
Cha pter 6

Internal Conversion
and Intersystem Crossing

6.1. Tbe States Between Wbicb Transitions Occur

To understand the mechanisms by which a molecule can undergo a radiation-
less transition (Yardley, 1980; Lin, 1980) erom one potential energy surface to
another, the Schrodinger equation for combined electronic and nuclear motion
given in Chapter 1 is needed. The electronic wavefunctions (cJ>a(rIR)J corre-
sponding to the two interacting states between which transitions occur ober
the equations

h.cJ>so = Eso(R)cJ>so (6.1)

and

h.cJ>x = Ex(R)cJ>x (x = S1or T1). (6.2)

Within the Born-Oppenheimer approximation, the internat (vibrational-'
rotational) wavefunctions belonging to the So and excited potential surfaces
ober the equations

(D~ + Eso)X~ = f~X~ (6.3)

and

(D~ + Ex)X~, = f~'X~" (6.4)

in which D~ is the kinetic energy operator for all of the nuclear vibration and
rotation. The energies f~ and f~' are the total Born-Oppenheimer energies of
cJ>soX~and cJ>xx~"respectively. f~ can be decomposed into the electronic energy
at the minimum of the So surface,plus the x~ internat energy (e~)

f~ = Eso (min) + e~. (6.5)
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AD analogous expression caD be written for €~

€~ = Er (min) + e~ (6.6)

where Er (min) is the electronie energy at the minimum of the excited-state sur-
face. Er(min) - Eso(min) gives the adiabatie electronic energy difference for
the So-X excitation; e~ and e~ are simply the vibration/rotation energies
(labeled by the quantum number v) on the So and x surfaces, respectively.

In the approximation that the internat vibrations and rotations may be
uncoupled, the functions x~, and x~, consist of products of appropriate rota-
tional functions and of 3N - 6 vibrational wavefunctions-one for each of the
normalor local vibrational coordinates (Yardley, 1980) including the reaction
coordinate Qr. As pointed out in Chapter 1, motion along coordinates ortho-
gonal to Qr caDoften be thought of as involvingapproximatelyharmonie
vibration. However, the components of x~ and X~, that describe motion along
Qr cannot be approximated by harmonie motion except near local minima. In
regions of Qr space in whieh So bas negative curvature, the Qr component of
x~ looks like a continuum wavefunction rather than a bound vibrational wave-
function.

We nowconsider the transitions used when a molecule hops erom SI or TI
to So. The SI or TI stale bas been populated by the mechanism So + hv-
Sn - (S.. TI). In the Born-Oppenheimer approximation, the wavefunction of
this excited stale is given by

1/;r = cf>r(rIR)X~,(R). (6.7)

The vibrational energy level €~,may be high or quite low (e.g., in condensed-
phase situations). Although €~,also contains rotational and, perhaps, relative
translational energy, we will, for brevity, speak of this energy as being vibra-
tional. If the density of states (states per cm -I of energy) in the So manifold is
high at this energy level (€~,), it is likely that there is a stale of the So manifold

1/;0 = cf>so(r IR)X~(R) (6.8)

that is nearlydegeneratewith 1/;r. Thesetwo zeroth-order states willbe coupled
by the term s in the true Hamiltonian that give rise to non-Born-Oppenheimer
corrections. This coupling will be strong if the orf-diagonal matrix elements
(1/;rIHI1/;o>are nonnegligible when compared to the energy difference €~,- €~

(Yardl,ey, 1980). Therefore, in this situation the non-Born-Oppenheimer
coupling is said to give rise to transitions between 1/;r and 1/;0, and these transi-
tions are the hopping that bas been discussed. If the excited stale is a tripiet,
the~non-Born-Oppenheimer term s alone would not couple 1/;r and 1/;0; H must
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6.2. Rates of Transitions

To evaluate ,ates of such transitions, the conventional Fermi "golden rule"
caD be used (Yardley, 1980; Lin, 1980); this fUle states that transitions starting
in q",x~, and going to q,sox~and caused by the non-Born-Oppenheimer parts of
H - he occur at a rate given in sec-1 by

w = ~E 1<q,sox~IH - helq",x~')12ó(f~- f~').v
(6.9)

The ó function guarantees that the states q,SoX~contributing to the total radia-
tionless transition rate have the same Born-Oppenheimer energy as q",X~,.
When maDYvibrational or rotational modes are present, there may be,many x~
functions, each having the same energy f~. The number of such states is referred
to as the density of states p at this total energy (f~

p(f~') = EÓ(f~-f~'). (6.10)
v

If there is reason to believe that alI of the states Iq,sox~in this degenerate
manifold couple to the same extent with the initial staLe q",x~" then the sum
over v in the above expression for W caD be replaced by the appropriate staLe
density

W = ~1<q,sox~IH-helq,xX~)12p(f~)
(6.11)

in which x~, is aDYone of thedegenerate states. Modern research on the
behavior of electronicalIy excited molecules indicates that, even for systems
with high staLedensities, often only a smalI fraction of the modes play an a.c-
tive role in the radiationless transition. As a result, it may not be wise to use
equation 6.11 when trying to understand radiationless transition rates; it is
probably more appropriate to think in terms of equation 6.9.

Internal Conversion Rates

We now consider how equation 6.9 depends on the electronic energy difference
and the vibrational wavefunctions x~ and x~, for the internal conversion case
in which q", is a singlet staLe.The terms in H - he that couple the initial staLe
q,SlX~, to the final staLe q,sox~are the non-Born-Oppenheimer terms, and the
orf-diagonal coupling matrix element' described in Chapter 1 is

1"/, yOI TT ,.IA. vx\ - lA., yOlyx,nLL ~~n.,~- .n.,YX\ fr,. I?)
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As discussed in Chapter 1, the second term in this expression is usually larger
than the first (except when the second term vanishes, owing to symmetry);
hence, the analysis will proceed using only this term. The analysis of the first
term caD be performed in analogous fashion (Berry, 1966); to do so would not
shed further light on the physical origins of internal conversion.

An expression for the above coupling matrix element that is more
physically useful caD be obtained by applying the DR operator to the Born-
Oppenheimer Schrodinger equation, which CPStobeys:

DR(h.CPsI - EStCPst) = O. (6.13)

Multiplying on the left by CPso and integrating over the electroniccoordinates
onty yields

(CPSoID Rh. ICPSt) + (CPso I h.DRCPst) - DREs t (CPso I CPSt)

- ESt (CPsol DRCPSt) = O. (6.14)

Equation 6.14can be solved for (CPstIDRCPSt)'which caD then be used to reex-
press the coupling matrix element and, therefore, to write the transition rate as

w = ~Eó(e~-e~,)v

l(x~1 [Est - Esorl(cpso IDRh.1 CPSt>'2DRX~, >12 (6.15)

This analysis shows that Wis likely to be large if regions of nuclear con-
figuration space (R) exist for which the electronic energy gap is smali
(Es,(R) ==cFEso(R» and the product X~(R)DRX~,(R) is nonvanishing.
Therefore, molecular deformations that bring the twa singlet-state potential
surfaces close to one anpther should be sought. If X~ and DRX~, have ap-
preciable overlap in the region in which Eso ==Es" then internal conversion is
likely. However, the electronic Cofce matrix element (CPsoIDRh. ICPsl>most also
be substantial; this integral will be large if (in the orbital-following sense in-

~troduced in Chapter 4) the distortion tends to evolve the orbital structure of
CPSI joto that of CPso'Where symmetry is present, the direct product of the So
and SI symmetries most match that of DRh.. For example, in H2CO, the n1r*
staLe is achieved by excitation erom an occupied b2(n) orbital to the vacant
bl(1r*) orbital. The kind of motion that is symmetry-consistent with bl x b2 is
a2. H2CO"does not have aDYvibration with a2 symmetry. As a result, the
(CPsoIDRh.lcps,) matrix element should be smali for n1r* states in C2v sym-
metry. In.contrast, 1r1r*SI states have bl x bl = al symmetry and, hence, DR
""n ,"", ;', h"(',,,.r~ (' ;r "IrA (' 1.1 r'rI 1",< t\'rN"" ..:I'-~':~--r (qrl"'~'~h:~ rrr
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Energy surfa ces that do not appro ach ciosely.

pected to have the largest effect on mapping the 11"* orbital into the 11"orbital
because the nature of these two orbitais is affected by the distance erom C to O.

Let us review the procedure developed so far. If a coordinate exists along
which Eso approaches EsI' the hopping rate for internal conversion is increased.
Near this avoided crossing or near approach of the 80 and 81 surfaces, one con-
siders whether symmetry or physical COfceare likely to make «f>soIDRhel<f>SI>
significant for deformations either along Q. (DR = DQ) or along some direc-
tion perpendicular to Q.. Oirections in which bot h this electronic COfce matrix
element is large and the vibrational produet x~DRX~, is substantial will play
important roles as modes that digest the excess electronic energy Eso - Es I'
That is, the direction along which Eso and EsI come close is important because
this motion brings the molecule to the funnel geometry. ODce the molecule is
near the funnel, it caD use other degrees of freedom (orthogonal to Q.) to
digest the excess electronic energy.

Energy-Digesting Modes

Two extreme cases of how the Eso and Ex surfaces might appear may b~
distinguished. The first case pertains to situations in which Eso and Ex do not
approach one another closely-in other words, within an energy gap that is ap-
proximately equal to a non-Born-Oppenheimer matrix element. The shapes of
two such surfaces are shown in Figure 6-1. Efficient internal conversion may
still be possible by transfer of electronic energy to internal vibrational energy.
To analyze the rates of such processes in this case, note first that the energy-
denominator factor in equation 6. 15-[Eso(Q) - ESI(Q)rl-is smalI and
never undergoes rapid growth near some critical geometry as it would, for ex-
ample, in the near-crossing situations (a second special case that will be treated
shortly). Therefore, Eso - EsI is approximated as a part that depends on the
reaction coordinate Q.. plus a part that describes the (approximately har-
monie) motion perpendieular to Q.:
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Furthermore, the shapes of Eso(R) and Es1(R) ale assumed to be sufficiently
similar that Eso(R) - Es(R) can be neglected relative to the presumed large
value of Eso(Qr) - ES1(Qr) splitting.

To continue the analysis, twa additional assumptions are made: (1) Only
one mode, whosespatial coordinate is Ra, plays an active role as an energyac-
ceptor (Yardley, 1980). (2) In the initial SI stale, the active mode is in its
v' = Olevel. Assumption 2 is by no means fully justified or even necessary. In
condensed media situations, it might be moce justified, since vibrational
energy would probably have been dissipated to the surroundings prior to the
internat conversion process. This assumption is made anty so the resulting in-
tegral containing X~Ra) and DR"X~.(Ra)can be physically interpreted moce
easily. We will then argue that essentiallythe same physical picture would be
obtained, artel moce tedious algebraic manipulation, if the moce general
(v' ;/::O)case wece analyzed (see Yardley, 1980). Under the above outlined
limitations, the fale expression (equation 6.15) becomes

w = 2; Eó(E~ - E~')I(X~Qr)[Eso(Qr)- ES.(Qr)rlx~.(Qr»v

I,

\ II (X~b IX~;,>)(4>soIDR"h.l4>s.).q 2(X~" IDR" 1X~~ )11.b~a
(6.17)

Here the product IIb extends over all modes othe, than Qr and the active Ra
and gives rise to simple Franck-Condon overlap factors for the passive modes.
If these modes ale runy passive, then the shapes of the So and SI surfaces
along these directions should be identical, in which case the (X~bIX~;,>overlap
factors wouldreduce to products of simple c5-functionsIIb c5vb.v;,.In writing the
above expression for W, we assumed that the electronic foTcematrix element is
rather insensitive to R". Consequently, (4>soIDR"h.l4>s.>was evaluated at the
equilibrium value of the SI stale of Ra (Ra = R:l), which was denoted by the
subscript "eq" in this integral. The vibrational quantum numbers appearing in
E~and E~' ale underlined because they contain the quantum numbers of all
modes (for example, v = vQr' Va, Vb; b = 1 . . .).

With an of these observations, W reduces to

W = ~ E. c5(e~" + Eso(min) + e~r - ~~ - Es.(min) - e~~)
V"VrVr

I(X~'<Qr)I[ESo(Qr)- ES.(Qr>rlX~~(Qr» 11
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Energies relevant to internal conversion.

in which e~rand e~;are the interna! energies in the Q, mode in the two states.
The energy-conservation o-function requires that the excess energy

Eso(min) - Es,(min) + e~r- e~; =dE"

whieh is equal to an adiabatie electronie energy difference plus the amount of j
energy a!ong Q, that bas to be "digested," is balanced by the change in vibra-
tional energy of the energy-accepting mode. This modified energy gap is shown
in Figure 6-2.

If x~. and x:~ are approximated by simple harmonie oscillator functions '

having identieal frequencies '" but equilibrium bon d lengths that differ by
dR a, the evaluation of the X~.ID R.I X~~ integral is straightforward. For the
case of v~ = O (Yardley, 1980)

<X~.IDR.lxo)= .j;[.A- (_~y.-l«Va -1)!)-1/2

- jVa; 1 (-,jXY.+l«va + l)!)-1I2]exp (-X/2) (6.19)

is ohtHined. in which X ==(,' /(':'1),1 R ~. Suhstitlltinn nf this resl111intn equa-
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w = l;:' ~ I (cf>soIDR.h. Icf>sl>eql 2v.v.

I<X~.(Qr)[ESo(Q.) - ESt(Qr)rIX~;(Qr» 12

~E2 1/2e-X .
21rliCJJ(~E. -IlUJ)

[- ~Er - hUJ (I (~Er - hUJ) - 1)]exp 1iUJ n 1iUJX (6.20)

in which ~Er is the excess energy or gap defined earlier.
Notice that ~Er depends opon e~. - e~;, the energy chaRge along the mode

Qr. Since for this specjal case Eso(Qr)- ESt(Qr) does not become smalI for
aDY value of Q" the element (X~. I(Eso - ES1)-' IX~) is likely to be smali unless
X~.and X~;have very similar shapes. This will not be the case if ~Er ==O, since
then x~. would correspond to a wave packet having higb kinetic energy and a
short de Broglie wavelength (as in Figure 6-2). This function could have little
overlap with aDY low-energy x~~. Hence, the dominant contribution is for
v: = O and smalI v" and tberefore it is reasonable to set v: = Vr= O in
equation 6.20.

Notice that equation 6.20 leads to the conc1usion tbat high frequency
vibrational modes should be most effective in digesting the excess energy.For
soch modes, (~Er ~1iUJ)/IlUJis as smaU as possible. The exponential depen-
dence of Won tbe energy gap ~Er is tbougbt to give rise to tbe observations
leading to tbe Kasha rule. For most molecules tbe So"- SI spacing (near the So
equilibrium geometry populated in tbe Franck-Condon absorption process) is
larger tban tbe SI - S2, S2 - S3, . . . splittings.Hence, internalconversion
from SI to--Sois slower tban between bigber states, since ~Er is larger for tbe
SI -So transition.

Equation 6.20 algOsbows tbat if experimentallyone desired to modify tbe
rate of internal conversion by isotopic substitution, tbe high frequency varia-
tions should be modified. For example, substitution of deuterium for bydro-
gen sbould produce substantial cbanges in tbe rate of internat conversion.

In tbe otber extreme case (see Figure 6-3) in wbicb Eso(Q) - Esl(Q)
becomes small along Q. (of tbe order of magnitude of tbe non-Born-
Oppenbeimer matrix elements), we assume for motion along directions
perpendieularto Qr tbat Eso- Esl caDbe writtenas two components-one
consisting of motion along Qr and a second comprised of barmonie segments
(having tbe same geometries and frequencies). Tbese barmonie potentials are
assumed to be identieal on So and SI and, heRce, cancel yielding

FJ-Es == Pe(n)-p~(n)
rr.. ..",
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In this case, Q, itself is the energy-digesting mode.
The treatment in this section of the special case in whi<;hEso and Esl do

not approach closely caDalso be made for this case in Figure 6-3 to the point at
whieh

w = :; Eo(Eso(min) + e?r- Es1(min) - e~)
Vr

41(x?r I(Eso(Q,) - ES1(Q,W1 (a>soIDQrhe Ia>sl)DR Ix~;) 12 (6.22)

Because (Eso- ES1)-1enhances contributions to the integral over Qr near the
point of closest-approach Q~, the electronie Cofce matrix element and the
energy difference caD be approximated by their values at Q~ to obtain

w = ~1rEO(Eso(min) + e?r- Es1(min)- e~)
Vr

I[Eso(Q~) - Es1(Q~r21 «/>So IDQrhe 1a>Sl) I\x?r IDQr IX~;)12 (6.23)

Unfortunately, an energy-gap law is not easily obtained for this case because
the (X?rIDQr1X~) integtal does not include two bound harmonie oscillator
functions; X?rdescribesfree (unbound) motion along the So surface. However,
transitions will be favored if the electronie energy gap Eso(Q~) - Es1(Q~) is
smalI and the electronie-force matl'ix element is large. Moreover, the kinetic
energy of motion along Q, in the product So staLe is Es1(min) + e~; - Eso(Q~),

at Q = Q~.

The Landau-Zener Point oj View

Before discussingthe rates of intersystemcrossing, it is useful to point out the
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looking at Tales of surface hopping (Eyring, Walter, and Kimball, 1944), a
method that pertains only to the second case treated above (the close approach
of So and SI depicted in Figure 6-3). In the Landau-Zener approach the near
crossing of the So and SI surfaces is parameterized by the slopes (fo and fi) of
the surfaces near their avoided crossing and the closest-approach energy
2flO ;:; 2(Es,(Q~) - Eso(Q~». The probability of a surface hop (per vibration
along Q.. as dictated by x:.) is then expressed as

p = 1 - exp[ - (411"2do)(hvIfo - fI 1)-1] (6.24)

in which v is the velocity of the nuclei as they pass through the avoided-
crossing region. The dependence of P on the vibrationallevel (x:;>of the initial
SI stale comes erom this velocity-if v; is large, the velocity is high. Equation
6.24 shows that three things-a close approach (smali EI0), fast-moving nuclei
(high frequency vibration), and a smali difference in slope (smali change in
force)-favor surface hopping. This influence of the change in slope (which is
the change in the forces Celtby the nuclear frarnework of the molecule along
the Q. direction) is obscured somewhat in the earlier expression for W (equa-
lian 6.23). This falce effect is contained in the x~.(Q.)DQrX:;(Q.) factor. If So
and SI have very different slopes near Q~, the wavefunctions x~ and x:. will
have greatly different local de Broglie wavelengths in this region, a~d x~ a~d x~.
ale not likely to have large local overlap. In contrast, similar slopes or So and
SI near Q~ willlead to large overlap of x~. and x:; (Le., similar shapes in x~r
and x~;>.

6.3. Intersystem Crossing Rates

In intersystem crossing Tales the electronic wavefunctions cpoand Cp"are singlet
and tripiet, respectively. However, the spin-orbital operator

e~
{

Z [hso = 2m2c2 ~ r~a (riaXPi).Si+ E (2Pj-~i)Xrij1.si }I,a la i#j rij J
(6.25)

couples CPoand Cp"to give perturbed wavefunctions ;;0 and cP"that contain bot h
singlet and tripiet components. Intersystem crossing is viewed as occurring be-
tweeD these perturbed functions by a mechanism similar to that just discussed
for internal conversion. The perturbed electronic wavefunctions ale approx-
imated by

~so = CPso + (CPsoIhsol CPTI)(Eso - ETI)-lcpTt (6.26)
~ ,
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and

<1>TI = <1>TI + «PTli hso I<Pso)(ET I - ESo)-I<pSo (6.27)

(Eyring, Walter, and KimbalI, 1944; Pilar, 1968). These functions caD naw be
used in the Fermi golden-rule formula to evaluate W for intersystem crossing.
In doing so, the electronic-force matrix element (or even the second non-Born- ~
Oppenheimer factor «1>soID~h.I<1>TI)that was not analyzed earlier) is
modified because 4)soand (PTIare now of mixed spin character:

(~soIDQh.I~TI) = «PsoIDQh.I<pTl)

+ «Pso 1DQh. 1<Pso)~TII hso 1<Ps~ETI - Eso)-I

+ «Pso Ihsol <PTI)«PTIIDQh. I<PTI)(Eso - ETI)-I

+ terms second order in hso. (6.28)

The first term vanishes becal,lse of spin orthogonality since DQh. contains no
spin-dependent terms. The other twa term s contain electronic-force expecta-
tion values, Eso - ETI energy denominators, and spin-orbit matrix elements.
When squared and substituted joto the expression for W (equation 6.23), these
integrals give an expression for the fale of intersystem crossing. The treatment
of digestingmodes other than Qr (if So and TI remain far apart) and the treat-
ment of the case of Qr accepting the excess energy (when So and TI cross or
come very close) proceed in the same way as that for intersystem crossing;
therefore, we need not repeat the analysis of the dependence of this radiation-
less fale on the energy gap, accepting-mode frequencies, and so forth.

The primary difference between the expressions for internal conversion
(WId and intersystem crossing (WIsd is contained in the spin-orbit integrals
«Pso1hso I<PTI)whose squares enter joto WIsc. These integrals require further
discussion (Turro, 1978). The spin-orbit operator hso, consists of the dol prod-
uct (L.S- + L_S. + 2LzSz)of a spatial electronic angular-momentum operator
and an electric spin operator. Clearly, it is the spin-operator components (S.,
S-, but not Sz) that map the tripiet spin function joto the singlet spin function
in the «Psoihso I<PT.)integral. When operating on <PTI' the corresponding spatial
angolar-momentom operator components caD alter the angolar characteristics
of the spatial wavefunctionin <PTI' More specifically,sincethe componentsL.n
Ly, Lz (or L.. L_, Lz) of the angolar-momentom operator trans form like rota-
lian operator s under point-gro up symmetry"(see Appendix C or Cotton, 1963),
the direct produet of the spatial symmetriesof <Psoand <PTImostmatchthat of
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at least one of the components Lx, Ly or Lz for the spin-orbit matrix element to
be nonvanishing. This is another important factor to keep in mind when decid-
ing when intersystem crossing is likely to occur. For example, in H2CO, the in-
tersystem crossing transitions (71"71".)1-(n7l".)3 or (n7l".)3 -n2 are spin-orbit
favored because they utilize transitions between 7I"(b1)and n(b2) orbitals or
7I".(b1)and n(b2) orbitais whose direct produet a2 bas the symmetry of a rotation
about the symmetry axis of the molecule. Pictonally, this is represented by
noting that a 90° rotation of the n(b2) orbital maps it joto a 7I"-likeb1 orbital.
Likewise, the intersystem crossing rates (71"71".)1-(71"71".)3 and (n7l".)1 - (n7l".)3

should be smaller because they are forbidden by first-order perturbation analysis
-that is, the molecule bas no rotation having bl x bl = al or b2 X b2 = al
symmetry .

In the Landau-Zener method, which applies only to twa surfaces (TI and
80) that intersect or approach closely, the probability of intersystem crossing is
given as before (equation 6.24) except that naw the energy splitting 2E01is caused
by the spin-orbit coupling and is given by

EOl = (cPsoIhso IcPTI)Q~' (6.29)

Hence, the same conditions that favor internat conversion algOfavor inter-
system crossing, except that the rate of intersystem crossing also includes the
spin-orbit matrix element in a multiplicative manner. This element will be smali
unless heavy atoms are present and the twa states can be connected by any of Lx,
Ly, or Lzo .

>"


