Appendix B

The Nature of
Photon-Induced
Electronic Transitions

When a photon is absorbed by a molecule and causes an electronic transition
to occur, the electronic energy of the molecule changes from Ey(R), its ground-
state value before absorption, to E.(R), its excited-state value. The energy of
the photon of frequency Ar must match E,(R) — Eo(R) = hv. For any given
frequency v, this condition will generally not be met at all molecular geometries
{R}; only at particular geometries {R.} will iy = E, — E,.

There is much more to understanding photon absorption than is contained
in the above relation. Often the electronic absorption spectrum of a molecule
(even one which subsequently undergoes a photoreaction) displays sharp vibra-
tional structure, especially when the molecule is in the gas phase or in an inert
matrix such as frozen argon or nitrogen. This vibrational structure arises
because the ground and excited electronic states of the molecule have quantized
vibrational energy levels {eJ} and [eX ], respectively. Even when the excited state
has vibrational levels that are broadened by dissociation (i.e., they are not ac-
tually bound), vibrational structure can persist in the absorption spectrum if
the width of the state (% divided by the dissociation lifetime) remains less than
the spacing between the levels.

When vibrational structure is seen, the energy of the photon must also
obey the equation kv = €I — €2 that is, the transition occurs between quantized
states of Eo and E,. Combining the above two requirements on hy gives

f:’ b 53 - r(Rc) i EO(Rc}' (B° l)

This very important relation shows that transitions from e to ¢ can occur only
at molecular geometries {R.} in which the quantum-level energy difference
e — €2 is identical to the electronic energy difference E.(R.) — Eo(R.). Since
the electronic energy functions E, and E, are the potential energy functions for
the vibration-rotation motion of the molecule, the vibration-rotation classical
kinetic energies T are given by €. — E.(R.) = T(R.)and €2 — Eo(R.) = To(R.).
Hence, the above condition can be restated as T.(R.) = T,(R.); that is, photon
absorption can occur at geometries in which the classical vibration-rotation
kinetic energy is conserved.
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Thus far, we have seen how to determine geometries at which the light of
energy hv = €& — €2 can be absorbed. To understand the rate at which such
light will be absorbed, we need to consider what happens to the electronic and
vibration-rotation wavefunctions of the molecule when a photon is absorbed.

In the approximation in which the photon-molecule interaction is treated as
an electric dipole interaction, the ground-state Born-Oppenheimer wavefunction
$o(r| R)xAR) becomes ¢.(r|R) (p.(r|R)|e-r|po(r|R)) xX(R) when the photon
(hv = €& —€?) is absorbed (Simons, 1982). To make a connection with the
Franck-Condon picture, the R-dependence of the above postabsorption wave-
function (y,,) is expanded in terms of the complete set of vibration-rotation
functions {x;-} of the excited state

ety
bealr|R) = Dol rlxtboroncsly - (S55)] ®.)
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The & function is inserted simply to insure that the energy of the photon that
creates ¥, is equal to the quantum-state energy difference eX- — €. The prob-
ability P of finding the molecule in any specific vibration-rotation state ¢,X;.
having energy e is given by the square of the amplitude of this state in the
above expression for ¢, ,:

P = o[- (555)] K oulerixiso) ™ (B.3)

The usual Franck-Condon factors arise by assuming that the electric-dipole-
transition matrix element (¢.(r|R)|e r|do(r|R)) = po.(R) is relatively inde-
pendent of molecular geometry p,.(R) = po,. With such an approximation

F e ]
P=af— €] 16 1

which contains the Franck-Condon factors | (X3 |x2)|2. The expression for P
leads to the conclusion that transitions to ¢,X;- occur at a rate proportional to
pd. times the square of the overlap between the initial vibration-rotation state
X% and the final state x*..

Transitions for which po, vanish are said to be electronically forbidden.
Molecular point-group symmetry, which is reflected in the spatial symmetry of
¢o and ¢,, can determine whether o, vanishes. For example, the '4, — '4,,
n(b;) — n*(b,) electronic transition in C;, H,CO is forbidden, since po, =
(n*|e-r|n) vanishes. Transitions that are electronically allowed can still be
forbidden if the Franck-Condon factor |{x-|x)|? vanishes. Again, molecular
symmetry gives rise to symmetry in x* and x?2, which can then be used to predict

TR
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equation B.3 it had not been assumed that po.(R) is R-independent, and po.(R)
was expanded about the equilibrium geometry {R.} of the ground state x,

#os(R) = po(R.) +(R—R,) Vgpor + * * -, (B.4)

then for such electronically forbidden transitions the transition probability P
would reduce to

)
P= 5[ - (“’—hf-")]|v,w.,,-(x:.|(n—R,)|x8)|2. (B.5)

Because the geometrical displacements R — R, contain contributions from
various symmetries, the integrals (X |R—R.|X?) could be nonzero even
though (XZ.|x?) = 0. In such cases, the intensity of the transition is said to be
borrowed. In lowest order it is forbidden, since o, = 0; it is only through the
R-dependence of po, that theé transition is weakly allowed.

Although the above Franck-Condon analysis of the intensities of vibration-
rotation structure in electronic absorption lines is very informative, another
point of view gives additional insight. By treating the vibration-rotation
kinetic-energy operator of the molecule classically, the photon-absorption
probability can be rewritten as follows (Simons, 1982):

P = (X2|8[v — (ER) — Eo(R))/hlud-(R) | X7). (B.6)

This expression can be interpreted in terms of the probability | X)(R)|? of the
molecule being at geometry R in the ground state XJ, multiplied by the electric
dipole matrix element at that geometry p3,(R), and constrained (by the & func-
tion) to allow contribution of only those geometries that obey hy = E, — E,.
By allowing equation B.6 to apply only when A = €} — ¢J, a partly classical
approximation of P is obtained:

P = 8y — (& — e2/hI(X0| 81y — (Ex — Eo)/hlpd:| X2). B.7)

This expression for P can be used in attempting to understand how photon
absorption prepares the molecule at the excited-state potential-energy surface
E.(R). The energy of the photon must coincide (within the spectral linewidths)
with one of the energy spacings €. — 2. For each such energy value, the mole-
cule can absorb the light only at geometries {R.] obeying hiv = E,(R.) — Eo(R,);
this condition preserves the vibration-rotation kinetic energy of the molecule.
The relative probability that the molecule experiences each such critical geome-
try [R.} is given by the square of the initial vibration-rotation wavefunction
IXAR|.
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|x2|2 of the absorbing molecule being at {R.} multiplied by the relative rate
né(R,) of its electronic absorption at {R_}. This interpretation of equation B.7
is a valuable one. In attempting to determine the geometries at which the
system will enter the excited surface, only molecular geometries for which
| x2|? is substantial must be examined. Within such geometries, only those for
which ground- and excited-state surfaces are spaced by A» will be populated
during photon absorption. Finally, the transition to the excited surface will be
efficient only where p3.(R.) is large.

The above qualitative treatment of photon absorption was motivated by
the need to guess where a molecule will enter an excited-state potential energy
surface. Knowing where it enters E,, one can then walk along the E, surface
toward the product molecule to see whether reaction barriers, surface cross-
ings, or near-crossings occur. As illustrated in Chapters 6 and 7, the ability to
explore excited surfaces in the above manner is essential if one hopes to predict
the outcome of photochemically initiated reactions.

The energy of the photon Ay = €. — €2 has been treated as being precisely
determined by the initial €2 and final €3 energies. However, the energy of the
absorbing photons may not be precisely determined, owing to the finite band-
width of the light source or the lifetime broadening of the excited level ;. In
that case, the contributions arising from a finite range of frequencies vo + Ay
must be added up. In attempting to guess the molecular geometries at which
the excited surface E, is entered, » must be allowed to vary (by Av) about the
mean value vo. Experiments involving high-resolution monochromators (Av/c
~0.1 cm™) and sharp vibrational lines (1/hc)Ae;- ~ 1 cm™ do not produce
significant smoothing of the photon energy (i.e., Ar is small). However,
modern picosecond and nanosecond light sources have bandwidths of 33 cm™*

-and 0.03 cm™!, respectively, and for very short (~1-10 picosecond) light
pulses, significant uncertainty in » can occur, which then requires one to con-
sider a spread in » values in implementing a picture of the photon-absorption
event.

Even if a highly frequency-resolved light source is employed, a reasonably
short (107''-107"? sec) lifetime of the final state eX- can give rise to a spread
(3-333 cm™) in the allowed absorption energies. Thus, when considering ex-
cited states that decompose on a relatively fast time scale (< 107'° sec), one
must again consider a range of » values.



Appendix C

Review of
Point-Group Symmetry Tools

In this appendix it is assumed that the reader is familiar with molecular point
groups, symmetry operations, and character tables. Good introductions to
these topics can be found in several references (Cotton, 1963; Eyring, Walter
and Kimball, 1944; and Wilson, Decius, and Cross, 1955). In this appendix,
we shall only review material that is of direct use in solving the problems in the
text.

We begin by summarizing the information content of a representative
character table. A fairly complete list of character tables is given at the end of
this appendix. At its ground-state equilibrium geometry the ammonia
molecule NH; belongs to the C;, point group. Its symmetry operations consist
of two C; rotation axes (rotation by 120° and 240°, respectively, about an axis
passing through the nitrogen atom and lying perpendicular to the plane formed
by the three hydrogen atoms), three vertical planes ¢,, 0,-, ¢,-, and the identity
operation. These symmetry elements are shown in Figure C-1.

The Cj, character table given at the end of the appendix lists the above
symmetry operations along with the names of three irreducible representations
(A,, Az, E) that characterize this point group. Also listed under the title of
point group C;, are examples of especially common and important functions
[e.g., 2, R., (x,y)] that transform according to each of the irreducible represen-
tations.

To transform according to a certain irreducible representation means that
the function, when operated upon by a point-group symmetry operator, yields
a linear combination of the functions that transform according to that ir-
reducible representation. For example, a 2p, orbital (z is the C; axis of NH;)
on the nitrogen atom belongs to the A, representation because it yields 1 times
itself when C,, C3, o,, 0., 0.-, Or the identity operation operates on it. The
factor of 1 means that 2p, has A, symmetry, since the characters (the numbers
listed opposite A, and below E, 2C,, and 3¢, in the C;, character table) of all
six symmetry operations are 1 for the 4, irreducible representation.

The 2p, and 2p, orbitals on the nitrogen atom transform as the E repre-
sentation, since C3, C3, 0,, 0,-, 0,-, and the identity map 2p, and 2p, among
one another. For example,
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Figure C-1
Symmetry elements of NH;.
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The 2 x 2 matrices, which indicate how each symmetry operation maps 2p,
and 2p, into some combinations of 2p, and 2p,, are called the representation
matrices (RM) for that particular operation and for this particular irreducible
representation. For example,

1B
2 2
5o
2 2

is RMEg(o,-). The traces (sums of the diagonal elements) of these matrices are
called characters (e.g., Xg(0.-)) and are the entries in the character tables.

A shortcut device exists for evaluating the trace of the representation
matrices (that is, for computing the characters). The diagonal elements of the
representation matrices are the projections along each orbital of the effect of
the symmetry operation acting on that orbital. For example, a diagonal ele-
ment of the C; matrix is the component of C;2p, along the 2p, direction. More
rigorously, it is {2p*C32p, dr. Thus, the character of the C3 matrix is the sum of
§2p*Ci2p, dr and [2p?Ci2p, dr. In general, the character x of a symmetry
operation S can be computed by allowing S to operate on each orbital ¢,, pro-
jecting S¢,; along ¢, (forming [¢?S¢; dr), and summing these terms,
L:|o1S¢; dr = x(S). If these rules are applied to the 2p, and 2p, orbitals of
nitrogen within the Cj, point group, then

Il

X(E) =2, x(Cs3) = x(C3) = —1, and

X(o,) = x(0.’) = x(o.7) = 0.

This set of characters agrees with those of the E representation for the C;,
point group, so 2p, and 2p, belong to or transform as the E representation.
This is why (x, y) is to the left of the row of characters for the E representation
in the C;, character table. '

In similar fashion, the C;, character table states that d,2_,2 and d,, or-
hitale an nitroeen trancform ac F acdod._and 4. but 4.2 transforms as 4.
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To illustrate a somewhat more complicated situation, we consider how the
three ls, orbitals on the hydrogen atoms transform. Using the shortcut rule
just described, the traces (characters) of the 3 X 3 representation matrices
formed are computed by allowing E, 2C3, and 30, to operate on 1sy,, 1sy,, and
Isy,. The resulting characters are X(E) = 3, X(C;3) = X(C3-) = 0, and X(0,)
= X(o,') = X(o,-) = 1. The C;, character table shows that these characters
(3,0,1) do not match the characters of any one irreducible representation,
though the sums of the characters of the 4, and E representations do give
these characters. Hence, the hydrogen lsy orbital set forms a reducible
representation consisting of the sum of A; and E. This means that the three
1sy orbitals can be combined to yield one orbital of A; symmetry and a pair
that each transforms according to the E representation.

To generate the A, and E symmetry-adapted orbitals, the symmetry-
projection operators Pr and P4, are used. These operators are given in terms
of linear combinations of products of characters times elementary symmetry
operations as follows:

P4, = Y X4 (5)S (C.1)
5

P = Y Xx(S)S (C.2)
5

The result of applying Py, to, say, lsy, is

Py lsy, = lsy, + lsy, + Isy, + Lsy, + Isy, + 1sy,

2(].5'“’_ + lst + lSHJ) = ¢A.,
which is an (unnormalized) orbital having A, symmetry. Clearly, this same ¢,
would be generated by P4, acting on 1sy, or 1sy,. Hence, only one A4, orbital
exists.

Likewise,

Pelsy, = (2 X 1sy,) — Isy, — 15y, = ée

which is one of the symmetry-adapted orbitals having E symmetry. The other
E orbital can be obtained by allowing Pg to act on 1sy, or 1sy,:

Pelsy, = 2x Isy,) — lsy, — Isy, = ¢g2

qP,E'lSH3 = (2 X l.S‘HJ) -~ ISHl - lst = ¢£_3.
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It might seem as though three orbitals having E symmetry were generated, but
only two of these are really independent functions. For example, ¢g 3 can be
expressed in terms of ¢g; and ¢, as

be3 = —(de1 + ¢2).

Thus, only ¢£ ; and ¢, are needed to span the two-dimensional space of the E
representation.

In summary, a given set of atomic orbitals {¢;} can be used as a basis for
the symmetry operations of the point group of the molecule. The characters
X(S) belonging to the operations S of this point group can be found by sum-
ming the integrals [¢*S¢; dr over all the atomic orbitals. The resultant
characters will, in general, be reducible to a combination of the characters of
the irreducible representations X;(S). To decompose the characters X(S) of the
reducible representation to a sum of characters X,(S) of the irreducible
representation X(S) = I;n.X,(S), it is necessary to determine how many times,
n;, the ith irreducible representation occurs in the reducible representation.
The expression for n; is (Cotton, (1963))

ni = LY X(S)XLS) (C.3)
£'s

in which g is the order of the point group—that is, g is simply the total number
of symmetry operations in the group (e.g., 8 = 6 for C3,). The reducible rep-
resentation X(E) = 3, X(C;3) = 0, and X(o.) = 1 formed by the three lsy
orbitals discussed above can be decomposed as follows:

na, = %(3-1+2—0-1+3-1-1) =
e %(3-1 +2:0-143-1:(=1) = 0
o %(3-2+2-0-(—1)+3-1(0)) =y

These equations state that the three 1sy orbitals can be combined to give one
A, orbital and (since E is degenerate), one pair of E orbitals, as established
above. With knowledge of the n;, the symmetry-adapted orbitals can be formed
by allowing the projectors

p — V'viag (C.4)
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to operate on each of the primitive atomic orbitals. How this is carried out was
illustrated for these 1sy orbitals after equation C.2. These tools allow a sym-
metry decomposition of any set of atomic orbitals into appropriate symmetry-
adapted orbitals.

Before considering other concepts and group-theoretical machinery, it
should be pointed out that these same tools can also be used in symmetry
analysis of the translational, vibrational, and rotational motions of a mole-
cule. The twelve motions of NH; (three translations, three rotations, six vibra-
tions) can be described in terms of combinations of displacements of each of the
four atoms in each of three (x, y, z) directions. Hence, unit vectors placed on
each atom directed in the x, y, and z directions form a basis for action by the
operations (S) of the point group. In the case of NH3, the characters of the re-
sultant 12 x 12 representation matrices form a reducible representation in the
C,, point group: X(E) = 12, X(C3) = X(C3) = 0, X(e,) = X(0,) = X(0,”) =
2. This representation can be decomposed as follows:

Na, %[1-1-12+2-1-0+3-1-2} =3

Il
—_

I

na, -;—[1—1—12+2-1-0+3-(—1)-2]

il
=

- %{1 2124 2-(=1)-0+3-0-2]

From the information on the left side of the C;, character table, translations
of all four atoms in the z, x and y directions transform as A4,(z) and E(x, y),
respectively, whereas rotations about the z(R.), x(R,), and y(R,) axes
transform as A, and E. Hence, of the twelve motions, three translations have
A, and E symmetry and three rotations have 4, and E symmetry. This leaves
six vibrations, of which two have A4, symmetry, none have A, symmetry, and
two (pairs) have E symmetry. We could evaluate the symmetry-adapted vibra-
tions and rotations by allowing symmetry-projection operators of the
irreducible-representation symmetries to operate on various elementary carte-
sian (x, y, z) atomic displacement vectors. Both Cotton (1963) and Wilson,
Decius and Cross (1955) show in detail how this is accomplished.

We now return to the symmetry analysis of atomic orbitals by considering
how the symmetries of individual orbitals give rise to symmetry characteristics
of orbital products. Such knowledge is important because one is routinely faced
with constructing symmetry-adapted electronic configurations that consist of
products of N individual orbitals. A point-group symmetry operator S, when
acting on such a product of orbitals, gives the product of S acting on each of

Th S [ S |
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$é19203 - - - dn = (561)(Sh2)(S3) - - - (Séw). (C.5)

For example, reflection of an N-orbital product through the o, plane in NH;,
utilizes reflection operations for all N electrons.

Just as the atomic orbitals formed a basis for action of the point-group
operators, the configurations (N-orbital products) form a basis for the action
of these same point-group operators. Hence, the various electronic configura-
tions (orbital occupancies) can be treated as functions on which S operates,
and the machinery illustrated earlier for decomposing orbital symmetry can
then be used to carry out a symmetry analysis of configurations. However,
another shortcut makes this task easier. Since the individual orbitals {¢;,
i = 1,..., M} transform according to irreducible representations, we form
the direct product of the symmetries of the N orbitals that appear in any con-
figuration. This direct product can then be symmetry-analyzed in a straight-
forward manner, as discussed earlier. For example, if one is interested in
knowing the symmetry of an orbital product involving aja3e? occupancy in
C;, symmetry, the procedure used is the following. For each of the six sym-
metry operations in the C,;, point group, the product of the characters
associated with each of the six spin orbitals (orbital multiplied by « or 8 spin)
is formed

6
X(8) = JTTxdS) = x4,(SXE,(S)XE(S). (C.9)

=1

In the specific case considered here, X(E) = 4, X(C3) = 1, and X(¢,) = 0.
Notice that the contributions of any doubly occupied nondegenerate orbitals
(e.g., ai, and a3) to these direct-product characters X(S) are unity because for
all operators S, X¥(S) = 1 for any nondegenerate irreducible representation k.
As a result, only the singly occupied or degenerate orbitals need to be con-
sidered when forming the characters of the reducible direct-product represen-
tation X(S). In this example, the direct-product characters can be determined
from the characters Xg(S) of the two active (non-closed-shell) orbitals—the e?
orbitals. That is, X(S) = Xg(S)-Xg(S).

From the direct-product characters X(S) that belong to a particular elec-
tronic configuration (e.g., ajaje?), one must still decompose this list of
characters into a sum of irreducible characters using equation C.3. For the ex-
ample at hand, the direct-product characters X(S) decompose into one A,, one
A3, and one E representation. This means that the e? configuration contains
A,, Az, and E symmetry elements. The e? configuration contains all deter-
minants that can be formed by placing two electrons into the pair of degener-
ate orbitals. There are six such determinants. In Chapter 4 we show how to
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these pure (4, A,, and E) symmetries and that possess either singlet or triplet
spin (which are the only possibilities for the two e? electrons).

In summary, we have reviewed how to make a symmetry decomposition
of a basis of atomic orbitals into their irreducible representation components.
This tool is most helpful when constructing the orbital-correlation diagrams
that form the basis of the Woodward-Hoffman rules. We also learned how to
form the direct-product symmetries that arise when considering configurations
that consist of products of symmetry-adapted spin orbitals. This step is essen-
tial for the construction of configuration- and state-correlation diagrams upon
which one ultimately bases a prediction about whether a reaction is allowed or
forbidden.
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x4yt 2t Af 1 1 1 1 1 1
R, Aj 1 1 1 1 -1 -1
A7 1 -1 1 -1 1 -1
z Aj 1 -1 1 -1 -1 1
2=y xp) (x, ) E’' 2 Zouae ity 0 0
(xz, y2) (R., R)) / 2 -2 -1 1 0 0
D.k = D4 X i
Dsy = Ds X 04
Den = Dg % i
T E iC, 4C, 4C3
Active A 1 1 1 1
Activ E 1 1 e w?
clive 1 1 wz o i ez-us
ACtiVE (in R,n R:)
(x, 5, 2) T 3 -1 0 0
Ty =Txi
(o] E 8C, ic, 6C, 6C,
Active A, 1 1 1 1 i
Inactive A, 1 1 1 -1 -1
Active E 2 -1 2 0 0
Active (Rx, Ry, R,) T, 3 0 -1 -1 +1
x, », 2)
Active I 3 0 -1 +1 -1
O, =0xi
Ta E 8C, ic, 604 654
Active A, 1 1 1 1 1
Inactive A, 1 1 1 -1 -1
Active I - 1 - n n
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154 APPENDIX C

L E e, o,
xt4p? 22 z Ay 1 1 1
R, As 1 1 -1
x, »)
XZ, ¥Z £ 2 2 cos ¢
(xz, y2) (R., R, 1
x? -y xy) E; 2 2cos2e
Don E 2C, C; i 2iC, iC3
x* 4yt 22 Al 'l 1 1 1 1 1
A 1 1 1 -1 -1 -1
Ao 1 -1 1 1 7|
z Aj, 1 1 -1 -1 -1 1
(xz, ¥z) (R R,) Ey, 2 2cos ¢ 0 2 2cos ¢ 1
(x, ») Ey. 2 2 cos ¢ 0 -2 —2cos ¢ 0
2 -y x) Ejg 2 2 cos 2¢ 0 2 2 cos 2¢ 0
E;. 2 2 cos 2p 0 -2 —2cos 2¢ 0




