
Appendix B

The Nature 01
Photon-Induced

Electronic Transitions

When a photon is absorbed by a molecule and causes an electronic transition
to occur, the e/ectronic energy of the molecule changes erom Eo(R), its ground-
stale value before absorption, to Ex(R), its excited-state value. The energy of
the photon of frequency hp most match Ex(R) - Eo(R) = hp. For aDY given
frequency P, this condition will generally not be met at oli molecular geometries
(R); only at particular geometries {Re}will hp = Ex - Eo.

There is much moce to understanding photon absorption than is contained
in the above relation. Often the electronic absorption spectrum of a molecule
(even one which subsequently undergoes a photoreaction) displays sharp vibra-
tional structure, especially when the molecule is in the gag phase or in an inert
matrix soch as frozen argon or nitrogen.. This vibrational structure arises
because the ground and excited electronic states of the molecule have quantized~
vibrational energy levels (E~ and (E~'I, respectively. Even when the excited stale
bas vibrationallevels that are broadened by dissociation (Le., they are not ac-
tually bound), vibrational structure caD persist in the absorption spectrum if
the width of the stale (fi divided by the dissociation lifetime) remains less than
the spacing between the levels.

When vibrational structure is seen, the energy of the photon most algo
ober the equation hp = E~'- E~;that is, the transition occurs between quantized
states of Eo and Ex. Combining the above two requirements on hp gives

E~' - E~= Ex(Re) - Eo(Re). (B.I)

This very important relation shows that transitions erom E~to E~'can occur only
at molecular geometries (ReI in which the quantum-Ievel energy difference
E~' - E~is identical to the e/ectronic energy difference Ex(Re) - Eo(Re). Since

the electronic energy functions Ex and Eo are the potential energy functions for
the vibration-rotation motion of the molecule, the vibration-rotation classical
kinetic energies Tare given by E~'- Ex(Re) = Tx(Re)and E~- Eo(Re) = To(Re).
Hence, the above condition can be restated as Tx(Re) = To(Re); that is, photon
absorption caD occur at geometries in' which the classical vibration-rotation
kinetic energy is conserved.
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Thus far, we have seen how to determine geometries at which the light of
energy hp = f~' - f~ eon be absorbed. To understand the fale at which soch
light will be absorbed, we need to consider what happens to the electronic and
vibration-rotation wavefunctions of the molecule when a photon is absorbed.

In the approximation in which the photon-molecule interaction is treated as
an electric dipole interaction, the ground-state Born-Oppenheimer wavefunction
cpo(rIR>X~(R)becomes cp%(rIR) (cp%(r IR) If' r Icpo(rIR» x~(R) when the photon
(hp = f~' - f~) is absorbed(Simons,1982).To make a connectionwith the
Franck-Condon picture, the R-dependence of the above postabsorption wave-
function (vl%.p) is expanded in terms of the complete set of vibration-rotation
functions (x~'1of the excited stale

vl%.p(rIR)= ;;(X~,cp%IE'rlx~cpo)CP%X~'ó~- (f~'; f~)]
(B.2)

The ó function is inserted simply to insure that the energy of the photon that
creates vl%.p is equal to the quantum-stale energy difference f~' - f~. The prob-
ability P of finding the molecule in any specific vibration-rotation stale cp%x~,
having energy f~' is given by the square of the amplitude of this stale in the
above expression for vl%.p:

p = ó~- e~';f~)] l(x~,cp%IE'rlx~cpo)12. (B.3)

The usual Franck-Condon factors arise by assuming that the electric-dipole-
transition matrix element (cp%(rIR)IE.r Icpo(rIR» ==#to%(R)is relatively inde-
pendent of molecular geometry #to%(R)==#to%.With soch aD approximation

[ f~' - f~] % o 2 2

P = ór- -ll- l(xv,lxv)! #to%,

which contains the Franck-Condon factors I(x~.1 x~)12. The expression for P
leads to the conclusion that transitions to cp%X~,occur at a fale proportional t<;>
#tt%limes the square of the overlap between the initial vibration-rotation stale
x~ and the final stale x~"

Transitions for which #to%vanish ale said to be electronically forbidden.
Molecular point-group symmetry, which is reflected in the spatial symmetry of
CPo and cp%, caD determine whether #to%vanishes. For example, the lA 1- IA2,
n(b2)- 1I".(bl) electronic transition in C2v "2CO is forbidden, since #to%=
( 11".1E.r In ) vanishes. Transitions that ale electronically allowed caD still be
forbidden if the Franck-Condon factor l(x~.1x~)12 vanishes. Again, molecular
symmetry gives rise to symmetry in X~,and x~, which caDthen be used to predict
...\"_'h_..1 y 1,,0\ .. . ... .' .
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equation B.3 it bad not been assumed that /Lox(R)is R-independent, and /Lox(R)
was expanded about the equilibrium geometry (Re} of the ground staLe x~,

/Lox(R) = /LoiRe) + (R - Re) .VR/Lox+ . . ., (BA)

then for such electronically for;bidden transitions the transition pro babili ty P
would reduce to

p = {V- (f~';f~)]iVR/LOX'(X~'I(R-Re)IX~)j2.
(B.5)

Because the geometrical displacements R - Re contain contributions erom
various symmetries, the integrals <X~,IR - Re IX~) could be nonzero even
though <x~,IX~) = O. In such cases, the intensity of the transition is said to be
borrowed. In lowest order it is forbidd~n, since /Lox ==O;it is only through the
R-dependence of /Lox that the transition is weakly allowed.

Although the above Franck-Condon analysis of the intensities of vibration-
rotation structure in electronic absorption lines is very informative, another
point of view gives additional insight. By treating the vibration-rotation
kinetic-energy operator of the molecule classically, the photon-absorption
probability caD be rewritten as follows (SimOns, 1982):

p = (x~1 ó[v - (Ex(R) - Eo(R»/ h]/L~x(R)Ix~). (B.6)

This expression caD be interpreted in terms of the probability IX~(R)12of the
molecule being at geometry R in the ground staLe x~, multiplied by the electric
dipole matrix element at that geometry /L~x(R),and constrained (by the ó func-
tion) to allow contribution of only those geometries that ober hv = Ex - Eo.
By allowingequation B.6 to apply oniy when hv = f~' - f~, a partly classical
approximation of P is obtained:

p = ó[v - (f~' - f~)/ h](x~1ó[v - (Ex - Eo)/ h]/L~x1X~). (B.?)

This expression for P caD be used in attempting to understand how photon
absorption prepares the molecule at the excited-state potential-energy surface
Ex(R). The energy of the photon must coincide (within the spectral linewidths)
with one of the energy spacings f~' - f~. For each such energy value, the mole-
cule can absorb the light oniy at geometries (ReI obeying hv = Ex(Re) - Eo(Re);
this condition preserves the vibration-rotation kinetic energy of the molecule.
The relative probability that the molecule experiences each such critical geome-
try (ReI is given by the square of the initial vibration-rotation wavefunction
IX~(Re)12.
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Ix~12 of the absorbing molecule being at (ReI multiplied by the relative caLe
l!~x(Rc)of its electronic absorption at (ReI. This interpretation of equation B.7
is a valuable one. In attempting to determine the geometries at which the
system will enter the excited surface, onIy molecular geometries for which
Ix~12 is substantial most be examined. Within soch geometries, anty those for
which ground- and excited-state surfaces are spaced by h" will be populated
during photon absorption. Finally, the transition to the excited surface will be
efficient anty where l!~x(Rc)is large.

The above qualitative treatment of photon absorption was motivated by
the need to guess where a molecule will enter an excited-state potential energy
surface. Knowing where it enters Ex, one caD then walk along the Ex surface
toward the produet molecule to see whether reaction barriers, surface cross-
ings, or near-crossings occur. As iIIustrated in Chapters 6 and 7, the ability to
explore excited surfaces in the above manner is essential if one hopes to predict
the outcome of photochemically initiated reactions.

The energy of the photon h" = E~'- E~bas been treated as being precisely
determined by the initial E~and final E~'energies. However, the energy of the
absorbing photons may not be precisely determined, owing to the finite band-
width of the light source or the lifetime broadening of the excited level E~'. In
that case, the contributions arising erom a finite range of frequencies "0 ::I:::A"
most be added up. In attempting to guess the molecular geometries at which
the excited surface Ex is entered, "most be allowed to vary (by A,,)about the
mean value "0. Experiments involving high-resolution monochromators (A"/ c
- 0.1cm-l) and sharp vibrationallines (l/hc)Ae~. - l cm-1 do not produce
significant smoothing of the photon energy (Le., A" is smalI). However,
modern picosecond and nanosecond light sources have bandwidths of 33 cm-1
and 0.03 cm-I, respectively, and for very short (-1-10 picosecond) light
pulses, significant uncertainty in " caDoccur, which then requires one to con-
sider a spread in "values in implementinga picture of the photon-absorption
event.

Even if a highly frequency-resolvedlight source isemployed, a reasonably
short (10-11-10-13sec) lifetime of the final staLee~'caDgive rise to a spread
(3-333 cm-l) in the allowed absorption energies. Thus, when considering ex-
cited states that decompose on a relatively fast time scale « 10-10sec), one
most again consider a range of "values.
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Reviewl of

Point-Group Symmetry 10015

In this appendix it is assumed that the reader is familiar with moIecuIar point
groups, symmetry operations, and character tabIes. Good introductions to
these topics can be found in severaI references (Cotton, 1963; Eyring, Walter
and KimbaU, 1944; and Wilson, Decius, and Cross, 1955). In this appendix,
we shaU onIy review material that is of direct use in soIving the probIems in the
text.

We begin by summarizing the information content of a representative
character table. A fairly complete list of character tabIes is given at the end of
this appendix. At its ground-state equilibrium geometry the ammonia
moIecuIe NHJ belongs to the CJv point group. !ts symmetry operations consist
of two CJ rotation axes (rotation by 1200 and 2400, respectiveIy, about an axis
passing through the nitrogen atom and Iying perpendicuIar to the pIane formed c

by the three hydrogen atoms), three verticaI pIanes (fv, (fv', (fv",and the identity
operation. These symmetry eIements are shown in Figure C-l.

The CJv character Labie given at the end of the appendix lists the abovej
symmetry operations aIong with the names of three irreducibIe representations
(A I, A 2, E) that characterize this point group. AIso listed under the title of
point group CJv are exampIes of especiaUy com mon and important functions
[e.g., z, R., (x,y)] that trans form according to each ofthe irreducibIe represen-
tations.

To trans form according to a certain irreducibIe representation means that
the function, when operated upon by a point-group symmetry operator, yieIds
a linear combination of the functions that transform according to that ir-
reducibIe representation. For exampIe, a 2p, orbitaI (z is the CJ axis of NHJ)
on the nitrogen atom beIongsto the A I representation because it yieIdsItimes
itseIf when CJ, CJ, (fv' (fv', (fv", or the identity operation operates on it. The
factor of l means that 2p, has A I symmetry, since the characters (the numbers
listed opposite A I and beIow E, 2CJ, and 3(f, in the CJv character table) of aU
six symmetry operations are l for the A I irreducibIe representation.

The 2px and 2py orbitais on the nitrpgen atom trans form as the E repre-
sentation, since CJ, C; , (J" (fv', (f,", and the identity map 2px and 2py among
one another. For exampIe,
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(Ty..

FlgureC-l
Symmetry elements oC NU3.
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2py O :1) x (::)

(

1 ~

)~C:) = - ~ -- ~ xC:)

(Ty

CJ( 2Pr) = (cos 1200 sin 1200) ( 2pr )cos 1200 x 2py2py -sin 1200

(2pr) - (cos 2400 sin 2400) x ( 2pr)
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2py -sin 2400 cos 2400 2py

E(::) = ( ) x (::)
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and
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The 2 x 2 matrices, which indicate how each symmetry operation maps 2Pr
and 2py into SOfie combinations of 2pr and 2py, ale called the representation
matrices (RM) for that particular operation and for this particular irreducible
representation. For example,

(~ YJ
is RME(av')' The traces (sums of the diagonal elements) of these matrices ale
called characters (e.g., XE(av'» and ale the entries in the character tables.

A shortcut device exists for evaluating the trace of the representation c

rilatrices (that is, for computing the characters). The diagonal element s of the
representation matrices ale the projections along each orbital of the effect of
the symmetry operation acting on that orbital. For example, a diagonal ele-
ment of the CJ matrix is the component of CJ2py along the 2py direction. More
rigorously, it is !2p;CJ2py dr. Thus, the character ofthe CJ matrix is the sum of
!2p;CJ2py dr and !2p!CJ2Pr dr. In general, the character X of a symmetry
operation S caD be computed by allowing S to operate on each orbital rbj,pro-
jecting Srbj along rbj (forming !rbrSrbjdr), and summing these terms,
EdrbrSrbj dr = x(S). If these rules ale applied to the 2Pr and 2py orbitaIs of
nitrogen within the CJv point group, then

X(E) = 2, x(CJ) = X(CJ,) = -l, and

X(av) = x(av') = x(av') = O.

This set of characters agrees with those of the E representation for the CJv
point group, so 2pr and 2py belong to or transform as the E representation.
This is why (x, y) is to the left of the row of characters for the E representation
in the CJv character table.

In similar fashion, the CJv character labIe states that dr2_y2and dry or-
nit:>1, on 'litr""""" tr:>",rorm :>, P :>, ifo d.. ~fl(i d,... nl1t d.2 tr~"!';forms as A"
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To illustrate a somewhat maTecomplicated situation. weconsider how the
three Is" orbitals on the hydrogen atoms transform. Using the shortcut fule
just described. the traces (characters) of the 3 x 3 representation matrices
formed are computed by allowingE. 2C3. and 30'vto operate on Is",. Is"l' and
Is"3' The resulting characters are X(E) = 3. X(C3)= X(C3,)= O.and X(a,,)
= X(O'v')= X(O'v')= 1. The C3vcharacter labie shows that these characters
(3.0.1) do not match the characters of aDYone irreducible representation.
though the sums of the characters of the A l and E representations do give
these characters. Hence. the hydrogen Isu orbital set forms a reducible
representationconsistingof the sum of A I and E. This meansthat the three
Is" orbitaiscaDbe combinedto field one orbitalof A l symmetryand a pair
that each transforms according to the E representation.

To generalethe A l and E symmetry-adaptedorbitals. the symmetry-
projection operators PE and PA, are used. These operators are given in terms
of linear combinations of produetsof characters limes elementary symmetry
operations as follows:

PA, = EXA,(S)S
s

(C. I)

PE = EXrlS)S
s

(C.2)

The result of applying PA, to. say. Is", is

PA,Is", = Is", + 1s"1+ 1s"3+ 1s"1+ 1s"3+ Is",

= 2(ls"1 + 1s"1+ IS"3) = rPA,.

which is an (unnormalized)orbital havingA l symmetry. Clearly. this same rPA,
would be generated by PA, acting on Is"lor 1s"3' Hence. anty one Al orbital
exists.

Likewise.

PEls", = (2 x Is",) - 1s"1- 1s"3 5 rPE.I

which is one of the symmetry-adapted orbitals having E symmetry. The other
E orbital caD be obtained by allowing PE to act on 1s"1 or Is"3:

PElS"l = (2 x Is"l) - Is", - 1s"3 5 rPE,2

PEIS"3 = (2 x Is"3) - Is",- ls"l = rPE,3.
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It might seem as though three orbitals having E symmetry were generated, but
only two of these are really independent functions. For example, fbE,Jcan be
expressedin terms of fbE,t and fbE,2 as

fbE,J = -(fbE,t + fb,2).

Thus, only fbE,t and fbE,2 are needed to span the two-dimensional spac~ of the E
representation.

In summary, a given set of atomie orbitals (fbil can be usedas a basisfor
the symmetry operations of the point group of the molecule, The characters
X(S) belonging to the operations S of this point group can be found by sum-
ming the integrals !fbrSfbi dr over all the atomie orbitaIs. The resultant
characters will, in general, be reducible to a combination of the characters of
the irreducible representations Xi(S). To decompose the characters X(S) of the
reducible representation to a sum of characters Xi(S) of the irreducible
representation X(S) = EiniXi(S), it is necessaryto determine howmany times,
ni, the ith irreducible representation occurs in the reducible representation,
The expression for ni is (Cotton, (1963»

ni = 1-EX(S)Xi(S)
g s

in whieh g is the order of the point group-that is, g is simply the total num ber
of symmetry operations in the group (e,g., g = 6 for CJ,), The reducible rep-
resentation X(E) = 3, X(CJ) =0, and X(uv) = I formed by the three IsH
orbitals discussed above can be decomposed as follows:

(C.3)

I
nA! = -(3'1 +2,0'1 +3'1'1) = 16

1
nA! = "6(3'1 +2,0,1 +3'1'(-1» = O

1
nE = "6(3,2+2'0,(-1)+3'1(0» = 1,

These equations stale that the three IsH orbitals can be combined to give one
At orbital and (since E is degenerate), one pair of E orbitaIs, as established
above, With knowledge of the n i, the symmetry-adapted orbitaIs can be formed
by allowing the projectors

p - ~y (l;:\<: (c. 4)
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to operate on each of the primitive atomie orbitais. How this is carried out was
illustrated for these IsH orbitais after equation C.2. These tools allowa sym-
metry decomposition of aDYset of atomie orbitals into appropriate symmetry-
adapted orbitaiso

Before eonsidering other eoneepts and group-theoretieal machinery. it
should be pointed out that these same tools tan also be used in symmetry
analysis of the translational. vibrational. and rotational motions of a mole-
cule. The twelve motions of NH3 (three translations. three rotations. six vibra-
tions) can be described in terms of eombinations of displaeements of each of the
four atoms in eaeh of three (x. y. z) directions. Hence. unit vectors placed on
each atom directed in the x. y. and z directions form a basis for aetion by the
operations (S) of the point group. In the ease of NH3. the eharacters of the re-
suitant 12 x 12 representation matriees form a reducible representation in the
C2. point group: X(E) = 12. X(C3) = X(C3,) = O. X(a.) = X(a.,) = X(a..) =
2. This representation caD be decomposed as follows:

1 .

nA! = "6[1'1'12+201'0+3'102J = 3

1
nAz = "6[1'1'12+2'1'0+3'(-I)'2J = 1

1
nE = -[I'2'12+2'(-I).0+3.0'2J = 4.6

From the information on the left side of the C3. charaeter table. translations
of all four atoms in the z. x and y directions transform as A I(Z) and E(x. y).
respectively. whereas rotations about the z(Rz). x(Rx). and y(Ry) axes
transform as A2 and E. Hence. of the twelve motions. three translations have
A I and E symmetryand three rotations have A2 and E symmetry. This leaves
six vibrations. of whieh twa have A I symmetry.DanehaveA 2 symmetry,and
twa (pairs) have E symmetry. We could evaluate the symmetry-adapted vibra-
tions and. rotations by allowing symmetry-projection operators of the
irreducible-representation symmetries to operate on various elementary carte-
sian (x, y, z) atomie displaeement vectors. Both Cotton (1963) and Wilson,
Decius and Cross (1955) show in detail how this is aceomplished.

We naw return to the symmetry analysis of atomie orbitais by eonsidering
how the symmetries of individual orbitais give rise to symmetry eharaeteristics
of orbital produets. Sueh knowledge is important because one is routinely faced
with eonstrueting symmetry-adapted eleetronic configurations that eonsist of
products of N individual orbitais. A point-group symmetry operator S. when
aeting on such a produet of orbitais, gives the produet of S acting on each of
.t" '-,.J:-.' ", ~,
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Sebleb2eb3 . . . ebN = (Sebl)(Seb2)(Seb3) . . . (SebN)' (C.5)

For example, reflection of an N-orbital product through the (J v pIane in NH3
utilizes reflection operations for all N electrons.

Just as the atomie orbitaIs formed a basis for action of the point-group
operators, the configurations (N-orbital products) form a basis for the action
of these same point-group operators. Hence, the various electronie configura-
tions (orbital occupancies) caD be treated as functions on whieh S operates,
and the machinery illustrated earlier for decomposing orbital symmetry caD
then be used to carry out a symmetry analysis of configurations. However,
another shortcut makes this Lask easier. Since the individual orbitaIs lebi,
i = l, . . ., MI trans form according to irreducible representations, we form
the direct product of the symmetries of the NorbitaIs that appear in aDYcon-
figuration. This direct product caD then be symmetry-analyzed in a straight-
forward manner, as discussed earlier. For example, if one is interested in
knowing the symmetry of an orbital product involving a~a~e2 occupancy in
C3v symmetry, the procedure used is the following. For each of the six sym-
metry operations in the C3v point group, the produet of the characters
associated with each of the six spin orbitaIs (orbital multiplied by a or (3spin)
is formed

6

X(S) = TIXi(S) = X~I(S)X~2(s)xi(S).
i=1

(C.6)

In the specifie case considered here, X(E) = 4, X(C3) = l, and X«(Jv)= O.
Notiee that the contributions of aDYdoubly occupied nondegenerate orbitaIs
(e.g., a~, and a~) to these direct-product characters X(S) are unity because for
olI operators S, X~(S) = l for aDYnondegenerate irreducible representation k.
As a result, only the singly occupied or degenerate orbitaIs need to be con-
sidered when forming the characters of the reducible direct-product represen-
talion X(S). In this example, the direct-product characters caD be determined
erom the characters XE(S) of the two active (non-closed-shell) orbitals-the ei
orbitaIs. That is, X(S) = XE(S). XE(S).

From the direct-product characters X(S) that belong to a partieular elec-
tronie configuration (e.g., a~a~e2), one must still decompose this list of
characters joto a sum of irreducible characters using equation C.3. For the ex-
ample at band, the direct-product characters X(S) decompose joto one A I, one
A2, and one E representation. This means that the e2 configuration contains
A h A 2, and E symmetry elements. The ,e2 configuration contains all deter-
minants that caD be formed by placing two electrons joto the pair of degener-
ale orbitaIs. There are six such determinants. In Chapter 4 we show how to



148 APPENDIX C

these puce (A 1, A 2, and E) symmetries and that possess either singlet or tripiet
spin (which are the only possibilities for the twa e2 eleetrons).

In summary, we have reviewed how to make a symmetry deeomposition
of a basis of atomie orbitais into their irreducible representation eomponents.
This tool is most helpful when eonstrueting the orbital-eorrelation diagrams
that form the basis of the Woodward-Hoffman rules. We also learned how to
form the direet-produet symmetries that arise when eonsidering eonfigurations
that eonsist of produets of symmetry-adapted spin orbitaIs. This step is essen-
tial for the eonstruetion of eonfiguration- and state-correlation diagrams upaD
whieh one ultimately bases a predietion about whether a reaetion is allowed or
forbidden.

~
~

t

C1 E C1

X1, y1, Z1, xy R.. z A 1 1

xz,yz x,y B 1 -I
R",Ry,

[ C3 E C3 cJ

X1+y1,Z1 R.. z A 1 1 1
(xz, Yz) (x,Y) E

1 (0/ (0/1 «0/ = e1..113)
(X1- y1. xy) (R". Ry) 1 (0/1 (0/

C.. E c1 C.. c

x1 + y1, Z1 R.. z A 1 1 1 1
x1_y1, xy B 1 1 -I -I

(xz, yz) (x, y) E
1 -I ; -;

(R", Ry) 1 -I -; i
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Cs E Cs C C C

X2+y2. Z2 R..Z A I 1 1 1 1
(x.y) 1 '" ",2 ",3

4

(XZ. yz) E'
'"

(R.. Ry) 1 ",4 ",3 ",2 '" ('"= ehilS)

(X2-y2. xy) E"
1 ",2 ",4 '" ",3

t
",3 '" ",4 ",2

C6 E C6 C3 C C C:

x2 + y2. Z2 R..Z A 1 1 1 1 1 1
B 1 -1 1 -1 1 -1

(xz.yz)
(x,y) E'

1 '" ",2 ",3 ",4 ",S ('"= ehi/6)

(R., Ry) 1 "'s ",4 ",3 ",2 '"

(X2 -y2, xy) E"
1 ",2 ",4 1 ",2 ",4

1 ",4 ",2 1 ",4 ",2

C2. E C2 u. u;

x2,y2,Z2 Z Al 1 1 1 1
xy R. A2 1 1 -1 -1
xz Ry.x BI 1 -1 1 -1
yz R..y B2 1 -1 -1 1

C3. E 2C3 3u.

X2+y2,Z2 Z Al 1 1 1

R. A2 1 1 -1

(X2 - y2, xy) (x,y) E 2 -1 O
(xz,yz) (R..Ry)

C4. E C2 2C4 2u. 2114

X2+y2,Z2 Z Al 1 1 1 1 1

R. A2 1 1 1 -1 -I

X2 - y2 BI 1 1 -1 1 -I

xy B2 1 1 -1 -1 1

(xz. yz)
(x, y) E '2 -2 O O O
(R.. Ry)
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I

Csv E 2Cs 2C 5<1v

Xl + yl, Zl Z Al 1 1 1 1

R. Al 1 1 1 -1 X = 21r
5

(xz, yz)
(x, y) El 2 2cosx 2cos2x O

(R" Ry) El 2 2cos2x 2cos4x O
(Xl - yl, xy)

c, E CI 2C) 2C6 3<'. 30,

X2+ yl,;:2 ;: Al 1 1 1 1 1 1
R. Al 1 1 1 1 -1 -1

B1 1 -1 1 -1 -1 1
Bl 1 -1 1 -1 1 -1

(xz, yz) (x,y)
El 2 -2 -1 1 O O

(Rx, Ry)
(Xl- yl, xy) El 2 2 -1 -1 O O

Clh E <1h

Xl, yl, Zl, xy R..x,y A' 1 1

xz,yz R" Ry, z A" 1 -1

Clh E CI <1h i

Xl, yl, Zl, xy ,R. A. 1 1 1 1
z Au 1 1 -1 -1

xz,yz Rx, Ry B. 1 -1 -1 1
x,y Bu 1 -1 1 -1

C3h = C3 X <1h E C3 ci <1h 53 «1hCi)

Xl + Yl, Zl R. A' 1 1 1 1 1 1
Z A" 1 1 1 -1 -1 -1

(Xl - yl, xy) (X, y)
E'

1 (aj (aj1 1 (aj (aJl
«(aj = ebi/3)1 (aj1 (aj 1 (aj2 (aj

,.rZ) (R.. Ry) E. 1 (aj (aJl -1 -(aj _(aJl

1 ",l -1 l'" -(aj -'"
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C4h = C4 X i

CSh = Cs X Uh

C6h = C6 X i

52 E ;1

J,x2.y2.:2.-~.

-~.y::

R,. R.. R, A,

X.Y. ;: A. - liI

54 E C2 54 5

X2+y2,Z2
-1

R, A 1 1 1 I'
z B 1 I -I -I

(xz,yz)
(x,y) E

1 -I i -i

(X2 - y2, xy)
(RnRy) 1 -I -i

86 = C3 X i

D2 E C CI c

X2, y2, Z2 Al 1 I 1 1
xy R" Z BI I 1 -I -1
xz Ry,y B2 I -I 1 -I
YZ Rnx B3 1 -I -I I

D3 E 2C3 3C2

x2 + y2, Z2 Al 1 1 1
R" Z A2 1 1 -I

(xz,yz) (x,y) E 2 -I O
(x2 - y2, xy) (Rn Ry)



03d = OJ x i

02h = O2 X i

1.
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04 E C2 2C4 2C2 2C2-..

X2+y2,Z2 Al 1 1 1 1 1
R" Z A2 1 1 1 -I -I

BI 1 1 -I 1 -I
B2 1 1 -I -I 1

(xz, yz) (x, y) E 2 -2 O O O
(X2 - y2, xy) (R.. Ry)

05 E 2Cs 2C 5C2

X2+y2,Z2 Al 1 1 1 1
R" Z A2 1 1 1 -I

(xz. yz)
(x, y)

El 2 2cosx 2 cos 2x O x = 2'1"
(R.. Ry) 5

(x2 - y2, xy) E2 2 2cos2x 2 cos 4x O

--

06 E C2 2CJ 2C6 3C2 3C21--.

X2+y2,Z2 Al 1 1 1 1 1 1
R" Z A2 1 1 1 1 -I -I

BI 1 -I 1 -I 1 -I
B2 1 -I 1 -I -I 1

(xz, yz)
(x, y)

El 2 -2 -I 1 O O
(Rx, Ry)

(X2 - y2, xy) E2 2 2 -I -I O O

02d E C2 254 2Ci 2Ud

X2+y2,Z2 Al 1 1 1 1 1
R. A2 1 1 1 -I -I

X2 - y2 BI 1 1 -I 1 -I
xy Z B2 1 1 -I -I 1

(xz, yz)
(x, y) E 2 -2 O O O,
(Rn Ry)
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D4h = D4 X i

DSh = Ds X Uh

D6h =D6 X i

DJh =DJ X Uh E Uh 2CJ 28J 3Cz 3u.

X2+y2,Z2 A I I I 1 1 1
R. Az 1 1 1 1 -1 -1

Ai 1 -1 1 -1 1 -1
z A2 1 -1 1 -1 -1 1

(X2 - y2, xy) (x,y) E' 2 2 -1 -1 O O
(xz,yz) (RxoRy) E" 2 -2 -1 1 O O

T E 3C2 4CJ 4CJ

Active A 1 1 1 1

Active E
1 1 '" ",2

(Rx, Ry, R.)
1 1 ",2 '" '"= ehi/J

Active
(X,y,Z) T 3 -1 O O

Th = Txi

o E 8CJ 3C2 6C2 6C4

Active Al 1 1 1 1 l
Inactive A2 I I I -1 -1
Active E 2 -1 2 O O

Active (Rx,Ry, R.)
TI 3 O -1 -1 +1

(x,y,z)
Active T2 3 O -1 +1 -1

Oh =O X i

T" E 8CJ 3C2 6u" 684

Active Al 1 1 1 1 1
Inactive AJ 1 1 1 -1 -1
Act;vp 17 ., - t " "



c
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I
Co..

xz+yZ,ZZ Z Al

R. Az

(xz,yz)
(x,y)

El
(R.. Ry)

(xz - yZ, xy) Ez

E 2C.p a.

1
-1

2 2 cos rp O

2 2 cos 2rp O
............................ .

D"'h E 2C.p Ci i 2iC.p iCi

xz+yZ,ZZ Al, 1 1 1 1 1 1
Alu 1 1 1 -1 -1 -1

Az, 1 1 -1 1 1 -1
Z Azu 1 1 -1 -1 -1 1

(xz, yz) (R.. Ry) El, 2 2 cos rp O 2 2 cos rp 1
(x, y) Elu 2 2 cos rp O -2 -2 cos rp O

(xz - yZ, xy) Ez, 2 2 cos 2rp O 2 2 cos 2rp O
Ezu 2 2 cos 2rp O -2 - 2 cos 2rp O
. . ......................................................................


