Chapter 3

Review of
Molecular Orbital and
Configuration-Mixing Ideas

Chapters 1 and 2 describe what a potential surface is and how a reaction path
moves along the surface. In this chapter we discuss briefly how to obtain such
surfaces. Knowledge of the procedure is important because it relates to the ac-
tual numerical evaluation of potential energy surfaces and, furthermore,
because it makes one think about those electronic configurations that are likely
to be important in describing chemical reactions. These ideas are presented
more thoroughly in Appendix A.

Consider again the hypothetical dissociation of H,O. At its equilibrium
geometry this molecule has molecular orbitals with a,, b,, and b, symmetries.
The 159, 0oy, 0&4, and lone pair orbitals in the molecular plane all have a, sym-
metry. Another ooy and o3, orbital pair has b, symmetry, and the p, orbital
directed perpendicular to the molecular plane has b, symmetry. As we saw
above, the ooy — 03y, @y — b, or b, — a, orbital excitations of H,O may play
important roles in the asymmetric dissociation to give OH + H. Hence, we expect
that the 1a32a71b33a?1b3, 1ai2ai1b,3a}1bi4a,, and 1a32a,1h33a21632b, con-
figurations should be important in describing this fragmentation. Although
the orbitals having a, and b, symmetry can only be labeled as @’ once the C,,
symmetry is broken (b, becomes a”), we can immediately tell that the first con-
figuration above cannot possibly describe OH + H because all orbitals are
doubly occupied, whereas the radical fragments OH + H have two singly oc-
cupied orbitals. The other two configurations do have the correct orbital occu-
pancy to describe OH + H. However, at the equilibrium geometry of H,O,
this first configuration dominates the electronic wavefunction because it has
two pairs of bonding electrons. Hence, as H,O fragments, a substantial
change in the electronic structure is expected to occur when moving from one
dominant configuration to another.

Before proceeding further to specific examples, one must learn how to
construct wavefunctions whose energies give us the desired potential energy
surfaces. In the conventional molecular orbital model of electronic structure
(Cook, 1978; Pilar, 1968) there are three levels of analysis of wavefunctions:
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the orbital, configuration, and state-function levels. The electronic wavefunc-
tion of a given state is usually expressed as a linear combination of configura-
tions, each of which is expressed in terms of Slater determinants over
molecular orbitals (see Appendix A). In some circumstances, the state
wavefunctions of the reactants and products may be smoothly connected (cor-
related) by way of the reaction coordinate, though the orbitals or orbital occu-
pancies (configurations) of reactants and products may not correlate smoothly.
Recall that we are directed to correlate or to connect orbitals, configurations,
or states by the observation that Q, is totally symmetric (except where vy, is
degenerate or when second-order Jahn-Teller effects dominate), and hence,
movements along Q, cannot change the symmetry of Y.

3.1 Molecular Orbitals: Symmetry of the Fock Operator

Let us recall from Chapter 1 how Hartree-Fock (HF) molecular orbitals, which
are probably the most widely used orbitals, are obtained. (For those readers
who wish to review the fundamental steps involved in ab initio molecular or-
bital calculations, a brief overview is provided in Appendix A.) A Fock
operator can be constructed from a particular orbital occupancy that is assumed
to dominate the true wavefunction at the geometry at which one is located [we
now write the operators in atomic units as in Pilar (1968)]:

Fim Vz E |l. + E 54"“2) v P"i ®u(r2) dra 3.1)

in which p extends over all of the spin orbitals that appear in the presumed
dominant electronic configuration. Clearly, the first two terms in F commute
with the symmetry operations of the molecule because they depend on R, in a
symmetrical manner. If the ¢, are nondegenerate and symmetry-adapted (this
will often be true in so-called symmetry-restricted HF calculations), ¢(r2)$,(r2)
is totally symmetric: therefore, even the coulomb part of the last term in F will
commute with all symmetry operations. To show that the exchange part is also
symmetric is more difficult.

Consider the commutator of the exchange operator X with any symmetry
operation ¢

[o, K1é(r) = o(r) S K(r, r2)¢(rz) drz — SK (r, r2)o(r2)é(r2) dra  (3.2)

in which the kernel K(r, r;) is defined as
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Now using the fact that symmetry operators are unitary (¢* = ¢~*), we obtain

S K(r, r2)o(r2)¢(rz) dra = S [U_‘(TZ)K(I" r2)]é(r2) dr, 3.4
and hence
[o, K]o(r) = S [o(r) — o' (®)IK (r, r2)o(r2) dr.. (3.5)

From equation 3.3 it should be clear that K(r, r;) contains r and r, in a sym-
metrical manner. Moreover, for abelian point groups (those with no degener-
ate representations; see Cotton, 1963), o' = 0. Therefore, o(r) — o7'(r2)
operating on K(r, r,) would give zero, and the commutator [¢, K] vanishes.
For nonabelian groups ¢! is no longer 0. However, if the sum over occupied
spin orbitals {0,} has equal occupancy for sets of (degenerate) orbitals that are
related to one another by symmetry (i.e., o¢, = ¢,.), then the overall sum
arising in o(r)K(r, r;) will be the same (although not term-by-term) as that in
o '(r2)K(r, r;) and again [o, K] = 0. The main point is that [o, F] = 0 im-
plies that the eigenfunctions of F, which are the Hartree-Fock molecular or-
bitals, will also be eigenfunctions of ¢ and, hence, will be symmetry adapted.
As a result, all of the rules for correlating states (Yo, ¥x) that are discussed
above immediately apply also to these Hartree-Fock orbitals since F has all of
the same symmetry as A.. This means that symmetry conservation applies to
orbitals and to total wavefunctions.

Now let us review how the Hartree-Fock equations are solved for the
molecular orbitals. First, an atomic-orbital basis set coumstmg most likely of
orbitals of the Slater {r"" ~try,.) or the Gaussian (x°y®z¢™>"") type is chosen.
These basis functions generally are located on each of the nuclei in the molecule
being studied. Minimal, double-zeta, or extended bases including polarization
functions are common choices, Tabulations of good basis sets are available for
the ground-state normal chemical-valence states of most first- and second-row
atoms as they occur in molecules. For example, good Gaussian bases are given
by Huzinaga (1965) and by Dunning (1970, 1971). If the state of interest has
unusual behavior (i.e., ionic states, Rydberg states, or many low-lying excited
L states), it is necessary to explore the effect of adding more and more atomic
basis functions. The importance of this basis-set selection step cannot be over-
¢ emphasized; without a good basis, one has little chance of achlevmg meaning-
. ful results.

. Once an atomic basis is obtained, all one-electron (kinetic energy, over-
£ lap, and electron-nuclear interactions) and two electron ((ab [cd)) mtegrals are
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symmetry-adapted functions {X;} and to generate the one- and two-electron in-
tegrals over these symmetry functions.

The matrix elements of the Fock operator are then constructed (Roothaan,
1951) within the symmetry-adapted basis. This is done symmetry-by-symmetry
since F is block-diagonal. To construct each block of F all (i.e., those belong-
ing to all symmetries) of the occupied spin orbitals [¢,] must be available.
However, these Hartree-Fock molecular orbitals are not yet known, so an
iteration process is used (Cook, 1978). With the aid of a computer one can
guess the form of the occupied molecular orbitals; this is done by specifying
the expansion coefficients (C,;} of ¢, in the symmetry-adapted basis:

T T e o (3.6)

The guess can be made either on chemical grounds (e.g., ¢, = lso for H,0)
or, as in most computer programs, by first solving the equation

Fo, = €,0, (3.7

ignoring the coulomb-and exchange contributions to F. The orbitals that result
from the latter procedure are usually not chemically reasonable because they
respond to only the isolated nuclei—no electron repulsion (screening) effects
were included. Nevertheless, these initial orbitals can be used to construct a
new F operator whose matrix elements (in the symmetry-adapted basis) are
defined by

Fop = <Xc ---E-V,z

+ 10 Y CuaCul (Xexal XXr) = (XeXa| XrX5)s,5.]s (3.8)
u df

- Eyliglo)

(Roothaan, 1951) in which g runs over the occupied spin orbitals and 65”,& in-
dicates that the spin (o, ) of ¢, must match that of x. for the exchange term
to contribute. The form of the Fock matrix given in equation 3.8 is ap-
propriate for performing a spin-unrestricted Hartree-Fock (UHF) calculation.
There are two different F matrices for the o and 8 spin orbitals. Therefore, the
molecular orbitals computed for o and B spin generally differ. Numerous
techniques exist that attempt to overcome this somewhat inconvenient fact
(different orbitals for different spins), so a single Fock matrix can be used to
generate Spatial orbltals that are appropnate for both o and B spins. We will
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of their solutions for special cases. These are treated in a clear manner by
Cook (1978).
Having formed F (using the crude {C, 4}), we solve

FC, = ¢,8C,. (3.9)

in which § is the overlap matrix, for a new set of [C,} coefficients that are then
used to form a new F and, subsequently, a new set {C,]. This iterative self-
consistent-field (SCF) procedure is continued until the {C,] no longer vary
from iteration to iteration.

The results of such an SCF calculation are a set of occupied and unoc-
cupied (virtual) orbitals {¢,] and orbital energies {e.}. For example, for a
double-zeta basis of H,0, there are fourteen x. functions (eight s and six p).
Hence, F is a 14 x 14 matrix having fourteen eigenvalues and fourteen
eigenvectors. Of the fourteen SCF orbitals, only five are occupied in the
ground state (1a32a?1b33a$1b}); nine are virtual or unoccupied orbitals. Keep
in mind that the words occupied and virtual only refer to the occupancy which
you guessed to start the SCF procedure. We saw earlier that as H,0 is pulled
apart to give OH + H, the occupancy changes. Thus, for OH + H it would be
more natural to use the ‘““open shell’’ configuration to define occupancy.

3.2. When Can Orbital Energies be Added?

Before closing this discussion of orbitals, let us review (Cook, 1978; Pilar,
1968) the expression for the total electronic energy Ey in the Hartree-Fock
approximation:

Eg = Y, “-%—E(uuiﬁ‘ﬁ), (3.10)

in which x and » run over the occupied spin orbitals and {u»| %) represents the
coulomb interaction integrals minus the exchange integrals (Cook, 1978) over
the Hartree-Fock molecular orbitals. It is important to note that the sum of the
occupied orbital energies does not give Ey;, because, through F, each ¢, con-
tains interactions between ¢, and all other ¢, orbitals. Hence, the sum L e,
doubly counts the electron-electron interactions. As a result, the second term
in equation 3.10 is needed. Although Ey: + 3 L. (Z.Z,/R ;) is not equal to
the sum of orbital energies plus the nuclear repulsion energies, the changes in
this energy accompanying molecular distortion can, for neutral molecules,
often be approximated well by the changes in L, ¢,. This approximation works
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on different centers. That is, the subtracted electron-electron repulsions in-
volving orbitals on different atoms cancel the repulsions of the corresponding
nuclei (at least at large bond length). This cancellation does not occur for ions
because there are ‘‘extra’’ or ‘‘missing’’ electrons whose repulsions are not
cancelled. One more thing must be stressed at this time: even though the shape
of the HF-level potential energy surface might be well represented by the shape
of L, e, the entire Hartree-Fock picture rests on a guess of the dominant elec-
tronic configuration occupancy and the assumption that y, and E¢ could be
accurately represented by a single determinant wavefunction. If the guess is
wrong, or if the correct electronic wavefunction requires more than one con-
figuration to describe reality qualitatively (e.g., in H,O as it fragments into
OH + H), the shape of the Hartree-Fock surface will probably not be correct.

3.3. Configuration Construction and Mixing

In the preceding sections the means by which molecular orbitals are defined,
calculated, and correlated by symmetry along the reaction coordinate have
been described. This information is not, however, sufficient to allow a statement
about how the wavefunctions are to be symmetry-correlated—other information
is needed about how the orbitals are occupied in the state wavefunction .
This amounts to specifying the electronic configurations that are important in
describing y, throughout the entire range of the reaction coordinate. Many
sophisticated ab initio computer programs (Shavitt, 1978) have configuration-
selection subroutines that choose those configurations of the proper symmetry
whose energies (expectation values) are low in order to represent the ground or
low-lying excited states accurately.

In most chemical reactions, by using information about the orbital energy
variations and estimates of electron repulsion energies, we can guess those few
configurations likely to dominate y,. For the asymmetric fragmentation of
H,0, we expect both the (1-4)(a’)?*(1a”)? and the (3a’)?> — 3a’5a’ configura-
tions to be important. The former configuration dominates Y, near the
equilibrium geometry of H,0, whereas the latter dominates for OH + H. For
the OH + H geometry the (1-4)(@’)*(1a”)? configuration corresponds to
OH™ + H*. At the equilibrium geometry of H,O, the (3a’)*— 3a’5a’ con-
figuration describes a singly excited state of H,O that has one OH bond
broken (i.e., 03,001 -08u-).

In general, we first consider how the orbitals of the reactants and prod-
ucts symmetry-correlate along the reaction coordinate. This is done by simply
ordering the orbitals of reactants and products by their energies and by con-
necting the orbitals of the same symmetry by ‘‘correlation lines.”’ Then we at-
tamnt tn writa Aason all acennancies (configurations) of these orbitals that are
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electronic energy. From this list of dominant configurations, a qualitative dia-
gram can be drawn displaying their energies (expectation values) as functions
of the reaction coordinate. This diagram is referred to as a configuration-
correlation diagram (CCD); it is the configuration-space analog of the orbital-
correlation diagram (OCD).

The step of constructing the configuration-correlation diagram brings us
closer to the goal of predicting how the total electronic energy varies along the
reaction coordinate. However, we still must consider the fact that configurations
of the same symmetry must be combined (in the configuration interaction step)
to give the correct electronic wave functions. In quantitative calculations done
on modern computers, the Slater-Condon rules (see Condon and Shortley,
1957, or Cook, 1978) are used to evaluate the Hamiltonian matrix elements

Hy = (®:|H|®;) @3.11)

between the important configurations {&®,} whose overall space and spin sym-
metry is correct. The eigenvalues of the H matrix then give the rofal electronic
energies of those states that arise from the configurations {®;}. These total
state energies, when plotted as functions of the reaction coordinate, generate
the state-correlation diagram (SCD), which finally allows something to be said
about the shape of the potential energy surfaces along the reaction coordinate—
in particular, whether large or small reaction barriers are expected.

If ab initio calculations are not being done on a computer, a qualitatively
correct picture of the state-correlation diagram can still be achieved by using
the configuration-correlation diagram. The reasoning is that, when the
energies of two configurations cross on the configuration-correlation diagram,

. the states that arise from the mixing of these two configurations will have
energies that aviod one another because of configuration interaction (see
- Shavitt, 1977). Thus, simply by converting all of the crossings that occur in the
. configuration-correlation diagram to avoided crossings, an approximate state-
. correlation diagram is obtained.
Before considering how a state-correlation diagram for a chemical reac-
# tion is used, it is valuable to review the essential characteristics of the reaction
f coordinate. It is a totally symmetric motion on the potential surface, except
£ when y, is degenerate or when low-lying excited states of another symmetry
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& are present that can couple ({yx|3V/3Q| Vo)) to Yo, in which cases the reac-
g tion coordinate becomes symmetric once the symmetry is lowered. The impor-
f tant point is that, by labeling the wavefunctions with only those symmetry
 elements that are preserved along the entire reaction path, the reaction coor-
 dinate is a/ways symmetric and, hence, the symmetry of ¥, remains constant.
£ This means that whenever we guess a reaction coordinate, the symmetries of
‘the orbitals, configurations, and states should be labeled ncine anly thaca cvm
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sidering the C,, insertion of an atom (say Mg) into the bond of H,, only the
elements of the C,, point group must be used, which means that the 'S, 3P, , o,
and 'P states of Mg must be labeled according to how they transform under
C,,. Being able to do this is crucial to the use of symmetry correlation concepts
as a tool for understanding reactivity.

3.4. Approximate Symmetry

In this section one more point concerning the preserved symmetry elements
will be made. The symmetries of the active orbitals (those orbitals involved in
the bond-breaking and bond-forming process) are determined by the potential
energy field influencing the electrons in these orbitals. This field depends in
turn upon how the nuclei and the passive-occupied orbitals are arranged in
space. However, those nuclei and passive orbitals that are spatially far from an
active orbital will have little influence on the potential field at this active site.
As a result, the shape (nodal characteristics and symmetry) of this active orbital
will be little influenced by nuclei and orbitals that are far from it. For example,
we do not expect the carbonyl r and »* orbitals of H,CO (formaldehyde) to be
qualitatively different from those of (H3C),CO (acetone) or even H3;C(CO)H
(acetaldehyde). In fact, we expect the = and =* orbitals to maintain their odd
character under reflection through the plane containing the C(CO)H group to
a very high extent. Certainly the quantitative nature of the = orbital, which is
more highly localized on the oxygen, and the =* orbital, which is polarized
toward the carbon, will be differently influenced by substituents. However,
the basic orbital nodal characteristics, which is really the most important
aspect of symmetry used, remains largely intact. Thus, approximate /ocal sym-
metry is almost as good as true overall molecular symmetry.




