Symmetry and Potential Energy Surfaces

In this chapter two points are considered: (1) the information provided by the shape and topology of a surface and (2) how the shape of the surface makes the nuclei (molecular framework) move in a way that might lower the symmetry of the molecule.

In general, a potential energy surface is a function of $3 N-5$ or $3 N-6$ internal coordinates. For example, for HCN these coordinates could be $r_{\mathrm{CH}}, r_{\mathrm{CN}}$, and θ_{HCN}. At local minima on the energy surface small displacements of any of these internal coordinates $\left\{X_{i}\right\}$ increase the electronic energy. (Note that more than one minimum might be present, as, in the case of HCN and HNC.) Hence, at the local minima, the slopes or gradients vanish,

$$
\begin{equation*}
\left(\frac{\partial E}{\partial X_{i}}\right)_{\min }=0 \tag{2.1}
\end{equation*}
$$

and the curvatures are positive, that is,

$$
\begin{equation*}
\left(\frac{\partial^{2} E}{\partial X_{i}^{2}}\right)_{\min }>0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} E}{\partial X_{i} \partial X_{j}}\right)_{\min }>0 \tag{2.3}
\end{equation*}
$$

An alternative statement is that the gradients vanish and the eigenvalues of the Hessian matrix ($\left.\partial^{2} E / \partial X_{i} \partial X_{j}\right)$ are positive. Notice that it is possible that although equations 2.1-2.3 are obeyed, the potential well located at this minimum may not be deep enough to hold a bound vibrational state (if the zero-point vibrational energy is greater than the dissociation energy of the well).

At an activated complex or transition state, equation 2.1 is still valid for all coordinates, but along one special direction (which generally will be some

Figure 2-1
Schematic plot of potential surfaces for the exchange reaction $\mathrm{H}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2}+\mathrm{H}$. The central point is symmetric H_{3}, which is at a maximum in energy. The dashed lines are the reaction coordinates actually followed.
combination of all of the X_{i}-that is, $Q_{r}=\sum_{i} a_{i r} X_{i}$) the curvature is negative, $\partial^{2} E / \partial Q^{2}<0$, with all other curvatures being positive. This direction is called the reaction coordinate. If this direction is followed away from the transition state, the slope $\partial E / \partial Q_{r}$ becomes nonzero. In particular, if we move along Q_{r} in a manner that maintains all other slopes at zero, namely $\partial E / \partial X_{i}=0$ and $\partial^{2} E / \partial X_{i}^{2}>0$, then it is said that one is "walking along a reaction path." There may, of course, be more than one reaction path and more than one transition state on the potential energy surface of a molecule, which simply means that there is more than one reaction event that this molecule (or "super" molecule) can undergo. By super molecule is meant the total system consisting of all atoms involved in the reaction. For example, $\mathrm{H}_{2} \mathbf{C O}$ can undergo decomposition to yield either $\mathrm{H}_{2}+\mathrm{CO}$ or $\mathrm{H}+\mathrm{HCO}$. Hence, $\mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2}+\mathrm{CO}$, and $\mathrm{H}+\mathrm{HCO}$ all consist of the same super molecule.

From the above discussion, we see that the reaction coordinate Q_{r} traces out the "valley floor," defining the reaction path that connects the reactants to the activated complex (where even $\partial E / \partial Q_{r}=0$). Because a "mountain pass" such as that described above for the activated complex has only one direction of negative curvature, it cannot connect more than two valleys, and hence the reaction coordinate Q_{r} must be nondegenerate at the activated complex. Figure 2-1 illustrates this situation; it should be clear that the top of the mountain cannot be an activated complex. Lower-energy pathways exist for getting from one valley to another, and along these lower-energy paths there are nondegenerate motions with negative curvatures that have a point at which $\partial E / \partial Q_{r}=0$.

It ie not trime that the enordinates of a molecule actuallv move only along
potential surface; the internal motion of a molecule depends both upon the surface and upon how the collision occurs (initial molecular orientations, velocities, etc.). However, it is still useful to learn how to follow the reaction coordinate from local minima characterizing reactants through the activated complex to products. If this path can be followed, one might be able to predict whether the energy of the activated complex is high (i.e., if a large activation energy is expected). Hence, even though we are primarily interested in energetics (in contrast to the actual dynamics that the molecule undergoes on the surface), knowledge of the shape of the potential surface is important. To carry out dynamic studies of reaction mechanisms requires knowledge of the potential energy surface(s) at all geometries that are energetically accessible-not only along Q_{r}. Although such studies are becoming common in modern research in chemical dynamics, we shall focus on considerations of energetics and hence be satisfied to walk along or near Q_{r}.

From the slopes and curvatures of a potential energy surface at some starting geometry ($\mathbf{R}_{a}^{\mathbf{0}}$ \}, automated algorithms (Cerjan and Miller, 1981; Simons, Jørgensen, Taylor, and Ozment, 1983) can be used to walk along Q_{r} from $\left\{\mathbf{R}_{a}^{0}\right.$) to some new geometry $\left\{\mathbf{R}_{a}^{1}\right.$). Continuing this step-by-step procedure, a transition state can eventually be reached. Further walking leads to the product state determined by this particular transition state. Such step-by-step walks are now routinely carried out in theoretical studies of chemical reactions. In this book, such walks will be conceptualized but not performed quantitatively.

The concepts just described relating to the shape of a potential energy surface can be used to determine whether an electronic wavefunction ϕ_{0}, which has energy E_{0} at a starting geometry $\left\{Q_{i}^{0}\right\}$, corresponds to a local minimum (e.g., stable conformer), to a transition state, or to some point lying along the reaction coordinate. These conclusions can be made more quantitative. To do so, the dependence of the electronic Hamiltonian, which determines the energy surfaces, on the internal coordinates of the molecule must be examined.

The only term in $h_{e}\left(\mathbf{r}_{i} \mid \mathbf{R}_{a}\right)$ that is an electronic operator and depends on \mathbf{R}_{a} is the electron-nuclear coulomb interaction

$$
V_{\mathrm{en}} \equiv-\sum_{i, a} Z_{a} e^{2}\left|\mathbf{r}_{i}-\mathbf{R}_{a}\right|^{-1}
$$

Consider now how this interaction energy would change if some geometrical coordinates were changed by a small amount. The coordinate Q that is changed may be some combination of the x, y, and z position coordinates of each of the nuclei $\left(Q=\sum_{a} \mathbf{C}_{a} \cdot \mathbf{R}_{a}\right)$. The change in $V_{\text {en }}$ caused by a small change in Q can be expressed as

$$
\partial V_{\mathrm{en}}-\Gamma \boldsymbol{V},\left(\partial \mathbf{R}_{a}\right)
$$

The derivative $\nabla_{\mathbf{R}_{a}} V_{\text {en }}$ is a vector containing the X_{a}, Y_{a}, and Z_{a} derivatives of $V_{\text {en }}$. For example,

$$
\begin{equation*}
\frac{\partial}{\partial X_{a}} V_{\mathrm{en}}=-\sum_{i} Z_{a} e^{2}\left|\mathbf{r}_{i}-\mathbf{R}_{a}\right|^{-3}\left(X_{i}-X_{a}\right), \tag{2.5}
\end{equation*}
$$

in which X_{i} and X_{a} are the x coordinates of the i th electron and the a th nucleus, respectively, Notice that $\partial V_{\mathrm{en}} / \partial X_{a}$ has X -symmetry as an operator in the space of the electrons, so $\nabla_{\mathbf{R}} V_{\mathrm{en}}$ is a vector whose three components have x, y, and z symmetry as electonic operators. The $\partial \mathbf{R}_{a} / \partial Q$ term is nothing but the change in \mathbf{R}_{a} accompanying a unit change in Q. The reaction coordinate can also be written as a linear combination of the elementary nuclear coordinate displacements. In fact, the elementary displacements, which are $3 N-6$ or $3 N-5$ in number, can be combined (see Wilson, Decius, and Cross, 1955) to give an equal number of symmetry coordinates $\left(Q_{i}\right)$:

$$
\begin{equation*}
Q_{i}=\sum_{j} C_{i j} R_{j} \tag{2.6}
\end{equation*}
$$

in which the $\left\{R_{j}\right\}$ are the x, y, or z displacement coordinates. Conversely, it is also possible to express the displacements in terms of the symmetry coordinates, namely,

$$
\begin{equation*}
R_{j}=\sum_{i}\left(C^{-1}\right)_{j i} Q_{i} \tag{2.7}
\end{equation*}
$$

As will be seen shortly, only distortions that are totally symmetric contribute to the slope of the potential energy surface when one is on the reaction coordinate. Hence, for motions along the (symmetric) reaction coordinate Q_{r}, the derivative term appearing in equation 2.4 can be related to the symmetry coefficients $C_{i j}$,

$$
\begin{equation*}
\frac{\partial R_{j}}{\partial Q_{r}}=\left(C^{-1}\right)_{j r} \tag{2.8}
\end{equation*}
$$

That is, $\partial R_{j} / \partial Q_{r}$ is merely the element of the inverse transformation matrix. For example, in $\mathrm{H}_{2} \mathrm{O}$ there are two stretching coordinates

$$
\begin{equation*}
Q_{ \pm}=\frac{1}{\sqrt{2}}\left(\Delta r_{O H_{1}} \pm \Delta r_{\mathrm{OH}_{2}}\right) \tag{2.9}
\end{equation*}
$$

The inverse transformation is

$$
\begin{equation*}
\Delta r_{\mathrm{OH}_{1,2}}=\frac{1}{\sqrt{2}}\left(Q_{+} \pm Q_{-}\right) \tag{2.10}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{\partial \Delta r_{\mathrm{oH}_{1,2}}}{\partial Q_{+}}=\frac{1}{\sqrt{2}} ; \tag{2.11}
\end{equation*}
$$

since Q_{+}is the reaction coordinate (at the equilibrium geometry of $\mathrm{H}_{2} \mathrm{O}$), these derivatives are the values needed in equation 2.4. For the treatment of more complicated symmetry coordinates, see Wilson, Decius, and Cross (1955).

An important point is that $\partial V_{\text {en }} / \partial Q$ has the same symmetry (when considered to be an electronic operator) as Q itself has (when considered as a function of nuclear positions). How is this fact useful? Let us assume that we have an electronic wavefunction, which from now on we denote as ψ_{0}, that obeys the relation

$$
\begin{equation*}
h_{\mathrm{e}}\left(\mathbf{r}_{i} \mid \mathbf{R}_{a}^{0}\right) \psi_{0}=E_{0}\left(\mathbf{R}_{a}^{0}\right) \psi_{0} \tag{2.12}
\end{equation*}
$$

(i.e., the electronic Schrödinger equation at a geometry $\mathbf{R}_{a}^{0} \equiv Q^{0}$). Perturbation theory will first be used to compute the change in the electronic energy E_{0} that accompanies a small change in some coordinate Q. The perturbation is the change in $\boldsymbol{h}_{\mathrm{e}}$ brought about by a small movement in the Q direction

$$
\begin{align*}
h_{\mathrm{e}}\left(r_{i} \mid Q\right) & =h_{\mathrm{e}}\left(r_{i} \mid Q^{0}\right)+\left(\partial h_{\mathrm{e}} / \partial Q\right) \Delta Q+\frac{1}{2}\left(\partial^{2} h_{\mathrm{e}} / \partial Q^{2}\right) \Delta Q^{2}+\cdots \\
& \equiv h_{\mathrm{e}}^{0}+V \tag{2.13}
\end{align*}
$$

The change in the electronic energy E_{0} can be expressed (through second order in ΔQ) using conventional perturbation theory (Eyring, Walter, and Kimball, 1944) as

$$
\begin{equation*}
E_{0}(Q)=E_{0}\left(Q^{0}\right)+\left\langle\psi_{0}\right| V\left|\psi_{0}\right\rangle_{Q^{0}}+\sum_{k \neq 0} \frac{\left.\left|\left\langle\psi_{k}\right| V\right| \psi_{0}\right\rangle\left._{Q^{0}}\right|^{2}}{E_{0}\left(Q^{\sigma}\right)-E_{k}\left(Q^{0}\right)} \tag{2.14}
\end{equation*}
$$

in which the ψ_{k} are the other eigenfunctions of h_{e} at Q^{0}.

2.1 Slope of the Energy Surface: First-Order Jahn-Teller Effect

Clearly the only term that is linear in ΔQ appears in the $\left\langle\psi_{0}\right| V\left|\psi_{0}\right\rangle_{Q^{0}}$ factor and gives our approximation to the slope of the potential surface along the Q direction

$$
\begin{align*}
\left(\partial E_{0} / \partial Q\right)_{Q^{0}}= & \left\langle\psi_{0}\right| \partial h_{\mathrm{e}} / \partial Q\left|\psi_{0}\right\rangle_{Q^{0}} \\
= & \sum_{a}\left(\partial \mathbf{R}_{a} / \partial Q\right) \cdot\left\langle\psi_{0}\right|-\sum_{i} Z_{a} e^{2} /\left|\mathbf{r}_{i}-\mathbf{R}_{a}\right|^{3}\left(\mathbf{r}_{i}-\mathbf{R}_{a}\right)\left|\psi_{0}\right\rangle \\
& +\sum_{a}\left(\partial \mathbf{R}_{a} / \partial Q\right) \cdot \sum_{b} \frac{Z_{a} Z_{b} \mathrm{e}^{2}}{\left|\mathbf{R}_{b}-\mathbf{R}_{a}\right|^{3}}\left(\mathbf{R}_{b}-\mathbf{R}_{a}\right) \tag{2.15}
\end{align*}
$$

The second term in equation 2.15 comes from taking the derivative with respect to Q of the nuclear-nuclear coulomb repulsion terms $\left(V_{n n}\right)$ that were also included in h_{e} (these terms are not functions of the electronic coordinates). Because V_{nn} is a totally symmetric function of the nuclear positions (i.e., it displays the symmetry of the nuclear framework), any distortion Q that is not totally symmetric yields $\partial V_{\mathrm{nn}} / \partial Q=0$. For example, the antisymmetric stretching coordinate of $\mathrm{H}_{2} \mathrm{O}$ does not change V_{n}, since it moves one H atom closer to the O while the other moves farther away (the $\mathrm{H}-\mathrm{H}$ distance remains constant). Thus, V_{nn} contributes to the slope of the surface only for totally symmetric distortions.

What about the symmetry effects in V_{en} ? We saw earlier that $\partial V_{\mathrm{en}} / \partial Q$ has the same symmetry as Q. If ψ_{0} is nondegenerate (i.e., not symmetry degenerate), the product $\psi_{0}^{*} \psi_{0}$ is totally symmetric, and thus the integral $\left\langle\psi_{0}\right| \partial V_{\mathrm{en}} / \partial Q\left|\psi_{0}\right\rangle$ will vanish unless $\partial V_{\mathrm{en}} / \partial Q$, and hence Q, is also totally symmetric. Therefore, for nondegenerate states only totally symmetric distortions contribute to the slope of the potential surface; other kinds of motion automatically yield $\partial V_{\mathrm{n}} / \partial Q=0$ and $\left\langle\psi_{0}\right| \partial V_{\mathrm{en}} / \partial Q\left|\psi_{0}\right\rangle=0$. At a minimum or at a saddle point, even the symmetric distortions give a total slope of zero, since

$$
\partial V_{\mathrm{nn}} / \partial Q=-\left\langle\psi_{\mathrm{o}}\right| \partial V_{\mathrm{en}} / \partial Q\left|\psi_{0}\right\rangle
$$

at these special points. From the definition of Q_{r}, the reaction coordinate has to be totally symmetric if ψ_{0} is nondegenerate, because the slope of the potential surface along Q_{r} is assumed to be nonzero except at local minima or at activated complexes.

What if ψ_{0} is degenerate? In this case, the symmetry of $\psi_{0}^{*} \psi_{0}$ contains at least one element that is not totally symmetric and that itself may or may not
$\left\langle\psi_{0}\right| \partial V_{\mathrm{en}} / \partial Q\left|\psi_{0}\right\rangle$ (but not to $\partial V_{\mathrm{nn}} / \partial Q$) is also possible. Moreover, motion along such nonsymmetric directions (in one or the other \pm sense) will lower the electronic energy, so such degenerate points on the surface are generally not activated complexes (since the slope is nonzero at degenerate points). Hence we conclude that a degenerate state will generally be unstable to distortion along a nonsymmetric direction (which thereby lowers the overall symmetry of the molecule). If this nonsymmetric distortion is itself degenerate then, though some of the original symmetry of the molecule may be lost, it is possible that not all of the symmetry is broken (by these linear $\left\langle\psi_{0}\right| \partial V_{\mathrm{en}} / \partial Q\left|\psi_{0}\right\rangle$ terms). Molecules for which these slope terms are nonvanishing for degenerate states are said to be unstable with respect to first-order Jahn-Teller (FOJT) distortion. Of course, the symmetry of $\psi_{0}^{*} \psi_{0}$ also contains A_{1} (the totally symmetric element), so symmetric distortions also give rise to nonvanishing slopes for degenerate states. However, such symmetric distortions will generally preserve the degeneracy of the state ψ_{0}.

At this stage of the analysis of movement along the reaction coordinate, the following points have been established about the potential surface: (1) At the activated complex, Q_{r} cannot be degenerate because a mountain pass can connect only two valleys; that is, the surface can have only one direction of negative curvature. (2) If ψ_{0} is nondegenerate, Q_{r} must be totally symmetric. (3) If a point is reached at which ψ_{0} is degenerate, a nonsymmetric motion will distort the molecule, thereby lowering its energy (remaining in the valley) and lowering its symmetry (so this motion is now symmetric in this lowersymmetry point group). This behavior of the reaction coordinate-that is, totally symmetric-makes the symmetry of ψ_{0} unchanged (except when ψ_{0} is degenerate) and leads to the concept of connecting states by symmetry (symmetry conservation).

2.2 Surface Curvature: Second-Order Jahn-Teller Effect

The effects of terms that determine the slope of the potential energy surface have just been described; now, curvature terms-those quadratic in Q_{r}-will be examined.

The quadratic terms are mainly of concern in regions of the potential surface at which the slopes are zero but at which the system might be unstable because it is at a saddle point-for example, at the activated complex. Equation 2.8 has two such terms. The first term

$$
\left\langle\psi_{0}\right| \partial^{2} V / \partial Q_{r}^{2}\left|\psi_{0}\right\rangle_{Q_{r}^{0}}
$$

concerns the reanonse of the "fromen" sharee dencity of $\%$ th n chanme in
symmetry), and $\partial^{2} V / \partial Q_{r}^{2}$ has the same symmetry as Q_{r}^{2}. Hence, the term $\left\langle\psi_{0}\right| \partial^{2} V / \partial Q_{r}^{2}\left|\psi_{0}\right\rangle$ is generally nonzero; in fact, it is also positive. This can be seen by evaluating $\partial^{2} V / \partial Q^{2}$:

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial Q^{2}}=\sum_{a, b} \frac{\partial \mathbf{R}_{a}}{\partial Q} \cdot \frac{\partial^{2} V}{\partial \mathbf{R}_{a} \partial \mathbf{R}_{b}} \cdot \frac{\partial \mathbf{R}_{b}}{\partial Q} \tag{2.16}
\end{equation*}
$$

Recall that V contains V_{nn} and V_{en} terms. Because

$$
d^{2} / d x^{2}|x-y|^{-1}=-4 \pi \delta(x-y)
$$

(see page 69 of Arfken, 1970) the expression can be evaluated. For $V_{n n}$, note that $Z_{a} Z_{b}\left|\mathbf{R}_{a}-\mathbf{R}_{b}\right|^{-1}$ contains $\mathbf{R}_{a}-\mathbf{R}_{b}$ in a symmetrical fashion; thus,

$$
\partial / \partial \mathbf{R}_{b}\left|\mathbf{R}_{a}-\mathbf{R}_{b}\right|^{-1}=-\partial / \partial \mathbf{R}_{a}\left|\mathbf{R}_{a}-\mathbf{R}_{b}\right|^{-1}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial^{2} V_{\mathrm{nn}}}{\partial \mathbf{R}_{a} \partial \mathbf{R}_{a}}=-4 \pi \sum_{b \neq a} Z_{a} Z_{b} e^{2} \delta\left(\mathbf{R}_{a}-\mathbf{R}_{b}\right) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial V_{\mathrm{nn}}}{\partial \mathbf{R}_{a} \partial \mathbf{R}_{b}}=4 \pi Z_{a} Z_{b} e^{2} \delta\left(\mathbf{R}_{a}-\mathbf{R}_{b}\right), \text { for } a \neq b \tag{2.18}
\end{equation*}
$$

Since the nuclei never are located at the same position, these δ functions vanish.

Using the above δ-function identity, $\partial^{2} V_{\mathrm{en}} / \partial Q^{2}$ can be evaluated as

$$
\frac{\partial V_{\mathrm{en}}}{\partial \mathbf{R}_{a} \partial \mathbf{R}_{a}}=\sum_{i}\left(-Z_{a} e^{2}\right)(-4 \pi) \delta\left(\mathbf{r}_{i}-\mathbf{R}_{a}\right) \text { and } \frac{\partial^{2} V_{\mathrm{en}}}{\partial \mathbf{R}_{a} \partial \mathbf{R}_{b}}=0 .
$$

Thus,

$$
\begin{equation*}
\frac{\partial^{2} V_{e n}}{\partial Q^{2}}=\sum_{i} \sum_{a}\left(\partial \mathbf{R}_{a} / \partial Q\right)^{2} 4 \pi e^{2} Z_{a} \delta\left(\mathbf{r}_{i}-\mathbf{R}_{a}\right) \tag{2.19}
\end{equation*}
$$

The expectation value of this term gives the first term in the curvature, namely,

$$
\begin{equation*}
\psi_{0} \mid\left(\partial^{2} V_{\mathrm{en}} / \partial Q^{2} \mid \psi_{0}=\sum 4 \pi Z_{a} e^{2}\left(\partial \mathbf{R}_{a} / \partial Q\right)^{2} \rho\left(\mathbf{R}_{a}\right)\right. \tag{2.20}
\end{equation*}
$$

in which $\rho\left(\mathbf{R}_{a}\right)$ is the electron density in state ψ_{0} at the nucleus at \mathbf{R}_{a}. Clearly, this contribution to the curvature is always positive and will be nonzero for any symmetry of ψ_{0}, since $\partial^{2} V / \partial Q^{2}$ is totally symmetric. The negative curvature of the surface at an activated complex is a result of a second contribution to the curvature. This is given by

$$
\sum_{k \neq 0} \mid\left\langle\psi_{k}\right|\left(\partial V /\left.\partial Q\left|\psi_{0}\right\rangle\right|^{2}\left(E_{0}-E_{k}\right)^{-1}\right.
$$

and is always negative (if ψ_{0} is the ground state) because $E_{0}-E_{k}$ is negative. Earlier, it was shown that $\partial V / \partial Q$ has the same symmetry as Q. Therefore, if Q is totally symmetric (as it is along the reaction coordinate where ψ_{0} is nondegenerate), the excited state ψ_{k} must have the same symmetry as ψ_{0}. On the other hand, if Q is not symmetric, which might occur at a minimum or maximum point at which all $\partial E / \partial Q=0$ (and hence consideration of the quadratic terms in $E_{0}(Q)$ becomes essential), or if ψ_{0} were degenerate, so that Q leads to distortion of the molecule, then the symmetry of ψ_{k} is dictated by the direct product of the Q and ψ_{0} symmetries. Notice that because the slope of E_{0} is zero at the activated complex, the energy variation is now dictated by the quadratic terms, which can now allow Q_{r} to be nonsymmetric.

Clearly, for these negative curvature terms to become important (and even dominant, as they are at an activated complex), the symmetry of ψ_{k} must be correct and the energy splitting $E_{0}-E_{k}$ must be small. This situation occurs when a chemical bond is broken. For example, at large internuclear distances the σ^{2} and $\sigma^{1} \sigma^{* 1}$ configurations of HCl are reasonably close together in energy. Because $\partial V / \partial Q$ is a one-electron operator, the excited states ψ_{k} that can couple most strongly with ψ_{0} are those that are singly excited relative to ψ_{0} (Condon and Shortley, 1957; Cook, 1978). As a result, negative curvature along the reaction path should be possible when there are low-lying excited states that involve single promotions of electrons from bonding orbitals in ψ_{0} to antibonding orbitals in ψ_{k}.

To gain more insight into why ψ_{k} and ψ_{0} should be related in this antibonding/bonding manner, recall that we are looking (using perturbation theory) at the response of the system $\left(\psi_{0}, E_{0}\right)$ to a small displacement of the nuclei (Jørgensen and Simons, 1981). The energy response has already been discussed above. The change in the wavefunction caused by the perturbation V is given by

$$
\begin{equation*}
\psi_{0} \rightarrow \psi_{0}+\sum_{k \neq 0}\left\langle\psi_{k}\right| V\left|\psi_{0}\right\rangle\left(E_{0}-E_{k}\right)^{-1} \psi_{k} \tag{2.21}
\end{equation*}
$$

(Eyring, Walter, and Kimball, 1944). Thus, the electron density $\psi_{0}^{*} \psi_{0}$ changes (through first order in the change in O) he an amount

$$
\begin{equation*}
\sum_{k \neq 0} 2 \psi_{0}^{*} \psi_{k}\left\langle\psi_{k}\right| \partial V / \partial Q\left|\psi_{0}\right\rangle\left(E_{0}-E_{k}\right)^{-1} \equiv \sum_{k \neq 0} \delta \rho_{0 k} . \tag{2.22}
\end{equation*}
$$

Where $\delta \rho_{0 k}$ is positive, the electron density increases as the motion along Q occurs; where it is negative, electron density decreases. The symmetry (i.e., the nodal pattern) of $\delta \rho_{0 k}$ can be determined by looking at the symmetry of $\psi_{0}^{*} \psi_{k}$. If ψ_{0} and ψ_{k} are approximated by Slater determinants (Cook, 1978) that differ by a single orbital replacement ($\phi_{0} \rightarrow \phi_{k}$), the nodal pattern is that of the orbital products $\phi_{0}^{*} \phi_{k}$. The positive nuclei will move to regions at which $\delta \rho_{0 k}$ is positive (i.e., in which electron density piles up) and will leave regions in which $\delta \rho_{0 k}$ is negative.

Consider, for example, the $\mathrm{H}_{2} \mathrm{O}$ molecule at its equilibrium geometry. Since ψ_{0} is nondegenerate, all of the slope terms vanish. What about the curvatures? Excitation of an electron from the bonding $a_{1} \mathrm{OH}$ orbital to its antibonding a_{1} partner gives a $\phi_{0}^{*} \phi_{k}$ pattern of the form

which is consistent (according to the above analysis of the integrals arising in the curvature terms) with a symmetric stretch distortion. The bonding b_{2} to antibonding $b_{2} \delta \rho_{0 k}$ also looks like

which is also consistent with a symmetric stretch. On the other hand, the $a_{1} \rightarrow b_{2}$ or $b_{2} \rightarrow a_{1}$ excitations have a $\delta \rho_{0 k}$ of the form

which is consistent with an antisymmetric $\boldsymbol{b}_{\mathbf{2}}$ stretch. Of course, we do not expect any of these excitations to give rise to large (negative) contributions to the curvatures in this particular $\left(\mathrm{H}_{2} \mathrm{O}\right)$ case. Their excitation energies, which occur
excitations are more than outweighed by the positive contributions arising from the terms shown in equation $\mathbf{2 . 2 0}$. This is, of course, expected here, since we are considering $\mathrm{H}_{2} \mathrm{O}$ at its equilibrium geometry and negative curvature is not anticipated.

Before proceeding to the application of the ideas presented in the first two chapters, it is useful to review the facts that have been established about the reaction coordinate, the activated complex, and the slope and curvature of the surface along Q_{r}. Remember that the goal is to be able to use this information to move along Q_{r} from reactions, through an activated complex, to products in order to estimate the activation energy for a reaction. As this path is taken, the symmetry of the wavefunction remains conserved except when the state becomes degenerate (first-order Jahn-Teller) or when low-lying singly excited states come into play and give rise to second-order Jahn-Teller distortions.

