Answers

Problems Relating to Thermal Processes (Chapter 4)

1. The relevant HOMO and LUMO of the ten-membered ring are the antisymmetric σ_{A} bonding and symmetric antibonding σ_{S}^{*} orbitals involving the CH bonds. The HOMO and LUMO of the smaller ring are the π_{s} and π_{A}^{*} orbitals, which are symmetric and antisymmetric, respectively, under reflection through the plane of symmetry that is preserved throughout the reaction. Suprafacial attack would result in favorable HOMO-LUMO interactions ($\sigma_{A} \leftrightarrow \pi_{A}^{*}$ and $\sigma_{S}^{*} \leftrightarrow \pi_{S}$), whereas antarafacial attack would not.

The bond-symmetry rule also indicates that suprafacial attack is allowed because the occupied orbitals of the reactants (σ_{S}, σ_{A}, and π_{S}) match in symmetry those of the products (π_{S}, σ_{S}, and σ_{A}), where the π bond is now in the ten-membered ring, and σ_{S} and σ_{A} now refer to CH bonds in the smaller ring.

In applying the Dewar-Zimmerman method, one finds for suprafacial attack, a Hückel transition state having six electrons (two CH bonds and one π bond). Again, the suprafacial attack is predicted to be allowed.
2. Using the bond-symmetry rule, one sees that the occupied active orbitals of the cyclopenteneone are the symmetric σ_{s} and antisymmetric $\sigma_{A} \mathrm{CC}$ bonding orbitals and the symmetric p_{s} orbital. The plane of symmetry used to make these labels is the only one that persists throughout the reaction path. In the products the active orbitals are the CO lone pair on carbon, which is symmetric $\sigma(\mathrm{CO})_{s}$, and the two occupied π orbitals of 1,3-butadiene, which are symmetric π_{s} and antisymmetric π_{A}, respectively. The reactant and product orbitals match in symmetry; hence, the decomposition reaction should be thermally allowed.

In the other case, the relevant occupied orbitals of the cyclohexadieneone are the two CC bonds σ_{S} and σ_{A} and the two π bonds π_{s} and π_{s}^{\prime} (both of which are symmetric). In the products, the orbitals are $\sigma_{s}(\mathrm{CO})$ and the three occupied orbitals of benzene, which are $\pi_{S}, \pi_{s}^{\prime}$, and π_{A} (see section 7.6). Again, the bondsymmetry rule indicates that the thermal decomposition reaction is allowed.
3. This reaction is symmetry-forbidden-it is nothing but two independent [$2_{s}+2_{s}$] cycloaddition reactions. Such reactions were shown to be forbidden in sections 4.4 and 4.8. The reason this problem might lead to confusion is that when using the orbital- and configuration-correlation diagram method, one is tempted to connect the $\pi_{12}-\pi_{56}$ symmetry-adapted orbital, which is antisymmetric under the plane $M 1$, with the $\sigma_{38}-\sigma_{47}$ orbital, which is also odd under $M 1$. However, as becomes clear when one utilizes the orbital-following device, $\pi_{12}-\pi_{56}$ and $\sigma_{38}-\sigma_{47}$ cannot be so connected-they belong to totally distinct portions on this molecule.

By placing two forbidden $\left[2_{s}+2_{s}\right]$ reactions in close spatial proximity, one might incorrectly correlate the reactant and product orbitals. It is not proper to correlate orbitals that are localized on one part of the reactant molecule with those that belong to a different part of the product molecule.
4. If n is odd, the H atom can undergo a suprafacial shift to give HDFC $=\mathrm{C}(-\mathrm{C}=\mathrm{C})_{n}-\mathrm{CR}_{1} \mathrm{R}_{2}$; when n is even, the antarafacial hydrogen shift to the terminal carbon is allowed. In either case, one obtains two isomers that differ geometrically at the $-\mathrm{CR}_{1} \mathbf{R}_{2}$ end and that are enantiomers at the HDFC - end. The two isomers arise in each case because of the free rotation about the $\mathrm{C}-\mathrm{CHR}_{1} \mathrm{R}_{\mathbf{2}}$ bond in the reactant molecule.
5. Methyl-group migration is allowed because the orbital of the CH_{3} group, which plays a role analogous to that of the $1 s$ orbital of the hydrogen atom, has $s p^{3}$ character. This orbital has both a positive and a negative lobe. By connecting its positive lobe to the orbital of the neighboring carbon atom and its negative lobe to the p_{π} orbital of the terminal carbon atom, one achieves a Möbius transition state having four electrons. Thus, the suprafacial methylgroup shift is allowed. Of course, the configuration of the substituents around the methyl group is inverted once the transfer to the 3-carbon takes place.
6. Denoting the three orbitals of the hydrogen atoms by $1 s_{\mathrm{HA}}, 1 s_{\mathrm{HB}}$, and $1 s_{\mathrm{HC}}$ and applying the a_{1} and e symmetry projectors (see Appendix C), one obtains the following (unnormalized) symmetry-adapted orbitals:

$$
\begin{aligned}
& X_{a_{1}}=\left(1 s_{\mathrm{HA}}+1 s_{\mathrm{HB}}+1 s_{\mathrm{HC}}\right) \\
& X_{e}=\left\{\begin{array}{l}
2 \cdot 1 s_{\mathrm{HA}}-1 s_{\mathrm{HB}}-1 s_{\mathrm{HC}} \\
2 \cdot 1 s_{\mathrm{HB}}-1 s_{\mathrm{HA}}-1 s_{\mathrm{HC}}
\end{array}\right.
\end{aligned}
$$

The four nitrogen orbitals can also be symmetry-projected:

$$
\begin{aligned}
& X_{a_{1}}^{\prime}=2 s_{\mathrm{N}} \\
& X_{a_{1}}^{\prime \prime}=2 p_{z \mathrm{~N}} \\
& X_{e}^{\prime}=\left\{\begin{array}{l}
2 p_{x \mathrm{~N}} \\
2 p_{y \mathrm{~N}}
\end{array}\right.
\end{aligned}
$$

(The z axis is chosen to be the 3 -fold symmetry axis of the molecule.)
The three a_{1} atomic orbitals combine to yield bonding (ϕ_{1}), nonbonding (ϕ_{4}) and antibonding (ϕ_{7}) molecular orbitals having a_{1} symmetry. Likewise, the two pairs of e orbitals combine to give pairs of bonding (ϕ_{2}, ϕ_{3}) and antibonding (ϕ_{5}, ϕ_{6}) molecular orbitals having e symmetry.

The ground state of NH_{3} has an electronic wavefunction that is dominated by the configuration $\phi_{1}^{2} \phi_{2}^{2} \phi_{3}^{2} \phi_{4}^{2}$ (the $1 s_{\mathrm{N}}^{2}$ electrons are neglected). This configuration has ${ }^{1} A_{1}$ symmetry. The singly excited configuration $\phi_{1}^{2} \phi_{2}^{2} \phi_{3} \phi_{4}^{2} \phi_{5}$ gives rise to singlet and triplet states corresponding to all symmetries contained in the direct product $e \times e=e+a_{1}+a_{2}$ (see Appendix C). Of these, the E state would be first-order Jahn-Teller unstable, whereas the other two (A_{1} and A_{2}) are not. The A_{1} and A_{2} states could be second-order (actually pseudo-) JahnTeller unstable through coupling, via a distortion of e symmetry, with the E state. The other singly excited configuration $\phi_{1}^{2} \phi_{2}^{2} \phi_{3} \phi_{4}^{2} \phi_{7}$ has $e \times a_{1}=e$ symmetry. This E state should be first-order Jahn-Teller unstable with respect to distortions of $E \times E=E+A_{1}+A_{2}$ symmetry. Of these, the only vibrations of NH_{3} have A_{1} and E symmetry. The A_{1} vibrations would not remove the degeneracy because they preserve the symmetry of the molecule; hence, only the distortion of E symmetry will be effective.

Problems on Photochemistry (Chapters 5-7)

The answers to problem 1 are given in the excellent book Problems in Quantum Chemistry by P. Jørgensen and J. Oddershede (Addison-Wesley, Reading, Mass., 1983). On page 238 of this book a discussion of the problem is given, as well as references to the experimental literature relating to this very interesting case.

Complete answers to the questions posed in problem 2 are probably not attainable at this time. Much debate remains about what is really happening in
the photochemistry of formaldehyde. For this reason, it is best to attempt to relate your answers to this problem to some of the best treatments of formaldehyde photochemistry, which are contained in the following references: J. C. Weisshaar and C. B. Moore, (1980), J. Chem. Phys., 72, 5415; H. L. Selzle and E. W. Schlag, (1979), Chem. Phys., 43, 111; D. F. Heller, M. L. Elert, and W. M. Gelbart, (1978), J. Chem. Phys., 69, 4061; J. D. Goddard and H. F. Schaefer III, (1979), J. Chem. Phys., 70, 5117; and many other references contained in these papers.

References

Chapter 1

Bordon, W. T. (1975). Molecular Orbital Theory for Organic Chemists. Prentice-Hall. Eyring, H., J. Walter, and G. E. Kimball. (1944). Quantum Chemistry. Wiley.
Fleming, I. (1976). Frontier Orbitals and Organic Chemical Reactions. John Wiley and Sons.
Mead, C. A. (1979). J. Chem. Phys., 70, 2276.
Pack R. T. and J. O. Hirschfelder. (1968). J. Chem. Phys., 49, 4009; ibid., (1970), 52, 528.

Pearson, R. G. (1976). Symmetry Rules for Chemical Reactions. Wiley.
Wilson, Jr., E. B., J. C. Decius, and P. C. Cross. (1955). Molecular Vibrations. McGrawHill.
Wolniewicz, L. and W. Kolos. (1963). Rev. Mod. Phys., 35, 473; J. Chem. Phys., 41, 3663, 3674 (1964); 43, 2429 (1965).
Woodward, R. B. and R. Hoffmann. (1970). The Conservation of Orbital Symmetry. Verlag Chemie Gmbh., Weinbeim/Bergstrasse.

Chapter 2

Arfken, G. (1970). Mathematical Methods for Physics. Academic Press.
Cerjan, C. and W. H. Miller. (1981). J. Chem. Phys., 75, 2800.
Cotton, F. A. (1963). Chemical Applications of Group Theory. Interscience.
Herzberg, G. (1966). Electronic Spectra of Polyatomic Molecules, Van Nostrand.
Jørgensen, P. and J. Simons. (1981). Second Quantization Based Methods in Quantum Chemistry. Academic Press.
Simons, J., P. Jørgensen, H. Taylor, and J. Ozment. (1983). J. Phys. Chem., 87, 2745 (1983).

Wigner, E. P. (1959). Group Theory. Academic Press.
Wilson Jr., E. B., J. C. Decius, and P. C. Cross. (1955). Molecular Vibrations. McGrawHill.

Chapter 3

Condon E. V. and G. H. Shortley. (1957). The Theory of Atomic Spectra. Cambridge IIniversity Press

Cotton, F. A. (1963). Chemical Applications of Group Theory. Interscience.
Dunning, Jr., T. H. (1970). J. Chem. Phys., 53, 2823; 55, 716 (1971).
Dunning, Jr., T. H. and P. J. Hay. (1977). Ch. I in Modern Theoretical Chemistry. Ed. by H. F. Schaefer III. Plenum.
Pilar, F. L. (1968). Elementary Quantum Chemistry. McGraw-Hill.
Roothaan, C. C. J. (1951). Rev. Mod. Phys., 23, 69.
Shavitt, I. (1977). In Modern Theoretical Chemistry. Ed. by H. F. Schaefer III. Plenum.

Chapter 4

Benson, S. W. (1960). The Foundations of Chemical Kinetics. McGraw-Hill.
Cotton, F. A. (1963). Chemical Applications of Group Theory. Interscience.
Dewar, M. J. (1966). Tetrahedron, Suppl. 8, 75.
Fukui, H. (1971). Acct. Chem. Res., 4, 57.
Pearson, R. G. (1976). Symmetry Rules for Chemical Reactions. Wiley.
Pilar, F. L. (1968). Elementary Quantum Chemistry. McGraw-Hill.
Woodward, R. B. and R. Hoffman. (1970). The Conservation of Orbital Symmetry, Verlag Chemie, Gmbh. Weinbeim/Bergstrasse.
Zimmerman, H. E. (1966). J. Amer. Chem. Soc., 88, 1564, 1566.

Chapter 5

Beer, M. and H. C. Longuet-Higgins. (1955). J. Chem. Phys., 23, 1390.
Kasha, M. (1950). Disc. Faraday Soc., 9, 14.
McMurchie, L. E. and E. R. Davidson. (1977). J. Chem. Phys., 66, 2959.
Michl, J. (1972). Molec. Photochem. 4, 243; (1974) Topics in Current Chemistry, 46, 1; (1975) Pure Applied Chem., 41, 507.

Pearson, R. G. (1976). Symmetry Rules for Chemical Reactions. Wiley.
Rice, S. A. (1971). Adv. Chem. Phys., 21, 153.
Turro, N. J. (1978). Modern Molecular Photochemistry. Benjamin/Cummings.

Chapter 6

Berry, R. S. (1966). J. Chem. Phys., 45, 1278.
Eyring, H., J. Walter, and G. E. Kimball. (1944). Quantum Chemistry. Wiley.
Lin, S. H. (1980). Radiationless Transitions. Academic Press.
Yardley, J. T. (1980). Introduction to Molecular Energy Transfer. Academic Press.

Chapter 7

Cotton, F. A. (1963). Chemical Applications of Group Theory. Interscience.
Pearson, R. G. (1976). Symmetry Rules for Chemical Reactions. Wiley.

Hylleraas, E. A. and B. Undheim. (1930). Z. Phys., 65, 759.
Jørgensen, P. and J. Simons. (1981). Second Quantization Based Methods in Quantum Chemistry. Academic Press.
Pauncz, R. (1979). Spin Eigenfunctions. Plenum.
Pople, J. A., J. S. Binkley, and R. Seeger, Inter. J. Quantum Chem., S10, 1.
Roothaan, C. C. J. (1960). Rev. Mod. Phys., 32, 179.
Schaefer, H. F. (1972). The Electronic Structure of Atoms and Molecules. AddisonWesley.
Shavitt, I. (1977). Modern Theoretical Chemistry, Vol. 3. Ed. by H. F. Schaefer. Plenum.

Appendix B

Simons, J. (1982). J. Phys. Chem., 86, 3615.

Appendix C

Cotton, F. A. (1963). Chemical Applications of Group Theory. Interscience. Eyring, H., J. Walter, and G. E. Kimball. (1944). Quantum Chemistry. Wiley.
Wilson Jr., E. B., J. C. Decius, and P. C. Cross. (1955). Molecular Vibrations. McGrawHill.

Index

activated complex. See Transition state adiabatic approximation, 6
angular-momentum operators, 114-117
antarafacial, 59
atomic-orbital basis
Gaussian-type, 25, 125-127
contracted, 126
integrals, 25
Slater-type, 25, 125-127
avoided configuration crossings, 38,43
strongly, 52
weakly, $38,43,46$
bond-symmetry rule, 46-50
bonding-antibonding orbital
mixing, 52-54, 102-104
Born-Oppenheimer approximation, 6, 83, 123, 138
corrections to, 7, 84
Brillouin theorem, 129
character table, 141-153
list of, 148-154
characters, 143
clamped-nuclei concept, 4,123
configuration-correlation diagram (CCD)
$29,37,43,48,97,100,101,106,109-$ 111, 118
configuration interaction (mixing), 23, 28-30, 128-135
strength, 128
concerted reaction, 52
conrotatory motion, 50, 54-58, 99-100
cusp condition, 126
cuclic transition statec $65-68$ int im
density of states, 85
Diels-Alder reaction, 60, 102-104
direct product, 146-148
antisymmetric, 45
symmetric, 45-46
disrotatory motion, 50, 54-58, 99-100
eigenfunctions
electronic, 5
total, 5
vibration-rotation, 6
electric-dipole
transition moment, 138-139
electrocyclic reaction, 53
energy-digesting modes, 87-91, 93
energy gap, 90

Fermi golden rule, 84
Fock operator, 24, 26, 124
Franck-Condon
factors, 88,138
principle, 79, 98
funnels on potential energy surfaces, $78,98,100$

Hamiltonian
electronic, 5, 13-15, 123
nuclear-motion, 4
total, 3
Hartree-Fock
energy, 27-28
procedure, 24-28, 123-127 unrestricted, 124
wavefunction, 27-28, 123
highest occupied molecular orbital (HOMO), 54
hopping between potential energy surfaces, 77-78, 111-112, 119-120
intensity borrowing, 139
internal conversion, 77, 83-92, 98
intersystem crossing, 79-80, 83-85, 9294, 99

Jahn-Teller effect
first-order, 17, 44
pseudo, 48, 119-120
second-order, 17-21
vibrational distortions in, 44, 4648

Kasha's rule, 77
Koopmans' theorem, 36, 127

Landau-Zener theory, 91-92, 94
linear combination of atomic orbitals (LCAO) 26, 125
lowest unoccupied molecular orbital (LUMO), 54
many-body perturbation theory, 134-135
molecular orbital, 23
configurations, 23
energies, 27, 124
Hartree-Fock, 24, 123
occupied, 27
spin, 26
symmetry, 24-25
virtual, 27
occupied-orbital following, 54
one- and two-electron integral transformation, 132
orbital-correlation diagram (OCD), 29, 36, 42, 47, 96, 100, 105, 108, 114
orbital nodal patterns, 55,64
orbital relaxation, 129
partly classical view of photon absorption, 139-140
photon absorption probability, 138-140
point-group symmetry. See Appendix C
polarized orbital pairs, 129-130
potential energy surface, $3,5,11 \mathrm{ff}$
slopes, 11-17
curvatures, 11-21
intersection, 8, 29, 81
transitions between, 77
perturbation theory, 15-20, 92-94
radiationless transition, 7, 83-94
rate, 84-94
reaction coordinate, 12
reaction path, 12,13
reducible representation, $45,144,147$
character of, 45, 144, 147
representation matrices, 143
sigmatropic migrations, 63-65
singlet and triplet wavefunctions, 76, 92-94, 114-118
size consistency, 133-135
Slater-Condon rules, 29, 130-132
Slater determinant, 123, 124
spin-orbit operator, 92
spin orbital, 123
spin symmetry
conservation, 75
notation ($\mathrm{S}_{0}, \mathrm{~T}_{1}, \mathrm{~S}_{1}$), 75
state-correlation diagram, 29, 37, 43
suprafacial, 59
symmetry
approximate, 29, 39-40, 43, 49
direct products in, 146-148
effects on surface curvatures, 17-20
effects on surface slopes, 16-17
elements, 141
of molecular deformations, 15,16
of vibrations, 146
point-group. See Appendix C
projection operators, 44, 45, 144-145
thermal reaction, 38
transition state, 11, 46

