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Overview ot ob Initio
Molecular Orbita I Theory

A Born-Oppenheimer electronic wavefunction q, must obey the "damped
nudei" Schrodinger equation described in Chapter I,

h.(r IR)q,(r IR) = E(R)q,(r IR). (A.I)

Here, he>the electronic Hamiltonian, might indude spin-orbit operators as wen
as the usual kinetic energy, electron-nudear, nudear-nudear, and electron-
electron interaction terms. For aDYsystem containing maTe than one electron,
equation A.I bas never been solved exactly, and one must resort to approxima-
lian methods to obtain a description of the wavefunction q,and a value for the
electronic energy E(R). .

. The twa most commonly employed approximation techniques are pertur-
bation theory (PT) and the variational method (VM) (Pilar, 1968; Eyring,
Walter and Kimban, 1944). The implementation of either approximation
begins with finding an appropriate set of molecular orbitais that caD subse-
quently be used to construct a basis of N-electron functions in terms of which
q, is expanded. Let us first analyze how the molecular orbitais are obtained.

A.I. Orbitais

In the Hartree-Fock (HF) or self-consistent field (SCF) method (Cook, 1978),
one uses the variational principie to determine those spin-orbitals 11fil-orbitals
multiplied by a spin function a or 13having m. = :f:1/2-that minimize the
energy of a single Slater-determinant trial wavefunction q,SD (Cook, 1978;
Pilar, 1968)

q,SD = det[1fl(rl)1f2(r2) . . . 1fN(rN)]. (A.2)

This energy-minimization process results in a set of HF or SCF equations that
the spin orbitais must obey, narody,
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Fvll = Eivli, (A.3)

in which Ei is the orbital energy corresponding to spin orbital vli and F is the
Fock operator in atomie units (Pilar, 1968), or

F = _..!...V2- ~ Za + ;.r.1""(r/ ) I - Prr, .1'.(r/ ) dr/.
2 r '-: Ir - Rai t J 'l'J Ir- e'l 'l'J

in which Prr' permutes the coordinates r and r' , and N is the number oCelec-
trans in the system. In the operator F, the sum over joe<:reCers to those spin or-
bitais that are occupied in tPSD' ILis through this choice of occupancy that one
determines the stale (e.g., Isalsl3 or Isa2sl3) for which the SCF calculation is
being perCormed.

In writing the trial variational waveCunction as a single Stater determi-
nant, one assumes that the major component oC the true electronic waveCunc-
tion tP describes uncorrelated motion oC the electrons. In other words,
although the electrons certainly interact, their motion is not strongly aCCected
by the instantaneous positions oCthe other electrons. The regions oC space in
which they move (the orbitaIs) are primarily determined by the average interac-
tions among the electrons. This nearly independent-motion ansatz leads to the
postulate that tPtan be approximated as an antisymmetrized product of one-
electron spin orbitaIs (Pilar, 1961; Cook, 1978); this approximation is similar
to giving the probabilities oC uncorrelated events as products oCprobabilities
oC the individual events.

If the orbitais used to construct tPSD are allowed complete variational flex-
ibility, the resulting calculation is reCerred to as an unrestricted HF (UHF)
ca1culation. In this most general case, the resulting HF spatial orbitais
associated with a and 13spins will not necessarily be identical. For example, a
UHF ca1culation on the lsals'l32sa occupancy oC Li does not field two iden-
ticalls orbitaIs (1s *' Is/). As a result, the Stater determinant det(1sals'l32sa)
is not a puce doublet (s = 1/2) spin eigenCunction (Pauncz, 1979). Although
this is indeed an unattractive Ceature of soch UHF waveCunctions, thisSCF
procedure is widety used as a method for generating molecular orbitais (Popie,
1976). Subsequent to the UHF calculation oC the molecular orbitais, the im-
proper spin-symmetrybehavioroCtPSD tan be removedby applyinga spin-
projection operator P, (Pauncz, 1979)to tPSD to give a correct spin eigenstate

(A.4)

tPs,SD= P'tPSD' (A.S)

The resulting projected UHF waveCunction tPs.SD is generally no longer a single
Stater determinant. For example, a doublet (s = 1/2) projection oC the
lsals'l32sa Stater determinant yields

I
~[det(1sals'B2sa) + det(1sR1s'0'2'1(Y)1.
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However, it is still straightforward to compute the energy of cP..SDusing the
Slater-Condon rules (Cook, 1978) discussed below.

As an alternative to projecting a spin-unrestrieted Slater determinant, one
caD Cofcethe orbitals that belong to paired electrons to be identieal at the start
of the SCF procedure and to remain sa. For example, one caD use the determi-
nant det(lsalsi3lsa), which contains only twa (ls and ls) spatial orbitals
rather than three (15, 15', and ls). The energy of this spin-restrieted HF (RHF)
trial function caD be minimized to give a set of equations (Roothaan, 1960)
analogous to equation A.3, which determine the restricted HF orbitais. This
RHF process bas the advantage that it does not yield different spatial orbitals
for paired eleetrons. Thus, for the Li example, the RHF CPSD automatieally bas
doublet spin symmetry (Paunez, 1979). A disadvantage of the RHF method is
that it is computationally more diffieult. Furthermore, its derivation is not en-
tirely free erom arbitrary assumptions (J~rgensen and Simons, 1981), whieh
makes it diffieult to associate the orbital energies {fAwith ionization potentials
by means of Koopman's theorem (Pilar, 1968; Cook, 1978). In contrast, the
UHF method permits the approximate evaluation of (vertical) ionization
energies as -Ej.

The UHF or RHF self-eonsistent-field equations are usually solved by the
Roothaan-matrix procedure in whieh the 1/;; funetions are expanded in an
atomie orbital (AO) basis {XbJ.When this expansion is used in equation A.3,
one obtains Roothaan-matrix HF equations of either the UHF or RHF variety
(Cook, 1978). If M atomie orbitals are used in the expansion, the resulting
matrix eigenvalue problem generates N occupied molecular orbitals and
2M - N excited or virtual molecular orbitais.

1/;; = ECbXb(a or (3).
b

(A.6)

The most commonly used atomie orbitals are Slater-type orb.tals (STO),
namely,

Xb = NbY/bmbr"b-lexp(-rblr-Rbl)

and Oaussian-type orbitals (OTO),

Xa = N~Xk. yu.Zv.exp[ - aa(r - Ra)2J.

(A.7)

(A.8)

In these defining equations, Y/m is a spherieal harmonie, Nb and Na, are nor-
malization constants, Ra.b is the position of the nucleus on whieh the atomie
orbital is located, nb, Ib, mb, ku, Uaand Vaare orbital quantum numbers, and
rb and aa are orbital exponents that determine the radial sizes of the atomie
orbital.

Slater-type orbitals are to be preferred on fundament al grounds because
they display proper eusp behavior at the nuclear eenters. For example, the
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[dd Nexp(-tr)l = -Nt.
r Jr=o

(A.9)

This is preciselythe behavior displayed by hydrogenlikeorbitais that are eigen-
functions of the one-electron Schrodinger equation having anty kinetic and
electron-nuclear attraction energies. In contrast, all GTO have zero slope at
the nucleus; for example, for the Is GTO

[!!... N exp(- ar2)1 = O.dr ~~o
(A. 10)

Near a nucleus the fuli Schrodinger differential equation is dominated by the
same kinetic and nuclear-electron attraction terms that constitute the hydrogen-
likeHamiltonian;thus, thecorrectwavefunctionq, must display hydrogenlike
cusps at the nuclei. The STO fulem this criterion; the GTO do not.

The deficiencies of the GTO raise the question of why and how they are
used. GTO's are convenient in studies of polyatomic molecules because they
allow efficient handling of the multicenter integrals that arise. In integrals con-
taining a product of twa orbitaIs Xa and Xb that have origins on different
nuclei Ra and Rb' the Gaussian orbitaIs allow this product to be written in
terms of a single common origin. For example, the product of twa Is-type
GTO's tan be expressed as

exp[-aa(r - Ra)2]exp[-ab(r - Rb)2]

= exp[-(ad + ab)r2]exp( aaab Rl )aa + ab
(A. li )

in which the origin of the final T-dependent function is located between Ra and
Rb at a distance aaR/(aa + ab) erom Ra and a~/(aa + ab) from. Rb
(R 5 IRa - Rb I). The fact that the próduct X aX b that involves GTO's having ~

different origins tan be expressedas a single new GTO at a new origin makes
the use of GTO's in evaluating integraIsefficient.

. To attempt to overcomethe improper cusp behavior of GTO's, one often
employs contracted GTO's (CGTO) (Schaefer, 1972; Dunning, 1970, 1971;
Huzinaga, 1965). A CGTO (X~) is a lineal combination of the GTO's

X~ = EAabXb
b

(A. 12)

l

in which the GTO IXbl have common quantum numbers (e.g., ts, 2p, 3d) but
different orbital exponents (ab). By combining a tight GTO (one having lan~e
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L Loose GTO---
r

Fllure A-l
FormatioD or aD STO by additioD or loose and tigbt OTO's.

(Xb)with other GTO's having progressively smaller exponents, one might fil
the cusp behavior of the STO. This is shown for Is-type functions in Figure
A-l. By choosing the contraction coefficients (AGbl properly, it is possible to
generale a CGTO whieh, in a least-squares sense, reproduces the proper STO
cusp behavior (Popie, 1969). Alternatively, the contraction coefficients caD be
chosen to minimize the SCF energy of the lowest energy stale of the atom of
interest (Dunning, 1970, 1971). For either of these CGTO for aDYatom, the
CGTO itself caDbe viewed as the atomie-orbital basis function that is to be used
in subsequent molecular SCF calculations. In the literature, tabulations of op-
timal CGTO's are available for most first-, second-, and third-row atoms based
either upaD the STO fitting procedure (Popie, 1969) or the atomic-energy op-
timization procedure (Dunning, 1970, 1971).

In summary, the SCF method caD be used to generale a set of molecular
orbitaIs that are expressed in terms of a chosen set of Gaussian- or Slater-type
atomie basis functions. The nature of the occupied molecular orbitals, as
displayed in the molecular-orbital expansion coefficients of equation A.6,
describes the charge densityand bonding characteristics of these orbitais. The
energies (Eil of the occupied orbitals give us, via Koopmans' theorem, ioniza-
lian potentials of the system. However, one must remember that the entire
SCF method, including the concept or molecular orbital, is predieated upaD
the assumption that cpis accurately represented by cPso'



128 APPENDlX A

A.2. Configuration Interaction

In Chapter 3 it was shown that it is not always possible to describe the elec-
tronie wavefunction ci>in terms of a single orbital-occupancy list (configura-
tion). For example, the fragmentation of heteropolar bonds to give radical
products was shown to require both 0'2and 0'0'.configurations to describe rP
throughout the entire bond-dissociation process. For these reasons one most
often extend the description of ci>to include moce than one Stater determinant
or configuration. Moreover, soch a multiconfigurational description should be
examined whenever high accuracy in the resulting wavefunction and energy is
desired. Hence, even when ci>is dominated (-950/0) by a singleStater determi-
nant, that determinant does not accurately represent the true wavefunction
because the Stater determinant describes electrons moving in orbitais deter-
mined anty by the average interactions with the other electrons and not by the
instantaneous interactions. No electron correlation is present in the SCF
(single determinant) description.

By writing rPas a linear combination of alt Stater determinants (rPrl that
caDbe constructed erom the 2M (occupied and virtual) SCF spin orbitais,

ci> = I;Crcl>r,
r

{A.13)

'j

l
!

the SCF treatment is improved. In most soch configuration-interaction
calculations the rPr ale symmetry-projected functions (each of which may con-
tain several Stater determinants) deseribing the various configurations (spin-
orbital occupancies) that can be made flam 2M orbitais and N electrons
(Pauncz, 1979;Shavitt, 1977).

Clearly, the number 2M!/ N!{2M - N)! of these configurations becomes
extremely large as the basis sile (M) and the number of electrons increases.
Therefore, various procedures have evolved for selecting the most important
ofthe2M!/N!{2M-N)! configurations{Shavitt, 1977). ThemostcommonlY.. ~
used criterion for judging the importance of a configuration cl>r is to evaluate
its interaction strength using the one or few configurations that ale absolutely
essential to describe cI>.For example, for the case of heteropolar band rupture
(mentioned above and in Chapter 3) the 0'2 and 0'0'. configurations ale essen-
tial. Other configurations cl>r(e.g., 0'0", 1["2,and so forth) ale evaluated for
their importance by computing their interaction strengths (cI>rlHIrPessential) for
all of the essentialconfigurations. If the interaction strength is large, cl>ris con-
sidered to be important.

Unfprtunately, ranking configurations according to the value of their in-
teraction strengths provides liUlephysical iriterpretation for the nonessential
configurations. However, it is possible to ascribe meaning to those eonfigura-
tions that are either ~;"(rlv (r/,.' nr rJ""hhr (r/,~' I'vr;tpr1 -~,~.;..~ .~ ~ ,.1"...,;""",,
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essential configuration CPe.The contributions to cpmarle by a configurati9n in
which one electron is promoted erom 1/;,.(occupied in CPe)to 1/;p(unoccupied in
CPe)caD be denoted CP~wThe trial wavefunction CPe+ C.cp~,.consisting of twa
Slater determinants is (because the twa determinants differ by one column only)
equivalent to another single Slater determinant having the property that the
column in whichCPeand cp~,. differ (CPehaving 1/;,.and cp~,.having 1/;p)is replaced
by a column containing the modified spin orbital1/;' = 1/;,.+ C.1/;p.The fact
that CPe+ C.cp~,.is equivalent to a modified Slater determinant in which 1/;,. bas
been replaced by 1/;' is the basis for saying that soch singly excited deter-
minants 1/;r,. produce either orbital modification or orbital relaxation.

If the SCF orbitais are used to construct the Slater determinants, one
finds (by using the Slater-Condon rules discussed below) that the interaction
strength between the SCF determinant (which is presumably one of the essen-
tial configurations) and singly excited determinant s vanishes-that is,

(cpHFIHlcp.) = O. (A.14)

This equation, known as the Brillouin theorem (Schaefer, 1972; Cook, 1978;
Pilar, 1968), simply states that singly excited determinants are not important
(in the interaction strength case) when SCF orbitals are used to construct the
determinant s because these orbitals are already optimal-further optimization
(modification or relaxation) or the orbitals is not needed.

For doubly excited configurations cp~~,.v in which 1/;,. and 1/;v(which are
occupied in CPe)are replaced by 1/;pand 1/;q,the trial function CPe- CDcp~~,.v caD
be rewritten as a corobination of twa other determinants, each of which in-
clude pairs of polarized orbitals:

CPe - CDcp~~,.v = det[. . .(1/;,. - .,JCD 1/;p)(1/;v+ .,JCD 1/;q)]

+ det[. . .(1/;,.+ .,JCD1/;p)(1/;v- .,JCD 1/;q)]. (A.15)

Notice that in each of these twa determinants, each electron moves in separate
polarized orbitals. For example, in deseribing the ruptur e of the H2 band
discussed in Chapter 3, a configuration-interaction wavefunction including
both the a: and a~ configurations was used: .

cp = a: - Ca~. (A.16)

The polarized orbitals corresponding to this doubly excited configuration-
interaction wavefunction are ag:l::.JCau' Soch double excitations give rise to
electron-pair correlations because, in the polarized-orbital determinantal
description, the electron pair residingin the orbitals 1/;,. and 1/;v are correlated in
tll(' s('n<:ptn;1t onp ("eetrOTlis in OTleoo'arized orbita' when the other e1ectron is
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e ~ Q Q
FigURA-2
Polarized orbitaIs.

in the other polarized orbital. Doubly exciteddeterminants that includeexcita-
tions or orbitals differing in their left-right symmetry (as above) give rise to
polarized orbitals that are left-right polarized. Double excitations of the form
q2-1/": give rise to polarized orbitals (q:l: -.!C1/"r) that differ in their angular
characteristics as shown in Figure A-2. Double excitations of the form
2s2-3s2 give polarized orbitals (2s:l: -JCJs) that differ in their radial or in-
out character. This polarized orbital-pair description of the contributions
made by double excitations is the basis for sayingthat such configurations give
rise to electron correlations. As one electron is in one polarized orbital, the sec-
and is in the other orbital; this is what is meant by correlated motion.

In summary, configuration interaction is used to improve upaD the SCF
description of the electronic wavefunction. Such improvement is often essen-
tial as, for example, in describing heteropolar hond rupture to give radical
products. However, configuration interaction caDalso be used simply to im-
prove the accuracy of the wavefunction cPand energy.E. Configurations that
are singly or doubly excited relative to a dominant (essential) configuration
allow orbital relaxation and electron-pair correlation effects to be included in
the configuration-interaction wavefunction. Numerical procedures for adding
configurationsabove and beyond these singlesand doubles, whichare included
on physicalgrounds, are usuallybased upaDevaluatingthe interaction strength
of each such configuration with all of the essential configurations.

A.J. Slater-CondonRules

After obtaining a list of configurations that includes the essential configurations
and perhaps same set of singly, doubly, or more highly excited configurations
that have been chosen as discussed in section A.2, the Cr expansion coefficients
of equation A.13 must be evaluated. In the configuration-interaction proce-
dure, the wavefunction of equation A.l3 is used in the variational method to
minimize the electronic energy. This approach leads to the well-known config-
uration-interaction matrix eigenvalue problem (Shavitt, 1977; Pilar, 1968)
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Q

EHIJCJ = ECI
J=l

1= 1,. . . Q (A.17)

in which Q is the number of configurations included in the configuration-
interaction wavefunction and E is the configuration-interaction approximation
to the electronic energy. The, Q x Q matrix H clearly bas Q eigenvalues {Ej,
i = 1, . . . QI and Q independent eigenvectors IC~J. i = 1, . . . Q; J = t
. . . QI. The various Ej represent the configuration-interaction approxima-
tions to the ground- and excited-state energies; the coefficients IC~J; J = 1,
. . . QI describe the configuration-interaction wavefunction for this ith stale.

The elements of the H matrix are given as integrals over the configura-
tions q,I:

HIJ = 1 q,jheq,J dTl . . . dTN,
(A.t8)

in which he is the fulI Born-Oppenheimer electronic Hamiltonian described
earlier and dTjdenotes the space- and spin-integration volume element for the
jth electron. The evaluation of these integrals is nontrivial because the q,Iare
antisymmetrized N-etectron functions. The derivation of closed expressions
for the Hu matrix elements is given in maDY texts on quantum chemistry
(Cook, 1978; Condon and Shortley, 1957). The resulting set of so-calIed
Slater-Condon rules caD be summarized as follows. Two configuration func-
tions q,Iand q,Jare first decomposed into their constituent Slater determinant s
detIk and detJ, (each q,Iconsists of one or mor e Slater determinants). To com-
pule the matrix element ( detIk IheIdetJ,) the spin-orbital occupancies of these
twa determinants are compared. If the occupancies differ by maTe than twa
spin orbit ais (e.g., ls2~2 and ls",2p~3sfldiffer by three), then the matrix ele-
ment vanishes. If the occupancies differ by twa spinorbitais (with 1/;1'and vlpin
detIk and 1/;pand 1/;qin det J,), then the matrix element bas a value ~ [(1'1'Ipq) -
(1'1'Iqp)] in which

(1'1'Ipq) == 11/;:(f)1/;:(f') If - f' 1-11/;p(f)1/;q(f') drdr' .
(A.t9)

The choice of + or - in the ~ sign is determined by how maDYspin-orbital
interchanges are needed to arrange detJ, to have exactly the same spin-orbital
ordering as detIk' except that 1/;preplaces 1/;1'and 1/;qreplaces 1/;p.Ifthe num ber
of interchanges needed is odd (even), then the minus (plus) sign results. When
detIk and detJ, differ by only one spin órbital (with 1/;1'in detIk and 1/;pin detJ,),
then the value of the matrix element is
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:l: [(vl/tl- ~ V~- ~ Ir~ilal l1fp)+ ~«(y;/t1f~I1fp1f~)- <1f/t1f~I1f~1fp)~

in which the sum over " runs over all of the spin orbitals common to detl. and
detJ,. The sigo :l: is computed as just described by determining how maDY
spin-orbital interchanges are needed to bring detJ, into the same order (except
for the 1fpand 1f~mismatch) as detl.. Jf detr. and detJ, have identical spin-
orbital occupancies, their Hamiltonian matrix element is given as above, but
with 1fp = 1f1"and summed over the index lA.that runs over all occupied spin
orbitals.

ODce the Slater-Condon rules are used to compute the Hamiltonian
matrix elements over the determinants detl., the evaluation of the configuration-
based matrix elements «PIIhe I<PJ)is straightforward. Knowing that <PI is ex-
pressed as a linear combination of the detl.

<PI = EBI.detl.,
k

(A. 20)

one caD write

«pllhel<PJ) = EBI.BJ, (detl. Ihel detJ,).
k,l

(A.21)

The final result of using the Slater-Condon rules is that the configuration-
interaction H matrix, whose dimension is equal to the number of configurations
selected, CaD be computed in terms of the one-electron «1f;j -1/2V211f),
(1f; 1- Za/ Ir - Ra I l1fj» and two-electron « 1fi1fjl1fk1fI» integrals over the
spin orbitals used to form the configurations. These integrals caD be evaluated
in terms of the molecular-orbital expansion coefficients Cia and the one- and
two-electron integrals over the atomic-basis orbitals IX a), which must be ex-
plicitly calculated for the OTO or STO basis. For example, the two-electron in-
tegrals are expressed as

(1fi1fjl1fk1fl) = ECiaCjbCkcCld(XaXbIXcXd).
abcd

(A.22)

After forming the Q x Q configuration-interaction H matrix, the eigen-
values (El) and eigenvectors (CIJ; J = 1 . . . Q) are found by diagonalization.
Each of the resulting approximate energy levelsEl caDbe shown (Hylleraas,
1990)to be an upper bound to the Ith exact energy level of the system. The
eigenvectorICu; J = 1 . . . Q) tell us to express the approximate configuration-
interaction wavefunction«PI)for the Ith energy levelin terms of the configura-
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Q

cf>i = ECilcf>l.
1=1

( (A.23)

By ineluding in a configuration-interaction wavefunction the essential
configurations (which are usually straightforward to guess) as wen as con-
figurations that are singly and doubly excited relative to aDYof these essential
components. a satisfactory description of orbital relaxation and electron-pair
correlation effects caD often be achieved. This truncated configuration-
interaction treatment. based upaD law-order excitations out of essential con-
figurations. bas a significant weakness that should be marle elear. This kind of
configuration-interaction method suffers erom what is called s;ze ;ncons;stency
(Popie. 1976). To illustrate the problem. consider how one would compute the
configuration-interaction energy of twa separated and noninteracting beryllium
atoms. Assume that a configuration-interaction calculation bas already been
performed on a single Be atom erom which it was decided that anty twa con-
figurations (ls22s2 and Is22p2) need to be ineluded in the one-atom configu-
ration-interaction wavefunction to achieve a reasonable description-that is.
evidence is available that supports the inelusion of anty double excitations
(2s2 -2p2) in the Be atom configuration-interaction wavefunctions. If the
same level of configuration interaction (dominant configuration ls~2s~ Is~2s~
plus double excitations 2s~ - 2p~. 2s~ - 2PA2PB.2s~- 2p~.2sA2sB-
2PA2PB.2sA2sB - 2PA. and 2sA2sB - 2p~) were applied to the Be + Be system.
the lowest resultant configuration-interaction energy would not be equal to'
lwice the configuration-interaction energy obtained above for the single Be
atom. One says that this configuration-interaction treatment is s;ze-;ncons;stent
because the energy obtained for noninteracting systems is not the sum of the
configuration-interaction energies of the individual systems.

What is wrong with the above configuration-interaction wavefunction is
that the wavefunction for Be + Beshould (becausethe atoms are noninteract-
ing) be the antisymmetrized product of the wavefunctions for the twa Be
atoms (A and B):

cf>Be + Be = cf>BeA cf>BeB' (A. 24)

Because cf>BeAand cf>BeBcontain both Is22s2 and Is22p2 configurations. cf>Be+Be
should contain 2s~2s~. 2s~2p~. 2p~2s~. and 2pi2p~ (the Isi Is~ is suppressed).
This last configuration is quadruply excited relative to the dominant 2si2s~
configuration. but it must be ineluded if cf>Be+ Be is to be size-consistent.

From the above example. it should be elear that a configuration-
interaction wavefunction that is truncated to aDY level of excitation (e.g..
doubly) when separately treating individual systems. A and B. will not be ap-
propriate for use when treating the combined system AB even when A and B
nr~ f'nr rM~A..~rI n"t "1".,,, ",J,"n thp" ~re intf'r~ctinp nr chemkallv bonded),
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Correct treatment of AB requires inclusion of excitations Up through the sum
of the excitation levels used when separately treating A and B. Clearly, this
size-consistency problem of the truncated configuration-interaction method
may cause serious errors when using these techniques for computing energy
differences such as bond-dissociation energies, intermolecular forces, and
energy or enthalpy changes in chemical reactions.

The realization that truncated configuration-interaction approximations
are not size-consistent bas led to much recent interest in the use of perturbation
theory for treating electron correlation effects (PopIe, 1976). In these many-
body perturbation theories (MBPT) the electronic Hamiltonian he is usually
decomposed into h~and Vin which h~is a sum of one-electron Fock operators

N

h~= EF(i),
;=1

(A.25)

in whichF(i) is the Fock operator for the ith electron defined in equation A.4.
The perturbation V {hen consists of the instantaneous electron-electron in-
teraction minus the average (coulomb minus exchange) interaction contained
in the Fock operator

l N l N
V = -E - Ev(r;)

2 i"#j Ir; - rj I i=1
(A.26)

in which

J
l-P,

v(ri) = E 1/Ij(r') I r;',r,1/Ij(r')dr'.. ri-rJocc
(A.27)

In addition to the above decomposition of he, the exact electronic
wavefunction 4> is assumedto be givenas a zeroth-ordercomponent4>° plus
higher-order corrections (4>(n);n = 1,2, . . .) with 4>° taken to be a single-
configuration wavefunction. Such a single-configuration wavefunction, if it is
constructed erom the SCF spin orbitals, is an eigenfunction of the above-defined
h~with eigenvalue Eo equal to the sum of the SCF orbital energies belonging to
the spin orbitais occupied in 4>°.

Although such MBPT -based treatments of electron correlations have been
successfully carried out by several research workers (PopIe, 1976; Bartlett,
1975), major problem s arise when the physical situation dictates that the true
wavefunction 4> is not dominated by a singleconfiguration. As we saw earlier,
description of processes with heteropolar or homopolar hond rupture usually
requires a description of two or more essential configurations. By using a spin-
unrestrictedSCFconfigurationas 4>°, it is possibleto describehond rupture

" o "'
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length oC, for example, HCl, the single configuration is det(. . .uau' (3) with
u = u'. Opon hond rupture the single-configuration wavefunctionbecomes
det(. . .uau' (3) in which u is the hydrogen ls orbital and u' is a chlorine 3p or-
bital. Unfortunately, such a UHF treatment suffers erom the spin-impurity
difficulty discussed in section A.l. Moreover, chemical problems (e.g., strong
configuration mixing arising in concerted reactions involving breaking and
forming moce than one hond) exist for which any single-configuration descrip-
lian is inappropriate, and these limit the application of MBPT to large
numbers of species arising in a variety of chemical reactions.

. At present, a great deal of research is aimed at extending the machinery of
MBPT (which does not suffer erom the size-consistencyproblems) to permit
cpoto consist of moce than one essential configuration; however, this problem
is not resolved ret. As a result, a perturbation theory tool that caDbe used in
the avoided-crossing situations arising in maur of the concerted reactions
treated in Chapters 4 and 7 is not available. Thus, we shall not pursue further
the use of MBPT to treat correlation in a manuel that overcomes the size-
consistency difficulty of the configuration-interaction method. The most
essential point is that configuration interaction is not size-consistent. Thus,
although the inclusion of singlyand doubly excitedconfigurations is attractive
because of their significancewith respect to relaxation and pair correlation,
use of the variational configuration-interaction method for determining the
amp/itudes of these configurations may be questionable. Unfortunately, the
MBPT method bas not ret been extended to allow multiconfigurational
zeroth-order functions, so it also cannot (at present) be employed for reliable
evaluation/of the desired amplitudes.


