
Chapter 2

Symmetryand
Potential EnergySurfaces

In this ehapter two points are eonsidered: (1) the information provided by the
shape and topology of a surfaee and (2) how the shape of the surfaee makes the
nuclei (moleeular framework) move in a war that might lower the symmetry of
the moleeule.

In general, a potential energy surfaee is a funetion of 3N - 5 or 3N - 6
internal eoordinates. Fór example, for HCN these eoordinates eould be rCH,rCN,
and °HCN'At loeal minima on the energy surfaee s~an displaeements of aDYof
these internal eoordinates (X;) inerease the eleetronic energy. (Note that moce
than one minimum might be present, as, in the ease of HCN and HNC.) Henee,
at the loeal minima, the slopes or gradients vanish,

(
iJE

) = O,
iJXi min

(2.1)

and the eurvatures are positive, that is,

(
iJ2E

) > O,
iJX~ min

(2.2)

and

(
iJ2E

) > O.
det iJXiiJXj min

(2.3)

An alternative statement is that the gradients vanish and the eigenvaluesof the
Hessian matrix (iJ2E/iJXiiJXj)are positive. Notiee that iLis possible that
although equations 2.1-2.3 are obeyed, the potential wen loeated at this
minimum may not be deep enough to hold a bound vibrational state (if the
zero-pointvibrational energyis greater than the dissociationenergyof the wen).

At an aetivated complex or transition state, equation 2.1 is still valid for
0/1eoordinates, but along one specjal direction (which generallywill be SOfie
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Flgure 2-1
Schematic plot of potential surfaces for the exchange reaction H + Hl -Hl + H. The central
point is symmetric H30 which is at a maximum in energy. The dashed lines Bre the reaction coor-
dinates actually followed.

combination of all of the X,-that isoQr = 1::a,rX,) the curvature is negative.
azE/aQz < O.with all other curvatures being positive. This direction is called
the reaction coordinate. If this direction is folIowedaway erom the transition
stale. the slope aE/aQr becomesnonzero. In particular. if we move along Qr
in a manner that maintains all other slopes at zero. namely aE/aX, = Oand
azE/aX: > O. then it is said that one is "walking along a reaction path."
There may. of course. be mocethan one reaction path and mocethan one tran-
sition stale on the potential energy surface of a molecule. which simply means
that there ismore than one reaction event that this molecule (or "super"
molecule)can undergo. By super molecule is meant the total systemconsisting
of all atoms involvedin the reaction. For example. HzCO can undergo decom-
position to field either Hz + CO or H + HCO. Hence. HzCO. Hz + CO. and
H + HCO all consist of the same super molecule.

From the above discussion. we see that the reaction coordinate Qr traces
out the "valley floor." defming the reaction path that connects the reactants
to the activated complex (where even aE/aQr = O). Because a "mountain
pass" such as that described above for the activated complex bas only one
direction of negative curvature. it cannot connect moce than twa valleys. and
hence the reaction coordinate Qr must be nondegenerate at the activated com-
plex. Figure 2-1 illustrates this situation; it should be elear that the top of the
mountain cannot be an activated complex. Lower-energypathways exist for
getting erom one valley to another. and along these lower-energypaths there
are nondegenerate motions with negativecurvatures that have a point at which
aE/aQr =.0.

Tt-;~ "nt tr11" tl."t thp rn(\r(H"~tpc: of a molecule IIctua11v move on ty along
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potential surface; the internat motion of a molecule depends both upaD the
surface and upaD how the collision occurs (initial molecular orientations.
velocities.etc.). However. it is still useful to learn how to follow the reaction
coordinate flam local minima characterizing reactants through the activated
complexto products. If this path tan be folIowed.one might be able to predict
whether the energy of the activated complex is high (Le.. if a large activation
energyis expected).Hence. eventhough we ale primarilyinterestedin energeties
(in contrast to the actual dynamics that the moleculeundergoeson the surface).
knowledge of the shape of the potential surface is important. To carry out
dynamie studies of reaction mechanisms requires knowledgeof the potential
energy surface(s) at alt geometnes that ale energeticallyaccessible-not anty
along Qr. Although such studies ale becomingcommon in modern research in
chemical dynamics. we ghali focus onconsiderations of energeticsand hence
be satisfied to walk along or near Qr.

From the slopes and curvatures of a potential energy surface at same
starting geometry {R~I. automated algorithms (Cerjan and Miller. 1981;
Simons.J~rgensen.Taylor.and Ozment.1983)tan be usedto walkalongQr
flam {R~Ito same new geometry {R~I.Continuing this step-by-step procedure. a
transition stale tan eventually be reached. Further walking leads to the product
stale determined by this particular transition stale. Such step-by-step walks ale
naw routinely carried out in theoretical studies of chemical reactions. In this
book. such walks will be conceptualized but not performed quantitatively.

The concepts just described relating to the shape of a potential energy sur-
face tan be used to determine whether an electronic wavefunction tPo. which
bas energy Eo at a starting geometry {Q?I. corresponds to a local minimum
(e.g.. stable conformer). to a transition stale. or to same point lying along the
reaction coordinate. These conclusions tan be made mOle quantitative. To do
sa. the dependence of the electronie Hamiltonian. which determines theenergy
surfaces. on the internat coordinates of the molecule must be examined.

The anty term in h.(r i IR,,) that is an electronic operator and depends on
R" is the electron-nuclear coulomb interaction

V.n E - EZ"e2lri - R"I-I.
i",

Consider naw how this interaction energy would change if same geometrical
coordinates were changed by a smali amount. The coordinate Q that is changed
may be same combination of the x. Y. and z position coordinates of each of the
nuclei (Q = EC,,' R,,). The change in V.ncaused by a smali change in Q tan be"
expressed as

aV.n - ~("'. v ). (aR,,\ t, 4)
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The derivative VR Vm is a vector containing the Xa, Ya, and Za derivatives of
Vm' For example;

a
. ax Vm= - EZae2Irt-Ral-3(Xt-Xa)," .,

(2.S)

in which X; and Xa are the x coordinates oCthe ith electron and the ath
nucIeus, respectively,Notice that avm/ax" bas X-symmetryas an operator in
the space of the electrons, so VRVmis a vector whose three components have
x, y, and z symmetry as electonic operators. The aRa/aQ term is nothing but
the change in Ra accompanying a unit change in Q. The reactioncoordinate
caD also be written as a linear combination of the elementary nucIear coor-
dinate displacements. In fact, the elementary displacements, which are 3N - 6
or 3N - S in number, can be combined (see Wilson, Decius, and Cross, 19S5)
to give an equal number of symmetry coordinates (Qt):

Q; = EC;jRjt
j

(2.6)

in which the IRA are the x, y, or z displacement coordinates. Conversely, it is
also possible to express the displacements in terms oCthe symmetry coordi-
nates, namely,

Rj = E(C-1)j;Q;o (2.7)

As will be seen shortly, only distortions that are totally symmetric con-
tribute to the slope of the potential energysurCacewhen one is on the reaction
coordinate. Hence, for motions along the (symmetric)reaction coordinate Qrt
the derivative term appearing in equation 2.4 can berelated to the symmetry
coefficients Cij,

aRj = (C-1)jr.
aQr

(2.8)

That is, aRj/aQr is merely the element of the inverse transformation matrix.
For example, in H2O there are twa stretching coordinates .

1
Q,., = ..fi. (~OHI :I::~OH1).

(2.9)
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The inverse transCormation is

1
~rOHI.2 = J2 (Q+ %: Q-). (2.10)

Hence,

a~OH 11.2 - .
aQ+ -..fi. '

(2. li)

since Q+ is the reaction coordinate (at the equilibrium geometry oCH2O), these
derivatives are the values needed in equation 2.4. For the treatment oCmore
complicated symmetry coordinates, see Wilson, Decius, and Cross (1955).

AD important point is that aV.n/ aQ bas the same symmetry (when con-
sidered to be an electron;c operator) as Q itself bas (when considered as a func-
tion oCnuclear positions). How is this Cactuseful? Let us assume that we have
an electronic waveCunction, which Crom now on we denote as 1/;0,that obeys
the relation

h.(r i IR~1/;o = Eo(R~1/;o (2.12)

(Le., the electronic Schrodinger equation at a geometry R: =Q~.Perturba-
, t;on theory will first be used to compute the change in the electronic energy Eo
R that accompanies a smalI chaRge in same coordinate Q. The perturbation is the
~ change in h. brought about by a smalI movement in the Q direction

! .

h.(riIQ) = h.(rdQo)+(ah./aQ)~Q+ ~ (a2h./aQ2)~Q2+

= h~+ V. (2.13)

The chaRgein the eIectronicenergyEo can be expressed(through second order
in ~Q) using conventional perturbation theory (Eyring, Walter, and KimbalI,
1944)as

1(1/;,.1VI1/;0)QoI2

Eo(Q) = Eo(Q~ + (1/;01VI1/;o)Qo + E Eo(Q~-E,.(Q~',.110
(2.14)

,in which the 1/;,.are the other eigenfunctions of h. at QO.
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2.1 Slope of the Energy Surface: First-Order Jahn-Teller Effect

Clearly the anty term that is linear in AQ appears in the (1/10j VI1/10)00 factor
and gives OUTapproximation to the slope of the potential surface along the Q
direction

(BEo/BQ)oo = (1IloIBhe/BQI1Ilo)oo

= E(clR../clQ)'(1/Io 1- EZ..e2/ If, - R.. 13(fl - R..)! 1/Io}
.. I

+ E(oR../oQ)'E 1:..:~113 (Rb-RCI)CI b b ..
(2.15)

The second term in equation 2.15 comes erom taking the derivative with
respect to Q of the nuclear-nuclear coulomb repulsion terms (yno>that were
also included in he(theseterms are not functions of the electroniccoordinates).
Because v"nis a totally symmetric function of the nuclear positions (Le.. it
displays the symmetryof the nuclear framework). aDYdistortion Q that is not
totally symmetricyieldsaVon/oQ = O.For example. the antisymmetricstretch-
ing coordinate of H2O does not change Von.sinceit movesone H atom cIosel to
the O wbiJethe other movesfarther away(the H-H distanceremainsconstant).
Thus. Voncontributes to the slope of the surface only for totally symmetric
distortions.

What about the symmetry effects in y...?We saw earlier that ov.n/oQ bas
the same symmetry as Q. If 1/10 is nondegenerate (Le.. not symmetry
degenerate). the product 1/I~1/Iois totally symmetric. and thus the integral
<1/10Ia Y.../oQI 1/10) will vanish unless a Y.../ oQ. and hence Q. is also totally sym-
metric. Therefore. for nondegenerate states anty totally symmetricdistortions
contribute to the slope of the potential surface; other kinds of motion auto-
matically field a Ynn/oQ = o and (1/10IaY.../oQ 11/10)= O. At a minimum or at
a saddle point. even the symmetric distortions give atotal slope of zero. since

ov"n/oQ = - (1/101 oVen/oQI 1/10)

at these specjal points. From the definition of Qr. the reaction coordinate bas
to be totally symmetric if 1/10is nondegenerate. because the slope of the poten-
tial surface along Qr is assumed to be nonzero exceptat local minima or at ac-
tivated complexes.

What if 1/10 is degenerate? In this casco the symmetry of 1/I~1/Io contains at
least one element that is not totally symmetricand that itself may or may not
'. '.. -"..r.,', r"T".'- -MO, h :~ ~ -:~...1" !>nrl wpl1-k,,""'n rpC:l11t t"at is treated in
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(1/1olav.n/aQI1/1o)(but not to aVnn/aQ)is also possible. Moreover, motion
along soch nonsymmetric directions (in one or the other :l: sense) will [ower
the electronic energy, so soch degenerate points on the surface are generally
not activated complexes (since the slope is nonzero at degenerate points).
Hence we conclude that a degenerate stale will generally be unstable to distor-
tion along a nonsymmetric direction (which thereby lowers the overall sym-
metry of the molecule). If this nonsymmetric distortion is itself degenerate
then, though SOfie of the original symmetry of the molecule may be tost, it is
possible that not all of the symmetry is broken (by these linear <1/10I8 v.../ 8Q 11/10)
terms). Molecules for which these slope terms are nonvanishing for degenerate
states ale said to be unstable with respect to fust-order Jahn- Tener (FOJT)
distortion. Of COllege,the symmetry of 1/1~1/10 algocontains A t (the totally sym-
metric element), so symmetricdistortions also giverise to nonvanishingslopes
for degenerate stalego However, soch symmetric distortions will generany
preserve the degeneraty of the stale 1/10'

At this stage of the analysis of movement along the reaction coordinate,
the fonowing points have been established about the potential surface: (I) At
the activated complex, Qr cannot be degenerate because a mountain pass tan
connect only two valleys; that is, the sur face. tan have only one direction of
negative curvature. (2) If 1/10is nondegenerate, Qr most be totany symmetric.
(3) If a point is reached at which 1/10isdegeneiate,a nonsymmetricmotionwill
distort the molecule, thereby lowering its energy (remaining in the valley) and
lowering its symmetry (so this motion is now symmetric in this lower-
symmetry point group). This behavior of the reaction coordinate-that is,
totally symmetric-makes the symmetry of 1/10 unchanged (except when 1/10is
degenerate) and leads to the concept of connecting states by symmetry (sym-
metry conservation).

2.2 Surface Curvature: Second-Order Jabn-Teller Effect

The effects of terms that determine the s[ope of the potential energy surface
have just been described; now, curvature terms-those quadratic in Qr-will
be examined.

The quadratic terms ale mainly of concern in regionsof the potential sur-
face at which the slopes ale zero but at which the system might be unstable
because it is at a saddle point-for example, at the activated complex. Equa-
tion 2.8 bas two soch terms. The fiest term

(1/10Ia2 v/aQ~I1/1o)Q~

concern~ the re~"nn~{> nf thp "fr(,,?',,"" "h '1rop rI,,"dh' ('ol' .1. t" ~ ~"n~nn ;n
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symmetry). and 02V/OQ~ bas the same symmetry as Q~. Hence. the term
(I/;o! 02 V/ oQ~11/;0)is generallynonzero; in factoit is also positive. This caDbe
seen by evaluating 02V/OQ2:

02V ~ aRa 02V aRb
OQ 2 = I.J OQ . oR oR . OQ

.
a,b a b

(2.16)

Recall that V contains Vonand Vonterms. Because

d2/dx2!X-yl-l = -471"ó(x-y).

(see page 69 of Arfken. 1970) the expression caD be evaluated. For Von.note
that ZaZb IRa - Rb 1-1contains Ra - Rb in a symmetrical fashion; thus.

O/ORb\Ra-Rbl-l = -%RaIRa-Rbl-l.

Therefore.

02 Von

oRaoRa = -471" EZaZbe2ó(Ra - Rb)b~a
(2.17)

and

oVnn - 2
oRaoRb - 471"ZaZbeó(Ra - Rb). for a '* b.

(2.18)

Since the nuclei never are located at the same position. these ó functions
vanish.

Using the above ó-function identity. 02Von/oQ2caDbe evaluated as

cl:~Ra = ~(-Zae2)( -471")ó(ri- Ra)and O::~Rb = o.

Thus.

02~ = EE(oRa/oQ)2471"e2ZaÓ(ri- Ra).
oQ i a

(2.19)

The expectation value of this term gives the first term in the curvature. namely.

1/;~1(02Von/OQ211/;0 = E471"Zae2(clRa/oQ)2p(Ra) (2.20)
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in whichp(Ra) is the electron density in stale 1/;0 at the nucleus at Ra. Clearly,
this contribution to the curvature is always positive and will be nonzero for
any symmetry of 1/;0, since iJ2V/iJQ2is totally symmetric. The negative cur-
vature of the surface at an activated complex is a result oCa second contribu-
tion to the curvature. This is given by

E I (lho I(iJV/iJQI1/;o) 12(Eo - E"rl
"';tO

,

and is alwaysnegative(if 1/;0 is the ground stale) because Eo - E",is negative.
Earlier, it was shown that iJV/ iJQbas the same symmetryas Q. Therefore, if Q
is totally symmetric (as it is along the reaction coordinate where 1/;0is
nondegenerate), the excited stale 1/;",most have the same symmetry as 1/;0' On
the other band, if Q is not symmetric, which might occur at a minimum or
maximum point at which a/l iJE/iJQ = O (and heRce consideration of the
quadratic terms in Eo(Q) becomes essential), or if 1/;0wece degenerate, so that
Q leads to distortion of the molecule, then the symmetry oC1/;", is dictated by
the direct product of the Q and 1/;0symmetries. Notice that because the slope of
Eo is zero at the activated complex, the energy variation is naw dictated by the
quadratic terms, which can now allow Qr to be nonsymmetric.

Clearly, for these negative curvature terms to become important (and
~ven dominant, as they are at an activated complex), the symmetry oC1/;",must
be correct and the energy splitting Eo - E", most be smali. This situation occurs
when a chemical band is broken. For example, at large internuclear distances
the a2 and ala*1 configurations oCHCl are reasonably cIose together in energy.
BecauseiJV/iJQis a one-electronoperator, the excitedstates 1/;", that can couple
most strongly with 1/;0 are those that are singly excited relative to 1/;0 (Condon
and Shortley, 1957; Cook, 1978). As a result, negative curvature along the
reaction path should be possible when there are low-lying excited states that in-
volvesinglepromotionsof electronserombondingorbitaIsin 1/;0 to antibond-
ingorbitaIsin 1/;",.

To gainmoceinsightjoto why1/;", and 1/;0 shouldbe relatedin this anti-
bonding/bonding manner, recall that we are looking (using perturbation theory)
at the response oCthe system (1/;0,Eo) to a smali displacement of the nuclei
(J~rgensen and Simons, 1981). The energy response bas already been discussed
above. The change in the wavefunction caused by the perturbation Vis given by

1/;0-1/;0 + E (1/;",1VI1/;o)(Eo -E",)-I1/;",
"';tO

(2.21)

(Eyring, Walter, and KimbalI, 1944). Thus, the electron density 1/;~1/;0changes
(through first order in the ch~,""f"in n\ hv ~n ::1mnl1nt
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E2!f~!fIr(!flrlav/aQI!fo}(Eo-Elrr. ;5 E8polr.
~O 1r1l0

(2.22)

Where {,POIris positive, the electron density increases as the motion along Q
occurs; where it is negative, electron density decreases. The symmetry (Le., the
nadal pattern) of {,POIr can be determined by looking at the symmetryof !f~!flr'

If "'o and "'Irare approximated by Slater determinants (Cook, 1978) that differ
by a single orbital replacement (,po- ,prr),the nadal pattern is that of the orbital
products c/J~c/JIr'The positive nudei will move to regions at which {,POIris
positive (Le., in which electron density piles up) and willleave regions in which
{,POIris negative.

Consider, for example, the U10 molecule at its equilibrium geometry.
Since !fois nondegenerate, all of the slope terms vanish. What about the cur-
vatures? Excitation of an electron erom the bonding a. OU orbital to its anti-
bondinga. partnergivesa ,p~,plrpatternof the form

~
wbicb is consistent (according to tbe above analysis of the integrals arising in
tbe curvature terms) with a symmetric stretch distortion. The bonding bl to
antibonding bl{,Polralso looks like

~
wbicb is also consistent witb a symmetric stretcb. On tbe other band, tbe
a. - bl or bl -a. excitations bave a {,POIrof tbe form

-~
c:J~ ~

whicb is consistent with an antisymmetric bl stretcb. Of course, we do not ex- ~
pect any of tbese excitations to give rise to large (negative) contributions to the j

curvatures in this particular (U10) case. Their excitation energies, wbicb occur
- ", ...~- .~~~- ~ ..~ , '" c;ince thev involve
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excitations are moce than outweighed by the positive contributions arising
erom the terms shown in equation 2.20. This is, of course, expected hece, since
we are considering H2O at its equilibrium geometry and negative curvature is
not anticipated.

Before proceeding to the application of the ideas presented in the fiest two
chapters, it is useful to review the facts that have been established about the
reaction coordinate, the activated complex, and the slope and curvature of the
surface along Qr. Remember that the goal is to be able to use this information
to move along Qr erom reactions, through an activated complex, to products
in order to estimate the activation energy for a reaction. As this path is taken,
the symmetry of the wavefunction remains conserved except when the stale
becomes degenerate (first-order Jahn- Teller) or when low-Iying singly excited
states come joto play and give rise to second-order Jahn-Teller distortions.


