Appendix A

Overview of ab Initio
Molecular Orbital Theory

A Born-Oppenheimer electronic wavefunction ¢ must obey the ‘‘clamped
nuclei’’ Schrodinger equation described in Chapter 1,

h(r|R)$(r|R) = E(R)¢(r|R). (A.1)

Here, A,, the electronic Hamiltonian, might include spin-orbit operators as well
as the usual kinetic energy, electron-nuclear, nuclear-nuclear, and electron-
electron interaction terms. For any system containing more than one electron,
equation A.1 has never been solved exactly, and one must resort to approxima-
tion methods to obtain a description of the wavefunction ¢ and a value for the
electronic energy E(R).

* The two most commonly employed approximation techniques are pertur-
bation theory (PT) and the variational method (VM) (Pilar, 1968; Eyring,
Walter and Kimball, 1944). The implementation of either approximation
begins with finding an appropriate set of molecular orbitals that can subse-
quently be used to construct a basis of N-electron functions in terms of which
¢ is expanded. Let us first analyze how the molecular orbitals are obtained.

A.1. Orbitals

In the Hartree-Fock (HF) or self-consistent field (SCF) method (Cook, 1978),
one uses the variational principle to determine those spin-orbitals {y;]—orbitals
multiplied by a spin function « or 8 having m, = + 1/2—that minimize the
energy of a single Slater-determinant trial wavefunction ¢, (Cook, 1978;
Pilar, 1968)

p = det[yi(r)ya(rz) - - - Ya(ra)l. (A.2)

This energy-minimization process results in a set of HF or SCF equations that
the spin orbitals must obey, namely,
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F‘f’l = Ei‘nf’n (A.3)

in which ¢, is the orbital energy corresponding to spin orbital ,; and F is the
Fock operator in atomic units (Pilar, 1968), or

F= —— E Ir E 51&*{ ) "’l vir'ydr'. (A4)
in which P,,. permutes the coordmates randr’, and N is the number of elec-
trons in the system. In the operator F, the sum over j,. refers to those spin or-
bitals that are occupied in ¢gp. It is through this choice of occupancy that one
determines the state (e.g., 1salsp or 1sa2sf) for which the SCF calculation is
being performed.

In writing the trial variational wavefunction as a single Slater determi-
nant, one assumes that the major component of the true electronic wavefunc-
tion ¢ describes uncorrelated motion of the electrons. In other words,
although the electrons certainly interact, their motion is not strongly affected
by the instantaneous positions of the other electrons. The regions of space in
which they move (the orbitals) are primarily determined by the average interac-
tions among the electrons. This nearly independent-motion ansatz leads to the
postulate that ¢ can be approximated as an antisymmetrized product of one-
electron spin orbitals (Pilar, 1961; Cook, 1978); this approximation is similar
to giving the probabilities of uncorrelated events as products of probabilities
of the individual events.

If the orbitals used to construct ¢, are allowed complete variational flex-
ibility, the resulting calculation is referred to as an unrestricted HF (UHF)
calculation. In this most general case, the resulting HF spatial orbitals
associated with o and @ spins will not necessarily be identical. For example, a
UHEF calculation on the 1sals’f2sa occupancy of Li does not yield two iden-
tical 1s orbitals (1s # 1s’). As a result, the Slater determinant det(lsals’f2sa)
is not a pure doublet (s = 1/2) spin eigenfunction (Pauncz, 1979). Although
this is indeed an unattractive feature of such UHF wavefunctions, this SCF
procedure is widely used as a method for generating molecular orbitals (Pople,
1976). Subsequent to the UHF calculation of the molecular orbitals, the im-
proper spin-symmetry behavior of ¢sp can be removed by applying a spin-
projection operator P, (Pauncz, 1979) to ¢y to give a correct spin eigenstate

bssp = Ps‘ibSD- (A.5)

The resulting projected UHF wavefunction ¢, sp is generally no longer a single
Slater determinant. For example, a doublet (s = 1/2) projection of the
1sals’B2sa Slater determinant yields

—l—,: [det(15al5’B2s5a) + det(15815 0251
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However, it is still straightforward to compute the energy of ¢,sp using the
Slater-Condon rules (Cook, 1978) discussed below.

As an alternative to projecting a spin-unrestricted Slater determinant, one
can force the orbitals that belong to paired electrons to be identical at the start
of the SCF procedure and to remain so. For example, one can use the determi-
nant det(lsalsB2sa), which contains only two (ls and 2s) spatial orbitals
rather than three (1s, 1s’, and 2s). The energy of this spin-restricted HF (RHF)
trial function can be minimized to give a set of equations (Roothaan, 1960)
analogous to equation A.3, which determine the restricted HF orbitals. This
RHF process has the advantage that it does not yield different spatial orbitals
for paired electrons. Thus, for the Li example, the RHF ¢, automatically has
doublet spin symmetry (Pauncz, 1979). A disadvantage of the RHF method is
that it is computationally more difficult. Furthermore, its derivation is not en-
tirely free from arbitrary assumptions (Jgrgensen and Simons, 1981), which
makes it difficult to associate the orbital energies {e;} with ionization potentials
by means of Koopman’s theorem (Pilar, 1968; Cook, 1978). In contrast, the
UHF method permits the approximate evaluation of (vertical) ionization
energies as —e;.

The UHF or RHF self-consistent-field equations are usually solved by the
Roothaan-matrix procedure in which the y,; functions are expanded in an
atomic orbital (AO) basis {X;}. When this expansion is used in equation A.3,
ane obtains Roothaan-matrix HF equations of either the UHF or RHF variety
(Cook, 1978). If M atomic orbitals are used in the expansion, the resulting
matrix eigenvalue problem generates N occupied molecular orbitals and
2M — N excited or virtual molecular orbitals.

Vi = Ecebxb(ﬂf or 3). (A.6)
b

The most commonly used atomic orbitals are Slater-type orb.tals (STO),
namely,

Xb = NyYim,r™ 'exp(—alr — Ry ) (A.7)
and Gaussian-type orbitals (GTO),
X, = N.X*Y“Z"exp[—a.(r — R,)*]. (A.8)

In these defining equations, Y, is a spherical harmonic, N, and N, are nor-
malization constants, R, , is the position of the nucleus on which the atomic
orbital is located, ny, I,, my, k., 4, and v, are orbital quantum numbers, and
¢, and «, are orbital exponents that determine the radial sizes of the atomic
orbital.

Slater-type orbitals are to be preferred on fundamental grounds because
they display proper cusp behavior at the nuclear centers. For example, the
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[dﬁ N exp(— ;‘r)] = —N{. (A.9)
r r=0

This is precisely the behavior displayed by hydrogenlike orbitals that are eigen-
functions of the one-electron Schrodinger equation having only kinetic and
electron-nuclear attraction energies. In contrast, all GTO have zero slope at
the nucleus; for example, for the 1s GTO

LT ] 5
[drNexp( ar rao-—(}. (A.10)

Near a nucleus the full Schrodinger differential equation is dominated by the
same kinetic and nuclear-electron attraction terms that constitute the hydrogen-
like Hamiltonian; thus, the correct wavefunction ¢ must display hydrogenlike
cusps at the nuclei. The STO fulfill this criterion; the GTO do not.

The deficiencies of the GTO raise the question of why and how they are
used. GTO’s are convenient in studies of polyatomic molecules because they
allow efficient handling of the multicenter integrals that arise. In integrals con-
taining a product of two orbitals X, and X, that have origins on different
nuclei R, and R,, the Gaussian orbitals allow this product to be written in
terms of a single common origin. For example, the product of two ls-type
GTO’s can be expressed as

exp[ — aa(r — R,)%lexp[ — as(r — Rp)?]

= exp[—(aa + as)r?jexp (—;“T“;bn‘) (A.11)

in which the origin of the final r-dependent function is located between R, and
R, at a distance a.R/(a.+ p) from R, and opR/(a. + o) from R,
(R = |R,—R,|). The fact that the product X,X, that involves GTO’s having
different origins can be expressed as a single new GTO at a new origin makes
the use of GTO’s in evaluating integrals efficient.

To attempt to overcome the improper cusp behavior of GTO’s, one often
employs contracted GTO’s (CGTOQ) (Schaefer, 1972; Dunning, 1970, 1971;
Huzinaga, 1965). A CGTO (X3) is a linear combination of the GTO’s

Xo = Y AaX, e
b

in which the GTO [X,} have common quantum numbers (e.g., 1s, 2p, 3d) but
different orbital exponents («;). By combining a tight GTO (one having large
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Figure A-1
Formation of an STO by addition of loose and tight GTO’s.

a) with other GTO’s having progressively smaller exponents, one might fit
the cusp behavior of the STO. This is shown for 1s-type functions in Figure
A-1. By choosing the contraction coefficients {4 ,;} properly, it is possible to
generate a CGTO which, in a least-squares sense, reproduces the proper STO
cusp behavior (Pople, 1969). Alternatively, the contraction coefficients can be
chosen to minimize the SCF energy of the lowest energy state of the atom of
interest (Dunning, 1970, 1971). For either of these CGTO for any atom, the
CGTO itself can be viewed as the atomic-orbital basis function that is to be used
in subsequent molecular SCF calculations. In the literature, tabulations of op-
timal CGTO’s are available for most first-, second-, and third-row atoms based
either upon the STO fitting procedure (Pople, 1969) or the atomic-energy op-
timization procedure (Dunning, 1970, 1971).

In summary, the SCF method can be used to generate a set of molecular
orbitals that are expressed in terms of a chosen set of Gaussian- or Slater-type
atomic basis functions. The nature of the occupied molecular orbitals, as
displayed in the molecular-orbital expansion coefficients of equation A.6,
describes the charge density and bonding characteristics of these orbitals. The
energies {¢;] of the occupied orbitals give us, via Koopmans’ theorem, ioniza-
tion potentials of the system. However, one must remember that the entire
SCF method, including the concept of molecular orbital, is predicated upon
the assumption that ¢ is accurately represented by ¢qp.
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A.2. Configuration Interaction

In Chapter 3 it was shown that it is not always possible to describe the elec-
tronic wavefunction ¢ in terms of a single orbital-occupancy list (configura-
tion). For example, the fragmentation of heteropolar bonds to give radical
products was shown to require both ¢ and go* configurations to describe ¢
throughout the entire bond-dissociation process. For these reasons one must
often extend the description of ¢ to include more than one Slater determinant
or configuration. Moreover, such a multiconfigurational description should be
examined whenever high accuracy in the resulting wavefunction and energy is
desired. Hence, even when ¢ is dominated (~95%) by a single Slater determi-
nant, that determinant does not accurately represent the true wavefunction
because the Slater determinant describes electrons moving in orbitals deter-
mined only by the average interactions with the other electrons and not by the
instantaneous interactions. No electron correlation is present in the SCF
(single determinant) description.

By writing ¢ as a linear combination of all Slater determinants {¢,} that
can be constructed from the 2M (occupied and virtual) SCF spin orbitals,

¢ = ECJ¢1. (A.13)
I

the SCF treatment is improved. In most such configuration-interaction
calculations the ¢, are symmetry-projected functions (each of which may con-
tain several Slater determinants) describing the various configurations (spin-
orbital occupancies) that can be made from 2M orbitals and N electrons
(Pauncz, 1979; Shavitt, 1977).

Clearly, the number 2M /N !(2M — N)! of these configurations becomes
extremely large as the basis size (M) and the number of electrons increases.
Therefore, various procedures have evolved for selecting the most important
of the 2M ! /N1(2M — N)! configurations (Shavitt, 1977). The most commonly
used criterion for judging the importance of a configuration ¢, is to evaluate
its interaction strength using the one or few configurations that are absolutely
essential to describe ¢. For example, for the case of heteropolar bond rupture
(mentioned above and in Chapter 3) the ¢ and oo* configurations are essen-
tial. Other configurations ¢; (e.g., o¢’, 72, and so forth) are evaluated for
their importance by computing their interaction strengths {(¢;| H | ®eseniiar) fOr
all of the essential configurations. If the interaction strength is large, ¢, is con-
sidered to be important.

Unfortunately, ranking configurations according to the value of their in-
teraction strengths provides little physical interpretation for the nonessential

configurations. However, it is possible to ascribe meaning to those configura-
tions that are either cinolv (4 Y or danhly (4,) aveitad valation to o damato s
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essential configuration ¢.. The contributions to ¢ made by a configuration in
which one electron is promoted from ¢, (occupied in ¢.) to ¥, (unoccupied in
#.) can be denoted ¢%,. The trial wavefunction ¢, + C,¢5, consisting of two
Slater determinants is (because the two determinants differ by one column only)
equivalent to another single Slater determinant having the property that the
column in which ¢, and ¢Z, differ (¢. having y,, and ¢%, having V) is replaced
by a column containing the modified spin orbital y’ = Vu+ Cs¥p. The fact
that ¢, + C.¢%, is equivalent to a modified Slater determinant in which ¥, has
been replaced by ¢’ is the basis for saying that such singly excited deter-
minants £, produce either orbital modification or orbital relaxation.

If the SCF orbitals are used to construct the Slater determinants, one
finds (by using the Slater-Condon rules discussed below) that the interaction
strength between the SCF determinant (which is presumably one of the essen-
tial configurations) and singly excited determinants vanishes—that is,

(bur| H|¢:) = 0. (A.19)

This equation, known as the Brillouin theorem (Schaefer, 1972; Cook, 1978;
Pilar, 1968), simply states that singly excited determinants are not important
(in the interaction strength case) when SCF orbitals are used to construct the
determinants because these orbitals are already optimal—further optimization
(modification or relaxation) or the orbitals is not needed.

For doubly excited configurations ¢5?,, in which ¥, and ¥, (which are
occupied in ¢,) are replaced by ¥, and ¥, the trial function ¢, — Cpé7’,, can
be rewritten as a combination of two other determinants, each of which in-
clude pairs of polarized orbitals:

¢¢ = Cp(bpp?”, == det[- . -(‘;’u = \/a\&p)(#’v + \/G'J’q)]
+det[. . .(¥u + VCp ¥,)(¥, — VCb ¥,)l. (A.15)

Notice that in each of these two determinants, each electron moves in separate
polarized orbitals. For example, in describing the rupture of the H, bond
discussed in Chapter 3, a configuration-interaction wavefunction including
both the o§ and o2 configurations was used:

¢ = o} — Co}. (A.16)

The polarized orbitals corresponding to this doubly excited configuration-
interaction wavefunction are g, + VCo,. Such double excitations give rise to
electron-pair correlations because, in the polarized-orbital determinantal
description, the electron pair residing in the orbitals ¥, and ¥, are correlated in
the sence that one electron ic in one polarized orbital when the other electron is
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Figure A-2
Polarized orbitals.

in the other polarized orbital. Doubly excited determinants that include excita-
tions of orbitals differing in their left-right symmetry (as above) give rise to
polarized orbitals that are left-right polarized. Double excitations of the form
o — =1 give rise to polarized orbitals (¢ + vCr,) that differ in their angular
characteristics as shown in Figure A-2. Double excitations of the form
252 — 3s? give polarized orbitals (25 + /C3s) that differ in their radial or in-
out character. This polarized orbital-pair description of the contributions
made by double excitations is the basis for saying that such configurations give
rise to electron correlations. As one electron is in one polarized orbital, the sec-
ond is in the other orbital; this is what is meant by correlated motion.

In summary, configuration interaction is used to improve upon the SCF
description of the electronic wavefunction. Such improvement is often essen-
tial as, for example, in describing heteropolar bond rupture to give radical
products. However, configuration interaction can also be used simply to im-
prove the accuracy of the wavefunction ¢ and energy E. Configurations that
are singly or doubly excited relative to a dominant (essential) configuration
allow orbital relaxation and electron-pair correlation effects to be included in
the configuration-interaction wavefunction. Numerical procedures for adding
configurations above and beyond these singles and doubles, which are included
on physical grounds, are usually based upon evaluating the interaction strength
of each such configuration with all of the essential configurations.

A.3. Slater-Condon Rules

After obtaining a list of configurations that includes the essential configurations
and perhaps some set of singly, doubly, or more highly excited configurations
that have been chosen as discussed in section A.2, the C; expansion coefficients
of equation A.13 must be evaluated. In the configuration-interaction proce-
dure, the wavefunction of equation A.13 is used in the variational method to
minimize the electronic energy. This approach leads to the well-known config-
uration-interaction matrix eigenvalue problem (Shavitt, 1977; Pilar, 1968)
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Q ;
Y HyC; = EC; I=1,...4 (A.17)

J=1

in which Q is the number of configurations included in the configuration-
interaction wavefunction and E is the configuration-interaction approximation
to the electronic energy. The Q x Q matrix H clearly has Q eigenvalues (£},
i=1,...0) and Q independent eigenvectors {C;;, i =1,...Q0;J =1
... Q). The various E; represent the configuration-interaction approxima-
tions to the ground- and excited-state energies; the coefficients [C,,; J = 1,
. . . Q) describe the configuration-interaction wavefunction for this ith state.

The elements of the H matrix are given as integrals over the configura-
tions ¢;:

Hy = jt;b?h&; dry . ..d1n, (A.18)

in which A, is the full Born-Oppenheimer electronic Hamiltonian described
earlier and dr; denotes the space- and spin-integration volume element for the
Jjth electron. The evaluation of these integrals is nontrivial because the ¢, are
antisymmetrized N-electron functions. The derivation of closed expressions
for the H;, matrix elements is given in many texts on quantum chemistry
(Cook, 1978; Condon and Shortley, 1957). The resulting set of so-called
Slater-Condon rules can be summarized as follows. Two configuration func-
tions ¢; and ¢; are first decomposed into their constituent Slater determinants
det,, and det;, (each ¢, consists of one or more Slater determinants). To com-
pute the matrix element det;, | A, [det;,) the spin-orbital occupancies of these
two determinants are compared. If the occupancies differ by more than two
spin orbitals (e.g., 1s?2s? and 15,2p23s; differ by three), then the matrix ele-
ment vanishes. If the occupancies differ by two spin orbitals (with , and ¥, in
det,, and ¥, and ¥, in det ), then the matrix element has a value + [(u»|pq) —
{ur|gp)) in which

(wrlpg) = s YREOWRE ) [r =1 |0, () drdr’. (A.19)

The choice of + or — in the + sign is determined by how many spin-orbital
interchanges are needed to arrange det,, to have exactly the same spin-orbital
ordering as det,, except that ¥, replaces y,, and ¢, replaces ¢, . If the number
of interchanges needed is odd (even), then the minus (plus) sign results. When
det,, and det,, differ by only one spin orbital (with y,, in det;, and ¢, in det;),
then the value of the matrix element is
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« [ -572- o[ + @bt - RATEN

in which the sum over » runs over all of the spin orbitals common to det;, and
det;,. The sign + is computed as just described by determining how many
spin-orbital interchanges are needed to bring det,, into the same order (except
for the ¥, and ¢, mismatch) as det;,. If det;, and det;, have identical spin-
orbital occupancies, their Hamiltonian matrix element is given as above, but
with ¥, = ¥,., and summed over the index  that runs over all occupied spin
orbitals.

Once the Slater-Condon rules are used to compute the Hamiltonian
matrix elements over the determinants det;,, the evaluation of the configuration-
based matrix elements {(¢;|h.|¢,) is straightforward. Knowing that ¢, is ex-
pressed as a linear combination of the det,,

b = EB:,‘delrk. (A.20)
k
one can write
@ilhe| sy = Y Bi By (dety|h|dets). (A.21)
k.d

The final result of using the Slater-Condon rules is that the configuration-
interaction H matrix, whose dimension is equal to the number of configurations
selected, can be computed in terms of the one-electron ({y¥:|—1/2V?|y;),
(¥:| —Z./|r—R,| |¥;)) and two-electron ({¥,¥;|¥x¥:)) integrals over the
spin orbitals used to form the configurations. These integrals can be evaluated
in terms of the molecular-orbital expansion coefficients C;, and the one- and
two-electron integrals over the atomic-basis orbitals {X.], which must be ex-
plicitly calculated for the GTO or STO basis. For example, the two-electron in-
tegrals are expressed as

Wbl ¥adi) = Y CiaCisCireCraXaXs| XX a). (A.22)

abed

After forming the Q x Q configuration-interaction H matrix, the eigen-
values (E)) and eigenvectors (Cy; J = 1. . . Q) are found by diagonalization.
Each of the resulting approximate energy levels E; can be shown (Hylleraas,
1930) to be an upper bound to the fth exact energy level of the system. The
eigenvector {Cy; J = 1. .. Q] tell us to express the approximate configuration-
interaction wavefunction (¢;) for the Ith energy level in terms of the configura-
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Q
b = Eci!¢r- (A.23)
I=

By including in a configuration-interaction wavefunction the essential
configurations (which are usually straightforward to guess) as well as con-
figurations that are singly and doubly excited relative to any of these essential
components, a satisfactory description of orbital relaxation and eleciron-pair
correlation effects can often be achieved. This truncated configuration-
interaction treatment, based upon low-order excitations out of essential con-
figurations, has a significant weakness that should be made clear. This kind of
configuration-interaction method suffers from what is called size inconsistency
(Pople, 1976). To illustrate the problem, consider how one would compute the
configuration-interaction energy of two separated and noninteracting beryllium
atoms. Assume that a configuration-interaction calculation has already been
performed on a single Be atom from which it was decided that only two con-
figurations (1s*2s* and 1s?2p?) need to be included in the one-atom configu-
ration-interaction wavefunction to achieve a reasonable description—that is,
evidence is available that supports the inclusion of only double excitations
(25 —2p?) in the Be atom configuration-interaction wavefunctions. If the
same level of configuration interaction (dominant configuration 1s42s%1s22s3
plus double excitations 2s% — 2p3, 253 — 2pa2ps, 255 — 2pk, 254255 —
2042D8, 254255 — 2p 4, and 25,4255 — 2p3) were applied to the Be + Be system,
the lowest resultant configuration-interaction energy would not be equal to
twice the configuration-interaction energy obtained above for the single Be
atom. One says that this configuration-interaction treatment is size-inconsistent
because the energy obtained for noninteracting systems is not the sum of the
configuration-interaction energies of the individual systems.

What is wrong with the above configuration-interaction wavefunction is
that the wavefunction for Be + Be should (because the atoms are noninteract-
ing) be the antisymmetrized product of the wavefunctions for the two Be
atoms (A and B):

PBe + Be = ¢BeA¢BeB' (A.24)

Because g, and ¢g.,, contain both 15?25 and 15*2p* configurations, ¢g. . s
should contain 2s22s3, 2522p2, 2p22s2, and 2p%2p? (the 152 1s2 is suppressed).
This last configuration is quadruply excited relative to the dominant 2s2 252
configuration, but it must be included if ¢y, , g is to be size-consistent.

From the above example, it should be clear that a configuration-
interaction wavefunction that is truncated to any level of excitation (e.g.,
doubly) when separately treating individual systems, A and B, will not be ap-
propriate for use when treating the combined system AB even when A and B
avn For camacnd (lat alane swhen thev are interactine or chemicallv bonded).
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Correct treatment of AB requires inclusion of excitations up through the sum
of the excitation levels used when separately treating A and B. Clearly, this
size-consistency problem of the truncated configuration-interaction method
may cause serious errors when using these techniques for computing energy
differences such as bond-dissociation energies, intermolecular forces, and
energy or enthalpy changes in chemical reactions.

The realization that truncated configuration-interaction approximations
are not size-consistent has led to much recent interest in the use of perturbation
theory for treating electron correlation effects (Pople, 1976). In these many-
body perturbation theories (MBPT) the electronic Hamiltonian A, is usually
decomposed into hand V in which h2is a sum of one-electron Fock operators

N
= 3 F. (A.25)

i=1

in which F (i) is the Fock operator for the ith electron defined in equation A.4,
The perturbation V then consists of the instantaneous electron-electron in-
teraction minus the average (coulomb minus exchange) interaction contained
in the Fock operator

E

l#j

Ev(r ) (A.26)

il" _rli i=1

in which

vr) = Y S L ) | | —YAr’) dr’. (A27)

jDDC

In addition to the above decomposition of h., the exact electronic
wavefunction ¢ is assumed to be given as a zeroth-order component ¢° plus
higher-order corrections (¢‘"'; n = 1, 2, . . .) with ¢° taken to be a single-
configuration wavefunction. Such a single-configuration wavefunction, if it is
constructed from the SCF spin orbitals, is an eigenfunction of the above-defined
h?with eigenvalue E° equal to the sum of the SCF orbital energies belonging to
the spin orbitals occupied in ¢°.

Although such MBPT-based treatments of electron correlations have been
successfully carried out by several research workers (Pople, 1976; Bartlett,
1975), major problems arise when the physical situation dictates that the true
wavefunction ¢ is not dominated by a single configuration. As we saw earlier,
description of processes with heteropolar or homopolar bond rupture usually
requires a description of two or more essential configurations. By using a spin-
unrestricted SCF configuration as ¢°, it is possible to describe bond rupture

Mo =
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length of, for example, HCI, the single configuration is det(. . .oac’ ) with
¢ = ¢’. Upon bond rupture the single-configuration wavefunction becomes
det(. . .oac’B) in which o is the hydrogen 1s orbital and ¢’ is a chlorine 3p or-
bital. Unfortunately, such a UHF treatment suffers from the spin-impurity
difficulty discussed in section A.1. Moreover, chemical problems (e.g., strong
configuration mixing arising in concerted reactions involving breaking and
forming more than one bond) exist for which any single-configuration descrip-
tion is inappropriate, and these limit the application of MBPT to large
numbers of species arising in a variety of chemical reactions.

At present, a great deal of research is aimed at extending the machinery of
MBPT (which does not suffer from the size-consistency problems) to permit
$° to consist of more than one essential configuration; however, this problem
is not resolved yet. As a result, a perturbation theory tool that can be used in
the avoided-crossing situations arising in many of the concerted reactions
treated in Chapters 4 and 7 is not available. Thus, we shall not pursue further
the use of MBPT to treat correlation in a manner that overcomes the size-
consistency difficulty of the configuration-interaction method. The most
essential point is that configuration interaction is not size-consistent. Thus,
although the inclusion of singly and doubly excited configurations is attractive
because of their significance with respect to relaxation and pair correlation,
use of the variational configuration-interaction method for determining the
amplitudes of these configurations may be questionable. Unfortunately, the
MBPT method has not yet been extended to allow multiconfigurational
zeroth-order functions, so it also cannot (at present) be employed for reliable
evaluation of the desired amplitudes.



