden by first-order perturbation analysis
—that is, the molecule has no rotation having b, x b, = a, or b, X b, = a,
symmetry.

In the Landau-Zener method, which applies only to two surfaces (7; and
So) that intersect or approach closely, the probability of intersystem crossing is
given as before (equation 6.24) except that now the energy splitting 2¢,, is caused
by the spin-orbit coupling and is given by

€01 = (Ds,|hso| br,)0s- (6.29)

Hence, the same conditions that favor internal conversion also favor inter-
system crossing, except that the rate of intersystem crossing also includes the
spin-orbit matrix element in a multiplicative manner. This element will be small
unless heavy atoms are present and the two states can be connected by any of L,,
L, orlL,.



