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Preface

In this book we address several modern quantum chemical tools that are
presently being applied at the state-of-the-art level to electronic states of
atoms and molecules. We have attempted to concentrate on topics for
which textbook coverage does not currently exist in an entirely satisfactory
form. The emphasis is on quantum chemical methods whose developments
and implementations have been presented in the modern literature primarily
in the language of second quantization. We do not assess the precision of the
numerical results provided by these methods because many of the techniques
discussed are relatively new and their precision limits have not yet been
established.

There is little mention of specific molecular systems that might be ex-
amined using these tools. We have developed an integrated set of problems
with detailed answers, all of which can be worked by hand, to illustrate the
practical implementation of the techniques developed. These problems
appear at the end of each chapter, and we recommend that they be worked
as an integral component of the respective chapters. Excellent treatments
of the following very important aspects of quantum chemistry already exist
in several texts and are therefore not included in this book: questions of
basis set choice, efficient evaluation of requisite one- and two-electron
integrals, fast and space-efficient methods for transforming integrals from
one basis to another and for storing such integral lists, or the use of orbital
symmetry correlation concepts in deciding which electronic configurations
must be included for specific molecules. The emphasis here is on describing
the structure of the various methods rather than on discussing their numerical
implementations.

The choice of topics and depth of presentation were guided by our view
of the active research workers who are likely to benefit from this book.
Many leading theoretical chemistry research groups have only recently
begun to make use of second quantization-based techniques. It is not
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likely that the full potential of these methods will be realized until those
quantum chemists who possess the most sophisticated computational
tools and experience become more involved in their use. A presentation
that is limited to explaining how working equations of these methods are
derived and how the equations are implemented in practice should be
especially useful and timely. This monograph is intended to be of use both
to the research worker in quantum chemistry and to graduate-level students
who have already taken introductory courses that cover the fundamentals
of quantum mechanics through the Hartree—Fock method as applied to
atoms and molecules. The purpose of this book is more to teach than to
survey the literature in the research areas covered. We assume that the
reader is familiar with linear algebra, matrix representations of operators,
Slater- and contracted Gaussian-type basis functions, the Slater—Condon
rules for evaluating determinantal matrix elements of one- and two-electron
operators, and the construction of Slater determinant wave functions
having proper space-spin symmetry.
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configuration interaction
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electron propagator
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many-body perturbation theory
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Chapter 1 | Introduction to Second-
Quantization Methods

In the vast majority of the quantum chemistry literature, Slater determi-
nants have been used to express antisymmetric N-electron wavefunctions,
and explicit differential and multiplicative operators have been used to write
the electronic Hamiltonian. More recently, it has become quite common to
express the operators and state vectors that arise in considering stationary
electronic states of atoms and molecules (within the Born—Oppenheimer
approximation) in the so-called second quantization notation (Linderberg
and Ohrn, 1973). The electron creation (r*,s*,t*,u*) and annihilation
(r, s, t,u) operators occurring in this language were originally introduced for
use in physical problems that actually involved creation or destruction of
particles, photons, or excitations (e.g., phonons). In a majority of the applica-
tions of the second-quantization techniques to quantum-chemical problems,
no electrons or other particles are created or destroyed. Thus, the operators
{r*}, {r} usually serve merely as a convenient and operationally useful
device in terms of which quantum-mechanical states, operators, commuta-
tors, and expectation values can be evaluated. In this chapter, we examine
how the electronic Hamiltonian, other quantum-mechanical operators, and
state vectors are represented in this second-quantization language. We also
show how to describe unitary transformations among orthonormal orbitals
in an especially convenient manner. In subsequent chapters we make use of
the tools of second quantization to describe many approximation techniques
(e.g., Hartree—Fock, perturbation theory, configuration interaction, multi-
configurational Hartree—Fock, cluster methods, Green’s functions), which
are currently in wide use within the quantum chemistry community. The
need for such approximation methods is, of course, motivated by our inability
to exactly solve electronic structure problems for more than one electron.
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A. ANTICOMMUTATION PROPERTIES OF CREATION
AND ANNIHILATION OPERATORS

Slater determinantal wavefunctions involving orthonormal spin-orbitals
¢, can be represented in terms of products of creation operators on the
so-called vacuum ket |vac),

rrst ... l+|\"30> “— (N!)_'uz dell¢| it ¢’,¢’rl = Id’l Cig ¢s¢rl (1.1)

The Fermi statistics present in such wavefunctions can be expressed either
in terms of a sign change arising upon permuting columns of the determinant
or in terms of the following fundamental relation among the r* operators:

[r,s*],=r'st +s'r" =0 (1.2)
Note that this equation also states that the state vector cannot contain the
same spin-orbital twice (the Pauli principle) since r*r* = —r*r* = 0. Before

we go further, we should stress that Eq. (1.1) does not equate Slater deter-
minants to the product of r*s* - - - operating on |vac). It simply claims that
there is a one-to-one connection between the two objects.

The Fermion annihilation operator r, which is the adjoint of the creation
operator r*, can be thought of as annihilating an electron in ¢, and is
defined to yield zero when operating on the vacuum ket

rlvac) =0 (1.3)

The annihilation and creation operators fulfill the following two anticom-
mutation relations (Raimes, 1972):

[rns]y =rs+sr=0 (1.4
[rns*]s =rs* +s5*r=96, (1.5)

which together with Eq. (1.2) comprise the essential relationships used in
the application of such second quantization operators to quantum chemistry.
For nonorthonormal spin-orbitals, Eq.(1.5) is replaced by [r,s* ] . ={&,| ¢,
where the overlap appears explicitly.

The interpretation of Eq. (1.2) in terms of permutational symmetry of
determinants is clear. To make the analogous content of Egs. (1.4) and (1.5)
more transparent, we now examine some of the implications that follow
from these equations. Let us first examine Eq. (1.5). For r = s, this reads
rr* + r*r = 1. When operating on a ket in which ¢, is “occupied,” the first
term (rr ) clearly gives zero, since according to Eq. (1.2) terms violating the
Pauli principle vanish. The second term (r*r) yields

rtectut ccort oo wtlvac) = (=1 rtertetut oo -whivac)  (1.6)

where k, is the number of creation operators standing to the left of r* in
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the original ket. If this is, according to Eq. (1.5), equal to the original ket,
then we must have

ttut oot oowt|vac) = (= Drertrrtttut oo whvac)

=(=1fr*t*u* - - whlvac) (1.7)
The last equality in Eq. (1.7) implies that rr*, when operating on a ket that
does not contain ¢,, leaves that ket unchanged, and that r*r, when acting
on a ket in which ¢, is present, leaves that ket alone. When r*r operates on
a ket in which ¢, is not present, it gives zero. Thus r*r tells whether orbital
¢, occurs in a ket. For that reason, it is often referred to as the occupation
number operator n, = r*r. It is also conventional to introduce the total

number operator N as N = ), n,, which when operating on any ket gives
as its eigenvalue the total number of electrons in that ket.

In the case r # s, Eq. (1.5) implies that r operating on any ket that does
not contain ¢, yields zero, since

rs*t*u* - -wt|vac) = —s*retut - - whvac) =0 (1.8)

by repeated use of Eqgs. (1.5) and (1.3). When the kets contain both ¢, and
¢,, both the rs* and s*r terms vanish. For s*r operating on a ket that
contains ¢,,

stretut - ortwtlvac) =(—DPstetut - whvac)
=t 'u’ ---s"whlvac) (1.9)

which is simply a new ket with ¢, replaced by ¢,.
Finally, we should attempt to elaborate on the meaning of Eq. (1.4). Let
us consider the action of rs (r # s) on a ket in which ¢, and ¢, are present:
rsetut coort eost ooowtvac) = (= 1)t rersstrtetut - - wtvac)
which by Eq. (1.5) reduces to
(= Dethr(l —s*syrtetut - - - whlvac) (1.10)

The term involving s*s vanishes because s|vac) =0, and hence we have
(again using r|vac) = 0)

(=l *etut - owrvac) = (— Dt rrtut - owtlvac) (11D
If instead we consider the action of sr, we obtain

St oyt gt awtvac) (1R e st ta " et hac)

={=D"S1rtut o cwtiac (1.12)

which is opposite in sign to the result of the rs operation. Thus, the statement
rs + sr = 0 simply means that the effect of annihilation displays Fermion
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statistics. For r = s, Eq. (1.4) reads rr = —rr = 0, which also expresses the
Pauli principle and Fermi statistics.

Although Egs. (1.2)-(1.5) contain all of the fundamental properties of the
Fermion (electron) creation and annihilation operators, it may be useful to
make a few additional remarks about how these operators are used in
subsequent applications. In treating perturbative expansions of N-electron
wavefunctions or when attempting to optimize the spin-orbitals ¢, appearing
in such wavefunctions, it is often convenient to refer to Slater determinants
that have been obtained from some “reference determinant” by replacing
certain spin-orbitals by other spin orbitals. In terms of second-quantized
operators, these spin-orbital replacements will be achieved by using the
replacement operator s*r as in Eq. (1.9).

In subsequent chapters, we shall be interested in computing expectation
values of one- and two-electron operators. By expressing these operators in
terms of the above creation and annihilation operators,-the calculation of
such expectations values reduces to the evaluation of the elements of the
one- and two-electron density matrices (0|i*|0> and <0|i*;j* Ik|0) (Davidson,
1976). If the wavefunction |0 is expressed as a linear combination of kets
each given in terms of creation operator products [],.o r*|vac), the one-
and two-electron density matrices can be evaluated in terms of the expansion
coefficients of |0) in these kets. The average occupation of an electron in spin-
orbital ¢, becomes a particular element (0|r* |0} of the one-particle density
matrix. If we wish to compute, say, {0|t*u|0), where |0) =[], ., r*|vac),
we may proceed using the anticommutation algebra obeyed by the creation
and annihilation operators, to yield

KOt ulod = [T [T <vac)r'e*ur*|vac)
e0re0

= (vac|ryry_y - rytturfrs <o orylvac)
= §,, (vaclryry_y o ryttrir - rf|vac)
—vaclryry_y crgttrfuri ey o orylvac)  (1.13)

which, by “anticommuting” u through to the right (so as to eventually
generate ulvac) = 0) and ¢* through tq the left (to eventually generate
vac|t* = (tlvac))* = 0), and using {vac|vac) = 1, yields a nonvanishing
matrix element only when ¢ = u and u is one of the elements of |0) (the
“occupied” spin orbitals in [0)). This result can be summarized as follows:

Ojt*u[0) = 8,7, (1.14)

where v, denotes the occupation number of orbital ¢, in |0).
This expresses a general rule of how to obtain matrix elements of a re-
placement operator. The rule is the second-quantization analog of the
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Slater-Condon rule (Condon and Shortley, 1935) for evaluating matrix
elements of a one-electron operator. In practical calculations one would,
of course, use this rule as well as the other counterparts of the Slater—Condon
rules.

B. EXPRESSING QUANTUM-MECHANICAL OPERATORS
IN SECOND QUANTIZATION

Having now seen how state vectors that are in one-to-one correspondence
with N-electron Slater determinants can be represented in terms of Fermion
creation and annihilation operators, it still remains for us to show how to
express one- and two-electron operators in this language. The second-
quantized version of any operator is obtained by simply demanding that
the operator, when “sandwiched” between ket vectors of the form [ ], r *|vac),
yield exactly the same result as arises in using the first quantized operator
between corresponding Slater determinant wavefunctions. For an arbitrary
one-electron operator, which in first-quantized language is Y\, f(r)), the
second quantized equivalent is

N
Y AP flports o El fir) (1.15)

where the sums (r, s) are over a complete set of orthonormal spin-orbitals
¢, and ¢,. The analogous expression for any two-electron operator is

1 P
EY z <¢r¢slg|¢l¢u>r+s+ut i Z g(rhrj] “16)
2 r.5tu 2 ij=1

Here (d),tf),|g]¢,¢,,) represents the usual two-electron integral involving the
operator g:

{Dpslgldidbn> = _[d’?(lkb,"‘ (2)9(1,2)p(1)¢.(2)d1 d2 (1.17)

When g(1,2) = r;5, we often express these integrals in short-hand notation
as (r‘s[ru). It should be noted that the order of the creation and annihilation
operators appearing in Eq. (1.16) must be as presented in order to guarantee
that the proper sign will result when expectation and transition value
matrix elements of such operators are formed. These spin orbitals {¢,} are,
in most practical applications, obtained as linear combinations of atomic
orbital basis functions

¢, = 52, Craka (1.18)

where o and f are the one-electron spin functions. The y, are usually taken
to be Slater-type orbitals or contracted Gaussian orbitals, and the C,, are the
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linear orbital expansion coefficients. In what follows, we assume that the y,
are real orbitals. This means that the Gaussian or Slater orbitals are given
in cartesian form rather than in terms of spherical harmonics.

A few clarifying remarks are now in order. First, one should notice that
the first-quantized forms of the above operators contain explicit reference to
the number of electrons N, whereas the second-quantized operators do not.
This means, for example, that the kinetic energy operator

PRCAES YAl ST

is independent of N. The kinetic energy operator of the beryllium atom is
identical to that of the Be*, Be?*, Be, etc., ions. Of course, nuclear inter-
action operators (—Z, Y 1~ |r; — R,|™!) do contain reference to nuclear
charges in their second-quantized version,

YD) =Zr =R, Ypdr*s

but nowhere does N appear. In second quantization, the only reference to N
comes from the ket vectors [ [,.o r*|vac), which contain N creation oper-
ators. This property of operators in the second-quantized language plays an
important role, for example, in Green’s function methods for calculating
ionization energies. The fact that the same Hamiltonian can describe neutral
and ion states permits the Green’s function to be expressed in terms of a
single Hamiltonian.

In examining the above expressions for the second-quantized one- and
two-electron operators, it should become clear, for example, that the one-
electron operators, which contain r*s, can “connect” two N-electron kets
(corresponding to N-electron Slater determinants) that differ by at most one
spin-orbital label. That is, r*s can cause only a single spin-orbital replace-
ment. Similarly, the two-electron operators containing r*s*ut can connect
kets differing by at most two spin-orbital labels.

To summarize, we have constgucted state vectors that obey Fermi-Dirac
statistics through introducing creation and annihilation operators that
fulfill the anticommutation relations of Eqgs. (1.2), (1.4), and (1.5). The anti-
commutation relations allow us to build the Slater—Condon rules directly
into the operators in the second-quantized language. The operators thereby
lose their dependence on the electron number N. The only dependence on
N in the second-quantized language appears in the state vectors |0). In
contrast, in the first-quantized language the dependence on N appears in
both the operators and the wavefunctions.

Because it is important that one fully understand how the above forms of
arbitrary one- and two-electron operators are related to the Slater—Condon
rules, let us now consider an example of how one uses these operators. Let
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us compute the expectation value of the electron—electron interaction
operator for the three-electron state 2s; 157 15, |[vac). We know from Slater-
Condon type rules that we should get J, ;; + 2J, ,, — Ky,.,,, where J and
K are the usual coulomb and exchange integrals:

Jy = <ijlij (1.19)
Ky = ijljiy (1.20)
The second-quantized approach involves evaluating

i 1
5 Y (vac|ls,lsp2s,rt st ut2s) Lsy 1s;) [vac) <, e |p>
12

r.5.0u

which involves the two-particle density matrix.
The application of Eq. (1.5) in the form rs* = §,, — s*r permits the
annihilation operators u, t to be anticommuted to the right in the above
and the creation operators r*s* to be moved to the left. This strategy
permits us to identify all of the nonvanishing contributions (those arising
from the §,, terms) and to eventually obtain u|vac) or (vac|r*, both of
which yield zero. The process of moving ut to the right is carried out as
follows:
ut2s, sy 1s)|vac) = u(d,,,, — 25, )55 s, [vac)
= [6125,(Ours, — 1sp W)ls, — u2s; (8,5, — 155 D)ls,; ]jvac)
oz [arls,‘suls’ (5,23.“(5"1,‘1?”
— (25, — 257 u)(Jyys, — Lsg D)5 ]|vac)
= [6,2,_6”“#13: a 6:25.6n1s_1s; T 61:2.5,‘5(1;,15:
+ 6-;23,6!13,15; + 5:]5353113,25: 20 5”3,5«15,25;]""3(:)
(1.21)
The treatment of {vac|ls,1s,2s,r*s* goes through in exactly the same manner
and yields the adjoint of the above result, with r replacing t and s replacing u:
(vac|ls,Isg2s,r*s* = (vac|[8,25,0515, 15 — 8,2.9515. ls,., 85250
T 632s,6rls,ls8 = ‘srlw‘sxlx_z"

r1splS
(5,“”2\‘1]

(1.22)
Then by forming the scalar product (vac|ls,15,2s,r* s * ut2s, lsr+ Is, |vac) and

using, for example, the fact that (vac|ls,1s, |vac) =1 and (vac|ls,2s, |vac) =
0, one obtains

rl!,

‘srrzhrsnsls;: o (srrls,ésul.t, + 65"28.,6"].15 it rsslwi'.s,,(il'rls,.
2 (sl'!‘ls,qésuls. + 5"13_5“[3]; =4
= 6rst¢6urls, —0 0 .

|1r23,5ls'1 3g: ‘surlsﬂélsZsa

o

ur2s,1s1s, 1515, rulsg — (Srsls,ﬁmis.
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where the triple-indexed delta function J;; means §;;0;. This result, when
multiplied by $(¢,¢,|1/r,,|#.¢.> and summed over r, s, t, u, indeed yields

Jls,ls + 2"'13,23 s le.ls

C. TENSOR OPERATORS

To gain further experience and understanding, let us also consider how
specific operators that are familiar in first quantization-notation are mapped
into their second-quantized analogs. The z projection of the total spin S, is
given by

S, =2 ¢S | >r"s (1.23)

which, if the m, dependence of the spin-orbitals is made explicit (¢, = 3¢,),
becomes

S. = 3h 2 AP B [rs sa = 17 55] (1.24)

Because the orbitals @, are assumed to be orthonormal, spatial integration
further reduces this to

Se=Y.[rdr,—rgrglih (1.25)

r

where thesumis over the orbitals @, . The spin-raising and -lowering operators
§; = S, + iS, are, in second quantized form,

Se =Y @IS clports =3 hr}r,, (1.26)
S_=Yhrpr, (1.27)

In addition to the operators discussed above, it is often important in
quantum-chemical applications to evaluate commutators of pairs of opera-
tors. For example, to show that the creation operator r; is of doublet spin
character (i.e., has the potential to change the total spin eigenvalue of any
function upon which it acts by +34h) it is sufficient to demonstrate that
[S..r})=3hr} [S_,r;]) =hrj,and [S,,r}] = 0. As an example of how to
evaluate such commutators, let us compute [S,,r,; ] and [S_,r, ]:

h
T QZ[‘:% — tytg,ra ] (1.28)
Now

I:‘ar: e r:[: le = atrr: = t:r:ta T r:‘:'[a = 6Irt: (129)
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and also
tytgra —Talgty= —tarity—rglgty=0 (1.30)
Therefore,
[S..rs] = 4hr) (1.31)

Before moving on, we wish to clearly point out an important consequence of
performing commutation between operator pairs. For example, notice that
although each term in the commutator arising in Eq. (1.29) involves three
operators (e.g., t; t,r.), the final result contains only one operator. This
reduction of the operator “rank™ always arises when performing such com-
mutators. We usually say that an operator such as r*s has one-particle rank,
whereas r*s* tu has two-particle rank. Such rank lowering is an important
feature, which is explicitly brought about in the second-quantized language
and which is used on numerous occasions in Chapter 2. Because the second-
quantized operators contain no reference to N, this cancellation can be
achieved at the operator level. The same cancellation occurs in first-quanti-
zation calculations but not until determinantal matrix elements are taken.
The commutator involving S _ can be written as

[Sortl=h) gt ri]=h) (gt —rit5t)
r ]
=h) Outy —tgrite—ratgty)
[}

= hr} (1.32)

(Again, note the reduction in particle rank.) The importance of this result is
that r* when operating on any eigenfunction of S (e.g., S?|0) = hs(s + 1)|0))
will yield a function whose S, eigenvalue mh is increased by 3h

S.r 0> = rfS.|0> + $hr}|0) = (m, + Hhr}|0)

As defined in group theory (Tinkham, 1964), general tensor operators of rank
L obey [J,,TL] = phTE and [J4,TE]) = h[L(L + 1) — p(p + D]'2TE, .
where J refers to angular momentum. Our operators r,, ry correspond to
L =14, pn = +}. These operators, together with their corresponding annihi-
lation partners(r, = TY},,,r; = — T'}/3), can then be combined, using vector-
coupling coeflicients to generate two-or-more-electron creation operators
having various total spin values. For example, the two-electron pair creation
singlet tensor operator is

1
T0,0) = — [r}sf — rist] (1.33)
5
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whereas the two-electron triplet (with various M,) tensor operators are
T (L,)=rSsS
T.(l,—=1)=rgs5
1
7

The operators that create singlet and triplet coupled one-electron replace-
ments are

(1.34)

T:;(l,O) o [l”:s; + r;s:]

1
Q;(O?O)gﬁ(r:sa + P';Sﬂ), Qr:(l; )= _r:sﬂ
: (1.35)
+ + + + +
rs{l?_l)= Fg Sa» qrs(190)="'_ FaSqa—Tgs
q [ \ﬁ [ 755
Such tensor operators often occur when one- and two-electron operators are
expressed in the second-quantization language. For example, the electronic
part of the electric dipole operator ed + ), r; becomes ), , e& * (¢ |r|¢.>
t*s, which after spin integration reduces to

Y €8 - (P Je|P ) [td s, + tg 5]

1,8

which contains the singlet-spin tensor operator.

D. UNITARY TRANSFORMATIONS OF ORBITALS

Having now been introduced to the basic properties of Fermion creation
and annihilation operators as they express N-electron wavefunctions and
quantum-mechanical operators, as well-as to the strategy involved in mani-
pulating these operators, we are nearly ready to consider the efficient use of
these tools in expressing wavefunctions as they are actually employed in
state-of-the-art quantum-chemical studies. It frequently occurs that we are
in possession of a set of orthonormal spin orbitals that, although their
construction was straightforwardly achieved, may not represent an optimal
choice for the problem under consideration. Hence, it is natural to consider
how one can describe unitary transformations among these orbitals within
the second-quantization language. We have already shown that the replace-
ment operator r*s yields, when operating on a ket in which ¢, is occupied,
a new ket with ¢, replaced by ¢,. Now we wish to demonstrate that the
exponential operator exp(i) defined as

exp(id) = 1 + i + %(:’A)(il) 4 s (1.36)
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where
A=3 4r's (1.37)

r.s

yields, when operating on any ket (and hence when operating on any wave-
function that is expressed as a linear combination of kets), a new ket in which
each spin-orbital of the original ket (¢,) is transformed into a new spin-orbital
¢, (Dalgaard and Jorgensen, 1978). Let us therefore consider the effect of such
an exponential transformation [exp(id)] on an arbitrary ket. Using the fact
that [exp(i2)] ! = exp(—il), we may show the following:

exp(id)] t3 - - - ty|vac) = exp(id)t{ exp(—id)exp(id)t] exp(—id)
-+ - exp(id)ty exp(—il)exp(il)|vac) (1.38)
which because A|vac) = 0 becomes
iyiy - -~ iy|vac) (1.39)
with the modified creation operators being defined by
Ty = exp(id)t, exp(—id) (1.40)

By now expanding both of the above exponential operators, we obtain

:2
W= i+ 5 AR ]+ (1.41)
Because
Aaf]=Y A [rtsel] =3 4, (1.42)
[AIA L T] = Y Ands® =Y (A)gs* (1.43)

Eq. (1.41) can be rewritten

:2
=t iy A+ lii Y (Ad),,s*

3
B % ?“‘“w* Ry g[exmill]s.,ﬁ* (1.44)

The exponential matrix exp(id) appearing in Eq. (1.44) is defined through the
power series appearing in that equation. However, as we show below, this
matrix can be computed from the 4 matrix in a much more straightforward
and practical manner.

If we want the transformation described by exp(il) to preserve ortho-
normality of the spin-orbitals or, equivalently, to preserve the anticommuta-
tion relations [see discussion following Eq. (1.5)]

[t+,5]+ = [f+9§]+ = 6:3 “45)
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then certain restrictions must be placed on A. This restriction, of course,
requires the above transformation to be unitary. Using Eq. (1.40) and

[exp(id)]* = exp(—iA*) (1.46)
then
5§ =exp(il*)sexp(—il*) (1.47)
We therefore have
755 + 3T = exp(id)t* exp(—id)exp(id*)sexp(—id*)
+ exp(id*)sexp(—id*)exp(i)t* exp(—id) (1.48)

Now if the operator 2 is required to be hermitian, which then makes the
elements A,, form a hermitian matrix

At =Y Arts)t =Y etr=Y L str=1 (1.49)
r.s r.s r,s
then Eq. (1.48) will reduce to

Y5+ 51" = exp(id)(t*s + st*)exp(—ild) = &, (1.50)

which means that the above transformation does indeed preserve the anti-
commutation relations. The fact that the 4 matrix is hermitian implies that
the transformation matrix exp(il) occurring in Eq. (1.44) is unitary since

[exp(id)]* = exp(—id*) = exp(—id) = [exp(id)] ! (1.51)
This means that the orbital transformation
¢, = Y [exp(id) ], ¢, (1.52)

is also unitary and hence preserves orthonomality.

When the matrix 4 is hermitian, it can be divided into real and imaginary
parts

A=a+ix (1.53)
where the matrix « is real and symmetric (a,, = a,,) and the matrix x is real
and antisymmetric (k,, = —k,,, i.e, k,, = 0). The operator A may also be

divided,

A=Y A rts=Y (o, + i Jr's
rs rs

=Y o rtr+ Y arts+st)+i ) krts—str)  (1.594)
r r>s r>s

into three terms each of which are hermitian. Since we have assumed earlier

that the spin-orbitals are real, orbital variations in exp(id) described through

the o, parameters must vanish identically because these variations would
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map the real orbitals into complex orbitals. When the variations described
by the a,, parameters are eliminated, the unitary transformation described by
exp(id) becomes an orthogonal transformation exp(—x«). In what follows,
when we refer to a unitary transformation, it is usually the orthogonal
transformation described above.

To see how one can express the exp(id) matrix most compactly, let us
introduce the unitary transformation u, which diagonalizes 4:

udu* =4 uw’ =vtu=1, d,=4,4d (1.55)
Then

2
exp(id) = 1 + id + '2—11,1+
iz
=uut + iudut + 57 udutudut +---

"2 l‘3
= i S il +
_u(1+1d+2!dd+3!ddd+ )u

= uexp(idju* : - (1.56)
Because d is diagonal (dd),, = 6,,d? and hence [exp(id)],, = 6,,exp(id,).
Therefore the elements of exp(id) are easily given by

[exp(id)],s = Y. u, explidu,} (1.57)

This equation gives a compact and efficient expression for the orbital trans-
formation matrix appearing in Eq. (1.52).

Having seen how the operators of second quantization can be used to
express wavefunctions and quantum-mechanical operators, let us now move
on to the problem of choosing wavefunctions that yield optimum descrip-
tions, in an energy optimization sense, of the stationary states of atomic and
molecular systems.

PROBLEMS

1.1 Show the following identities to be valid for the operators A, B,
and C:

[4B,C] = A[B,C] + [A,C]B = A[B,C], — [4,C].B
[4B,C], =[A,C].B + A[B,C]

N
[A41A, - Ay, B]= Y A4, ey [AGBlA,, - - Ay
=1

I
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1.2

1. Show by performing the following commutators and anticommuta-
tors that one achieves a lowering of the particle rank of the operators in-
volved:

Gykt), [0tttk r*]ls,  [r*s[i%)e*o]]
2. By how much (what order) has the rank been lowered in each case?
1.3 Show that the operators {q,",(1,i); i = 1,0, —1} given in Eq. (1.35)
are tensor operators in spin space with S = 1.
1.4 The Fermi contact Hamiltonian may, in first-quantized language, be
written as

L
He = ;Z?g B-ySi-1°6(r; — R,)
where I? is the spin of nucleus a, and g is the electronic gyromagnetic ratio,
p the Bohr magneton, y, the nuclear gyromagnetic factor, S the electron
spin, and 4(r) the Dirac delta function. Show that this Hamiltonian, in
second-quantized language, may be written as

4
He = ¥ 5 0BraBtRIGRI—a: (1, DU — il3)

+ g (1, — D)4 + i1%) + /2¢,5(1,0)12]

where ¢(R,) is the amplitude of orbital s at nucleus a and the ¢* operators
are defined in Eq. (1.35).

1.5 Given two orthonormal orbitals ¢; and ¢, expressed as linear
combinations of two not necessarily orthonormal basis functions yx, and

Xb:
D12=0;120a+ by 22

1. Show that the two-dimensi?nal unitary transformation given in Eq.
(1.52), which in this case is described by a ¥ matrix

K= e
. 0
involving one parameter «, can be expressed as
exp(—x) = cosk e + sink 2 s
p i 0 1 —1 0/ \ —sink cosk

2. Apply this transformation to the orbitals ¢, , for x = 10° to obtain
new orbitals ¢, , and express @, , explicitly in terms of x,, xs, 1.2, by.2-
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SOLUTIONS

1.1

[AB,C] = ABC — CAB = ABC — ACB — CAB + ACB
< A[BC] + [A.CIP= A[B.C), —[ACl.H
[AB,C], = ABC + CAB = ABC — ACB + ACB + CAB
=[A,C).B + A[B,C]
[AAy- - Ay,B] = A1A; - AyB — BAyA, -~ Ay
=AIA2"'ANB“‘A1A2“'BAN
+A|A2"'BAN—BAIA2"'AN
= A4, [ANaB] + A4,A4; - [AN—I!B]AN
+ A1A2 R AN—ZBAN—lAN e BA]AZ A AN

etc. Clearly, by continuing to move the B to the lefl, we generate all terms in
the series:

i N
1.2 ‘ZIAI"'AJ_I[AJ-,B]A_H_I"'AN
- 3=
1. [t k* 1] = i*jk*l — k*litj

= 5}*!“"’ = i“k“ji g 6”k+j + k"+lj
= 6}'{’“‘” = (5,,‘k+j
[t rt] = 8,i*j*l— 8,1 %k

Hence

[s,[i*jtlk, r* )]s = S (sitjtl + itjtls) — 8, (sitj k + i*j* ks)
= O (0sf 1 — 05" 1) — §,,(05j k — S5 " k)
[itjt?v] =0,i"v—d,t7)
Hence
[r*s,[itj.t*v]] = 8;[r*s,i*o] — &i[r*s,tj]
= 00" v — 8,,i*5) — 6;,(,5r*j — 6,t*s)
2. In the first problem we lowered the rank by one, in the second by

two, and in the third by two.
1.3

1
(a2 (1, M) = {—r:sﬂ, =i ,,}
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Consider the M = 0 component only (the others are treated in like fashion):

[S..q5(1,00] =3 J_[Jaju Jodpsta s —rysglh/2

{5jrj:sa ] 6}»-}.;5& fine 6}3":}.0. i 6}3'.;.;#} =0

z"ﬁ?

[S+9Q:.;(1!O)] = Z e [j:jﬂ!r:sa g r;s,]

ﬁa«

i ; ‘-sjrfer Sﬂ Jsra.]ﬂ}

h
= —a 8 — ﬁhq;(l, 1)

Wy

= h e
LS—;Q;“,O)] — Z[j#*}mr:su g ?;S‘g]

ﬁ

\/— Z {5jrfﬂ Sq = 5;3"‘8.;'«}

= 27’112 l‘;sa = ﬁh‘?;(l! o l)

We have thus shown that g,;(1,0) has the properties of a tensor operator of
S =1 with M, = 0.

1.4 Using Eq. (1.15), the second-quantized Fermi contact Hamiltonian
may be written as

Hy = ZZ 3 ~ gBre<9, IS I°0(r — Ry)|p)rs

a rs

1
[2 (S + S5+ 5. (S — 513

s

T E Z 3 qB)’a&*{Ra}&a(Ra)( L™ sﬂla ; f;s,f:

a rs

= ): 3 gB?,<¢.

a rs

+ s,;:] 5(r— R,

1 1 1 1
+ 5 resgly — % rg Sl + 3 rt s, — 3 I:r;s,)
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From the definitions of {g*(1,i),i = 1,0, — 1} in Eq. (1.35), the final results
given in the problem follow directly.

1.5
1.
1 0 ke 1 0 x 0
BECH e -k o) i W s ]
0 L TN &
—x ol Bt e
then
) 6.1\ il Sl 0
s ot ) i (SR g Ak At a8l

L
i Kl 0 s 01 e COSK Sink
B, 10 1 6F Niwnw coex
2.

($1‘52}=(¢1¢z)( o Smx)=(XAXB}(Z: az)( cosk SIUK)

Since

—sink CcoOSk b, /\ —sink cosk
k= 10° = 0.174 rad, cosk = 0985, sini = 0.174

S 0985a, — 0.174a, 0.174a, + 0985a,)
(@162) = (tats) (0.935b1 —0.174b, 0.174b, + 0.985b, )
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