Chapter 2

Symmetry and
Potential Energy Surfaces

In this chapter two points are considered: (1) the information provided by the
shape and topology of a surface and (2) how the shape of the surface makes the
nuclei (molecular framework) move in a way that might lower the symmetry of
the molecule.

In general, a potential energy surface is a function of 3N —5 or 3N -6
internal coordinates. For example, for HCN these coordinates could be rcy, rens
and Oycn. At local minima on the energy surface small displacements of any of
these internal coordinates [.X;} increase the electronic energy. (Note that more
than one minimum might be present, as, in the case of HCN and HNC.) Hence,
at the local minima, the slopes or gradients vanish,
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and the curvatures are positive, that is,

3’E
(a—[‘,‘z)m > 0, 2.2)
and
9’E
det (GX‘BXJ) i > 0. (2.3)

An alternative statement is that the gradients vanish and the eigenvalues of the
Hessian matrix (32E/dX.3X;) are positive. Notice that it is possible that
although equations 2.1-2.3 are obeyed, the potential well located at this
minimum may not be deep enough to hold a bound vibrational state (if the
zero-point vibrational energy is greater than the dissociation energy of the well).

At an activated complex or transition state, equation 2.1 is still valid for
all coordinates, but along one special direction (which generally will be some
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Figure 2-1

Schematic plot of potential surfaces for the exchange reaction H + H; — H; + H. The central
point is symmetric H3, which is at a maximum in energy. The dashed lines are the reaction coor-
dinates actually followed.

combination of all of the X;—that is, Q, = L a,.X)) the curvature is negative,
3%E/3Q? < 0, with all other curvatures belng positive. This direction is called
the reaction coordinate. If this direction is followed away from the transition
state, the slope dE/3Q, becomes nonzero. In particular, if we move along Q,
in a manner that maintains all other slopes at zero, namely dE/3dX; = 0 and
32E/aX? > 0, then it is said that one is ‘“‘walking along a reaction path.”’
There may, of course, be more than one reaction path and more than one tran-
sition state on the potential energy surface of a molecule, which simply means
that there is more than one reaction event that this molecule (or ‘‘super’’
molecule) can undergo. By super molecule is meant the total system consisting
of all atoms involved in the reaction. For example, H,CO can undergo decom-
position to yield either H, + CO or H + HCO. Hence, H,CO, H, + CO, and
H + HCO all consist of the same super molecule.

From the above discussion, we see that the reaction coordinate Q, traces
out the *‘valley floor,’”’ defining the reaction path that connects the reactants
to the activated complex (where even dE/3Q, = 0). Because a ‘‘mountain
pass’’ such as that described above for the activated complex has only one
direction of negative curvature, it cannot connect more than two valleys, and
hence the reaction coordinate Q, must be nondegenerate at the activated com-
plex. Figure 2-1 illustrates this situation; it should be clear that the top of the
mountain cannot be an activated complex. Lower-energy pathways exist for
getting from one valley to another, and along these lower-energy paths there
are nondegenerate motions with negative curvatures that have a point at which
9E/0Q, =

Tt ic nat trna thot the cnardinatec of 2 molecule actuallv move only along
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potential surface; the internal motion of a molecule depends both upon the
surface and upon how the collision occurs (initial molecular orientations,
velocities, etc.). However, it is still useful to learn how to follow the reaction
coordinate from local minima characterizing reactants through the activated
complex to products. If this path can be followed, one might be able to predict
whether the energy of the activated complex is high (i.e., if a large activation
energy is expected). Hence, even though we are primarily interested in energetics
(in contrast to the actual dynamics that the molecule undergoes on the surface),
knowledge of the shape of the potential surface is important. To carry out
dynamic studies of reaction mechanisms requires knowledge of the potential
energy surface(s) at all geometries that are energetically accessible—not only
along Q.. Although such studies are becoming common in modern research in
chemical dynamics, we shall focus on considerations of energetics and hence
be satisfied to walk along or near Q,.

From the slopes and curvatures of a potential energy surface at some
starting geometry [R?}, automated algorithms (Cerjan and Miller, 1981;
Simons, Jgrgensen, Taylor, and Ozment, 1983) can be used to walk along Q,
from {RY) to some new geometry {R2). Continuing this step-by-step procedure, a
transition state can eventually be reached. Further walking leads to the product
state determined by this particular transition state. Such step-by-step walks are
now routinely carried out in theoretical studies of chemical reactions. In this
book, such walks will be conceptualized but not performed quantitatively.

The concepts just described relating to the shape of a potential energy sur-
face can be used to determine whether an electronic wavefunction ¢,, which
has energy E, at a starting geometry {Qf}, corresponds to a local minimum
(e.g., stable conformer), to a transition state, or to some point lying along the
reaction coordinate. These conclusions can be made more quantitative. To do
so, the dependence of the electronic Hamiltonian, which determines the energy
surfaces, on the internal coordinates of the molecule must be examined.

The only term in A(r;|R,) that is an electronic operator and depends on
R, is the electron-nuclear coulomb interaction

Vi = — Y Z.e%|r, — R, |7\

Consider now how this interaction energy would change if some geometrical
coordinates were changed by a small amount. The coordinate Q that is changed
may be some combination of the x, y, and z position coordinates of each of the
nuclei (Q = EC,'R,). The change in V_, caused by a small change in Q can be
expressed as *

Wa _ S 1. (9Ra) 7 4)
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The derivative Vi V., is a vector containing the X,, Y,, and Z, derivatives of
V... For example,'

“_a—h Ven el Ezaez‘ r;— Rﬂ l _3(Xl' i Xu)s (2°5)
X, - .

in which X; and X, are the x coordinates of the ith electron and the ath
nucleus, respectively, Notice that dV_,/d X, has X-symmetry as an operator in
the space of the electrons, so Vi V,, is a vector whose three components have
x, y, and z symmetry as electonic operators. The dR,/dQ term is nothing but
the change in R, accompanying a unit change in Q. The reaction coordinate
can also be written as a linear combination of the elementary nuclear coor-
dinate displacements. In fact, the elementary displacements, which are 3N -6
or 3N — 5 in number, can be combined (see Wilson, Decius, and Cross, 1955)
to give an equal number of symmetry coordinates (Q,):

Q: = Y CyR,, 2.6)
E

in which the {R;} are the x, y, or z displacement coordinates. Conversely, it is
also possible to express the displacements in terms of the symmetry coordi-
nates, namely,

R; = (€™ Q2.7

As will be seen shortly, only distortions that are totally symmetric con-
tribute to the slope of the potential energy surface when one is on the reaction
coordinate. Hence, for motions along the (symmetric) reaction coordinate Q,,
the derivative term appearing in equation 2.4 can be related to the symmetry
coefficients C,;,

g
'é__iQr" = (C ). (2.8)

That is, dR;/9Q, is merely the element of the inverse transformation matrix.
For example, in H,O there are two stretching coordinates

Q. = }5 (@rom, % Aroy,). 2.9)
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The inverse transformation is

Arop,, = ;713 Q.+ Q). (2.10)
Hence,
3Aronm W62 0 @.11)
0. 2’ :

since Q, is the reaction coordinate (at the equilibrium geometry of H,0), these
derivatives are the values needed in equation 2.4. For the treatment of more
complicated symmetry coordinates, see Wilson, Decius, and Cross (1955).

An important point is that dV_,/dQ has the same symmetry (when con-
sidered to be an electronic operator) as Q itself has (when considered as a func-
tion of nuclear positions). How is this fact useful? Let us assume that we have
an electronic wavefunction, which from now on we denote as y,, that obeys
the relation

h.(r:| R0 = EoR)Wo (2.12)

(i.e., the electronic Schrodinger equation at a geometry RY = Q°). Perturba-
tion theory will first be used to compute the change in the electronic energy Eo
that accompanies a small change in some coordinate Q. The perturbation is the
change in A, brought about by a small movement in the Q direction

h(ri|Q) = h(ri| Q)+ Gh/IQIAQ +5-@*h/IQHAQ? + - - -

= WO+ V. (2.13)

' The change in the electronic energy E, can be expressed (through second order
in AQ) using conventional perturbation theory (Eyring, Walter, and Kimball,
. 1944) as

V|¥0)eo!?
Eo(Q) = Eo(Q%) + (Wo| V|Vo)go + L ¥ V] ¥0)gol

2 Eo(Q%) - ExQY) s

AT

e

_in which the ¥, are the other eigenfunctions of 4. at Q°.
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2.1 Slope of the Energy Surface: First-Order Jahn-Teller Effect

Clearly the only term that is linear in AQ appears in the (Y| V| o) g factor
and gives our approximation to the siope of the potential surface along the Q
direction

(3Eo/3Q)g0 = (Yo|dh./3Q|¥0)gr
= Y (0R./3Q) (Vo |— Y Z.e*/|ri — Ra|(r; — RJ)| ¥o)
a i

+LOR./30)° T —Réﬁ;—l,— ®, - R.) @.15)

The second term in equation 2.15 comes from taking the derivative with
respect to Q of the nuclear-nuclear coulomb repulsion terms (F,,) that were
also included in A, (these terms are not functions of the electronic coordinates).
Because ¥, is a totally symmetric function of the nuclear positions (i.e., it
displays the symmetry of the nuclear framework), any distortion Q that is not
totally symmetric yields a¥,,/dQ = 0. For example, the antisymmetric stretch-
ing coordinate of H,O does not change V., since it moves one H atom closer to
the O while the other moves farther away (the H—H distance remains constant).
Thus, ¥, contributes to the slope of the surface only for totally symmetric
distortions.

What about the symmetry effects in 1,,? We saw earlier that d¥,,/3Q has
the same symmetry as Q. If y, is nondegenerate (i.e., not symmetry
degenerate), the product ¥y, is totally symmetric, and thus the integral
(Vo |0V¥../3Q| Vo) will vanish unless 3¥,,/3Q, and hence Q, is also totally sym-
metric. Therefore, for nondegenerate states only totally symmetric distortions
contribute to the slope of the potential surface; other kinds of motion auto-
matically yield 3¥,,/3Q = 0 and (Yo |3V./3Q|¥e) = 0. At a minimum or at
a saddle point, even the symmetric distortions give a total slope of zero, since

IVn/3Q = —(Yo|3Vea/ 3Q|V¥0)

at these special points. From the definition of Q,, the reaction coordinate has
to be totally symmetric if ¥, is nondegenerate, because the slope of the poten-
tial surface along Q, is assumed to be nonzero except at local minima or at ac-
tivated complexes.

What if y, is degenerate? In this case, the symmetry of Y3y, contains at

least one elemcnt that is not totally symmetric and that itself may or may not
1 i o P S W ir a rimnle and waell.lbnnwn reenlt that is treated in

8 L als Bls
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(Vo|dV/3Q|¥o) (but not to 3¥,,/3Q) is also possible. Moreover, motion
along such nonsymmetric directions (in one or the other + sense) will lower
the electronic energy, so such degenerate points on the surface are generally
not activated complexes (since the slope is nonzero at degenerate points).
Hence we conclude that a degenerate state will generally be unstable to distor-
tion along a nonsymmetric direction (which thereby lowers the overall sym-
metry of the molecule). If this nonsymmetric distortion is itself degenerate
then, though some of the original symmetry of the molecule may be lost, it is
possible that not all of the symmetry is broken (by these linear (Yo |3V,,/3Q| Vo)
terms). Molecules for which these slope terms are nonvanishing for degenerate
states are said to be unstable with respect to first-order Jahn-Teller (FOJT)
distortion. Of course, the symmetry of gy also contains A4, (the totally sym-
metric element), so symmetric distortions also give rise to nonvanishing slopes
for degenerate states. However, such symmetric distortions will generally
preserve the degeneracy of the state yo.

At this stage of the analysis of movement along the reaction coordinate,
the following points have been established about the potential surface: (1) At
the activated complex, Q, cannot be degenerate because a mountain pass can
connect only two valleys; that is, the surface can have only one direction of
negative curvature. (2) If y, is nondegenerate, Q, must be totally symmetric.
(3) If a point is reached at which y, is degenerate, a nonsymmetric motion will
distort the molecule, thereby lowering its energy (remaining in the valley) and
lowering its symmetry (so this motion is now symmetric in this lower-
symmetry point group). This behavior of the reaction coordinate—that is,
totally symmetric—makes the symmetry of y, unchanged (except when v is
degenerate) and leads to the concept of connecting states by symmetry (sym-
metry conservation).

2.2 Surface Curvature: Second-Order Jahn-Teller Effect

The effects of terms that determine the slope of the potential energy surface
have just been described; now, curvature terms—those quadratic in Q,—will
be examined.

The quadratic terms are mainly of concern in regions of the potential sur-
face at which the slopes are zero but at which the system might be unstable
because it is at a saddle point—for example, at the activated complex. Equa-
tion 2.8 has two such terms. The first term

(o |3*V/3Q7| Yoy g

concerns the recsnonse of the “frazan?’® chareoe dencitvy ~f . ta n ~hnnas in
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symmetry), and 3>V/dQ? has the same symmetry as Q2. Hence, the term
(¥0|3*V/ dQ%| yo) is generally nonzero; in fact, it is also positive. This can be
seen by evaluating 32V/3Q%

3’V __ 0R,
E aQ "3R.9R, Q0 -’ (1%

aQ’
Recall that V contains ¥, and ¥, terms. Because
d*/dx?|x—y|™ = —4xé(x—y),

(see page 69 of Arfken, 1970) the expression can be evaluated. For ¥,,, note
that Z,Z,|R, — R,| ™" contains R, — R, in a symmetrical fashion; thus,

3/0Ry|R, —Ry|™" = —3/0R.|R, —Ry|™".

Therefore,
Ve _ 4y Y7.2,6%R. - Ry @17
aR,IR, -

and
W _ 4r7.7,6*5R. —Ry),fora # b. (2.18)
dR,0R, : : !

Since the nuclei never are located at the same position, these & functions
vanish.

Using the above 8-function identity, 32¥,,/8Q? can be evaluated as

Ve 3V,

m = ;(-Zaez)(““ﬂ')&(fi —R,) and _afi:éiT = 0.
Thus,
%ZQz EE(aR./aQ)’4=re‘Z.6(n R,). (2.19)
i

The expectation value of this term gives the first term in the curvature, namely,

Vol(@*¥n/3Q% W0 = Y 47Z.e*(3R./3Q)*p(R.) (2.20)
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in which p(R,) is the electron density in state Y, at the nucleus at R,,. Clearly,
this contribution tv the curvature is always positive and will be nonzero for
any symmetry of o, since 32V/3Q? is totally symmetric. The negative cur-
vature of the surface at an activated complex is a result of a second contribu-
tion to the curvature. This is given by

Y1 ¥kl @V/3Q| Yo | 2(Eo — EN)"

k#0

and is always negative (if |, is the ground state) because E, — E} is negative.
Earlier, it was shown that 3V /3dQ has the same symmetry as Q. Therefore, if Q
is totally symmetric (as it is along the reaction coordinate where y, is
nondegenerate), the excited state y; must have the same symmetry as . On
the other hand, if Q is not symmetric, which might occur at a minimum or
maximum point at which all dE/3dQ = 0 (and hence consideration of the
quadratic terms in Eo(Q) becomes essential), or if o were degenerate, so that
Q leads to distortion of the molecule, then the symmetry of y, is dictated by
the direct product of the Q and v, symmetries. Notice that because the slope of
E, is zero at the activated complex, the energy variation is now dictated by the
quadratic terms, which can now allow Q, to be nonsymmetric.

Clearly, for these negative curvature terms to become important (and
even dominant, as they are at an activated complex), the symmetry of y, must
be correct and the energy splitting E, — E; must be small. This situation occurs
when a chemical bond is broken. For example, at large internuclear distances
the ¢ and o'0*! configurations of HCI are reasonably close together in energy.
Because dV/dQ is a one-electron operator, the excited states ¥, that can couple
" most strongly with ¢ are those that are singly excited relative to y, (Condon
and Shortley, 1957; Cook, 1978). As a result, negative curvature along the
reaction path should be possible when there are low-lying excited states that in-
volve single promotions of electrons from bonding orbitals in , to antibond-
ing orbitals in ;.

To gain more insight into why ¥ and y, should be related in this anti-
bonding/bonding manner, recall that we are looking (using perturbation theory)
at the response of the system (Yo, Eo) to a small displacement of the nuclei
(Jgrgensen and Simons, 1981). The energy response has already been discussed
above. The change in the wavefunction caused by the perturbation V is given by

Vo— Yo+ E(lt'ﬂ VIYo)(Eo — Ex) " Yi (2.21)
K20

(Eyring, Walter, and Kimball, 1944). Thus, the electron density y gy, changes
(through first order in the chanee in M hv an amonnt
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Y20 80n (Vx| 3V/3Q| Vo) (Eo — E)™ = Y 5pox. 2.22)
k#0

k#0

Where épox is positive, the electron density increases as the motion along Q
occurs; where it is negative, electron density decreases. The symmetry (i.e., the
nodal pattern) of §pox can be determined by looking at the symmetry of ygys.
If Yo and ¥, are approximated by Slater determinants (Cook, 1978) that differ
by a single orbital replacement (¢ — ¢1), the nodal pattern is that of the orbital
products ¢g¢x. The positive nuclei will move to regions at which dpox is
positive (i.e., in which electron density piles up) and will leave regions in which
&pox is negative.

Consider, for example, the H,O molecule at its equilibrium geometry.
Since Y is nondegenerate, all of the slope terms vanish. What about the cur-
vatures? Excitation of an electron from the bonding @, OH orbital to its anti-
bonding a, partner gives a g, pattern of the form

e

which is consistent (according to the above analysis of the integrals arising in
the curvature terms) with a symmetric stretch distortion. The bonding b, to
antibonding b,6pox also looks like

F e

which is also consistent with a symmetric stretch. On the other hand, the
a; — b, or b, — a, excitations have a pox of the form

FI

which is consistent with an antisymmetric b, stretch. Of course, we do not ex-
pect any of these excitations to give rise to large (negative) contributions to the .
curvatures in this particular (H,0) case. Their excitation energies, which occur *

sies dnmee Are arars Inrea gince thev involve
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excitations are more than outweighed by the positive contributions arising
from the terms shown in equation 2.20. This is, of course, expected here, since
we are considering H,O at its equilibrium geometry and negative curvature is
not anticipated.

Before proceeding to the application of the ideas presented in the first two
chapters, it is useful to review the facts that have been established about the
reaction coordinate, the activated complex, and the slope and curvature of the
surface along Q,. Remember that the goal is to be able to use this information
to move along Q, from reactions, through an activated complex, to products
in order to estimate the activation energy for a reaction. As this path is taken,
the symmetry of the wavefunction remains conserved except when the state
becomes degenerate (first-order Jahn-Teller) or when low-lying singly excited
states come into play and give rise to second-order Jahn-Teller distortions.




