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Preface

In this book we address several modern quantum chemical tools that are
presently being applied at the state-of-the-art level to eIectronic states of
atoms and molecules. We have attempted to concentrate on topics for
which textbook coverage does not currently exist in an entirely satisfactory
form. The emphasis is on quantum chemical methods whose developments
and implementations have been presented in the modern literature primarily
in the language of second quantization. We do not assess the precision of the
numerical results provided by these methods because liany of the techniques
discussed are relatively new and their precision limits have not yet been
established.

There is little mention of specific molecular systems that might be ex-
amined using these tools. We have developed an integrated set or problem s
with detailed answers, all of which caD be worked by band, to iIIustrate the
practical implementation of the techniques developed. These problems
appear at the end of each chap ter, and we recommend that they be worked
aIs an integral component of the respective chapters. Excellent treatments
of the following very important aspects of quantum chemistry already exist
in several texts and are therefore not il1c\uded in this book: questions of
basis set choice, efficient evaluation of requisite one- and two-eIectron
integrals, fast and space-efficient methods for transforming integrals erom
one basis to another and for storing such integral lists, or the use of orbital
symmetry correlation concepts in deciding which eIectronic configurations
must be inc\uded for specific molecules. The emphasis here is on describing
the structure ofthe various methods rather than on discussing their numerical
implementations.

The choice of topics and depth of presentation were guided by our view
of the active research workers who are likely to benefit erom this book.
Many leading theoretical chemistry research groups have only recently
begun to make use of second quantization-based techniques. IL is not



vm Preface

likely that the fuli potential of these methods will be realized until those
quantum chemists ~ho possess the most sophisticated computational
tools and experience become moce involved in their use. A presentation
that is limited to explaining how working equations of these methods are
derived and how the equations are implemented in practice should be
especially useful and timely. This monograph is intended to be of use both
to the research worker in quantum chemistryand to graduate-levelstudents
who have already taken introductory courses that cover the fundamentais
of quantum mechanics through the Hartree-Fock method as applied to
atoms and molecules. The purpose of this book is moce to teach than to
survey the literature in the research areas covered. We assume that the
reader is fammar with linear algebra, matrix representations of operators,
Slater- and contracted Gaussian-type basis functions, the Slater-Condon
rules for evaluating determinantal matrix elementsof one- and two-electron
operators, and the construction of Stater determinant wave functions
having proper space-spin symmetry.
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BWPT
CC
CHF
CI
CMCHF
EOM
EP
GBT
GF
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HF
INO
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RHF
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Brillouin theorem

Brillouin-Wigner perturbation theory
coupled cluster
coupled Hartree-Fock
configuration interaction
coupled multiconfigurational Hartree-Fock
equations of motion
electron propagator
generalized Brillouin theorem
Green's function .

unitary group, graphical approach
Hartree-Fock
iterative natural orbitaIs

maDy-body perturbation theory
multiconfigurational self-coilsistent field
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M0l1er-Plesset perturbation theory
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self-consistent field
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unrestricted Hartree-Fock
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Chapter 1 I lntroduction to Second-
Qy,antization M ethods

In the vast majo rity of the quantum chemistry literature, Stater determi-
nants have been used to express antisymmetric N-eIectron wavefunctions,
and explicit differential and multiplicative operators have been used to write
the electronic Hamiltonian. More recently, it bas become quite com mon to
express the operators and stale vectors that arise in considering stationary
electronic states of atom s and molecules (within the Bom-Oppenheimer
approximation) in the so-called second quantization notation (Linderberg
and Ohm, 1973). The eIectron creation (r+,s+, t+, u+) and annihiIation
(r,s, t, u) operators occurring in this language wece originany introduced for
use in physical problems that actually involved creation or destruction of
particIes, photons, or excitations (e.g., phonons). In a majority of the applica-
tions of the second-quantization techniques to quantum-chemical problems,
no electrons or other particles are created or destroyed. Thus, the operators
{r +}, {r} usually serve merely as a convenient and operationally useful
device in terms of which quantum-mechanical states, operators, commuta-
tors, and expectation values caD be evaluated.1n this chapter, we examine
how the eIectronic Hamiltonian, other quantum-mechanical operators, and
stale vectors are represented in this second-quantization language. We algo
show how to describe unitary transformations among orthonormai orbitais
in an especially convenient manner. In subsequent chapters we make use of
the tools of second quantization to describe maur approximation techniques
(e.g., Hartree-Fock, perturbation theory, configuration interaction, multi-
configurational Hartree-Fock, cIuster methods, Green's functions), which
are currently in wide use within the quantum chemistry community. The
oecd for such approximation methods is, of COllege,motivated by aur inability
to exactly solve electronic structure problems for moce than one eIectron.
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A. ANTICOMMUTATlONPROPERTIES OF CREATlON
AND ANNIHILATlON OPERATORS

Siatce determinantal wavefunctions involving orthonormal spin-orbitals
</Jk caD be represented in terms of products of creation operators on the
so-called vacuum ket Ivac),

r+s+ ... t+lvac) (N!)-1/2detl</J,'.. </Js</J,I==I</J,..' </Js</J,I (1.1)

The Fermi statistics present in such wavefunctions caD be expressed either
in terms or a sigo change arising upon permuting columns of the determinant
or in terms of the following fundamental relation among the r+ operators:

[r+,s+]+ ==r+s+ + s+r+ = O (1.2)

Note that this equation also states that the stale vector cannot contain the
same spin-orbital twice.(the Pauli principle) since r+r+ = - r+r+ = O.Before
we go further, we should stress that Eq. (1.1) does not equate Stater deter-
minants to the produet of r +S + . . . operating on Ivac). Il simplyelaims that
there is a one-to-one connection between the two objects.

The Fermion annihilation operator r, which is the adjoint of the creation
operator T+, caD be thought of as annihilating an electron in </J, and is
defined to field zero when operating on the vacuum ket

rlvac) = O (1.3)

The annihilation and creation operators fulfili the following two anticom-
mutation relations (Raimes, 1972):

[T,s] + ==rs + sr = O

[r,s+]+ ==rs+ + s+r = c;,s

(1.4)

(1.5)

which together with Eq. (1.2) comprise the essential relationships used in
the application of such second quantization operators to quantum chemistry.
Fornonorthonormal spin-orbitals,Eq.(1.5)isreplaced by [r,5+]+= «/J,I</Js),-
where the overlap appears explicitly.

The interpretation of Eq. (1.2) in terms of permutational symmetry of
determinants is elear. To make the analogous content of Eqs. (1.4) and (1.5)
moce transparent, we now examine some o( the implications that fol1ow
erom "these equations. Let us fiest examine Eq. (1.5). For r = s, this reads
rr+ + r+r = 1.When operating on a ket in which </J, is "occupied," the fiest
term (rr+) c1early gives zero, since according to Eq. (1.2) terms violating the
Pauli principie vanish. The second term (r+r) yields

r+rt+u+ .. . r+ . . . w+lvac) = (-I)"'r+rr+t+u+ ... w+lvac) (1.6)

where k, is the number of creation operators standing to the left of r+ in
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the original ket. If ibis is, according to Eq. (1.5), equal to the original ket,
then we musi have

t+,,+ .. . 1'+. . . w+lvac) = (-l)krr+rr+t+u+ ... w+lvac)
= (-l)krl'+t+u+ "'w+lvac) (1.7)

The lasi equality in Eq. (1.7) implies that rl'+, when operating on a ket that
does not contain tP" leaves that ket unchanged, and that I'+1',when acting
ona ket in which tPris present, leaves that ket alone. When 1'+1'operates on
a ket in which tPr is not present, it giveszero.Thus r+r tells whether orbital
tPr occurs in a ket. For that reason, it is often rererred to as the occupation
number operator "r = 1'+1'. It is algo conventional to introduce the total
number operator N as N = Lr n" which when operating on aDYket gives
as its eigenvalue the total number or electrons in that ket.

In the case r i< s, Eq. (1.5) implies that I' operating on aDYket that does
not contain tPryields zero, since

rs+t+u+ ... w+lvac) = -s+rt+,,+ ... w+lvac) = O (1.8)

by repeated use or Eqs. (1.5)and (1.3).When the kets contain both tPr and
tPs> both the I's+and s+r terms vanish. For s+r operating on a ket that.
contains tP"

s+rt+u+ ... r+w+lvac) = (_l)krs+t+u+ ... w+lvac)

= t+u+ ... s+w+lvac) (1.9)

which is simply a new ket with tPr replaced by tPs'

Finally, we shQuld attempt to elaborate on the meaning or Eq. (l.4). Let
us consider the action or rs (I' i< s) on a ket in which tPrand tPsare present:

I'st+u+ ... ,.+ ... s+ ... w+lvac) = (_l)krH'I'ss+r+t+u+ . . . w+lvac)

which by Eq. (1.5) reduces to

(-l)krH'r(l - s+s)I'+t+u+ . . . w+lvac) (l.l0)

The term involving s+s vanishes because slvac) = O,and hence we have
(again using rlvac) = O)

(-l)krH"rr+t+u+ .. 'w+lvac) = (-l)krHst+u+ . . . w+lvac) (l.l \)

If instead we consider the action or SI',we obtain

srt+u+ "'1'+ "'s+ "'w+lvac) = (-l)krH.-lsrl'+s+t+u+ "'w+lvac)

= (_l)krH.-1 t+u+ . .. w+Ivac) (1.12)

which is opposite in sigo to the result orthe rs operation. Thus, the statement
rs + SI'= O simply means that the effect or annihilation displays Fermion
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statistics. For r = s, Eq. (l.4) reads rr = - rr = O,which algo expressesthe
Pauli principle and Fermi statistics.

Although Eqs. (1.2)-(1.5) contain all of the fundamental properties of the
Fermion (electron) creation and annihilation operators, it may be useful to
mak e a rew additional remarks about how these operators are used in
subsequent applications. In treating perturbative expansions of N-electron
wavefunctions or when attempting to optimize the spin-orbitals cPrappearing
in soch wavefunctions, it is often convenient to refer to Slater determinants
that have been obtained erom SOfie "reference determinant" by replacing
certain spin-orbitals by other spin orbitais. In terms of second-quantized
operators, these spin-orbital replacements will be achieved by using the
replacement operator s+r as in Eq. (1.9).

In subsequent chapters, we shallJ:>e interested in computing expectation
values of one- and two-electron operators. By expressing these operators in
terms of the above creation and annihilation operators, -the calculation of
soch expectations values reduces to the evaluation of the elements of the
one- and two-electron density matrices <Oli+jIO)and <Oli+j+lklO) (Davidson,
1976). If the wavefunction 1°) is expressed as a linear combination of kets
each given in terms of creation operator products nreo r+lvac), the one-
and two-electron density matrices caD be evaluated in terms ofthe expansion
coefficients oCIO)in these kets. The average occupation of an electron in spin-
orbital cPrbecomes a particular element <Olr+rIO) ofthe one-particIe density
matrix. If we wish to compute, say, <Olt+uIO),where l°) = nreO r+lvac),
we may proceed using the anticommutation algebra obeyed by the creation
and annihilation operators, to yield

<Olt+uIO)= n n <vaclr't+UI'+lvac)
re O r'eO

= <vaclrNrN-l . , . rlt+urtri . . . r~lvac)
= c)ur,<vaclrNrN-l... rlt+rirj ... r~lvac)

-<vaclrNrN-l... rlt+rturirj ... r~lvac) (1.13)

which, by "anticommuting" u through to the right (so as to eventually
generale ulvac) = O) and t+ through t<1the left (to eventually generale
<vaclt+ = (tlvac»+ = O),and using <vaclvac) = 1, yields a nonvanishing
matrix element only when t = u and u is one of the elements of l°) (the
"occupied" spin orbitais in l°». This result caD be summarized as follows:

<Ole+ulO) = c)'uv, (1.14)

where v,denotes the occupation number of orbital cP, in 1°).
This expresses a general role of how to obtain matrix elements of a re-

placement operator. The fule is the second-quantization analog of the
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Slater-Condon fule (Condon and Shortley, 1935) for evaluating matrix
elements of a one-electron operator. In practical calculations one would,
of course,use ibis ruJeas wellas the other counterparts ofthe Slater-Condon
rules.

B. EXPRESSINGQUANTUM-MECHANICALOPERATORS
IN SECOND QUANTIZATION

Having naw scen how stale vectors that are in one-lo-one correspondenee
with N-electron Stater determinants caD be represented in terms of Fermiotl,
creation and annihilation operators, it still remains for us to show how to
express one- and two-electron operators in ibis language. The second-
quantized version of aDYoperator is obtained by simply demanding that
the operator, when "sandwiched" between ket veetors of the form nr r+ Ivac),
yield exactly the same result as arises in using the fiest quantized operator
between corresponding Stater determinant wavefunctions. For an arbitrary
one-eleetron operator, which in first-quantized language is L:f=1 f(ri), the
second quantized equivalent is

N

L: (cPrIJlcPs)"+s- L: f(ri)
r,S i=1

(1.15)

where the sums (r, s) are over a complete set of orthonormaI spin-orbitals
cPrand CPs.The analogous expression for aDYtwo-eleetron operator is

1~ II ++ 1~
2. L, (cPrcPsgcP,cPu)rs ut-"2.'= g(r"rj)r,s,'.u I,j- 1

(1.16)

Here (cPrcPslg\cP,cPu)represents the usual two-electron integral involving the
operator g:

(cPrcPslglcP,cPu) = f cP:(1)cP:'(2)g(l,2)cP,(1)cPu(2)dl d2 (1.17)

When g(I,2) = rli, we often express these integrals in short-hand notation
as (rsl tu), It should be noted that the order ofthe creation and annihilation
operators appearing in Eq. (1.16) musi be as presented in order to guarantee
that the proper sigo will result when expectation and transition value
matrix elements of such operators are formed. These spin orbitais {cPr}are,
in most practical applications, obtained as linear combinations of atomie
orbital basi s functions

cPr= PL: CraXa
a

(1.18)

where (Xand f3are the one-electron spin functions. The Xaare usually taken
to be Slater-type orbitais or contracted Gaussian orbitais, and the C"' are the
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linear orbital expansion coefficients. In what follows, we assume that the la
are realorbitais. This means that the Gaussian or Stater orbitais are given
in cartesian form rather than in terms of spherical harmonics.

A rew clarifying remarks are now in order. First, one should notice that
the first-quantized forms ofthe above operators contain explicit reference to
the num ber of electrons N, whereas the second-quantized operators do not.
This means, for example, that the kinetic energy operator

I <cf>rl-lVzlcf>s)r+s
'.s

is independent of N. The kinetic energy operator of the beryllium atom is
identical to that of the Be+, Bez+, Be-, etc., ions. Of course, nuclear inter-
action operators (- ZA If=1Irj - RAI-1) do contain referenceto nuclear
charges in their second-quantized version,

I <cf>rl-ZAlr- RAI-llcf>s)r+sr.s

but nowhere does N appear. In second quantization, the only reference to N
comes erom the ket vectors Oreo r+lvac), which contain N creation oper-
aloes. This pro perty of operators in the second-quantized language plays an
important role, for example, in Green's function methods for calculating'
ionization energies. The fact that the same Hamiltonian caD describe neutral
and jon states permits the Green's function to be expressed in terms of a
single Hamiltonian.

In examining the above expressions for the second-quantized one- and
two-electron operators, it should become elear, for example, that the one-
electron operators, which contain r+ s, caD "connect" Iwo N-electron kets
(corresponding to N-electron Stater determinants) that dilfer by at most one
spin-orbitallabel. That is, r+s caD cause only a single spin-orbital replace-
ment. Similarly, the two-electron operators containing r+ s+ ut caD connect
kets differing by at most Iwo spin-orbitallabels.

To summarize, we have cons~ucted stale vectors that obcy Fermi-Dirac
statistics through introducing creation and annihilation operators that
fulfill the anticommutation relations of Eqs. (1.2), (1.4), and (1.5). The ant i-
commutation relations allow us to build the Slater-Condon rules directly
joto the operators in the second-quantized language. The operators thereby
lose their dependence on the electron num ber N. The only dependence on
N in the second-quantized language appears in the stale vectors lO). In
contrast, in the first-quantized language the dependence on N appears in
both the operators and the wavefunctions.

Because it is important that one fully understand how the above forms of
arbitrary one- and two-electron operators are related to the Slater-Condon
mles, let us now consider an example of how one uses these operators. Let
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us compute the expectation value of the electron-electron interaction
operator for the three-electron stale 2s: Is; Is:lvac). We know erom Slater-
Condon type rules that we should get J h.h + 2J h.2s - K h.2s' where J and
Kare the usual coulomb and exchange integrals:

Jij = <!iW)
Kij = <ijjji)

The second-quantizedapproach involvesevaluating

(1.19)

(1.20)

I, I .++ +++
1 I

I
I2 L. <vac IsalsfJ2si s ut2sa l.~fJIsa vac)<1vp,;-:-- cP/cP,,)r.s./." 12

which involves the rwo-particIe density matrix.
The application of Eq. (1.5) in the form rs+ = Dr.,- s+r permits the

annihilation operators u, t to be anticommuted to the right in the above
and the creation operators r +s + to be moved to the left. This strategy
permits us to identify all of the nonvanishing contributions (those arising
erom the Drsterm s) and to eventually obtain ulvac) Ol' <vaclr+, both of
which yield zero. The process of moving ut to the right is carried out as
follows:

ut2s: Is; Is: Ivac) = u(b/2s"- 2s: t)ls; Is: Ivac)

= [b/2s"(buls,,- Is;u)ls: - u2s:(b,ls" - Is;t)ls:Jlvac)

= [D'2s"buls"ls: - b'2s"buls)s;

- (Du2S"- 2S:U)(Drh"- Is;t)ls:Jlvac)

= [br2s"buh"ls: - D'2s"buts)s; - bu2s"Dlls"ls:

+ bu2s"blls)S; + blls"Duls)S: - brts,,<)"1s,,2s:Jlvac)
(1.2\)

The treatment of <vacllsalsfJ2sar+s+ goes through in exactly the same manner
and yie1ds the adjoint of the above result, with,. replacing t and s replacing 1/:

<vaclls",1.~fJ2s",r+s+ = <vacl[br2s"bsts"ls", - br2s"bsts)sfJ - bs2s.brh"lsa

+ Ds2s"brh"lsp + e5rls"bsls)s", - brh"bsh"2s,,,J

( 1.22)

Then by forming the scalar product <vaclls",lsfJ2si'+ s+ut2s: Is
r
+1.~:Ivac) and

using, for example, the fact that <vaclls",ls:lvac) = I and <vacls",2s:lvac) =
O,one obtains

Jrr2S"<'>uSIs,,+ <'>rr2s"Dsuh" + <'>s"2s"D'rh" + e>su2s.<'>/rts"

+ Drrts"<'>suls,,+ D/rts"<'>sUh,,- <'>"r2s"Dtsh" - Durh"bts2s"

- <'>/s2s.<'>urls. - <'>"r2s.D/sh. - <'>tsh"Druls" - <'>rsts,,<)ruh.
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where the triple-indexed delta function ~IJkmeans ~ij~Jk' This resuIt, when
multiplied by -i<cPrcPsll/r12lcPrcP..)and summed over r, s, t, u, indeed yields

J h, h + 2J h,2s - K h,2s

C, TENSOR OPERATORS

To gain further experience and understanding, lei us algo consider how
specific operators that ale familiar in fiest quantization-notation ale mapped
joto their second-quantized analogs. The z projection of the total spin Sz is
given by

Sz = L <cPrISzlcPs)r+s (1.23)
r,s

which, if the ms dependence of the spin-orbitals is marle explicit (cPr= pilir),
becomes

Sz = tli L<ilirlilis) [r:s" - rtsp] (1.24)
r,s

Because the orbitais ilirale assumed to be orthonormal, spatial integration
further reduces ibis to .

Sz = L [r:r" - rtrp]ln (1.25)

wherethesumis over the orbitais ilir.The spin-raisingand -Iowering operators
S:t. = Sx :!: iS, ale, in second quantized form,

S+ = L <cPrIS+lcPs)r+s= L nr: rp,
r,s r

(1.26)

S- = L lirtr" , (1.27)

In addition to the operators dis'cussed above, it is often important in
quantum-chemical applications to evaluate commutators of pairs of opera-
tors. For example, to show that the creation operator r: is of doublet spin
character (Le., bas the potential to change the total-spin eigenvalue of aDY
function upon which it acts by :!:-in) it is sufficient to demonstrate that
[Sz,r:] = tftr:, [S_,r:] = flT;, and [S+,r:] = O.As an example ofhow to
evaluate such commutators, lei us compute [Sz,r:] and [S_,r:]:

[Sz,r:] = ~ L[t: t" - tttp,r:]r
(1.28)

Now

t:t"r: - r:t:t" = ~rrt:- t:r:t" - r:t:t" = ~lrt: (1.29)
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and algo
+ + + + + .+ + + Otptpr.. -r..tptp= -tpl..tp-r..tptp= (1.30)

Therefore,

[S.. r:J = t/lr: (1.30

Before moving on, we wish to clearly point out an important consequence of
performing commutation between operator pairs. For example, notice that
although each term in the commutator arising in Eq. (1.29) involves three
operators (e.g., t:t..r:), the final result contains only one operator. This
reduction of the operator "rank" always arises when performing soch com-
mutators. We usually say that an operator soch as r+s bas one-particIe rank,
whereas r+s+ tu bas twa-particIe ranko Soch Tank lowering is an important
feature, which is explicitly brought about in the second-quantized language
and which is used on numerous occasions in Chapter 2. Because the second-
quantized operators contain no reference to N, this cancellation caD be
achieved at the operator level. The same cancellation occurs in first-quanti-
zation calculations but not until determinantal matrix elements are taken.

The commutator involving S - caD be written as

[S_,r:J = ftLJtpt..,r:J = ftL(tpV: - r:tpt..)
r r

= " L (c5rrtp- tpr:t.. - r:tpt..)
r

= Ilrp (1.32)

(Again, Dole the reduction in particIe rank.) The importance of ibis result is
that r+ when operating on aDYeigenfunction of S2 (e.g., S21°) = fts(s + 01°»
will yield a function whose Sz eigenvalue mIl is increased by tli

Szr:IO) = r:SzIO)+ !/,r:IO)= (m.+ t)/lr:\O)

As delined in group theory (Tinkham, 1964),general tensor operators of Tank
L obey [Jz, T~] = JlIIT~ and [J:b T~J = ft[L(L + I) - Jl(Jl:l: I)r/2T~:!:I'

where J refers to angolar momentum. OUToperators r:, I.; correspond to
L = t, Jl = :l:!. These operators, together with their corresponding annihi-
lation partners(r.. = T~i/2' rp = - T~m,can then becombined, using vector-
coupling coefficients to generale two-or-more-electron creation operators
having various to tal spin values. For example, the two-electron pair creation
singlet tensor operator is

Tr~(O,O) = ~[r;sp - r;s:]
(1.33)
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whereas the two-eIectrontripIet (with various M.) tensor operators are

Tr~(1,1)= r;s;

T~(1, -1) = r;s;
(1.34)

Tr~(1,O)= ~ [r;s; + r;s;]

The operators that create singlet and tripIet coupled one-eIectron replace-
ments are

,

q~(O,O)= ~ (r;s" + r;sp), q~(1, 1)= -r;sp

qr~(1,-1)=r;s", q~(1,O)=~[r;s,,-r;sp]

Soch tensor operators often occur when one- and two-electron operators are
expressed in the second-quantization language. For eJtample, the electronic
part of the electric dipole operator elf .Lf=1ri becomes Lt.. elf .<<ptlrl<p.>
t +s, which after spin integration reduces to

(1.35)

L elf . < cPtlrlcP.> [t; s" + t; Sp]
t"

which contains the singlet-spin tensor operator.

D. UNITARYTRANSFORMATlONSOF ORBITAlS

Having now been introduced to the basic properties of Fermion creation
and annihilation operators as they express N -electron wavefunctions and
quantum-mechanical operators, as wen-as to the strategy involved in mani-
pulating these operators, we are nearly ready to consider the efficient use of
these tools in expressing wavefunctions as they are actually employed in
state-of-the-art quantum-chemical studies, ILfrequently occurs that we are
in possession of a set of orthonormaI spin orbitaIs that, although their
construction was straightforwardly achieved, may not represent an optimal
choice for the problem under consideration. Hence, it is natural to consider
how one caD describe unitary transformations among these orbitaIs within
the second-quantization language. We have already shown that the replace-
ment operator r+ s yields, when operating on a ket in which <Psis occupied,
a new ket with <Psreplaced by <Pr.Now we wish to demonstrate that the
exponential operator exp(iA) defined as

1
exp(iA) = 1 + iA+ ,. (iA)(iA)+ . . .2. (1.36)



yields, when operating on any ket (and hence when operating on any wave-
function that is expressed as a linear combination ofkets), a new ket in which
each spin-orbital ofthe original ket «P,)is transformed joto a new spin-orbital
$, (Dalgaard and J0rgensen, 1978). Let us therefore consider the effect ofsuch
an exponential transformation [exp(iA)] on an arbitrary ket. Using the fact
that [exp(iA)] - 1 = exp( - jA),we may show the following:

exp(iA)ttti . . . t~lvac> = exp(iA)tt exp( - U)exp(U)li exp( ~ iA)

. . . exp(iA)t~ exp( - U)exp(iA)lvac)

which because Alvac>= Obecomes

nTi ...r~lvac>
with the modified creation operators being defined by

r: ==exp(iA)t: exp( - iA)

D. Unitary T ransformations oj Orbitais

where
A = L Arsr+ s

r,s

ll

(1.37)

(1.38)

(1.39)

(1.40)

By naw expanding both of the above exponential operators, we obtain
.2

r:= t: + i[A,t:J+ ;! [A,[A,t:]] + .,. (1.41)
Becauser

l'
:~
(i'
,:'

[A., t:J = L Ars[r+s, t:J = L Ar'kr +
r,s

p, p, t:J] = L AsrAr'kS+ = L (AA)sr.S+
r,s

(1.42)

(1,43)

Eq. (1.4l) caD be rewritten
,2

-+ + ." 1 + '" 11 +
lit = tle + I .;- As'kS + 2! .;- (AA)s,.S

i3

+ 3! ~(l}.).)sr.s+ +... = ~[exp(il)]Sf'S+ (1.44)

The exponential matrix exp(il) appearing in Eq. (1.44) is defined through the
power series appearing in that equation. However, as we show below, this
matrix caD be computed from the l matrix in a much moce straightforward
and practical manner.

If we want the transformation described by exp(iA) to preserve ortho-
normality of the spin-orbitals ar, equivalently, to preserve the anticommuta-
tion relations [see discussion following Eq. (1.5)]

[t+, s] + = [r+,5']+ = (j,s (1.45)
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then certain restrictions most be placed on A. This restriction, of COllege,
requires the above transformation to be unitary. Using Eq. (1.40) and

[exp(iA)]+ = exp(-iA+) (1.46)
then

;s = exp(iA +)sexp( - iA+) (1.47)

We therefore have

T+;S+ Sf+ = exp(iA)t+ exp( -iA)exp(iA +)sexp( -iA +)

+ exp(iA+)sexp( - iA+)exp(iA)t+ exp( - iA) (1.48)

Now if the operator A is required to be hermitian, which then makes the
elements Arsform a hermitian matrix

A+ = 2)Arsr+s)+ = L Ai.s+r = L AsrS+r = A (1.49)
r,s r,s r,s

then Eq. (1.48) will reduce to

Ps + Sf+ = exp(iA)(t+s + st+)exp( - iA) = J,s (1.50)

which means that the above transformation does indeed preserve the anti-
commutation relations. The fact that the l matrix is hermitian implies that
the transformation matrix exp(il) occurring in Eq. (1.44) is unitary since

[exp(il)]+ = exp(-il+) = exp(-il) = [exp(il)]-l
This means that the orbital transformation

(1.51)

(Pr ==L [exp(iA)]sr4>s (1.52)

is algo unitaryand hence preserves orthonomality.
When the matrix Ais hermitian, it caD be divided joto real and imaginary

parts
A=oc+iK,

where the matrix ocis real and symmetric (ars= asr) and the matrix K is real
and antisymmetric (Krs= - Ksn Le., Krr= O). The operator A mayaiso be
divided,

A = L Arsr+ s = L (ars + iKrs)r+ S

(1.53)

rs rs

= L arrr+r + L ars(r+s + s+r) + i L Krs(r+s - s+r)
r r>s r>s

(1.54)

joto three terms each of which are hermitian. Since we have assumed earlier
that the spin-orbitals are real, orbital variations in exp(iA) described through
the ars parameters most vanish identically because these variations would
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map the realorbitais joto complex orbitais. When the variations described
by the arsparameters are eliminated, the unitary tnlnsformation described by
exp(iA.)becomes an orthogonal transformation exp( - K). In what follows,
when we refer to a unitary transformation, it is usually the orthogona'
transformation described above.

To see how one caD express the exp(iA.)matrix most compact'y, 'et us
introduce the unitary transformation u, which diagonalizes A.:

udu+ = A.,uu+ = u+u = 1, drs = (jrsdr (1.55)
Then

i2
exp(iA.) = 1 + iA.+ - U + . . .2!

. i2
=uu+ +ludu+ +-udu+udu+ +...

2!

(
~ ~

)
l le

= u 1 + id + 2! dd + 3! ddd + . .. u+

= u exp(id)u + (1.56)

Because d is diagonal (dd)r..= (jrsd; and hence [exp(id)].., = (jrsexp(idr).
Therefore the elements or exp(iA.)are easily given by

[exp(iA.)].s = L Url exp(id,)u,~
I

(1.57)

This equation gives a compact and efficient expression for the orbita' trans-
formation matrix appearing in Eq. (1.52).

Having seen how the operators of second quantization caD be used to
express wavefunctions and quantum-mechanical operators, let us naw move
on to the problem of choosing wavefunctions that yield optimum descrip-
tions, in an energy optimization sense, of the stationary states or atomie and
molecular systems.

PROBLEMS

1.1 Show the following identities to be valid for the operators A, B,
and C;

[AB,e] = A[B,e] + [A,e]B = A[B,e]+ - [A,e]+B
[AB,e]+ = [A,e]+B + A[B,e]

N

[AIA2"'AN,B]= L AIA2"'Aj-l[Aj,B]Aj+I"'AN
j= I



14 l lntroduction to Second-Q.uanti~ation Methods

1.2
l. Show by performing the following commutators and anticommuta-

tors that one achieves a lowering of the particie rank of the operators in-
volved:

[i+j,el], [s, [i+rlk,r+]]+, [r+s, [i+j, t+v]]

2. By how much (what order) bas the rank been lower~din each case?
1.3 Show that the operators {qr+s(l, i); i = 1,O,-l} given in Eq. (1.35)

are tensor operators in spin space with S = 1.
1.4 The Fermi contact Hamiltonian may, in first-quantizedlanguage,be

written as

N 81t

HF = ~L 3g. p. "f~j' I"«5(rj- RII)I II

where (" is the spin of nucleus a, and g is the electronic gyromagnetic ratio,
p the Bohr magneton, "fa the nuclear gyromagnetic factor, S the electron
spin, and «5(r)the Dirac delta function. Show that ibis Hamiltonian, in
second-quantized language, may be written as

HF = L ~1tgP"fllli~(Ra)lis(RII)[-q~(l, l)(I~ - iI;)a,r,s

+ q~(l, -l)(I~ + iI;) + .fiq~(I,O)I:]

where lis(Ra) is the amplitude of orbital s at nucleus a and the q+ operators
are defined in Eq. (1.35).

1.5 Given iwo orthonormai orbitais 41t and 412 expressed as linear
combiriations of iwo not necessarily orthonormai basis functions XII and
Xb:

41t,2 = at,2XII + bt,2Xb

1. Show that the two-dimensi~nal unitary transformation given in Eq,
(1,52), which in ibis case is described by a Kmatrix

K=(~ -~)
involving one parameter K, can be expressed as

(
l O

)
.

(
O 1

) (
COSK sinK

)exp(-K)=COSK O 1 +SIOK -l O = -sinK COSK

2. Apply ibis transformation to the orbitais 411,2for K = 10° to obtain
neworbitais cfJ 1,2 and express (f)l,2explicitly in terms of Xa,Xb,at,2' bt,2'
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SOLUTlONS

1.1

\
~.
~.
~.
f.
t
;.;

i..
~
y
~

L,

[AB,C] = ABC - CAB = ABC - ACB - CAB + ACB

= A[B,C] + [A,C]B = A[B,C]+ - [A,C]+B

[AB,C]+ = ABC + CAB = ABC - ACB + ACB + CAB

= [A, C]+B + A[B, CJ

[AlAl'" AN,B] = AlAl'" ANB - BAlAl'" AN
= AIAl '" ANB - AIAl . , 'BAN

+ AIAl ," BAN- BAlAl'" AN
= AlAl'" [AN,B] + AlAl'" [AN-..B]AN

+ AlAl'" AN-1BAN-IAN - BAlAl'" AN

etc, Clearly, by continuing to move the B to the leO:,we generale all terms in
the series:

1.2
N

L Al", Aj-I[Aj,B]Aj+I"'AN
j= 1"':

1. [
'+' k +

/]
,+ 'k +1 k +I'+'

I l, = I l - I l
- s: '+ 1 '+ k + 'I s: k +' + k+ ,

.

+1'

- Ujk' - I l - Uli J I I}

= CJjki+l- CJ/jej

[i+j+lk,r+] = CJkri+rl- CJlri+j+k
ClO

;y

Hence

~..
[s, [i+j+lk,r+]]+ = (jkr(si+j+1 + i+j+ls) - CJlr(si+j+k + i+j+ks)

= (jkr«(jisj+1- (jj';+ l) - (j1~(CJiJ+k - CJj.i+k)

[
,+,+

] s:'+ s:+'
I l, t v = ujl' V - uivt l

Hence

[
+

[
,+, +

]] s:
[

+ '+
] J: [

+ +'
]I' S, I l, t v = Ujl r s, I v - Uiv I' S, t l

= (jjl«(j.;r+ v - CJrvi+ s) - (jiv«(j,.,,+ j - CJrl + s)

2, In the fiest problem we lowered the rank by one, in the second by
iwo, and in the third by iwo,

1.3

{qr:(l,M.)} = {-r:S(1' ~(r:s" - r;S(1)"';S"}
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Consider the Ms = Ocomponent only (the others are treated in tike fashion):

1
[8",q,~(1,O)] = L M U:j" - jpjp,r:Sa - rpsp]h/2

j y2

h
= M L {bj,j: Sa+ bj,j; Sp- bjsr:ja - bjsrpjp} = O

2y2 j

[8+,q,~(1,O)] = L ~ u: jp,r:Sa - r;sp]
y'2

h
= M L {-bj,j: Sp- bjsr:jp}

y2 j

- h2 + Mh +

= .j2 ra Sp = y2 q,s(1,1)

r +
] h" [ .+. + +

]L8_,q,s(1,O)= M
.

L., JpJa,ra Sa- rp sp
,y2 j

h
= ML{bj,jpsa+bjsrpja}

y2 j

2h + M h +

= .j2rpsa=y2 q,s(1,-1)

We have thus shown that q,~(1,O)bas the properties ofa tensor operator of
8 = 1 with Ms = O.

1.4 Using Eq. (1.15), the second-quantized Fermi contact Hami1tonian
may be written as

8n
HF = LL3 gfJYa(t/J,IS.Iab(r - Ra)lt/Js)r+s

a 's /

8n /
1[

1 a 1 a

= ~ ~ 3 gfJYa\ t/J, 2 (8 + + 8 _)1 '" + 2i (8 + - 8 _)1 y

+ 8,,/~]b(r - Ra)lt/Js) r+ S

- " " 8n ;r;:* ;r;: (1 + a 1 + a

- L.,L.,3 gfJYa'l',(Ra)'l's(Ra) "2ra spl", +"2 rp.sal",a 's

l+ l a l+ l a 1+ l a l l a+ )+ li ra Sp y - 2i rp Sa y + "2ra Sa" -"2 "rp Sp
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From the definitions of {q+(I,i),i = 1,0, -I} in Eq. (1.35), the final results
given in the problem follow directly.

1.5
1.

(
1 O

) (
OK

)
1

(
OK

)(
OK

)exp( -re) = O 1 + -K O + 2! -K O -K O +...

Since

~:l
"(
~'j

~;

~.

~~.
~4

(
O K

)(
O K

) 2(
1 O

)-K O -K O = -K O 1

then

(
1 O

) (
O 1

)
Kz

(
1 O

)
K3

(
O 1

)exp(-re)= 01 +K -10 -2! O 1-31 -10 +"'.

(
1 O

)
.

(
O 1

) (
COSK SinK

)= cos K + SlD K =.
O 1 -1 O - SlD K COS K

2.

(1: 1: ) = (A. cP )( C~SK SinK )= (X XB)(OI 02

)( C~SK SinK )'l'1'l'Z 'l'1 2 -glUK COSK A bl bz -glUK COSK

K = 10°= 0.174 rad, cosK= 0.985, sinK= 0.174

- -
(

0098501 - 0.1740z 0.17401 + 0.9850z\

)(cPlcP2) = (XaXb) 0.985b1 - 0.174b2 0.174b1 + 0.985bz.;.-
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