SECOND QUANTIZATION-
BASED METHODS IN
QUANTUM CHEMISTRY

Poul Jørgensen
Chemistry Department
Aarhus University
Aarhus, Denmark

Jack Simons
Chemistry Department
University of Utah
Salt Lake City, Utah

1981

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers
New York London Toronto Sydney San Francisco
Contents

 Preface vii
 List of Abbreviations ix

Chapter 1 Introduction to Second-Quantization Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Anticommutation Properties of Creation and Annihilation Operators</td>
<td>2</td>
</tr>
<tr>
<td>B. Expressing Quantum-Mechanical Operators in Second Quantization</td>
<td>5</td>
</tr>
<tr>
<td>C. Tensor Operators</td>
<td>8</td>
</tr>
<tr>
<td>D. Unitary Transformations of Orbitals</td>
<td>10</td>
</tr>
<tr>
<td>Problems</td>
<td>13</td>
</tr>
<tr>
<td>Solutions</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td>17</td>
</tr>
</tbody>
</table>

Chapter 2 Energy and Wavefunction Optimization Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>18</td>
</tr>
<tr>
<td>B. Multiconfigurational Self-Consistent Field</td>
<td>20</td>
</tr>
<tr>
<td>C. Single-Configuration Self-Consistent Field Methods</td>
<td>35</td>
</tr>
<tr>
<td>D. Configuration Interaction Method</td>
<td>39</td>
</tr>
<tr>
<td>Problems</td>
<td>48</td>
</tr>
<tr>
<td>Solutions</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>66</td>
</tr>
</tbody>
</table>

Chapter 3 Perturbation Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>68</td>
</tr>
<tr>
<td>B. Derivation of General Energy and Wavefunction Expressions</td>
<td>69</td>
</tr>
<tr>
<td>C. Size Consistency Problem in the Energy</td>
<td>71</td>
</tr>
<tr>
<td>D. Moller–Plesset Perturbation Theory for Energy</td>
<td>74</td>
</tr>
<tr>
<td>E. The Perturbed Wavefunction</td>
<td>76</td>
</tr>
<tr>
<td>F. Moller–Plesset Wavefunction</td>
<td>77</td>
</tr>
<tr>
<td>G. Many-Body Perturbation Theory</td>
<td>78</td>
</tr>
<tr>
<td>Problems</td>
<td>85</td>
</tr>
<tr>
<td>Solutions</td>
<td>86</td>
</tr>
<tr>
<td>References</td>
<td>89</td>
</tr>
</tbody>
</table>

Chapter 4 The Coupled-Cluster Method

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>90</td>
</tr>
<tr>
<td>B. Form of the Wavefunction</td>
<td>90</td>
</tr>
</tbody>
</table>
C. Equations for the Cluster Amplitudes | 93
D. Hartree–Fock Orbitals and \(T \equiv T_2 \) | 94
E. Perturbative Solution to the Coupled-Cluster Equations | 95
F. Newton–Raphson Method | 97
G. Summary
 Problems | 98
 Solutions | 99
 References | 102

Chapter 5 Physical Properties

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Classes of Properties</td>
<td>103</td>
</tr>
<tr>
<td>B. MCSCF Treatment of Response</td>
<td>106</td>
</tr>
<tr>
<td>C. CI Response Properties</td>
<td>108</td>
</tr>
<tr>
<td>D. The Hellmann-Feynman Theorem</td>
<td>109</td>
</tr>
<tr>
<td>E. The Coupled-Cluster Response Properties</td>
<td>110</td>
</tr>
<tr>
<td>F. Perturbative Calculation of Response Properties</td>
<td>111</td>
</tr>
<tr>
<td>G. Molecular Gradients and Force Constants</td>
<td>113</td>
</tr>
</tbody>
</table>
 Problems | 116 |
 Solutions | 118 |
 References | 121 |

Chapter 6 Green's Functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>122</td>
</tr>
<tr>
<td>B. Superoperator Algebra</td>
<td>124</td>
</tr>
<tr>
<td>C. Approximation Methods</td>
<td>129</td>
</tr>
<tr>
<td>D. The Electron Propagator</td>
<td>134</td>
</tr>
<tr>
<td>E. The Polarization Propagator</td>
<td>142</td>
</tr>
</tbody>
</table>
 Problems | 162 |
 Solutions | 163 |
 References | 166 |

Index | 169
In this book we address several modern quantum chemical tools that are presently being applied at the state-of-the-art level to electronic states of atoms and molecules. We have attempted to concentrate on topics for which textbook coverage does not currently exist in an entirely satisfactory form. The emphasis is on quantum chemical methods whose developments and implementations have been presented in the modern literature primarily in the language of second quantization. We do not assess the precision of the numerical results provided by these methods because many of the techniques discussed are relatively new and their precision limits have not yet been established.

There is little mention of specific molecular systems that might be examined using these tools. We have developed an integrated set of problems with detailed answers, all of which can be worked by hand, to illustrate the practical implementation of the techniques developed. These problems appear at the end of each chapter, and we recommend that they be worked as an integral component of the respective chapters. Excellent treatments of the following very important aspects of quantum chemistry already exist in several texts and are therefore not included in this book: questions of basis set choice, efficient evaluation of requisite one- and two-electron integrals, fast and space-efficient methods for transforming integrals from one basis to another and for storing such integral lists, or the use of orbital symmetry correlation concepts in deciding which electronic configurations must be included for specific molecules. The emphasis here is on describing the structure of the various methods rather than on discussing their numerical implementations.

The choice of topics and depth of presentation were guided by our view of the active research workers who are likely to benefit from this book. Many leading theoretical chemistry research groups have only recently begun to make use of second quantization-based techniques. It is not
likely that the full potential of these methods will be realized until those quantum chemists who possess the most sophisticated computational tools and experience become more involved in their use. A presentation that is limited to explaining how working equations of these methods are derived and how the equations are implemented in practice should be especially useful and timely. This monograph is intended to be of use both to the research worker in quantum chemistry and to graduate-level students who have already taken introductory courses that cover the fundamentals of quantum mechanics through the Hartree–Fock method as applied to atoms and molecules. The purpose of this book is more to teach than to survey the literature in the research areas covered. We assume that the reader is familiar with linear algebra, matrix representations of operators, Slater- and contracted Gaussian-type basis functions, the Slater–Condon rules for evaluating determinantal matrix elements of one- and two-electron operators, and the construction of Slater determinant wave functions having proper space–spin symmetry.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>Brillouin theorem</td>
</tr>
<tr>
<td>BWPT</td>
<td>Brillouin–Wigner perturbation theory</td>
</tr>
<tr>
<td>CC</td>
<td>coupled cluster</td>
</tr>
<tr>
<td>CHF</td>
<td>coupled Hartree–Fock</td>
</tr>
<tr>
<td>CI</td>
<td>configuration interaction</td>
</tr>
<tr>
<td>CMCHF</td>
<td>coupled multiconfigurational Hartree–Fock</td>
</tr>
<tr>
<td>EOM</td>
<td>equations of motion</td>
</tr>
<tr>
<td>EP</td>
<td>electron propagator</td>
</tr>
<tr>
<td>GBT</td>
<td>generalized Brillouin theorem</td>
</tr>
<tr>
<td>GF</td>
<td>Green's function</td>
</tr>
<tr>
<td>GUGA</td>
<td>unitary group, graphical approach</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree–Fock</td>
</tr>
<tr>
<td>INO</td>
<td>iterative natural orbitals</td>
</tr>
<tr>
<td>MBPT</td>
<td>many-body perturbation theory</td>
</tr>
<tr>
<td>MCSCF</td>
<td>multiconfigurational self-consistent field</td>
</tr>
<tr>
<td>MCTDHF</td>
<td>multiconfigurational time-dependent Hartree–Fock</td>
</tr>
<tr>
<td>MPPT</td>
<td>Møller–Plesset perturbation theory</td>
</tr>
<tr>
<td>PP</td>
<td>polarization propagator</td>
</tr>
<tr>
<td>RHF</td>
<td>restricted Hartree–Fock</td>
</tr>
<tr>
<td>RPA</td>
<td>random-phase approximation</td>
</tr>
<tr>
<td>RSPT</td>
<td>Rayleigh–Schrödinger perturbation theory</td>
</tr>
<tr>
<td>SCF</td>
<td>self-consistent field</td>
</tr>
<tr>
<td>SCI</td>
<td>superconfiguration interaction</td>
</tr>
<tr>
<td>SP</td>
<td>stationary point</td>
</tr>
<tr>
<td>TDHF</td>
<td>time-dependent Hartree–Fock</td>
</tr>
<tr>
<td>UHF</td>
<td>unrestricted Hartree–Fock</td>
</tr>
</tbody>
</table>
SECOND QUANTIZATION-BASED METHODS IN QUANTUM CHEMISTRY
In the vast majority of the quantum chemistry literature, Slater determinants have been used to express antisymmetric N-electron wavefunctions, and explicit differential and multiplicative operators have been used to write the electronic Hamiltonian. More recently, it has become quite common to express the operators and state vectors that arise in considering stationary electronic states of atoms and molecules (within the Born–Oppenheimer approximation) in the so-called second quantization notation (Linderberg and Öhrn, 1973). The electron creation (r^+, s^+, t^+, u^+) and annihilation (r, s, t, u) operators occurring in this language were originally introduced for use in physical problems that actually involved creation or destruction of particles, photons, or excitations (e.g., phonons). In a majority of the applications of the second-quantization techniques to quantum-chemical problems, no electrons or other particles are created or destroyed. Thus, the operators $(r^+), (r)$ usually serve merely as a convenient and operationally useful device in terms of which quantum-mechanical states, operators, commutators, and expectation values can be evaluated. In this chapter, we examine how the electronic Hamiltonian, other quantum-mechanical operators, and state vectors are represented in this second-quantization language. We also show how to describe unitary transformations among orthonormal orbitals in an especially convenient manner. In subsequent chapters we make use of the tools of second quantization to describe many approximation techniques (e.g., Hartree–Fock, perturbation theory, configuration interaction, multi-configurational Hartree–Fock, cluster methods, Green’s functions), which are currently in wide use within the quantum chemistry community. The need for such approximation methods is, of course, motivated by our inability to exactly solve electronic structure problems for more than one electron.
A. ANTICOMMUTATION PROPERTIES OF CREATION AND ANNIHILATION OPERATORS

Slater determinantal wavefunctions involving orthonormal spin-orbitals ϕ_k can be represented in terms of products of creation operators on the so-called vacuum ket $|\text{vac}\rangle$,

$$r^+ s^+ \cdots t^+ |\text{vac}\rangle \leftrightarrow (N!)^{-1/2} \det|\phi_i \cdots \phi_s \phi_r| = |\phi_i \cdots \phi_s \phi_r| \quad (1.1)$$

The Fermi statistics present in such wavefunctions can be expressed either in terms of a sign change arising upon permuting columns of the determinant or in terms of the following fundamental relation among the r^+ operators:

$$[r^+, s^+]_+ = r^+ s^+ + s^+ r^+ = 0 \quad (1.2)$$

Note that this equation also states that the state vector cannot contain the same spin-orbital twice (the Pauli principle) since $r^+ r^+ = -r^+ r^+ = 0$. Before we go further, we should stress that Eq. (1.1) does not equate Slater determinants to the product of $r^+ s^+ \cdots$ operating on $|\text{vac}\rangle$. It simply claims that there is a one-to-one connection between the two objects.

The Fermion annihilation operator r^-, which is the adjoint of the creation operator r^+, can be thought of as annihilating an electron in ϕ, and is defined to yield zero when operating on the vacuum ket

$$r^- |\text{vac}\rangle = 0 \quad (1.3)$$

The annihilation and creation operators fulfill the following two anticommutation relations (Raimes, 1972):

$$[r, s]_+ = rs + sr = 0 \quad (1.4)$$

$$[r, s^+]_+ = r^+ s^+ + s^+ r = \delta_{rs} \quad (1.5)$$

which together with Eq. (1.2) comprise the essential relationships used in the application of such second quantization operators to quantum chemistry. For nonorthonormal spin-orbitals, Eq. (1.5) is replaced by $[r, s^+]_+ = \langle \phi_r | \phi_s \rangle$, where the overlap appears explicitly.

The interpretation of Eq. (1.2) in terms of permutational symmetry of determinants is clear. To make the analogous content of Eqs. (1.4) and (1.5) more transparent, we now examine some of the implications that follow from these equations. Let us first examine Eq. (1.5). For $r = s$, this reads $rr^+ + r^+ r = 1$. When operating on a ket in which ϕ is "occupied," the first term (rr^+) clearly gives zero, since according to Eq. (1.2) terms violating the Pauli principle vanish. The second term $(r^+ r)$ yields

$$r^+ r t^+ u^+ \cdots r^+ \cdots w^+ |\text{vac}\rangle = (-1)^k r^+ r r^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle \quad (1.6)$$

where k_r is the number of creation operators standing to the left of r^+ in
A. Anticommutation Properties of Creation and Annihilation Operators

the original ket. If this is, according to Eq. (1.5), equal to the original ket, then we must have

\[t^+ u^+ \cdots r^+ \cdots w^+ |\text{vac}\rangle = (-1)^k r^+ r r^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle \]

\[= (-1)^k r^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle \quad (1.7) \]

The last equality in Eq. (1.7) implies that \(r^+ \), when operating on a ket that does not contain \(\phi_r \), leaves that ket unchanged, and that \(r^+ r \), when acting on a ket in which \(\phi_r \) is present, leaves that ket alone. When \(r^+ r \) operates on a ket in which \(\phi_r \) is not present, it gives zero. Thus \(r^+ r \) tells whether orbital \(\phi_r \) occurs in a ket. For that reason, it is often referred to as the occupation number operator \(n_r = r^+ r \). It is also conventional to introduce the total number operator \(N \) as \(N = \sum r n_r \), which when operating on any ket gives as its eigenvalue the total number of electrons in that ket.

In the case \(r \neq s \), Eq. (1.5) implies that \(r \) operating on any ket that does not contain \(\phi_r \) yields zero, since

\[rs^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle = -s^+ r t^+ u^+ \cdots w^+ |\text{vac}\rangle = 0 \quad (1.8) \]

by repeated use of Eqs. (1.5) and (1.3). When the kets contain both \(\phi_r \) and \(\phi_s \), both the \(rs^+ \) and \(s^+ r \) terms vanish. For \(s^+ r \) operating on a ket that contains \(\phi_r \),

\[s^+ r t^+ u^+ \cdots r^+ w^+ |\text{vac}\rangle = (-1)^k s^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle \]

\[= t^+ u^+ \cdots s^+ w^+ |\text{vac}\rangle \quad (1.9) \]

which is simply a new ket with \(\phi_r \) replaced by \(\phi_s \).

Finally, we should attempt to elaborate on the meaning of Eq. (1.4). Let us consider the action of \(rs \) (\(r \neq s \)) on a ket in which \(\phi_r \) and \(\phi_s \) are present:

\[rst^+ u^+ \cdots r^+ \cdots s^+ \cdots w^+ |\text{vac}\rangle = (-1)^k r^+ k r s^+ r t^+ u^+ \cdots w^+ |\text{vac}\rangle \]

which by Eq. (1.5) reduces to

\[(-1)^k r^+ k r (1 - s^+ s) r^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle \quad (1.10) \]

The term involving \(s^+ s \) vanishes because \(s |\text{vac}\rangle = 0 \), and hence we have (again using \(r |\text{vac}\rangle = 0 \))

\[(-1)^k r^+ k r r^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle = (-1)^k r^+ t^+ u^+ \cdots w^+ |\text{vac}\rangle \quad (1.11) \]

If instead we consider the action of \(sr \), we obtain

\[srt^+ u^+ \cdots r^+ \cdots s^+ \cdots w^+ |\text{vac}\rangle = (-1)^k r^+ k r^{-1} s r t^+ u^+ \cdots w^+ |\text{vac}\rangle \]

\[= (-1)^k t^+ u^+ \cdots w^+ |\text{vac}\rangle \quad (1.12) \]

which is opposite in sign to the result of the \(rs \) operation. Thus, the statement \(rs + sr = 0 \) simply means that the effect of annihilation displays Fermion
Introduction to Second-Quantization Methods

statistics. For \(r = s \), Eq. (1.4) reads \(rr = -rr = 0 \), which also expresses the Pauli principle and Fermi statistics.

Although Eqs. (1.2)-(1.5) contain all of the fundamental properties of the Fermion (electron) creation and annihilation operators, it may be useful to make a few additional remarks about how these operators are used in subsequent applications. In treating perturbative expansions of \(N \)-electron wavefunctions or when attempting to optimize the spin-orbitals \(\phi \), appearing in such wavefunctions, it is often convenient to refer to Slater determinants that have been obtained from some "reference determinant" by replacing certain spin-orbitals by other spin orbitals. In terms of second-quantized operators, these spin-orbital replacements will be achieved by using the replacement operator \(s^+ r \) as in Eq. (1.9).

In subsequent chapters, we shall be interested in computing expectation values of one- and two-electron operators. By expressing these operators in terms of the above creation and annihilation operators, the calculation of such expectations values reduces to the evaluation of the elements of the one- and two-electron density matrices \(\langle 0 | t^+ j | 0 \rangle \) and \(\langle 0 | i^+ j^+ k | 0 \rangle \) (Davidson, 1976). If the wavefunction \(| 0 \rangle \) is expressed as a linear combination of kets each given in terms of creation operator products \(\prod_{r \in 0} r^+ | \text{vac} \rangle \), the one- and two-electron density matrices can be evaluated in terms of the expansion coefficients of \(| 0 \rangle \) in these kets. The average occupation of an electron in spin-orbital \(\phi_r \) becomes a particular element \(\langle 0 | r^+ r | 0 \rangle \) of the one-particle density matrix. If we wish to compute, say, \(\langle 0 | t^+ u | 0 \rangle \), where \(| 0 \rangle = \prod_{r \in 0} r^+ | \text{vac} \rangle \), we may proceed using the anticommutation algebra obeyed by the creation and annihilation operators, to yield

\[
\langle 0 | t^+ u | 0 \rangle = \prod_{r \in 0} \langle \text{vac} | r \rangle t^+ u r^+ | \text{vac} \rangle \\
= \langle \text{vac} | r_N r_{N-1} \cdots r_1 t^+ u r_1^+ r_2^+ \cdots r_N^+ | \text{vac} \rangle \\
= \delta_{u \nu_i} \langle \text{vac} | r_N r_{N-1} \cdots r_1 t^+ r_2^+ r_3^+ \cdots r_N^+ | \text{vac} \rangle \\
- \langle \text{vac} | r_N r_{N-1} \cdots r_1 t^+ u r_1^+ r_2^+ r_3^+ \cdots r_N^+ | \text{vac} \rangle (1.13)
\]

which, by "anticommuting" \(u \) through to the right (so as to eventually generate \(u | \text{vac} \rangle = 0 \) and \(t^+ \) through to the left (to eventually generate \(\langle \text{vac} | t^+ = (t | \text{vac} \rangle)^+ = 0 \)), and using \(\langle \text{vac} | \text{vac} \rangle = 1 \), yields a nonvanishing matrix element only when \(t = u \) and \(u \) is one of the elements of \(| 0 \rangle \) (the "occupied" spin orbitals in \(| 0 \rangle \)). This result can be summarized as follows:

\[
\langle 0 | t^+ u | 0 \rangle = \delta_{i u} \nu_i (1.14)
\]

where \(\nu_i \) denotes the occupation number of orbital \(\phi_i \) in \(| 0 \rangle \).

This expresses a general rule of how to obtain matrix elements of a replacement operator. The rule is the second-quantization analog of the
Slater–Condon rule (Condon and Shortley, 1935) for evaluating matrix elements of a one-electron operator. In practical calculations one would, of course, use this rule as well as the other counterparts of the Slater–Condon rules.

B. EXPRESSING QUANTUM-MECHANICAL OPERATORS IN SECOND QUANTIZATION

Having now seen how state vectors that are in one-to-one correspondence with \(N\)-electron Slater determinants can be represented in terms of Fermion creation and annihilation operators, it still remains for us to show how to express one- and two-electron operators in this language. The second-quantized version of any operator is obtained by simply demanding that the operator, when “sandwiched” between ket vectors of the form \(\prod r_i^+|\text{vac}\rangle\), yield exactly the same result as arises in using the first quantized operator between corresponding Slater determinant wavefunctions. For an arbitrary one-electron operator, which in first-quantized language is

\[
L_f = \sum_{i=1}^{N} f(r_i),
\]

the second quantized equivalent is

\[
L_f (c_P r | I c_P s) = \sum_{i=1}^{N} f(r_i)
\]

(1.15)

where the sums \((r, s)\) are over a complete set of orthonormal spin-orbitals \(c_P r\) and \(c_P s\). The analogous expression for any two-electron operator is

\[
\frac{1}{2} \sum_{r, s, i, j} \langle \phi_r | g | \phi_s \rangle r^+ s^+ ut \leftarrow \frac{1}{2} \sum_{i, j=1}^{N} g(r_i, r_j)
\]

(1.16)

Here \(\langle \phi_r | g | \phi_s \rangle\) represents the usual two-electron integral involving the operator \(g\):

\[
\langle \phi_r | g | \phi_s \rangle = \int \phi_r^* (1) \phi_s^* (2) g(1, 2) \phi_r (1) \phi_s (2) d1 d2
\]

(1.17)

When \(g(1, 2) = r_{12}^{-1}\), we often express these integrals in short-hand notation as \(\langle rs | tu \rangle\). It should be noted that the order of the creation and annihilation operators appearing in Eq. (1.16) must be as presented in order to guarantee that the proper sign will result when expectation and transition value matrix elements of such operators are formed. These spin orbitals \(\{c_P \}\) are, in most practical applications, obtained as linear combinations of atomic orbital basis functions

\[
\phi_r = \sum_{\alpha} C_{r\alpha} \chi_{\alpha}
\]

(1.18)

where \(\alpha\) and \(\beta\) are the one-electron spin functions. The \(\chi_{\alpha}\) are usually taken to be Slater-type orbitals or contracted Gaussian orbitals, and the \(C_{r\alpha}\) are the
linear orbital expansion coefficients. In what follows, we assume that the \(\mathbf{z}_a \) are real orbitals. This means that the Gaussian or Slater orbitals are given in cartesian form rather than in terms of spherical harmonics.

A few clarifying remarks are now in order. First, one should notice that the first-quantized forms of the above operators contain explicit reference to the number of electrons \(N \), whereas the second-quantized operators do not. This means, for example, that the kinetic energy operator

\[
\sum_{\mathbf{r}, s} \langle \phi_s | -\frac{1}{2} \mathbf{V}^2 | \phi_s \rangle r^+ s
\]

is independent of \(N \). The kinetic energy operator of the beryllium atom is identical to that of the \(\text{Be}^+, \text{Be}^{2+}, \text{Be}^-, \) etc., ions. Of course, nuclear interaction operators \((- Z_A \sum_{i=1}^{N} |\mathbf{r}_i - \mathbf{R}_A|^{-1})\) do contain reference to nuclear charges in their second-quantized version,

\[
\sum_{\mathbf{r}, s} \langle \phi_s | -Z_A |\mathbf{r} - \mathbf{R}_A|^{-1} |\phi_s \rangle r^+ s
\]

but nowhere does \(N \) appear. In second quantization, the only reference to \(N \) comes from the ket vectors \(\prod_{\mathbf{r} \neq 0} r^+ |\text{vac}\rangle \), which contain \(N \) creation operators. This property of operators in the second-quantized language plays an important role, for example, in Green's function methods for calculating ionization energies. The fact that the same Hamiltonian can describe neutral and ion states permits the Green's function to be expressed in terms of a single Hamiltonian.

In examining the above expressions for the second-quantized one- and two-electron operators, it should become clear, for example, that the one-electron operators, which contain \(r^+ s \), can "connect" two \(N \)-electron kets (corresponding to \(N \)-electron Slater determinants) that differ by at most one spin-orbital label. That is, \(r^+ s \) can cause only a single spin-orbital replacement. Similarly, the two-electron operators containing \(r^+ s^+ ut \) can connect kets differing by at most two spin-orbital labels.

To summarize, we have constructed state vectors that obey Fermi-Dirac statistics through introducing creation and annihilation operators that fulfill the anticommutation relations of Eqs. (1.2), (1.4), and (1.5). The anticommutation relations allow us to build the Slater-Condon rules directly into the operators in the second-quantized language. The operators thereby lose their dependence on the electron number \(N \). The only dependence on \(N \) in the second-quantized language appears in the state vectors \(|0\rangle \). In contrast, in the first-quantized language the dependence on \(N \) appears in both the operators and the wavefunctions.

Because it is important that one fully understand how the above forms of arbitrary one- and two-electron operators are related to the Slater-Condon rules, let us now consider an example of how one uses these operators. Let
us compute the expectation value of the electron–electron interaction operator for the three-electron state $2s_\alpha^+ 1s_\beta^+ 1s_\alpha^+ |\text{vac}\rangle$. We know from Slater-Condon type rules that we should get $J_{1s,1s} + 2J_{1s,2s} - K_{1s,2s}$, where J and K are the usual coulomb and exchange integrals:

$$J_{ij} = \langle ij|ij\rangle$$

$$K_{ij} = \langle ij|ji\rangle$$

(1.19)

(1.20)

The second-quantized approach involves evaluating

$$\frac{1}{2} \sum_{r,s,t,u} \langle \text{vac}|l_s \alpha l_\beta^+ 2s_\alpha^+ r^+ s^+ ut2s_\alpha^+ 1s_\beta^+ 1s_\alpha^+ |\text{vac}\rangle \langle \phi_r |\phi_u \rangle \frac{1}{r_{12}} \langle \phi_r |\phi_u \rangle$$

which involves the two-particle density matrix.

The application of Eq. (1.5) in the form $rs^+ = \delta_{rs} - s^+ r$ permits the annihilation operators u, t to be anticommutated to the right in the above and the creation operators $r^+ s^+$ to be moved to the left. This strategy permits us to identify all of the nonvanishing contributions (those arising from the δ_{rs} terms) and to eventually obtain $u|\text{vac}\rangle$ or $\langle \text{vac}|r^+$, both of which yield zero. The process of moving ut to the right is carried out as follows:

$$ut2s_\alpha^+ 1s_\beta^+ 1s_\alpha^+ |\text{vac}\rangle = u(\delta_{12s_\alpha} - 2s_\alpha^+ t)l_\beta^+ l_s^+ |\text{vac}\rangle$$

$$= \left[\delta_{12s_\alpha} (\delta_{11s_\beta} - 1s_\beta^+ u) l_s^+ - u2s_\alpha^+ (\delta_{11s_\beta} - 1s_\beta^+ t) l_s^+ \right] |\text{vac}\rangle$$

$$= \left[\delta_{12s_\alpha} \delta_{u1s_\beta} l_s^+ - \delta_{12s_\alpha} \delta_{u1s_\beta} l_s^+
- (\delta_{u2s_\alpha} - 2s_\alpha^+ u)(\delta_{11s_\beta} - 1s_\beta^+ t) l_s^+ \right] |\text{vac}\rangle$$

$$= \left[\delta_{12s_\alpha} \delta_{u1s_\beta} l_s^+ - \delta_{12s_\alpha} \delta_{u1s_\beta} l_s^+
- \delta_{u2s_\alpha} \delta_{u1s_\beta} + \delta_{u2s_\alpha} \delta_{u1s_\beta} + \delta_{u2s_\alpha} \delta_{u1s_\beta} 2s_\alpha^+ - \delta_{u2s_\alpha} \delta_{u1s_\beta} 2s_\alpha^+ \right] |\text{vac}\rangle$$

(1.21)

The treatment of $\langle \text{vac}|l_s \alpha l_\beta^+ 2s_\alpha^+ r^+ s^+$ goes through in exactly the same manner and yields the adjoint of the above result, with r replacing t and s replacing u:

$$\langle \text{vac}|l_s \alpha l_\beta^+ 2s_\alpha^+ r^+ s^+ + u(t2s_\alpha^+ 1s_\beta^+ 2s_\alpha^+ r^+ s^+ |\text{vac}\rangle = \langle \text{vac}|[\delta_{r2s_\alpha} \delta_{s1s_\beta} l_s^+ - \delta_{r2s_\alpha} \delta_{s1s_\beta} l_s^+ - \delta_{s2s_\alpha} \delta_{r1s_\beta} l_s^+
+ \delta_{s2s_\alpha} \delta_{r1s_\beta} l_s^+ + \delta_{r1s_\beta} \delta_{s2s_\alpha} 2s_\alpha^+ - \delta_{r1s_\beta} \delta_{s2s_\alpha} 2s_\alpha^+]$$

(1.22)

Then by forming the scalar product $\langle \text{vac}|l_s \alpha l_\beta^+ 2s_\alpha^+ r^+ s^+ + u(t2s_\alpha^+ 1s_\beta^+ 2s_\alpha^+ r^+ s^+ |\text{vac}\rangle$ and using, for example, the fact that $\langle \text{vac}|l_s \alpha l_s^+ |\text{vac}\rangle = 1$ and $\langle \text{vac}|l_s \alpha 2s_\alpha^+ |\text{vac}\rangle = 0$, one obtains

$$\delta_{r2s_\alpha} \delta_{u1s_\beta} + \delta_{r2s_\alpha} \delta_{u1s_\beta} + \delta_{u2s_\alpha} \delta_{r1s_\beta} + \delta_{u2s_\alpha} \delta_{r1s_\beta}
+ \delta_{r1s_\beta} \delta_{u1s_\alpha} + \delta_{r1s_\beta} \delta_{u1s_\alpha} - \delta_{r2s_\alpha} \delta_{s1s_\beta} - \delta_{u2s_\alpha} \delta_{s1s_\beta}
- \delta_{s2s_\alpha} \delta_{u1s_\beta} - \delta_{u2s_\alpha} \delta_{s1s_\beta} - \delta_{s2s_\alpha} \delta_{u1s_\beta}$$

(1.23)
where the triple-indexed delta function \(\delta_{ijk} \) means \(\delta_{ij}\delta_{jk} \). This result, when multiplied by \(\frac{1}{2}\langle \phi_r|\phi_s|1/r_{12}|\phi_t\phi_u \rangle \) and summed over \(r, s, t, u \), indeed yields

\[
J_{1s,1s} + 2J_{1s,2s} - K_{1s,2s}
\]

C. TENSOR OPERATORS

To gain further experience and understanding, let us also consider how specific operators that are familiar in first quantization-notation are mapped into their second-quantized analogs. The \(z \) projection of the total spin \(S_z \) is given by

\[
S_z = \sum_{r,s} \langle \phi_r|S_z|\phi_s \rangle r^+ s
\]

which, if the \(m_s \) dependence of the spin-orbitals is made explicit \(\langle \phi_r| = \phi_m^0 \phi_r \rangle \), becomes

\[
S_z = \frac{1}{2}h \sum_{r,s} \langle \phi_r|\phi_s \rangle \left[r_\alpha^+ s_\alpha - r_\beta^+ s_\beta \right]
\]

Because the orbitals \(\phi_r \) are assumed to be orthonormal, spatial integration further reduces this to

\[
S_z = \sum_r \left[r_\alpha^+ r_\alpha - r_\beta^+ r_\beta \right] \frac{1}{2}h
\]

where the sum is over the orbitals \(\phi_r \). The spin-raising and -lowering operators

\[
S_\pm = S_\times \pm iS_y
\]

are, in second quantized form,

\[
S_+ = \sum_{r,s} \langle \phi_r|S_+|\phi_s \rangle r^+ s = \sum_r h r_\alpha^+ r_\beta,
\]

\[
S_- = \sum_r h r_\beta^+ r_\alpha
\]

In addition to the operators discussed above, it is often important in quantum-chemical applications to evaluate commutators of pairs of operators. For example, to show that the creation operator \(r_\alpha^+ \) is of doublet spin character (i.e., has the potential to change the total spin eigenvalue of any function upon which it acts by \(\pm \frac{1}{2}h \)) it is sufficient to demonstrate that

\[
[S_z,r_\alpha^+] = \frac{1}{2}h r_\alpha^+, [S_-,r_\alpha^+] = h r_\beta^+, \text{ and } [S_+,r_\alpha^+] = 0.
\]

As an example of how to evaluate such commutators, let us compute \([S_z,r_\alpha^+]\) and \([S_-,r_\alpha^+]\):

\[
[S_z,r_\alpha^+] = \frac{h}{2} \sum_t \left[t_\alpha^+ t_\alpha - t_\beta^+ t_\beta, r_\alpha^+ \right]
\]

Now

\[
t_\alpha^+ t_\alpha r_\alpha^+ - r_\alpha^+ t_\alpha^+ t_\alpha = \delta_{t_\alpha} t_\alpha^+ - t_\alpha^+ t_\alpha r_\alpha^+ - r_\alpha^+ t_\alpha^+ t_\alpha = \delta_{t_\alpha} t_\alpha^+
\]
C. Tensor Operators

and also

$$t^+_\beta t^+_\beta r^+_\alpha - r^+_\alpha t^+_\beta t^+_\beta = - t^+_\beta r^+_\alpha t^+_\beta - r^+_\alpha t^+_\beta t^+_\beta = 0$$

(1.30)

Therefore,

$$[S_z, r^+_\alpha] = \frac{1}{2} h r^+_\alpha$$

(1.31)

Before moving on, we wish to clearly point out an important consequence of performing commutation between operator pairs. For example, notice that although each term in the commutator arising in Eq. (1.29) involves three operators (e.g., $t^+_\alpha t^+_\beta r^+_\gamma$), the final result contains only one operator. This reduction of the operator “rank” always arises when performing such commutators. We usually say that an operator such as r^+_s has one-particle rank, whereas $r^+_s r^+_t$ has two-particle rank. Such rank lowering is an important feature, which is explicitly brought about in the second-quantized language and which is used on numerous occasions in Chapter 2. Because the second-quantized operators contain no reference to N, this cancellation can be achieved at the operator level. The same cancellation occurs in first-quantization calculations but not until determinantal matrix elements are taken.

The commutator involving S_- can be written as

$$[S_-, r^+_\alpha] = \hbar \sum t^+_\beta t^+_\beta r^+_\alpha = \hbar \sum (t^+_\beta t^+_\beta r^+_\alpha - r^+_\alpha t^+_\beta t^+_\alpha)

= \hbar \sum (\delta_{r^+_\beta} r^+_\alpha - t^+_\beta r^+_\alpha t^+_\alpha - r^+_\alpha t^+_\beta t^+_\alpha)

= h r^+_\alpha$$

(1.32)

(Again, note the reduction in particle rank.) The importance of this result is that r^+_s when operating on any eigenfunction of S^2 (e.g., $S^2|0\rangle = \hbar s(s + 1)|0\rangle$) will yield a function whose S_z eigenvalue m_s is increased by $\frac{1}{2} \hbar$

$$S_z r^+_\alpha |0\rangle = r^+_\alpha S_z |0\rangle + \frac{1}{2} \hbar r^+_\alpha |0\rangle = (m_s + \frac{1}{2}) h r^+_\alpha |0\rangle$$

As defined in group theory (Tinkham, 1964), general tensor operators of rank L obey $[J_z, T^L_\mu] = \mu \hbar T^L_\mu$ and $[J^\pm, T^L_\mu] = \hbar [L(L + 1) - \mu(\mu + 1)]^{1/2} T^L_{\mu \pm 1}$, where J refers to angular momentum. Our operators r^+_α, r^+_β correspond to $L = \frac{1}{2}$, $\mu = \pm \frac{1}{2}$. These operators, together with their corresponding annihilation partners ($r_\alpha = T^{1/2}_{1/2}$, $r_\beta = -T^{1/2}_{1/2}$), can then be combined, using vector-coupling coefficients to generate two-or-more-electron creation operators having various total spin values. For example, the two-electron pair creation singlet tensor operator is

$$T^+_{rs}(0, 0) = \frac{1}{\sqrt{2}} \left[r^+_\alpha s^+_\beta - r^+_\beta s^+_\alpha \right]$$

(1.33)
whereas the two-electron triplet (with various M_s) tensor operators are
\[
T_{rs}^+(1, 1) = r^+_a s^+_a \\
T_{rs}^+(1, -1) = r^+_\beta s^+_\beta \\
T_{rs}^+(1, 0) = \frac{1}{\sqrt{2}} [r^+_a s^+_\beta + r^+_\beta s^+_a]
\]

The operators that create singlet and triplet coupled one-electron replacements are
\[
q_{rs}^+(0, 0) = \frac{1}{\sqrt{2}} (r^+_a s^+_a + r^+_\beta s^+_\beta), \quad q_{rs}^+(1, 1) = -r^+_a s^+_\beta \\
q_{rs}^+(1, -1) = r^+_\beta s^+_a, \quad q_{rs}^+(1, 0) = \frac{1}{\sqrt{2}} [r^+_a s^+_\beta - r^+_\beta s^+_a]
\]

Such tensor operators often occur when one- and two-electron operators are expressed in the second-quantization language. For example, the electronic part of the electric dipole operator $e \mathbf{E} \cdot \sum_i r_i$ becomes $\sum_{\alpha, \beta} e \mathbf{E} \cdot \langle \phi_\alpha | r | \phi_\beta \rangle t^+ s$, which after spin integration reduces to
\[
\sum_{\alpha, \beta} e \mathbf{E} \cdot \langle \phi_\alpha | r | \phi_\beta \rangle [t^+_\alpha s^+ + t^+_\beta s^+]\]

which contains the singlet-spin tensor operator.

D. UNITARY TRANSFORMATIONS OF ORBITALS

Having now been introduced to the basic properties of Fermion creation and annihilation operators as they express N-electron wavefunctions and quantum-mechanical operators, as well as to the strategy involved in manipulating these operators, we are nearly ready to consider the efficient use of these tools in expressing wavefunctions as they are actually employed in state-of-the-art quantum-chemical studies. It frequently occurs that we are in possession of a set of orthonormal spin orbitals that, although their construction was straightforwardly achieved, may not represent an optimal choice for the problem under consideration. Hence, it is natural to consider how one can describe unitary transformations among these orbitals within the second-quantization language. We have already shown that the replacement operator r^+_s yields, when operating on a ket in which ϕ_s is occupied, a new ket with ϕ_s replaced by ϕ_α. Now we wish to demonstrate that the exponential operator $\exp(i\lambda)$ defined as
\[
\exp(i\lambda) = 1 + i\lambda + \frac{1}{2!} (i\lambda)(i\lambda) + \cdots
\]
where
\[\lambda = \sum_{r,s} \lambda_{rs} r^+ s \] (1.37)
yields, when operating on any ket (and hence when operating on any wave-
function that is expressed as a linear combination of kets), a new ket in which
each spin-orbital of the original ket (\(\phi_r \)) is transformed into a new spin-orbital
\(\tilde{\phi}_r \) (Dalgaard and Jørgensen, 1978). Let us therefore consider the effect of such
an exponential transformation \([\exp(i\lambda)]\) on an arbitrary ket. Using the fact
that \([\exp(i\lambda)]^{-1} = \exp(-i\lambda)\), we may show the following:
\[
\exp(i\lambda) t_1^+ t_2^+ \cdots t_N^+ |\text{vac}\rangle = \exp(i\lambda) t_1^+ \exp(-i\lambda) \exp(i\lambda) t_2^+ \exp(-i\lambda) \cdots \exp(i\lambda) t_N^+ \exp(-i\lambda) \exp(i\lambda) |\text{vac}\rangle
\] (1.38)
which because \(\lambda |\text{vac}\rangle = 0 \) becomes
\[
\tilde{t}_1^+ \tilde{t}_2^+ \cdots \tilde{t}_N^+ |\text{vac}\rangle
\] (1.39)
with the modified creation operators being defined by
\[
\tilde{t}_k^+ = \exp(i\lambda) t_k^+ \exp(-i\lambda)
\] (1.40)

By now expanding both of the above exponential operators, we obtain
\[
\tilde{t}_k^+ = t_k^+ + i[\lambda, t_k^+] + \frac{i^2}{2!} [\lambda, [\lambda, t_k^+]] + \cdots
\] (1.41)

Because
\[
[\lambda, t_k^+] = \sum_{r,s} \lambda_{rs} [r^+ s, t_k^+] = \sum_r \lambda_{r_k} r^+
\] (1.42)
\[
[\lambda, [\lambda, t_k^+]] = \sum_{r,s} \lambda_{sr} \lambda_{r_k} s^+ = \sum_s (\lambda\lambda)_{s_k} s^+
\] (1.43)

Eq. (1.41) can be rewritten
\[
\tilde{t}_k^+ = t_k^+ + i \sum_s \lambda_{s_k} s^+ + \frac{i^2}{2!} \sum_s (\lambda\lambda)_{s_k} s^+ + \cdots
\] (1.44)

The exponential matrix \(\exp(i\lambda) \) appearing in Eq. (1.44) is defined through the
power series appearing in that equation. However, as we show below, this
matrix can be computed from the \(\lambda \) matrix in a much more straightforward
and practical manner.

If we want the transformation described by \(\exp(i\lambda) \) to preserve ortho-
normality of the spin-orbitals or, equivalently, to preserve the anticommuta-
tion relations [see discussion following Eq. (1.5)]
\[
[t^+, s]_+ = [\tilde{t}^+, \tilde{s}]_+ = \delta_{rs}
\] (1.45)
then certain restrictions must be placed on \(\lambda \). This restriction, of course, requires the above transformation to be unitary. Using Eq. (1.40) and

\[
[\exp(i\lambda)]^+ = \exp(-i\lambda^+)
\]

then

\[
\bar{s} = \exp(i\lambda^+)s \exp(-i\lambda^+)
\]

We therefore have

\[
\bar{t}^+ \bar{s} + \bar{s} \bar{t}^+ = \exp(i\lambda)t^+ \exp(-i\lambda) \exp(i\lambda^+)s \exp(-i\lambda^+) + \exp(i\lambda^+)s \exp(-i\lambda^+) \exp(i\lambda)t^+ \exp(-i\lambda)
\]

(1.48)

Now if the operator \(\lambda \) is required to be hermitian, which then makes the elements \(\lambda_{rs} \) form a hermitian matrix

\[
\lambda^+ = \sum_{r,s} (\lambda_{rs} t^+ s)^+ = \sum_{r,s} \lambda^*_{rs} s^+ r = \sum_{r,s} \lambda_{sp} s^+ r = \lambda
\]

(1.49)

then Eq. (1.48) will reduce to

\[
\bar{t}^+ \bar{s} + \bar{s} \bar{t}^+ = \exp(i\lambda)(t^+ s + st^+) \exp(-i\lambda) = \delta_{ts}
\]

(1.50)

which means that the above transformation does indeed preserve the anticommutation relations. The fact that the \(\lambda \) matrix is hermitian implies that the transformation matrix \(\exp(i\lambda) \) occurring in Eq. (1.44) is unitary since

\[
[\exp(i\lambda)]^+ = \exp(-i\lambda^+) = \exp(-i\lambda) = [\exp(i\lambda)]^{-1}
\]

(1.51)

This means that the orbital transformation

\[
\bar{\phi}_r = \sum_s [\exp(i\lambda)]_{sr} \phi_s
\]

(1.52)

is also unitary and hence preserves orthonormality.

When the matrix \(\lambda \) is hermitian, it can be divided into real and imaginary parts

\[
\lambda = \alpha + i\kappa
\]

(1.53)

where the matrix \(\alpha \) is real and symmetric (\(\alpha_{rs} = \alpha_{sr} \)) and the matrix \(\kappa \) is real and antisymmetric (\(\kappa_{rs} = -\kappa_{sr}, \) i.e., \(\kappa_{rr} = 0 \)). The operator \(\lambda \) may also be divided,

\[
\lambda = \sum_{rs} \lambda_{rs} r^+ s = \sum_{rs} (\alpha_{rs} + i\kappa_{rs}) r^+ s
\]

\[
= \sum_r \alpha_{rr} r^+ s + \sum_{r>s} \alpha_{rs} (r^+ s + s^+ r) + i \sum_{r>s} \kappa_{rs} (r^+ s - s^+ r)
\]

(1.54)

into three terms each of which are hermitian. Since we have assumed earlier that the spin-orbitals are real, orbital variations in \(\exp(i\lambda) \) described through the \(\alpha_{rs} \) parameters must vanish identically because these variations would
Problems

map the real orbitals into complex orbitals. When the variations described by the α_{rs} parameters are eliminated, the unitary transformation described by $\exp(i\lambda)$ becomes an orthogonal transformation $\exp(-\kappa)$. In what follows, when we refer to a unitary transformation, it is usually the orthogonal transformation described above.

To see how one can express the $\exp(i\lambda)$ matrix most compactly, let us introduce the unitary transformation u, which diagonalizes λ:

$$udu^+ = \lambda, uu^+ = u^+u = 1, \quad d_{rs} = \delta_{rs}d_r$$

Then

$$\exp(i\lambda) = 1 + i\lambda + \frac{i^2}{2!}\lambda\lambda + \cdots$$

$$= uu^+ + iudu^+ + \frac{i^2}{2!}udu^+udu^+ + \cdots$$

$$= u\left(1 + id + \frac{i^2}{2!} dd + \frac{i^3}{3!} ddd + \cdots\right)u^+$$

$$= u \exp(id)u^+$$

Because d is diagonal $(dd)_{rs} = \delta_{rs}d_r^2$ and hence $[\exp(id)]_{rs} = \delta_{rs}\exp(id_r)$. Therefore the elements of $\exp(i\lambda)$ are easily given by

$$[\exp(i\lambda)]_{rs} = \sum_i u_{ri}\exp(id_i)u_{is}^+$$

This equation gives a compact and efficient expression for the orbital transformation matrix appearing in Eq. (1.52).

Having seen how the operators of second quantization can be used to express wavefunctions and quantum-mechanical operators, let us now move on to the problem of choosing wavefunctions that yield optimum descriptions, in an energy optimization sense, of the stationary states of atomic and molecular systems.

PROBLEMS

1.1 Show the following identities to be valid for the operators A, B, and C:

$$[AB,C] = [A,C]B + AB$$

$$[A_1A_2\cdots A_N,B] = \sum_{j=1}^N A_1A_2\cdots A_{j-1}[A_j,B]A_{j+1}\cdots A_N$$
1.2
1. Show by performing the following commutators and anticommutators that one achieves a lowering of the particle rank of the operators involved:

\[[i^+j, k^l], \quad [s, [i^+j^+l, k^+l]], \quad [r^+s, [i^+j^+l, r^+]] \]

2. By how much (what order) has the rank been lowered in each case?

1.3 Show that the operators \(\{ q_r^+(1, i); i = 1, 0, -1 \} \) given in Eq. (1.35) are tensor operators in spin space with \(S = 1 \).

1.4 The Fermi contact Hamiltonian may, in first-quantized language, be written as

\[
H_F = \sum_{i} \sum_{a} \frac{8\pi}{3} g \cdot \beta \cdot \gamma_a S_i \cdot I^a \delta(r_i - R_a)
\]

where \(I^a \) is the spin of nucleus \(a \), and \(g \) is the electronic gyromagnetic ratio, \(\beta \) the Bohr magneton, \(\gamma_a \) the nuclear gyromagnetic factor, \(S \) the electron spin, and \(\delta(r) \) the Dirac delta function. Show that this Hamiltonian, in second-quantized language, may be written as

\[
H_F = \sum_{a,r,s} \frac{4\pi}{3} g \beta \gamma_a \Phi^s(R_a) \Phi_s(R_a) [-q_{rs}(1, 1)(I^e_x - iI^e_y)
+ q_{rs}(1, -1)(I^e_y + iI^e_x) + \sqrt{2} q_{rs}(1, 0)I^e_z]
\]

where \(\Phi_s(R_a) \) is the amplitude of orbital \(s \) at nucleus \(a \) and the \(q^+ \) operators are defined in Eq. (1.35).

1.5 Given two orthonormal orbitals \(\phi_1 \) and \(\phi_2 \) expressed as linear combinations of two not necessarily orthonormal basis functions \(\chi_a \) and \(\chi_b \):

\[
\phi_{1,2} = a_{1,2} \chi_a + b_{1,2} \chi_b
\]

1. Show that the two-dimensional unitary transformation given in Eq. (1.52), which in this case is described by a \(\kappa \) matrix

\[
\kappa = \begin{pmatrix}
0 & -\kappa \\
\kappa & 0
\end{pmatrix}
\]

involving one parameter \(\kappa \), can be expressed as

\[
\exp(-\kappa) = \cos \kappa \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \kappa \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \cos \kappa & \sin \kappa \\ -\sin \kappa & \cos \kappa \end{pmatrix}
\]

2. Apply this transformation to the orbitals \(\phi_{1,2} \) for \(\kappa = 10^\circ \) to obtain new orbitals \(\tilde{\phi}_{1,2} \) and express \(\tilde{\phi}_{1,2} \) explicitly in terms of \(\chi_a, \chi_b, a_{1,2}, b_{1,2} \).
SOLUTIONS

1.1

\[
[AB, C] = ABC - CAB = ABC - ACB - CAB + ACB
\]

\[
[AB, C]_+ = ABC + CAB = ABC - ACB + ACB + CAB
= [A, C]_+B + A[B, C]
\]

\[
[A_1 A_2 \cdots A_N, B] = A_1 A_2 \cdots A_N B - B A_1 A_2 \cdots A_N
= A_1 A_2 \cdots A_N B - A_1 A_2 \cdots B A_N
+ A_1 A_2 \cdots B A_N - B A_1 A_2 \cdots A_N
= A_1 A_2 \cdots [A_N, B] + A_1 A_2 \cdots [A_{N-1}, B] A_N
+ A_1 A_2 \cdots A_{N-2} B A_{N-1} A_N - B A_1 A_2 \cdots A_N
\]

e etc. Clearly, by continuing to move the B to the left, we generate all terms in the series:

1.2

\[
\sum_{j=1}^{N} A_1 \cdots A_{j-1} [A_j, B] A_{j+1} \cdots A_N
\]

1.

\[
[i^+ j, k^+ l] = i^+ j k^+ l - k^+ l i^+ j
= \delta_{jk} i^+ j l - i^+ k^+ j l - \delta_{lj} k^+ j + k^+ i^+ j l
= \delta_{jk} i^+ j l - \delta_{lj} k^+ j
\]

\[
[i^+ j, k^+ l, r^+] = \delta_{kr} i^+ j + l - \delta_{jr} i^+ j + k
\]

Hence

\[
[s, [i^+ j, k^+ l, r^+]] = \delta_{kr} (si^+ j + l + i^+ j + l s) - \delta_{ls} (si^+ j + k + i^+ j + l) s
\]

\[
[i^+ j, i^+ v] = \delta_{jv} i^+ v - \delta_{iv} t^+ j
\]

Hence

\[
[r^+ s, [i^+ j, i^+ v]] = \delta_{jr} [r^+ s, i^+ v] - \delta_{iv} [r^+ s, t^+ j]
= \delta_{jr} (\delta_{xs} r^+ v - \delta_{rs} i^+ s) - \delta_{iv} (\delta_{xs} r^+ j - \delta_{rs} j^+ s)
\]

2. In the first problem we lowered the rank by one, in the second by two, and in the third by two.

1.3

\[
\{q^+_r (1, M_s)\} = \left\{-r^+_s s^+_p, \frac{1}{\sqrt{2}} (r^+_s s^+_s - r^+_s s^+_p), r^+_s s^+_s\right\}
\]
Consider the $M_s = 0$ component only (the others are treated in like fashion):

$$
[S_z, q_{rs}^+(1,0)] = \sum_j \frac{1}{\sqrt{2}} \left[j^+_a j_a - j^+_\beta j_\beta, r^+_\alpha s_\alpha - r^+_\beta s_\beta \right] \hbar/2
$$

$$
= \frac{\hbar}{2\sqrt{2}} \sum_j \{ \delta_{jr} j^+_\alpha s_\alpha + \delta_{jr} j^+_\beta s_\beta - \delta_{jr} r^+_\alpha j_\alpha - \delta_{jr} r^+_\beta j_\beta \} = 0
$$

$$
[S_+, q_{rs}^+(1,0)] = \sum_j \frac{\hbar}{\sqrt{2}} \left[j^+_a j_\beta, r^+_\alpha s_\alpha - r^+_\beta s_\beta \right]
$$

$$
= \frac{\hbar}{\sqrt{2}} \sum_j \{ - \delta_{jr} j^+_\alpha s_\alpha + \delta_{jr} r^+_\alpha j_\alpha \}
$$

$$
= \frac{\hbar^2}{\sqrt{2}} r^+_\alpha s_\alpha = \sqrt{2\hbar} q_{rs}^+(1,1)
$$

$$
[S_-, q_{rs}^+(1,0)] = \frac{\hbar}{\sqrt{2}} \sum_j \left[j^+_\beta j_a, r^+_\alpha s_\alpha - r^+_\beta s_\beta \right]
$$

$$
= \frac{\hbar}{\sqrt{2}} \sum_j \{ \delta_{jr} j^+_\beta s_\beta + \delta_{jr} r^+_\beta j_\beta \}
$$

$$
= \frac{2\hbar}{\sqrt{2}} r^+_\beta s_\beta = \sqrt{2\hbar} q_{rs}^+(1, -1)
$$

We have thus shown that $q_{rs}^+(1,0)$ has the properties of a tensor operator of $S = 1$ with $M_s = 0$.

1.4 Using Eq. (1.15), the second-quantized Fermi contact Hamiltonian may be written as

$$
H_F = \sum_a \sum_{rs} \frac{8\pi}{3} g_\beta g_\alpha <\phi_r | S \cdot I^a | r^- R_a | \phi_s > r^+ s
$$

$$
= \sum_a \sum_{rs} \frac{8\pi}{3} g_\beta g_\alpha <\phi_r \left[\left[\frac{1}{2} (S_+ + S_-) I^a_x + \frac{1}{2i} (S_+ - S_-) I^a_y

+ S_z I^a_z \right] \delta(r - R_a) | \phi_s > r^+ s
$$

$$
= \sum_a \sum_{rs} \frac{8\pi}{3} g_\beta g_\alpha \phi^*_r(R_a) \phi_s(R_a) \left(\frac{1}{2} r^+_\alpha s_\beta I^a_x + \frac{1}{2} r^+_\beta s_\alpha I^a_x

+ \frac{1}{2i} r^+_a s_\beta I^a_y - \frac{1}{2i} r^+_\beta s_a I^a_y + \frac{1}{2} r^+_a s_\alpha I^a_z - \frac{1}{2} I^a_\beta s_\alpha \right)
$$
From the definitions of \(\{ q^+(1,i), i = 1,0,-1 \} \) in Eq. (1.35), the final results given in the problem follow directly.

1.5

1.

\[
\exp(-\kappa) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & \kappa \\ -\kappa & 0 \end{pmatrix} + \frac{1}{2!} \begin{pmatrix} 0 & \kappa \\ -\kappa & 0 \end{pmatrix} \begin{pmatrix} 0 & \kappa \\ -\kappa & 0 \end{pmatrix} + \cdots
\]

Since

\[
\begin{pmatrix} 0 & \kappa \\ -\kappa & 0 \end{pmatrix} \begin{pmatrix} 0 & \kappa \\ -\kappa & 0 \end{pmatrix} = -\kappa^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

then

\[
\exp(-\kappa) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \kappa \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \frac{\kappa^2}{2!} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \frac{\kappa^3}{3!} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \cdots
\]

\[
= \cos \kappa \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \kappa \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} \cos \kappa & \sin \kappa \\ -\sin \kappa & \cos \kappa \end{pmatrix}
\]

2.

\[
(\bar{\phi}_1 \Phi_2) = (\phi_1 \phi_2) \begin{pmatrix} \cos \kappa & \sin \kappa \\ -\sin \kappa & \cos \kappa \end{pmatrix} = (\chi_A \chi_B) \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \begin{pmatrix} \cos \kappa & \sin \kappa \\ -\sin \kappa & \cos \kappa \end{pmatrix}
\]

\[
\kappa = 10^\circ = 0.174 \text{ rad}, \quad \cos \kappa = 0.985, \quad \sin \kappa = 0.174
\]

\[
(\bar{\phi}_1 \Phi_2) = (\chi_A \chi_B) \begin{pmatrix} 0.985a_1 - 0.174a_2 & 0.174a_1 + 0.985a_2 \\ 0.985b_1 - 0.174b_2 & 0.174b_1 + 0.985b_2 \end{pmatrix}
\]

References

