Chapter 6 | Green’s Functions

A. INTRODUCTION

Having now seen how methods that are based upon stationary-state
N-electron wavefunctions can be used to compute state energies and other
physical properties, we turn to examine a class of so-called response func-
tions or Green's functions (GFs) (Linderberg and Ohrn, 1973), which permit
a direct calculation of transition properties. For example, the one-particle
GF (electron propagator) yields ionization potentials and electron affini-
ties, whereas the two particle GF (polarization propagator) provides us
information about electronic excitation energies and oscillator strengths,
which then can be used to calculate many other observables (e.g., polariz-
abilities and spin—spin coupling constants). The general definition of a GF
belonging to the reference state |0) is given as

CA(t): BY = -?% 0(1)<0A(1)B|0 + % 0(— 1)<0|BA(1)|0) (6.1)
where 0(t) is the Heaviside step function

0(t) = {1,t > 0; 0,t < 0} (6.2)

and A and B are arbitrary operators in the second quantization form. A(t)
is the Heisenberg representation of 4,

A(t) = exp(iHt/h)A exp(— iHt/h) (6.3)

and B is the Heisenberg operator at ¢t = 0. If the operators 4 and B contain
an even number of creation or annihilation operators (e.g., r*s, or r*t*su)
the plus sign is used in Eq. (6.1). For operators A and B having an odd number
of such operators (e.g, 4 = r* or r*t*u, and B = r or rut*) the minus sign
is used. The reasons for these choices are made clear below.
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To understand the physical content of such GFs, we introduce between
the A(r) and B operators in Eq. (6.1) a resolution of the identity involving
a complete set of eigenstates |n). By inserting these resolutions and assuming
that the states |n) are eigenfunctions of H, we obtain

CA(t); By = J—r% 0(1) Y. €0} A|n> {n|BJ0y exp[i ?: (B, — E,,)]

] E
+ é G(—-I)Z(O|B|u)(n|A|0) exp[i B (E, — Eo}] (6.4)
The Fourier transform of { A(1)B}), is given as

CA:Byg = [ dt ¢A®W); BY expliEt/h) (6.5)

If we straightforwardly insert Eq. (6.4) into Eq. (6.5) we encounter improper
integrals. For example, the first term of Eq. (6.4) gives an improper integral
of the type y

- o o
fo dtexp[l E{EO —E, + E}]

To overcome this problem we may define the Fourier transform to include
a convergence factor exp{—|t|n], where # is a small, real, positive quantity.
After the integration is performed, we can then take the limit 7 — 0, (Mat-
tuck, 1967). The Fourier transform of the GF may then be expressed as

S i + (0] A|n) {n|B|0) <0|BJn)<n|4]0>
e D SE s E :‘n+§E.*Eo +E—in

(6.6)

A physical interpretation of the GF may now be obtained by considering
the content of Eq. (6.6). If A and B are number conservir | (i.e., they both
contain equal numbers of creation and anu..i'atic: operators) then the
states [n) must contain the same number of electrons as the reference state
|0> to give a nonvanishing GF. However, if A4 contains, for example, one
more creation operator than annihilation operator, then |n) must contain
N + 1 electrons (notice that the fact that the second-quantized H is inde-
pendent of N is now becoming convenient). From the frequency spectrum
of € A; BYg it is clear that the GF contains information about energy differ-
ences. If A and B are of the one-particle excitation form r*s, then poles of
Eq. (6.6) occur at the energy differences E, — E, referring to electronic
excitation energies. The residues give the overlap amplitudes ((}|A]n> (n|B|0>,
which, for example, express the electric dipole transition probabilities when
A and B refer to the electronic dipole moment operator. If A is of the form r*
(so that B is an annihilation operator s), then the energy differences arising
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in Eq. (6.6) fall into two classes. The first factor, which has (0|r;Ln)(nE|0>
as its amplitude, clearly has to do with ionization potentials Ej — EN 1.
The second factor, involving amplitudes {0|s|n){n|r*|0), relates to electron
affinities EN *! — EN.

The time derivative of Eq. (6.1) may be written as

ih j{ CA(t); BY = 6(1)<0| + A(1)B + BA(:}|O) + ([ A(t), H]B)

= 8(1)<0|BA + AB|0) + ([ A(1), H]BY (6.7)

where we have used the facts that A(r) satisfies the Heisenberg equation of
motion

ih % A(t) = [A(1), H] (6.8)
and that the Heaviside function is the integral of the Dirac é-function

wnzﬁmmﬂm (6.9)

The Fourier transform of Eq. (6.7) then becomes [the definition of the
Fourier transform of the GF always contains the exp(—#|t|) convergence
factor, although henceforth we do not explicitly express this fact]

EQA; By = (O|BA + AB|0) + ([A,H; By, (6.10)

As we see later, this result will prove useful in interrelating GFs when 4 and
B refer to the position and momentum operator, respectively.

Although the above spectral representation of { 4; B) ¢ in Eq. (6.6) displays
the content of its frequency dependence and amplitudes, this equation is not
actually used to compute {A4; B)»g. To do so would involve computing, by
stationary-state methods described in earlier chapters, the energies and
wavefunctions |0), E,, |n), and E,. The philosophy of the GF method is to
avoid doing all of these state calculations by obtaining an equation that can
be solved directly for {A4; B)g. In this manner one then attempts to obtain
an object ({A4; B)g) that contains (through its poles and residues) state
difference information directly.

B. SUPEROPERATOR ALGEBRA

1. Superoperator Resolvent

To demonstrate how one goes about finding an equation that permits
€A;B)g to be directly computed, let us return to Eq. (6.1) and rewrite the
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time dependence of A(t) as

; it
A = EXP(;‘_: H)A exp(—}—l H)

=A+ :,: [H, 4] + ili (D [1.[H, 4]]

4 % (}:)3 [H,[H,[H,A]]] + -

= cxp(: ﬁ)A (6.11)

where the so-called superoperator i (Pickup and Goscinski, 1973) is defined
by

AA=[H,A] (6.12)
In terms of this superoperator, € A(t); B can be expressed as

{A(t);BY = 4‘—}; 0{:)(0|(cxp(fit ;J?)A)B|0>

+%0(~—t)(0|3exp(£fﬁ)(4|0) (6.13)

[notice t ~at the extra parentheses are needed in the first term on the right-
hand side ™ Eq. (6.13) to ensure that A only operates on A]. The Fourier
transform can . ~w be carried out to yield

CA:BYg = + OJ((ET + )" ' )B|0) + CO|B(ET + M)~ ' A|0>  (6.14)
where the unit superoperator is defined by
iA=4 (6.15)

It is conventional to combine the two terms present on the right-hand
side of Eq. (6.14) into a single factor by introducing the so-called super-
operator binary product. This product, between two operators C and D, is
defined as

(C|D) = <0|C* D|0) + <O|DC*|0) ‘ (6.16)

with the plus sign pertaining to cases when C and D contain odd numbers
of creation or annihilation operators (e.g., r*s*t or u). With this definition,
the above GF can be written as

€A;BYyg = (B*|(ET + A)™'|4) (6.17)
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In writing {A4; B) in this way, we say that we have expressed the GF as a
superoperator matrix element of the superoperator resolvent (E1 + ).

2. Complete Sets of Operators

The tools needed for evaluating the above matrix elements of the super-
operator resolvent are based upon the idea of operators (of the same “type”
as A and B*) forming complete sets (Manne, 1977; Dalgaard, 1979). For
example, if A and B* are number-conserving operators (e.g., r*s), then the
setof operators (x> fi>y>---;p>q>r>+-")

(h} ={L,p*a,p*q*Po,p*q*r*ype, ...} (6.18)

when operating on an N-electron ket corresponding to a single determinant
in which @,, ¢4, ¢,, . . . are “occupied” and ¢,, ¢,, ¢,, . . . are not occupied,

forms a complete set of N-electron kets. Similarly (¢ > f>y>---:;p>
q =1 =
{h} = {r*,r*pta,rtptqtap,...} (6.19)
and
{h} = {o,afr*,afyr’s* ...} (6.20)

form, respectively, complete sets of (N + 1)-electron kets when operating on
the above “reference ket”. Manne and Dalgaard have shown that the above
sets of operators form complete sets of N- and (N + 1)-electron kets even
when operating on a multiconfigurational reference state |0) as long as the
reference ket (which defines «, 8,9, . .. ; p,q,r, .. .) is not orthogonal to [0).

The above results having to do with completeness of operator manifolds
permit us to write a resolution of the identity as

1= %: h|0)> <Olh *h|0> 4 ' <Olh (6.21)

where the set {h,} is any of the above three sets of operator manifolds and
{Olh*h|0)>; " is the k, | element of the inverse of the matrix having elements
{0l h|0)>. The completeness relation mentioned above cannot be used in
a straightforward manner in manipulations having to do with the super-
operator resolvent because the superoperator binary product appearing in
€ A; B is more complicated than the scalar product occurring in Eq. (6.21).
The complete set of operators for N- and (N + 1)-electron kets may, however,
be used to generate a resolution of the identity that can be used within the
superoperator binary product. The completeness relation for a superoperator
binary product may be written as

I= T |11 = LT TR (T¢ (6.22)
ki
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where T* for one-electron creation or annihilation operators A and B*
becomes (x> f >y >---;p>q>r>---)(Dalgaard, 1979)
T} = AT T3 T8
={r*a";p*q o0’ B pipTq rtapa BTy pg; ...} (623)
For number-conserving operators 4 and B*, {T "} becomes
{T'} = {T3;Ts:...) ={p e’ psp*qtap;a’frpg,...} (6.29)

To better appreciate the meaning of Eq. (6.22), we write in detail some
elements of the “overlap™ matrix (T |T,") for the one-electron addition
operator case (recall the definition of the “occupied” and “unoccupied™
orbitals, ¢,, ¢,)

(@*|p*) = Olap* + p*af0> = 5,,=0 (6.25)

(@ |p*q*B) = Olp*q* B + p*q"* 0>
=0lp*q*ap +p*q* a0 =0 (6.26)

(r*|p*q*o) = Orp*q*a+ p*qtarl0)
= 8,,{0g*o|0> — 8,,<0|p* 0. (6.27)

Itisclear -om the above equations that, in the superoperator binary product,
each of the « nerators contributes both to the (N + 1)- and to the (N — 1)-
electron aspect. of the problem. For example, in writing the binary product
(r*|p*q* o), we find (O|r, which refers to the adjoint of an (N + I)-electron
ket, while r|0) becomes an (N — 1)-electron ket.

3. The Superoperator Resolvent

In summary, the idea of a complete set of operators has been extended to
the superoperator binary product so as to introduce the powerful concept
of a completeness relation. This completeness relation can now be exploited
to derive an equation that permits ¢ 4; B) to be expressed in a computa-
tionally more useful form (Simons, 1976). We begin by writing the identity

(T*|T*) =(T*|(ET + A)ET + A)'[T) o (6.28)
which, by inserting the resolution of the identity in Eq. (6.22), becomes
(T|TH =(THET + AT )(TH|TH) (THEL+ D) '|T) (6.29)
This equation can be arranged to yield

(T*|(ET + B)7'[T*) = (THT*)T*|ET + A[T*)"'(T*|T*) (6.30)
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The operators B* and A, which define the desired GF in Eq. (6.17), when
operating on |0, can be expanded in terms of the set {T*} operating on

[0):
AJ0Y = THoX(T*|T*)"Y(T*|A) (6.31)

and the GF in Eq. (6.17) may thus, using Egs. (6.30) and (6.31), be written
as

€A;Byg = (B*|(ET + H)™'|A)
=(B*|T*)T*|T*) " "(T*|(ET - H)—1|T*}(r+|T+)—l(l\b/|A)
= (B*|T*)T*|E1 + H|T*)"'(T*|A) (6.32)

Equation (6.32) constitutes the working equation for deriving approximate
forms for the GF. Notice that the original GF, which involved the matrix
representative of an inverse superoperator (E1 + A)™!, has been expressed
in terms of the elements (B* | T}}),(T}" | A), the “overlap” (T} | T;"), and matrix
elements of the superoperator Hamiltonian (T, |H|T}"). These latter two
matrices are analogous to the expressions that give ordinary resolvent
matrix elements in terms of configuration interaction Hamiltonian matrix
elements and configuration overlaps.

4. Pole and Residue Analysis

From Eq. (6.32), which expresses the desired GF, it is clear that the pole
structure (values of E at which ¢ A4;B); has poles) is determined entirely
by the matrix (T*|ET + A|T*)~'. This matrix has poles when det[(T*|ET +
H|T*)] vanishes. Thus, the problem of finding the poles of {A4; B), which
give ionization or excitation energies, can be solved by examining the
superoperator generalized eigenvalue problem

AR ‘
;m |a|THu, E,;(T:l'r:)vu (6.33)

which in matrix notation may be written as

AU, = —E;SU; (6.34)
The poles of {A;B)g occur thus at the eigenvalues E = E; of Eq. (6.33)
and the eigenvectors enter in the evaluation of the corresponding residues.
To illustrate how the residues can be determined, we rewrite the GF in
Eq. (6.32) so as to be in spectral form, assuming that H is hermitian and that

S is positive definite (this is not always the case as we discuss in Section
6.E.2.a). Premultiplying Eq. (6.34) by S™!/? gives

(S~ '?As" ”2}{8”2Uj) S EJ(S”IU,-) (6.35)
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The vectors V; = §'/2U; are ordinary eigenvectors of H' = S~ '/?HS "'/, and
therefore H' can be expressed in spectral form as

A=Y V(—E)V} (6.36)
i

Because the V; are eigenvectors of a hermitian matrix (H’), they form a
unitary matrix (V), which diagonalizes H'. Thus, one can write the resolvent
matrix as

{Es + Fn—l = s—le(ET i F'r)—ls—lfz s S—HZVLET Ty E}'—tvls'-lﬂ
= U(E1 —E) 'U* (6.37)
where the diagonal matrix E contains the eigenvalues E;.

By using Eq. (6.37), the expression for € 4; B); given in Eq. (6.32) can
be rewritten in a form that clearly displays its pole and residue structure:

«A;BYg = (B*|THU(ET — E)"'UH(T|A) (6.38)
Thus, the residue at pole E; is given by
Y (B | THUGUMT | A) (6.39)
kI

C. AFIROXIMATION METHODS

1. Operato: Manifold Truncation

Although the above equations, in principle, permit one to find the poles
and residues of any GF (defined by the choice of B* and A), it is never
really possible to employ a complete set of operators {T, }. Therefore, one
is faced both with making some physically motivated choice of a finite
number of such {T,'} operators and with choosing a reasonably accurate
reference wavelunction |0). Clearly the choice of |(]) dictates which excita-
tion or ionization energies one obtains from the poles of {A;BY. The
choice of B* and A determine whether one is interested in single-particle
excited states (4 = i*j), primary ionization potentials (4 = j), or shake-up
ionization potentials (4 = ijk*). For example, by using as [0) the 2s* con-
figuration and A4 = j*, one can obtain ionization energies to the 25*2p or
2s' and other anion and cation states; with 4 = m*a, the 2snp excited
states may be reached. The truncation of the complete operator set {T, }
then determines, together with the approximation made to get |0), the
accuracy to which the resultant poles of ¢ A;B), describe the excitation
or ionization energies and their corresponding residues. Choices of {T*}
must, of course, take into consideration the space and spin symmetry of
the states generated by T*|0). As a result, the inherent symmetry of each
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T* must be coupled to that of |0) to give pure symmetry excited or ionic
states. Because the reasons for making specific choices of A and B* are
rather clear, we now focus on explaining the strategies for choosing |0) and
truncations of {T, }. In the following sections and in our treatment of the
polarization propagator, we consider two different approaches for attacking
this problem. The first is based on a perturbation analysis while the second
is based on selecting a multiconfiguration reference state and an appropriate
projection manifold.

2. Order Analysis

The most widely used, and historically older, approach involves pertur-
bation analysis of the GF using RSPT to obtain elements of (T*|ET + A|T™)
and (B*|T*)(T"* | A) correct through a chosen order (order is then assumed
to be related to accuracy). By decomposing the electronic Hamiltonian H
and the reference wavefunction |0) in perturbation series

H=H°+V (6.40)
[0> =10 +1]0'> + [0%) +--- (6.41)

one then attempts to evaluate (T,' |E1 + A|T}') to sufficiently high order to
guarantee that the poles of primary interest are obtained accurately through
a chosen order. If one is also interested in calculating residues that are
accurate through some order, then the chosen operator manifold and
reference state |0 must be taken to sufficient size and order to guarantee
this. We return to the problem on how to choose {T*} so as to determine
primary poles and residues accurate through a chosen order in Section
6.C4.

3. Hermiticity Questions

Earlier in this chapter, we noted that the question of the hermiticity of
(T |A|T;) had to be examined in individual cases (i.e., it was not auto-
matically valid). When a perturbation expansion is used to determine the
reference state, we may more explicitly state the conditions under which
the matrix is hermitian by examining the difference between the (ki)th and
the complex conjugate of the (lk)th element of the superoperator
Hamiltonian. When this difference

(TH|A|T}) — (THA|TH* = QO|[[T, T, H]|0) (6.42)

is equal to zero, the superoperator Hamiltonian is hermitian.
When the reference state |0 is determined through a certain order n in
RSPT, (|0>, = }7-4|0'>) the Schrédinger equation is solved through the
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same order:
H|0),=E,[0), +O(n+ 1) (6.43)

where E, = 7. E¥. Inserting (6.43) into (6.42) then states that Eq. (6.42)
is zero through order n and that, as a result, the superoperator Hamiltonian
matrix is hermitian through that same order. This theorem is quite useful
for two reasons. First, it guarantees that the superoperator Hamiltonian
matrix will have no accidental or spurious nonhermitian terms if it is properly
calculated. Second, it is often easier to compute (T, |A|T}") than (T} |A|T;)
(e.g., (p*q*a|fA|r*) is easier than (r*|A|p*q*a) because the latter elements
require that the Hamiltonian be commuted with p*q*a). Thus, we can
choose to calculate the “easier” matrix elements and to then obtain the others
through hermiticity (i.e., by equating the complex conjugate of the former
to the ) w.er).

4. /> perator Space Partitioning

We -.ext go into more detail concerning the explicit evaluation of { A; B
for A="%%, B* =" [referred to as the electron propagator (EP) or one-
particle GF] and for A =k*l, B=i'j [referred to as the polarization
propagator (PP) or two-particle GF]. However, it remains for us to show
one more approximation step that is often employed in searching for the
poles of (ES + H)™! in Eq. (6.37). Because, according to Eq. (6.38), all
elements of this inverse matrix possess poles at all of the E,, it is possible
to search for the desired poles by computing a single element or a submatrix
of (ES + H) . That is, if the operator manifold is partitioned into, say, two
classes {T/} ={T}} + {T,}, then because (ES + H) blocks into four
submatrices

ES,+H,_, ES, +H
ESyfyeli Yoo 6.44
( ) (ESM +R,, ES, + HM,) oo

one can solve for any element(s) of (ES + H)~! in terms of the above four
submatrices. For example, it is easily shown that

(ES + H).' = [(ES,, + A.,) — (ESu + ALES, + Ap) (ES,, + Ay)] !
(6.45)

Even if the space {T, } includes a single element, if treated properly and to
all orders, Eq. (6.45) will yield all the poles of (ES + A) ™.

It is, of course, natural to wonder both why one would be interested in
so partitioning (ES 4+ H) ' and what this has to do with an approximation
scheme for calculating ¢ A;B)g. It often turns out that if the sets {T, } and
{T)} are chosen properly, all the “off-diagonal” elements (ES,, + H,;)
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(and hence ES,, + H,,) contain only terms that are of first or higher order,
whereas (ES,, + H,,) contains zeroth- and (perhaps) higher-order terms. If,
therefore, one restricts the search for poles to energy ranges in which (ES,, +
Hys) ™! is not close to being singular, then the term (ES,, + H,,)(ES,;, + Hyp) ™!
(ESp, + H,,) can be assumed to be of second or higher order. This restric-
tion of the energy search range is often motivated by knowledge that the
zeroth-order poles of (ES,, + H,,) ! are good approximations (e.g., through
Koopmans’ theorem for the IP) to the desired poles. If one is interested in
calculating poles that are accurate to, say, second order, then the second-
and higher-order pieces of (ES,, + H,,) and the first- and higher-order
pieces of (ES,, + H,,) "' can be neglected. In this way, one is often able to
greatly simplify the calculation of certain poles of {A4; B). [those far from
the singularities of (ES,, + H,) in the above example].

Given a choice of {T, } and {T,'} that permits a pole (say E;) of {A4; B)
to be evaluated through a certain order, it still remains to examine whether
the same partitioning will yield residues, which are given in Eq. (6.39),
accurate to some chosen order. Thus, if (B*|T,") and (T, |4) are of zeroth
and higher order, whereas (B*|T,) and (T, |A4) are of first and higher
order, it is convenient to so partition {T,} since the contributions to the
desired residues can more easily be order analyzed. This point is made more

clear when analyzing the residues of the polarization propagator in Section
6.E4.

5. Nonperturbative Approaches

The perturbation theory approach to computing approximations to
€A;B); has been widely used with significant success. However, its funda-
mental premise (that U is “small”) is known to break down under circum-
stances that are relatively widely appreciated (e.g,, for X'X H, at large
internuclear distance, the contribution of the 162 configuration can not be
accurately represented by RSPT). For this reason, researchers have begun
to explore the possibility of systematically calculating GFs in which the
reference state |0) is taken to be of the MCSCF form. The MCSCF nature
of |0> turns out to be very convenient in a GF analysis because the GBT
results in hermiticity of certain blocks of the (T, |A|T;") matrix.

The primary formal difficulty that arises in implementing such MCSCF-
based GFs has to do with developing systematic procedures for truncating
(and perhaps partitioning) the {T,"} operator space. Because we have now
lost the concept of order, we must turn to some other criterion for choosing
an appropriate operator manifold. In the few developments of the MCSCF-
based electron (Banerjee et al., 1978) and polarization propagators (Yeager
and Jorgensen, 1979; Dalgaard, 1980) that have been made to date, the
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{T/} manifold was chosen by examining the functions T, |0> and T,|0),
which result from the application of the T} operators to |0> as they occur
in the superoperator binary product. Decisions were then made to guarantee
that these functions contained all of the dominant singly and doubly excited
configurations needed to yield proper orbital relaxation and electron
correlation (or bond-breaking) effects, respectively. For example, the
operator manifold {T;} = {r*s,s*r,r > s; |1)€0|,|0>(n|} has been used to
express an MCSCF-based PP. The state projectors |n){0| and [0)>{n| can
be viewed, when they act on |0), as compact representations of the set of
{T ) operators given in Eq. (6.24). It is thus possible to choose another set
of operators than the one of Eq. (6.24) to describe accurately the poles and
residues of the PP. The decision to choose one truncation of {T; } over the

aner is usually based upon considerations involving the dimension
of the resulting (T*|A|T*) matrix and the ease of calculation of the requisite
superoperator matrix elements. The first choice described above (involving
the state projectors |n)<0|,|0><n|) seems to be especially promising because,
is Dalgaard has demonstrated, this set of operators yields a PP whose poles
~1d residues automatically guarantee equality between electric dipole
transition moments computed within either the so-called length or velocity
representations. This is especially convenient because one then has a con-
tinuous range [ from the single-configuration time-dependent Hartree - Fock
(TDHF) or random-phase approximation (RPA) through the present
MCSCEF case to the full CI] of PP approximations all of which preserve
their length/velocity equivalence. Another reason for choosing the above
set of operators for use as {T,"} lies in the fact that the resultant (T, |A|T;")
matrix elements are no different than those arising in the original MCSCF
calculation of |0> [eg. (r*s|H|[n><0]) arises in (O[[A[H.S]]|0> of Eq.
(2.24)]. Also, if one were to consider the effect of an external one-electron
perturbation on the MCSCF state |0), one would find the same operators
1t sst e n>C0).J0> <n|} appearing naturally in the response of [0> to the
external perturbation, as in coupled multiconfigurational HF.

6. Discussion

Because of the high research activity level on how to use an MCSCF
reference in the GFs (EP and PP), it is not presently clear how to optimally
choose truncated sets of {T," } operators. It is likely that many workers will
carry out test calculations involving many choices of the pertinent operator
manifolds before this situation is improved. Moreover, questions concerning
when and how to partition the resulting (T, |H|T,*] matrix so as to reduce
the dimension of the matrix whose poles are to be found remain unanswered
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for the case of an MCSCF reference function. Again, what is missing is some
concept of order (or size or importance) in terms of which to make decisions
about how to partition the operator manifold. It is our opinion that signif-
icant progress will be made on these important questions within the near
future and that, as a result, MCSCF-based GF methods will become common
tools in the quantum chemist’s library.

Having given an introduction to the fundamental properties of GFs and
to the techniques that are used to obtain GFs whose poles and residues are
accurate to a chosen precision, we now move on to consider the commonly
used EPs and PPs in some detail. We should mention that the resulting
working equations arising in the EP and PP cases have also been derived
through the so-called equations-of-motion (EOM) formalism (Schaefer and
Miller, 1977, Chapter 9). This EOM formalism focuses on setting up the
superoperator generalized eigenvalue problem of Eq. (6.33) and, as a result,
is equivalent to the propagator development here. We do not enter into a
closer discussion of the EOM development here because, for the EP and
PP treated below, this tool offers no new insight or convenience.

D. THE ELECTRON PROPAGATOR

If we choose the 4 and B* operators to be of the one-electron addition
form (r*,s*), then the GF {A4; B) is known as the EP:

Kr*;sye = (s*|(E1 + A)7'|r*) = G, (E) (6.46)

This choice of A and B* is made because we are interested in studying
primary ionization events [ionization potentials (Cederbaum, 1973; Pickup
and Goscinski, 1973; Doll and Reinhardt, 1972; Purvis and Ohrn, 1974)
and electron affinities (Simons and Smith, 1973; Jergensen and Simons,
1975)], which may be reasonably described through acting with a single-
electron operator (r* or r) on the reference state |0). To obtain computa-
tionally useful expressions for G,(E) specific choices must be made for the
reference state [0) and for the operator manifold {T*} in Eq. (6.32). We
describe a few of the most commonly employed choices of these quantities
and the resulting GF.

1. Koopmans’ Theorem

The simplest approximation to the EP is obtained by taking the reference
state to be a single configuration HF wavefunction and the projection
manifold to be

{T*} ={T{} = {e,p*} (6.47)
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The EP in Eq. (6.32) then reads
sy s snf@IEL & Blat)y @*|E1 4+ A\ (']
Comils = Helln ”({pwanmm ®'|ET+Ap* ) \@*)
(6.48)

The matrix elements appearing in Eq. (6.48) can easily be evaluated because
o[ the single-determinant nature of [0):

(s*|m*) = O|[s,m*]|0) = d,, (6.49)
*[B") =04 (6.50)
(BY|ET + Ry*) = 64,E + CO|[B,[H.y*]]:|0>
Edg, + hgy + Y <BK| |yt Ok * 1]0>
kt

T {E T Sy)(SB}' (65”
(m*|ET + A|n*) = (E + €,)0,un (6.52)
(m*|E1 + Alx*) =0 (6.53)

Here {g;} denotes HF orbital energies. Using these results, Eq. (6.48) may be
expressed as

Gs,. i Z (ssm‘srm + Z 53}‘5“'

(6.54)
e O e D

By comparing the spectral representation of the GF in Eq. (6.6) with Eqgs.
(6.48) and (6.54) we see that the pole of Eq. (6.54) at E = —g,, represents
an approximation to the electron affinity, while the pole at E = —¢, cor-
responds to an ionization potential. The residue (the square of the transition
amplitude) at E = —g,, is dg,0,,, while the residue at E = —¢, is d,,6,,.
All transition amplitudes corresponding to primary ionization events thus
become equal to unity at this level of approximation. The above result
expresses the EP analog of Koopmans’ theorem. To go beyond Koopmans’

theorem, better choices must be made for the reference state and operator
manifold.

2. Rayleigh—Schridinger Order Analysis

As discussed in Section A, RSPT has been widely used to develop syste-
matic approximations to G(E). Here the unperturbed Hamiltonian H" is
taken to be the HF Hamiltonian [Eq. (3.34)] and the orthonormal basis
spin-orbitals are HF spin-orbitals having orbital energies &;:

H® =Y ¢;j*j (6.55)
o
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The reference function |0) can be expressed, as in Chapter 3, as a perturba-
tion series in powers of the residual electron—electron interaction. The EP
is then used to describe the primary ionization events consistent through a
certain order by expanding the reference state in powers of the fluctuation
potential and by choosing the projection manifold of Eq. (6.23) to be suf-
ficently large, the meaning of which will be discussed later. In this section,
we show how to determine the primary ionization events consistent through
zeroth, first, second, and third order. To do so, it proves suflicient to consider
the truncated manifold

{T*} ={Ti; T3} (6.56)

This conclusion is by no means obvious but should become clear shortly.
One must, in principle, examine the interaction between T, T3 and the
Ts, T3, etc.,, operators to conclude that these higher operators have no
effect on the poles describing the primary ionization event through third
order (Redmon et al., 1975).

With the above choice of the projection manifold, the EP of Eq. (6.32)
takes the form

A (] = T+ +
6B = TG ) (Tihy) 659

where the matrices in Eq. (6.57) are defined as

A = (T}|ET + A|T}) (6.58)
C = (T3|E1 + A|T}) (6.59)
M = (T;|ET + A|T3) (6.60)

The poles of the GF are determined entirely by the inverse matrix of Eq.
(6.57). Since our interest is in describing the primary ionization events, we
partition the inverse matrix as in Egs. (6.44) and (6.45) with T = T}, and
T, = T3;. We then determine the poles that describe the primary ionization
events from the partitioned form of the inverse matrix

P "YE)=(A-C™~!C)! (6.61)
By using H = H® + U [see Egs. (3.34) and (3.35)] and |0) = [0°) + [0*)
+ ..., we may carry out a detailed order analysis of each of the four matrices

A, \C. and M. For example, we write A as

At B (6.62)

i=0

where the label i indicates the order of the contributions to the A matrix.
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Below we show all the contributions to the matrix A through third order:
 (Aodi = ECO°|[,k*14]0%) + <0°|[ji [HOk*]].[0°) = (E +£)d,;  (6.63)
A,=A,=0 (6.64)
(A3 = <O'[i[U.k*]]4]0"> + <0%|[i[U. k"], [0
+ COULALU. K114 0% = X il Ikl > (;ﬂ KK — quh';’;*xsf)
v a

+ Y (ol [kp> + | [k6))K§ (6.65)
pd

where the perturbation theory correlation coeflicients are given in Egs. (3.53)
and (3.55). It should be noticed that both A, and A, are identically zero. This
fact will be shown to lead to the conclusion that the Koopmans' theorem
approximation to G(E) is accurate through first order. We also list below all
of the matrix elements of the C and M matrices, which are required to evaluate
P(E), and hence to obtain poles of G(E), through third order:

Co=0 (6.66)
(C )paaj = <O°| [ qp, [U,j* 11410 = {py| | jo) (6.67)
(C)apm.j = — <aP||jim) (6.68)

(L e %%(ial [Oy>KE + Y [Cim||yp) K& — Cim||yg> KE™ (6.69)

(Capm,j = — 3 2. <im||pa> K5 + Y [<iv| |pd KGP — Ciy| [pBYKZP] (6.70)
r e

(Mo)uma,app = OngOmpOaplE + €, + £, — &,) (6.71)
(Mo)syp.apg = 0500,80 pgl E + €5 + £, — €,) (6.72)
(MO)nnla.)'Jp T O [673}

(M Dumaaps = — Oqnlmp||pa) — 8 ,m<np||qo>
+ Sgmlnp||pa) + S,5<mn||pg) + 8, (mP||gx>  (6.74)
(My)syp.aps = 5}»,‘1(5‘” |ap> + 550:(}"}' 'ﬁf’)
— 8,0 |Bp)> + 8,,<0Y||Bx> — 5Crallopy>  (6.75)
(M )nma.syp =0 (6.76)
a. Pole Structure through Second Order

The poles of the EP consistent through zeroth order are determined by
including all zeroth-order terms in P(E) [Eq. (6.61)]. Since C contains no
zeroth-order contributions, we find that

Po(E) = A, (6.77)
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which is the Koopmans’ theorem result once again. A determination of P(E)
through first order would not contain any more terms than are already in A,
since A; = 0and C, = 0. The lowest-order correction to A, given by C'TM~!C
occurs in second order. In reaching this conclusion, we used the fact that the
order of a term that is a product of several matrices is determined by adding
up the individual orders of the matrices appearing in the term. The term
CiM,'C, would thus have been of first order if C, had not vanished. An EP
that contains only the A, matrix is identical to the EP obtained in Section
6.D.1 and results in Koopmans’ theorem-level estimates of electron affinities
and ionization potentials. The success of using Koopmans’ theorem to assign
peaks in photoelectron spectra relies on the fact that corrections to Koop-
mans’ theorem first appear in second order.

Proceeding now to compute all terms in Eq. (6.61) through second order,
we find

Pz{E) = AO e C-{Malcl (6‘?8}

since A, = 0. In all of the matrices in P,(E), only the zeroth-order part of
the reference state |0°) contributes, as can be seen by examining Egs. (6.66)-
(6.76). Inserting the expressions for the individual matrix elements of C, and
M, given in Eqgs. (6.67), (6.68), (6.71)—(6.73) into Eq. (6.78) gives explicit
expressions for the elements of P,(E):

il _ v <ollpa><pal ke
[PZ(E)]jk = (E + 31)‘5;1 p);q E_oto.+ .

@

_ y Sl <apl ko>

2 E+e,+e—c¢

Such second-order EPs have been used (Doll and Reinhardt, 1972; Purvis

and Ohrn, 1974) to compute atomic and molecular ionization potentials,

electron affinities, and even electron—-atom shape resonance positions and

lifetimes with some success. Based upon the experience gained to date, how-

ever, we cannot expect the accuracy of this approach to be better than

+0.5 eV, even for systems that are described reasonably well by a single-

configuration reference function. Often, this numerical accuracy is not satis-

factory and hence the above formalism must be advanced to higher order (or

replaced by another development that does not depend upon the Rayleigh—

Schrodinger order concept). An example of such a second-order EP calcu-
lation is given in Problem 6.1.

(6.79)

b. Physical Interpretation

The physical interpretation of terms arising in C]M; 'C, in terms of orbital
relaxation and electron pair correlation effects has been carried out by several
workers. To give some feeling for the physical content of the terms in (P,),;, we
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examine the diagonal i = j =t term, which would be expected to be the
dominant contributor in the case of adding an electron to spin-orbital ¢,.
Then, through second order, from Eq. (6.79) we have

2
Paiesit b+ B DL
a>f.m Eo BB P‘ﬂ

Ly kel o elleP
g#ta &g — & p):¢:5p+£q”£r'£n

Clearly this term will vanish (G will have a pole) near E = —g¢,, which is the
Koopmans’ theorem estimate. The correction to Koopmans' theorem ex-
pressed in the three sums occurring above can be given physical meaning in
the following manner. The second sum gives the orbital relaxation contribu-
tion to the ion—neutral energy difference. By expanding the HF orbitals of the
ion in terms of those of the neutral and then computing the ion’s energy with
these orbitals correct through second order one could derive this term within
a wavefunction picture (Pickup and Goscinski, 1973). The fact that this sum
has an orbital energy denominator involving only a single orbital excitation
energy (g, — ¢,) has to do with the fact that, in a configuration interaction
language, this term arises from single spin-orbital excitations (¢, - ¢,). The
numerator |{ta||tg)|? can be identified as the square of the perturbation
matrix element coupling orbitals ¢, and ¢,. The perturbation is the coulomb
and exchange potential caused by the electron that has been added into ¢,.
The third sum in Eq. (6.80) gives the approximate correlation energy of an
electron in ¢, with the remaining N electrons (in ¢,) and hence has to do with
double excitations (¢,$, = ¢,¢,), which would arise in a CI description of
such pair correlations. Finally, the first sum describes the changes in the
correlation energies between pairs of orbitals ¢,, ¢, due to the fact that spin-
orbital ¢, is occupied in the ion (and hence unavailable for correlating ¢, and
¢,), but was not occupied in the neutral parent molecule.

c. Third-Order Analysis of Pole Structure

To obtain the expression for P(E) that contains all terms through third
order (Simons and Smith, 1973; Jergensen and Simons, 1975; Cederbaum,
1973), we introduce the matrices given explicitly in Egs. (6.63)-(6.76) into
Eq.(6.61) and neglect the fourth-order terms. This allows us to write Eq. (6.61)

P(E) = Ag + Ay — C{(My + M;)"'C, — C{(M, + M,)"'C,
—CiM, + M) 'C, (6.81)

The inverse matrix (M, + M;) ™! can further be decomposed into orders by
performing the expansion

Mo+ M) " =Mg' —Mg'"MMg' + Mg'M Mg ' MM + -+ (6.82)
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which can be used in Eq. (6.81) to identify the *>-ms to keep through third
order: j

PyE)= Ay, + A; — CiM; 'C, + CIMg 't Mg 'C,
MG IC2 = C;Ma ’Cl (6.83)

At this third-order level of approximation, the EP has been successfully
applied to a large number of inorganic and organic molecules. The ionization
potentials (Von Niessen, et al.,, 1979) and electron affinities (Simons, 1977)
thus obtained are usually reliable to within +0.3 eV.

d. Diagrammatic Analysis

The derivation of the EP consistent through a certain order may alterna-
tively be performed in a way very similar to that used in MBPT to express
the state energy and wavefunction. As in MBPT, the result is expressed in
terms of a set of diagrams. In this section we give the results of performing
such a diagrammic perturbation analysis of the EP. The contribution to P(E)
beyond the (E + ¢;)d;; is, in the diagrammatic analysis, referred to as the self-
energy or optical potential matrix Z(E). The self-energy matrix Z(E) in a
given order n is expressed in terms of a set of Hugenholtz diagrams. The
diagrams, which enter in order n, are determined by applying the rules in
Table I of Chapter 3, with rule 3 modified such that when one is connecting
lines each diagram has to have one incoming and one outgoing line. The
translation of a Hugenholtz diagram into an algebraic expression is, as in
MBPT, performed by translating the Hugenholtz diagram into one of its
equivalent Brandow diagrams (Fig. 6.1; see Section 3.G). The algebraic ex-
pression for the Brandow GF diagram is obtained by applying the rules of
Table Il of Chapter 3 with rule 3 modified such that an energy parameter
equal to (— 1)"E is added to each factor in the denominator ) , &, — ) , &, if

Hugenholtz Brandow
J
o o —
() p qu
ek
A A FIG. 6.1. All Hugenholtz and Brandow second-

order self-energy diagrams.
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the sum of the number of internal hole and particle lines is an odd integer.
Here h is the number of internal hole lines in the diagram. Lines are counted
as internal only if they lie between the vertices from which the GF’s two
free lines originate. If the GF’s two free lines start at the same point, only
those hole lines that exist horizontal to this point are counted. For example,
diagrams A and C of Fig. 6.2 contain one and zero internal line, respectively.
Diagram G of Fig. 6.2 has one internal hole line and thus each denominator
would get a — E factor added in.

If H? is taken to be the HF Hamiltonian, then, as in MBPT, all diagrams
containing the loop structure 0 cancel with the corresponding diagrams
having the potential symbol ~—< in the same location. No first-order dia-
grams then enter in the diagrammatic perturbation analysis. In second order
only the two diagrams displayed in Fig. 6.1 enter. To obtain some experience
in applying the rules in Table IT of Chapter 3, we list the analytical expressions
for these two diagrams:

o1 <ol lpad<pq| ket
< 1)1 e 1+1 55 1o
A_:L;:{z}( . ~E+teg —¢€,—¢, (89

;‘IH EXE,-Feg~¢,

The second-order contribution to the EP given above is, of course, identical
to the one derived in Eq. (6.79).

In Fig. 6.2, we list the nonvanishing third-order self-energy diagrams.
These may, of course, also be identified with corresponding terms of the

PIANAY

EERRR
RERER

FIG. 6.2. All third-order Hugenholtz self-energy diagrams.
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third-order expression of P;(E) in Eq. (6.83). The sum of diagrams A and B
represents the first two terms of A, in Eq. (6.65), while diagrams C-F may
be identified as orginating from the last term of Eq. (6.65). The term
CIM; 'M,M, 'C, gives rise to G, L, M, and R, while H-K and N-Q may be
shown to originate from CIM; 'C, and C[M; 'C,. The analytical third-order
expression thus gives a compact representation of the diagrams in Fig. 6.2.

E. THE POLARIZATION PROPAGATOR

1. Introduction

If we choose the operators A and B* both to be the electric dipole moment
operator r, then the spectral representation of the resulting GF reads
_ £Or|m) (m|r|0). & <O|r|m) (m|r]0). 6.86)
E—-E,+Ey+in E+E,—Ey,—in

The residue at the pole E = 4(E,, — E,) contains the transition dipole
matrix element between the states [0) and |m),

r;ryg =lim )’

=0 m

<Orjm) = jz(r)j,<0| jtsjm) (6.87)
where
(1);s = {Pj|r|ds> (6.88)

Since r is a number-conserving operator, the reference state |0) and the
state |m) must contain the same number N of electrons. The poles of this
so-called polarization propagator (PP) thus occur at the excitation energies
E = +(E,, — Ey) of the system described by |0), while the corresponding
residues give the squares of the electric dipole transition moments |[{0fr|m)|>.

The real part of the above GF may be expressed by combining terms over
a common denominator as

: o 2AE,, — Eo)|[<O0|r|m)|?
Re{ride= -2 ~m—F _Ep (6.89)
which is identical to the conventional expression for the frequency-dependent
polarizability tensor (the frequency being represented by E).

To get some experience in using the PP to express second-order frequency-
dependent and -independent properties and to indicate some problems that
may appear when using the PP in finite basis set calculations, we now derive
alternative but formally equivalent expressions for the frequency-dependent
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polarizability. We may employ Eq. (6.10) to reexpress the propagator
£rir)gas

E¢r;ryg = QO|[r,r]|0) + ([r,H];r)e = idp;r)e (6.90)

where we have used (in a.u.)
[r,H]=ip (6.91)

For E # 0,iE~" {p:r); may alternatively be used to calculate the frequency-
dependent polarizability. Near E = 0, however, we expect iE™'¢p:r)p
(which should, in principle, equal {r;r)) to have difficulty in finite-basis-
sel calculations because of the explicit appearance of the E~' factor. That
is, unless ¢p;r)g, as a calculated function of E, is proportional to E near
E = 0, one might obtain incorrect behavior of iE ™ '¢p;r)g here.

Applying Eq. (6.10) once more to Eq. (6.90) gives

E¢p;rye = <O|[p.r][0> + p:[H,r]Ye = <O|[p,r]|0> — i<p:pYe (6.92)
Using the second-quantized forms for p and r, we can explicitly calculate
the commutator in Eq. (6.92) as

[p.r] = Z (P)ij{f)kr(ajki+f — 0uk™ j)

ijkl

i Zl[(llr)jc _ (rp)jf]j il
F
= —iy lpj*l (6.93)
jt

where | is the unit tensor operator whose elements are I;, = d,1, and
m==0"=0*=1, HT=M==MmM*=0 (6.94)

Clearly Eq. (6.93) is valid only if the basis set is complete so that we can
write (pr); — (rp); = (pr — rp); = —idyl. We may now rewrite Eq. (6.92) to
obtain one further expression for the frequency-dependent polarizability

1
Leirdg = Iz (NT+ €p;pYe) (6.95)

where the number N of electrons in |0 arises by evaluating 1) ;<0[j*/|0>.
As with i{pry E~", finite-basis-set calculations of this form for the polar-
izability through the propagator {p; p)r would be expected to have difficulty
near E = 0 because the small-E portion of ¢p,pYg, which should exactly
cancel the NI factor may, in a finite basis, not lead to exact cancellation.
We have now discussed how frequency-dependent polarizabilities can be
obtained directly from the PP once a closed algebraic equation for ¢r;r}g
is found. Other second-order properties can equally well be determined by
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replacing 4 and B* with other one-electron operators (e.g., the dominant
term in the indirect nuclear spin—spin coupling constant results when 4
and B* are taken to be the Fermi contact Hamiltonian).

In the following, we concentrate on how approximate closed expressions
may be obtained for the {r;r)g form of the polarization propagator. From
our treatment of the PP it should become clear how to determine other
second-order properties corresponding to other choices for 4 and B*.

2. The Single-Configuration TDHF Approximation

In a simple and very commonly used approximation to the PP, the refer-
ence state |0) is chosen to be a single-configuration (but not necessarily
single determinant) HF wavefunction. The operator manifold {T*} then is
taken as the set of particle—hole excitation and deexcitation operators used
for optimizing the reference state:

T'={T;}={Q*.Q}={m"a,a’*m;m «a} (6.96)
With these choices, the propagator takes the form (as expressed in Eq. (6.32) ]
(Q'|ET+A]|Q") (Q*|ET+ HlQ))“((Q* |r))

(QIET+ A|Q*) (Q|E1+A|Q) Q|
(6.97)

Since the one-particle density matrix is diagonal for the chosen HF reference
state, we have

(Q|Q*) =(Q*|Q) = {<O[s*B,r*a]|0)} = {0} (6.98)

Kr;rde =({rlQ+)(r|Q}}(

and
Sm‘sﬂ = (Q+ |Q+,ru.sﬂ i <Ol[a+r‘s+ﬁ]|0> o 5rs§¢ﬂ(va £ vr) {699]
and similarly
(r|Q%)sp = (vg — vy)(r)gs (6.100)

where v, is the occupancy of spin-orbital ¢,. Equation (6.97) may be written
in more compact notation as

; By, -1 +
<<r;r)>£=((r|Q+)(r|Q)}(SE+AI ! ) ((Q |r)

O (er)) i

where the matrices A, and B,, are identical to those defined in connection
with the MCSCF orbital optimization in Egs. (2.29) and (2.30) except that
|0) is taken here to be the single-configuration HF function. These matrix
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elements are evaluated explicitly in Problem 5.2 and used in Problem 6.2
to carry out a PP calculation.

Equation (6.101) is said to express the time-dependent Hartree Fock
(TDHF) or the random phase approximation (RPA) to the PP (Jorgensen,
1975). The TDHF (or RPA) approximation has been derived in a variety
of ways, each of which tends to stress a certain aspect or point of view. In
the following, we examine the physical content of the TDHF approximation
and try to point out various consequences of using it for calculating the
frequency-dependent polarizability, oscillator strengths, and excitation
energies.

a Pole and Residue Analysis

We now demonstrate how the TDHF propagator may be transformed to
a spectral form similar to the one appearing in Eq. (6.6). The poles of Eq.
(6.101) can be determined through solving the nonhermitian eigenvalue

problem
All B“ Z i S 0 Z
(Bn A“)(Y)_ E(U —S)(Y) (6.102)

whose dimension is the sum of both the number of nonredundant particle-
hole and hole-particle operators. The solution of Eq. (6.102) may alterna-
tively be obtained through performing a series of transformations involving
matrices of only the dimension of the particle—hole operators (Linderberg
and Ohrn, 1977; Jergensen, Olsen, and Yeager, 1981). To achieve this reduc-
tion in the matrix dimension, we first write Eq. (6.102) in component form as

AZ +B,,Y =ESZ (6.103)
B, Z +A,,Y=—ESY (6.104)
Successively adding and subtracting the above two equations gives
(A, + By )Z+Y)=ES(Z-Y) (6.105)
(A, — B, NZ —-Y)=ES(Z+Y) (6.106)
Equation (6.105) may then be rearranged,
Z+Y=EA; +8B;) 'S(Z-Y) (6.107)

and inserted into Eq. (6.106) to give
S YA, +B,)S A —-By N Z-Y)=E¥Z -Y) (6.108)

The eigenvalues of Eq. (6.102) are thus determined by the nonhermitian
eigenvalue problem given in Eq. (6.108) for E2 If A,, — B, is positive def-
inite, we can form the (A,, — B,,)"’? matrix and premultiply Eq. (6.108)
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with (A}, — B,,)"/2, thereby achieving the hermitian eigenvalue problem
(A —By)'*8 (A + B )STHA — By ) A, — B )VHZ - Y)
=E*A,, — B )"(Z -Y) (6.109)

which has eigenvalues E? and eigenvectors equal to (A,, — B,,)"*(Z — Y).
The eigenvalues of the nonhermitian eigenvalue problem in Eq. (6.102) can
thus be determined from a hermitian eigenvalue problem of only the dimen-
sion of the particle-hole operators. When S is singular or nearly singular,
it may be useful to solve Eq. (6.108) or (6.109) using the inverse eigenvalue
equations with eigenvalues 1/E?. Equation (6.108) then becomes

(At —By) 'S(A;; + B, ) 'S(Z—-Y)=(1/E})(Z - Y) (6.110)

To interpret how transition moments are determined within the TDHF
approximation, we continue transforming the propagator to its spectral
form. We use the eigenvalues and eigenvectors of Eq. (6.108) together with
Eq. (6.107) to determine the Z and Y matrices. Equation (6.102) implies that
if the set (7) are eigenvectors corresponding to the eigenvalues w, then (})
are eigenvectors with — o eigenvalues. This allows us to write Eq. (6.102)
in a form that displays its positive and negative eigenvalue spectrum

GG DR O I D e

or alternatively as

ES+A,, B, Z XN [B. 9YZI Y\{El+e 0
By, —ES+A,,J\Y 2/ \0o -s/\y z 0 El—wo
(6.112)

Because of the appearance of the metric matrix (§ _2) in Eq. (6.102) the
(§) eigenvectors may be normalized according to

(Z,Y}AG “g)(i) =4, (6.113)

To obtain a spectral representation of the propagator that contains a unit
metric, one must transform the set of particle~hole and hole—particle oper-
ators to the representation where they give a diagonal metric with unit

elements. This transformation is carried out using the excitation operators
defined below:

0" =Q*Z + QY (6.114)
0=Q*'Y* +Qz* (6.115)
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For example, it is straightforward to show using Eqgs. (6.98), (6.99), and

(6.113) that
oty —(7+ v+ S 0\(Z 7
0*j0o*)y=@2*Y )(0 —S)(Y)_1 (6.116)

This condition then implies that the full metric matrix involving these new
excitation operators becomes

W0 e 0y 2 YTNB V2 ¥ 6.117)
©*0) ©o/) \o -1/ \y* z*)\o -s/\y z o
The spectral form of the propagator is then obtained by taking the inverse

of Eq. (6.112), premultiplying with (¢ }), and using Eq. (6.117):

(ES+A.1 B,, =
2 W\l n N2y
TN 0 El-o T L (i)

Introducing Eq. (6.118) into Eq. (6.101) finally allows us to write the prop-
agator in spectral form

1 1
! % 2] _
£rirde = ;|{r|03 )| [ o s ET w;] (6.119)

A comparison of Eq. (6.119) and the spectral representation of the propagator
given in Eq. (6.86) shows that the pole at E = w, corresponds to a total
energy difference E;, — E,. The pole at E = —w, corresponds to the same
total energy difference E, — E,, and the propagator therefore is an even
function in the excitation energy E, — E,. The pole at E = w, has a residue
of —|(r|0)]%, which using Eq. (6.6) may be identified as —|(0|r|1>|*. The
pole at E = —w, has the residue |(r|0;)|?, which is equal to |<O|r|2)|%. The
transition moments (0|r|u> may thus be determined from the residue at
either of the poles E = +w,. It should be noted that the above development
allows E, — E, to be either positive or negative corresponding to excitation
energies from ground or excited states. However, in applications where |0)
refers to an excited state, Eq. (6.108) must be used to determine the excitation
energies, because A — B is not then positive definite.

b. The Stability Condition

If imaginary or negative roots are encountered when solving the non-
hermitian eigenvalue problem in Eq. (6.108), the RPA approximation is said
to have an instability. If A,; — B,, is positive definite, instabilities are not
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encountered if the matrix (A,, — B;,)"?S"'A,, + B,,)S"'(A,; — B,))'?
in Eq. (6.109) is positive definite; that is, if

X(A;, — B )'"?S (A, + B )S A, — By)'?XT >0 (6.120)
for any vector satisfying |X| > 0. Defining the vector
Y = X(A,, — B,,)V?s"? (6.121)
we may write Eq. (6.120) as
Y(A,, + B, )Y">0 (6.122)

which says that A,, + B, has to be positive definite to ensure that Eq. (6.120)
is fulfilled. Thus if A;, — B,, is positive definite and A, + B, is not,
then an RPA instability will be encountered. Although it is not obvious
from the previous derivation of the solution to the RPA problem, it may be
shown by transforming the RPA eigenvalue problem to an equation similar
to Eq. (6.108) (but with Z + Y occurring as the eigenvector) that if A, + B,
is positive definite, then an RPA instability is encountered if A;, — B, is
not positive definite. Hence if both A, + B;, are positive definite, insta-
bilities are not encountered in the RPA approximation. If both A;; + B,
are nonpositive definite, an explicit solution of Eq. (6.108) has to be deter-
mined before it be clear whether an instability is encountered. If A;; + B,
are both non—positive-definite, negative excitation energies (E; — E;) are
obtained in TDHF approximations. Such negative excitation energies may
correspond to excitations from higher to lower “excited” states.

As was demonstrated in Chapter 2, the curvature of the energy hyper-
surface at a stationary point corresponding to the reference state |0) is
governed by the same A,, — B, matrix [Eq. (2.80)] as occurs here in the
TDHF. Hence, if the HF wavefunction corresponds to a local energy mini-
mum, A,, — B,, would be positive definite. In our derivation of the energy
optimization conditions as given in Chapter 2, we restricted our orbital
variations to involve only real variational parameters (i.e., we assumed real
spin-orbitals). If we had instead examined the variations in the energy re-
sulting from purely imaginary orbital variational parameters, the second
derivative of the total energy would involve the matrix A, + B;,. Hence,
the conditions that A,, + B,, be positive definite must be met if the HF
reference state is to represent a local energy minimum both with respect to
real and imaginary orbital variations. Therefore, imaginary excitation ener-
gies arise in RPA if one of the matrices A,, + B,, is non—positive-definite
and the other is positive definite. If negative excitation energies are obtained
in the RPA approximation both A,, + B,, are non—positive-definite and
the reference state |0) then represents a saddle point on the energy hyper-
surface.
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c. Connection with Coupled Hartee—Fock Theory

Having defined the TDHF problem and having shown how excitation
energies and oscillator strengths are determined, we now demonstrate that
the above TDHF propagator reduces, for E = 0, to the equation obtained
in Chapter 5 for the second-order response property as expressed in the
coupled Hartree-Fock (CHF) approach. For E = 0, the TDHF polarization
propagator given in Eq. (6.101) becomes

11 Bl] i 4
o= el@elen(z” 30) (Y1) e

Inserting unit matrices in the form

uut =1 (6.124)
where

i

U LC _1) (6.125)
Pk '

before and after the above inverse matrix, allows us to express the inverse

matrix as
Ay Bu)_l (A|1+Bn 0 )_I
=u Ut (6.126)
(Bll All 0 lAll R Bll

Because the dipole operator r is real, the elementary definition of the super-
operator scalar product given in Eq. (6.16) can be used to write

(rj]Q) = —r|Q") (6.127)
which, together with Eq. (6.126), allows us to rewrite Eq. (6.123) as

ritde_o=2(r|Q)A;; — By '(Q|n) (6.128)

Comparing this expression to that of the CHF approach [Eq. (5.16)] shows

that these two ways of writing the frequency-independent polarizability are
indeed identical.

d. Equivalence of Length and Velocity
Oscillator Strengths

Another important and attractive feature of the TDHF approximation
(and its MC extension described below) is that the oscillator strengths com-
puted within the dipole length and dipole velocity approximations become
formally equivalent, provided that a complete basis is used in the calculation.
From Eq. (6.119) it is clear that the transition moments in the dipoie velocity
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approximation would given by

(p[0;) = <O|[p, 05 ]]0> (6.129)
which from Eq. (6.91) is equivalent to
—iCO|[[r, H],0;]|0> (6.130)

Using the matrix identity of Eq. (6.42) together with the BT theorem in the
form

<O|[[r,0, ], H]|0> =0 (6.131)
we can express the above as
(pl07) = —iCO|[r,[H,0;1]|0> = —irO|[Q* + Q,[H,0;1]|0> (6.132)

where r denotes a row vector that contains the particle—hole matrix elements
(F)me- Equation (6.132) may be rewritten, using the definitions of 0}
[Eq. (6.114)] and the A,, and B,, matrices, as

e fag Bag YLy o S 0\(Z
(pIOAJ—-r(r,r}(B“ A“)(Y)f wu(m)(o —s)(Y),‘ (6.133)

The last equality sign follows from the eigenvalue relation Eq. (6.102). Since

S 0
(rlQ")rlQ) = ”(o i S) (6.134)

we may finally rewrite Eq. (6.133) as

Z
pl0}) = —iw,t((rIQ*}(rlQ))(Y)l = —ioyr]0f)  (6.135)

where the last step follows from the definition of the excitation operator in
q. (6.114). Equation (6.135) states that oscillator strengths calculated in
he dipole length and in the dipole velocity approximation become identical
rovided that the commutator relation in Eq. (6.91) is valid. Violation of the
commutation relation [Eq. (6.91)] occurs when a finite basis is used in the
calculation. :
The TDHF approximation thus has three very characteristic features that
make it especially useful as a means for calculating excitation energies and
pscillator strengths. In ground-state calculations it indicates via imaginary
excitation frequencies if the ground state is not stable under the type of one-
electron perturbation given by the choice of 4 and B*. A singlet instability
s thus encountered if 4 and B* are chosen to be the dipole operator, whereas
riplet instabilities are obtained if A and B* are chosen to be, for example,
the Fermi contact Hamiltonian. Second, when the energy parameter E is
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set equal to zero, one obtains the same expression for the second-order
properties in the TDHF method as in the CHF approach. Finally, the
oscillator strengths calculated within the dipole length and the dipole velocity
approximations are formally equivalent. These attractive features are unique
to such an approximate theory.

3. The Multiconfigurational Extension of TDHF

In many calculations on highly correlated or open-shell molecules, it
turns out that a single-configuration reference state description of |0) is
inadequate even if optimized orbitals are used to describe |0). If the excitation
operators of interest belong to the totally symmetric irreducible representa-
tion of the Hamiltonian’s point group, the results obtained are normally
better than if one attempts to calculate properties whose operators are not
totally symmetric (e.g., triplet operators). It is well recognized, for example,
that the singlet excitation energies for a closed-shell molecule, are described
relatively well (to about 10%, accuracy) within the TDHF approximation,
while the description of the triplet excitation energies is very poor. In fact,
triplet instabilities are often encountered when using the above TDHF
method.

Approximations that go beyond the simple TDHF approximation are
therefore needed. We consider two such approaches here. The second method
outlined below is based on a RSPT analysis in which reference state |(}> is
expanded in powers of the residual electronic interaction [given by U in
Eg. (3.35)] and the projection manifold {T*} is chosen to be large enough to
guarantee that all terms in the PP are determined consistent through second
order. In light of this order analysis, it will be seen that the TDHF approxi-
mation corresponds to the approximation that is consistent through first
order in the electronic repulsion. Before presenting this RSPT treatment, we
address another approximation that goes beyond the single-configuration
TDHF approximation. This extension, which is based upon an MCSCF
description of the reference state |0, has the same three useful characteristics
mentioned above in describing the single-configuration-based TDHF
description. The multiconfigurational time-dependent Hartree—Fock
(MCTDHF) approximation thus provides a formalism in which oscillator
strengths in the dipole length and velocity approximation remain equivalent
as one ranges continuously through (MCTDHF) from a single-configuration
description (TDHF) all the way to the full-CI limit.

a. Choice of Reference Function and Operator Manifold

Having now motivated the consideration of more sophisticated reference
states, let us develop the above-mentioned approximation in some detail.
In the MCTDHF approach (Yeager and Jorgensen, 1979; Dalgaard, 1980)
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an MCSCF wavefunction is used as the reference state. The projection mani-
fold {T*} is then chosen to be the same nonredundant (see Section 2.B.7)
set of orbital and configuration space excitation [ Eq. (2.26)] and deexcitation
operators that were used for optimizing the MCSCF reference state

{T*} = {Q*,R*,Q,R} (6.136)

b. Hermiticity Problem

This choice of |0 and {T*} then permits €r; r)g to be written in a form
analogous to that given in Eq. (6.97). In computing the requisite matrix
elements, one notices that the elements giving the coupling between orbital
and configuration space operators do not obey hermiticity:

(Q*|AIR)) = (RY|A|Q*)* = <O[HQ|n) — E0|Q|n> #0  (6.137)
In the limit where one has in |0) an exact eigenstate
H|0) = Eo|0) (6.138)

the last two terms in Eq. (6.137) cancel, and the matrix representative of A
within the {T*} basis consequently becomes hermitian. Therefore, we are
certain that this nonhermitian aspect of the problem is an artifact (i.e., it
arises because we do not have an exact |0)). To force the matrix to be her-
mitian even for approximate choices of |0), we equate (Q*|H|R") with
(R*|H|Q*)*. That is, we simply require the superoperator Hamiltonian to
operate on the orbital space (Q*, Q) when the coupling elements are eval-
uated. This choice yields a propagator that for E = 0 gives the same result
for second-order properties as obtained in the coupled multiconfiguration
HF approach. An added advantage of this order of operations is that the
oscillator strengths in the dipole length and in the dipole velocity approxi-
mations become formally equivalent. If we had chosen an alternative means
of imposing hermiticity on the matrix, such would not be the case.

c. Spectral Representation of the Propagator

Inserting the projection manifold defined in Eq. (6.136) into Eq. (6.32)
gives

ey = [(r|Q*)(r|R*)(r|Q)(r|R)]
Q*|n
S A\ (A B\\'[R'|p
x(E(_A FS)+(B A)) QIn (6.139)

R[r)
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where
_(<ol[e,e*][0> <0\[Q,R+]|0>) 4
Z (<0|[R,Q+]|0> CO|[R, R*7[0) ot
=(<0|[Q,Q]IO> <01[Q.R]|0>) o
<O|[R,Q]10> <O|[R,R]|0> '

and §* = 8* and A* = —A*. The elements of, for example, (0|[Q, R *]|0>
are given by

<O|[s*r, |n><0[]j0> = <O|s* r|n) (6.142)
CO|[R., R, ]|0> = <O|[|n><0},|0> (m|]|0)> = —<m|n) = —6,, (6.143)
The A and B matrices are identical to those defined in Eqgs. (2.29) and (2.30)
and more explicitly written out in (2.42) and (2.44). Of course, now the
reference function |0) is the MCSCEF state; in the TDHF approximation it
was the single-configuration SCF state. In Problem 5.3, the A and B matrices
are evaluated for a single molecular ion, and in Problem 6.3 the data are
used to perform an MCTDHF calculation on that system.

Because the metric in the MCTDHF approximation [Egs. (6.140) and
(6.141)] has a more general form than the one in the TDHF approximation
[Egs. (6.98) and (6.99)] some minor modifications are required in the proce-
dure described in Section E.2.a. to get the propagator into spectral form.

By carrying out transformations of the MTDHF eigenvalue problem,

similar to that done in Egs. (6.102)—(6.108), we obtain the result analogous
to Eq. (6.107) (Jergensen et al., 1981)

Z+Y=EA+B) (S—A(Z-Y) (6.144)
to Eq. (6.108)
S—A) " A+BS+A) A -BIZ—-Y)=EYZ-Y) (6.145)
and to Eq. (6.109)
(A —B)}S — A)"'(A + B)S + A) (A — B)*A — B)VXZ - Y) (6.146)
=E¥A-B)"*(Z-Y)
Using these equations, a spectral ‘representation may easily be derived as
was done in the single-configuration case in Egs. (6.109)-{6.119).

d. Special Characteristics of the MCTDHF Propagator

The MCSCF reference state represents a stationary point on the energy
hypersurface. If imaginary excitation energies are encountered, for example,
in an MCTDHF ground-state calculation, the minimum point is not stable



154 6 Green's Functions

(does not correspond to a local minimum) under the type of (spatial or spin
symmetry) one-electron perturbations described by the operators 4 and B*.
Also, as in the single-configuration TDHF, the frequency-independent polar-
izability obtained in the MCTDHF approximation becomes identical to that
resulting from the multiconfiguration coupled HF approach. The proof of
this equivalence [ollows exactly the same lines as for the single-configuration
case; we refer to that proof for further details [see Egs. (6.123)-(6.128)]. The
essential points of the proof are as follows. For E = 0, Eq. (6.139) reduces to

Q*|m
-1 +

<<r;r>>e=o=[(rlQ")(r]R*)(riQ)(rlR)](g ﬁ) (::Jllr? (6.147)
(R|r)

By next inserting the unit matrix of Eq. (6.124) before and after the above
inverse matrix and then using Eq. (6.127), we can write the frequency-
independent polarizability in the form

Critveco = 2elQlRIA -8 (R0)  614n
which is identical to the expression obtained in the multiconfiguration
coupled HF calculation of Eq. (5.15). It has further been proven by Dalgaard
(1980) that the oscillator strength calculated within the dipole length and
dipole velocity approximations become identical if a complete basis is used
in the MCTDHF calculation. A proof that follows lines very similar to the
ones given in Section E.d for a single-configuration case has been given
(Albertsen et al., 1980).

The MCTDHF approximation thus has the same characteristics as the
single-configuration-based TDHF approximation. We therefore have the
possibility of determining approximate state vectors that, at any level of
approximation, show these characteristics as the number of configurations
included in the MCSCEF reference state is increased from the single-configu-
ration case through the full-CI limit. Initial calculations using the MCTDHF
approximation have yielded very promising results. We now move to describ-
ing an extension of the TDHF approximation that is based on perturbation
theory.

4. Rayleigh—Schridinger Analysis

The perturbation extension of the TDHF method is obtained by develop-
ing systematic approximations to the PP that are consistent through a
certain order in the perturbation (Oddershede, 1978). These approximations
are based upon expanding the reference state |0) in powers of the residual
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electron-electron interaction as defined in RSPT [see Eq. (3.14)] and by
choosing the projection manifolds {T; } to be sufficiently “large” to ensure
that the resulting matrix elements of the PP propagator are consistent
through the desired order.

In the EP case, our goal was to determine the primary poles (the ionization
potentials and electron affinities involving low-energy ionization of the
parent molecule) through second or third order. In the analogous PP calcu-
lations, the primary poles correspond to those possessing dominant particle—
hole nature; we attempt to determine these poles through a chosen order.
Because the residues at a given pole contain information about the transion
amplitudes for the given type of excitation, perturbation methods may also
be employed to evaluate these residues through a specified order. Further,
since the PP expresses the reference states’ frequency-dependent polarizabil-
ities, this response quantity may also be calculated consistent through the
desired order by using a PP consistent through that order.

a. Choice of Operator Space

As the unperturbed Hamiltonian, we choose the same HF Hamiltonian
as was employed in the above EP development, and we use a basis set of
real orthonormal spin-orbitals. We develop an approximation to the PP
that yields the primary excitation energies and the corresponding transition
moments (and the frequency-dependent polarizability) consistent through
second order in the residual electronic repulsion (Nielsen et al., 1980). To
determine the poles belonging to the principal excitation energies, the corre-
sponding transition moments, and the frequency-dependent polarizability
through second order, it proves sufficient to consider the truncated projection
manifold '

{T"} = {T1; T4} (6.149)
This conclusion is by no means obvious. One must, in principle, examine
the effects of Tg, Ty, etc. on the matrix elements (T*|A|T*), (B*|T™),
(T*]A), and (T*|T"*) to conclude that these higher operators can have no
effect, through second order, on the computed poles and residues of the PP
(Oddershede and Jergensen, 1977).

b. Pole and Residue Structure of the Propagator

With the above choice of the operator projection manifold, the PP propa-
gator [ Eq. (6.32)] becomes

T EI + A|TY) (TFHEI+ A|TH\ /(T
((r:r))p:=[(r|T§'}{r|'l“I)]([ HENEID Sl lT“)) ({T"")

(T4 |ET+ A|T3) (TF|ET+ ATH)) \(Ti|n
(6.150)
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Introducing the shorthand notation
M,; = (T |ET + A|T}) (6.151)

we may partition the inverse matrix of Eq. (6.150), as was done in the EP,
to yield

(Mzz Mu)—l
Mgy My,
(Mz; = Ma MMy, ™ — (Mg, — MpgMgM,,) " IM, M

=\1(- M4T41M42[M 22 M;‘tl + M;41 M42(M;; \/
—M3z{MiiM,;) " — M3 M Myo) " MM

(6.152)

By substituting the inverse matrix into Eq. (6.150) and multiplying out the
factors we obtain

Kesrye=[r|T3)— (| THMM, TP~ HE)(TS |1) — MMy (T4 |1)]
+(r|TMgJ (T4 |r)
=W,(E) + W,(E) (6.153)
where
P(E) = M3, — My MMy, (6.154)

The principal poles of the propagator occur at.the eigenvalues of P(E).
Therefore, to obtain these poles consistent through second order, we require
P(E) to be determined consistent through that same order. To compute the
transition amplitudes consistent through second order requires that the
quantity F(E) defined by

F(E) = [(r]T5) — (r|] TS MM, ] (6.155)

which contains zeroth- and higher-order factors, also be evaluated consistent
through second order. Finally, if the frequency-dependent polarizability is
to be calculated through second order, both W,(E) and the W,(E) should be
computed through that order. Let us now analyze in more detail which of
the above matrices have to be evaluated explicitly through which order to
guarantee that the above quantities are calculated consistent through second
order.

c. Second-Order Analysis of Pole Structure

We consider initially the calculation of the excitation energies that are
determined as poles of P~ !(E) [ Eq. (6.154)]. After introducing the individual
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components Q, Q*, Q*Q*, and QQ, we may carry out an order analysis
of the individual matrices appearing in P(E). We consider initially the matrix
M,,, which is expected to be the dominant contributor to P.

Mu:(ﬂQ*KrrqumQﬂ Q*|A1Q) )

(QA|Q") —-EQ|Q) +(Q|A|Q)
ES +A B
E( B+ —ES+A) (6.156)
where
S=(Q*|Q" (6.157)
A=(Q*|A1Q") (6.158)
B =(Q*|A|Q) : (6.159)

and where we have used the fact that

(Q* | Q)myums = <O|[y*m, " n]|0> =0 (6.160)

is identically zero through any order. This M,, is the same matrix that
occurred in the earlier TDHF treatment of the PP except that now |0)
represents an RSPT expansion of the reference state. As an example of how
to carry out the order analysis, we consider the S and A matrices:

Sma..'l.s o7 <0| [a . n,n S ﬁ] |0>
= (°0|[a*m,n* B1]0° + ('0|[a* m,n* B]|0"> + O(3)

= (So)mang + (S2)manp + (6.161)
where
(So)ma,ns = OmnOap (6.162)
(S2manp = ié,...piq KMKp — 45, g K™PK"™ (6.163)
¥ yd

and, as in the EP analysis, the superscripts on [0°), |0'), etc. denote the
orders of these terms. No first-order terms thus appear in S because [0'>
contains only doubly excited configurations. The elements of A are given by

Amanp = <O|[a*m,[H,n* B1]|0>
= 0|[a*m,[Ho,n* B1]|0% + C°0|[a*m,[U,n*B]]|0°>
+ 0|[a*m,[U,n* B1]]0"> + C'O|[a*m,[Ho,n* ][0 + O(3)
(6.164)
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In the A matrix zeroth-, first-, and second-order terms appear. The Ay, Aq,
and A, matrices are given by

(A0)mang = (Em — €5)Omnlap (6.165)
(A ma,np = < Pm| |nocy (6.166)
(Al}mu.nﬂ T iaaﬂ Z <JI'Y| an>K:I: P iémn Z <ﬁnl qu>Kg£
nyq nqp
T (Sz)ma.np(sn T E,ﬂ) {6167)

The B matrix may similarly be shown to contain only first- and second-order
terms B = B, , ,. The B, matrix is given in Problem 5.2 and

(B2manp = — 2 {<Bq||nm)K%; + ag |nn) K53}

—%Z<pqllnm>xﬂ—5§<aﬁllné> m (6.168)

In the term M, ,M;/M,,, the M,, matrix contains no zeroth-order terms
and since M1, = M,,, we only need keep M,, through first order and M4
through zeroth order to obtain

M2aMid My, (6.169)

through second order. The nonvanishing parts of the matrices M,, and
M, 4 become

{Cl)nmﬂu.py - <00’[a+ ﬁ+mn’ [Us p+ 7]] |00>
= 5mp<?"| |aﬁ> gt 5up<)’m| 'aﬂ>
+ 8,,Kmn||Bp> — 85,{mn||op) (6.170)
{Do)mﬂ«,pqyé —_ E ® (00|[a+ﬁ+mn’ p+q+?6]l00>
+ €0°|[«* B*mn,[Ho,p*q*y5]]|0°
= (E + 8, + & — & — E)0,,0ms08,0us (6.171)
(DU apmn,dyqp o ("'E + s¢ + 5, e Sm - Eﬂénpémqéﬂréaa (61?2)

The excitation energies as computed through second order may thus be
obtained as poles of

[Esou'Tl‘Ac;Hiz B %

—-C;by; C

B By (6.173)
&) B [—ESosz +Agi1+2

—CiDg 'Cy]
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We should also note that Eq. (6.173), when used to determine the excitation
energies consistent only through first order, reduces to the inverse matrix
occurring in the TDHF approximation described in Section E.2.

d. Second-Order Analysis of Transition Moments

When the excitation energies are determined through second order we
might also wish to determine the corresponding transition moments con-
sistent through the same order. This would require us to evaluate the eigen-
vectors of P~ '(E) and to further evaluate F(E) of Eq. (6.155) consistent
through second order. Because the eigenvectors of P(E) become energy
dependent, specialized techniques are required to determine the transition
moments (Oddershede et al., 1977).

To determine F(E) consistent through second order, we introduce the
individual components of Q *, Q, etc., which then permits the first component
[see Eq. (6.155)] of F(E) to be expressed as

(r|]Q*) = °0|[r,Q*]]0°> + ¢*0|[r,Q*J|0*>
+ CO|[r,Q*]]0% + <°0|[r,Q*]|0*> + 0(3)  (6.174)

which contains zeroth- and second-order contributions. The values of
(r|Q*)o are given in Eq. (6.100). The only [0?) terms that contribute to (r|Q *),
are those which contain singly excited configurations relative to [0°). The
matrix (r|Q‘”Q+} has no zeroth-order elements; thus from the expression
for F(E), it is obvious (because M, is of at least first order) that only the
first-order elements of (r]Q* Q™) can contribute. Explicit expressions for
(r]Q*); and (r]Q*Q7), have been obtained (Nielsen et al., 1980). The
expression for F(E) consistent through second order may then be written as

F(E) = {(r|Q+)0+2 = (I'IQ+Q+)1D(;IC|=(’]Q)0+2 = lrlQQ}I{:JE‘CI}
(6.175)

which may be used to calculate the transition moments correct through
second order. If we wish to calculate the transition moments correct only
through first order, F(E) reduces to {(r|Q"),,(r|Q)o}, which is identical to
the expression for F(E) used in the TDHF approximation. Therefore, we
again see that in the TDHF approximation, both the excitation energies and
the transition moments are calculated correct through first order.

e. Frequency-Dependent Polarizability

To obtain the frequency-dependent polarizability correct through second
order requires that the W,(E) be evaluated consistent through second order
as described previously and further that W,(E) be calculated through second
order. By introducing the individual compnents Q*Q* and QQ we can
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reduce W,(E) to
W,(E) = (r|]Q*Q*);D5 '(Q*Q*|r), + (r|QQ),D5 '(QQ|r); (6.176)

Since W,(E) contains no first-order terms, the frequency-dependent polar-
izability is thus determined consistent through first order in the TDHF
approximation [which contains no analog to W,(E)].

f. Diagrammatic Analysis

We have previously shown how the results of MBPT and the perturbative
analysis of the EP may be interpreted in terms of a set of diagrams. The
perturbative analysis of the PP may be given a similar interpretation. We
sketch in the following how the diagrammatic analysis of the PP propagator
may be carried out. Initially, we limit ourselves to considering how the
TDHF approximation may be understood in terms of diagrams. We con-
sider the TDHF PP approximation in the SCF spin-orbital basis, where it
reads

-1 +
$rieds [(rlQ+)(r[Q)](E1 i g? o —E1 +BAO # Al) Gghl)r))
(6.177)

which is identical to Eq. (6.101). The poles of the inverse matrix appearing
in Eq. (6.177) may be determined from a partitioned form of the inverse
matrix with T} + T, of Section C.4 equal to Q* + Q. The analog of Eq.
(6.45) then becomes

P~YE)=[E1 +Ag+ A, —By(—E1 + Ao+ A;)"'B,]™! (6.178)

P(E) may be given a diagrammatic interpretation by expanding the inverse
matrix as
(—E14+Ag+A) '=(—E1+Ag) "= (—E1+Ag) ‘A (—E1+Ay) !
+(—E1+Ag) 'A(—E14+Ag) A (—E1+Ag) " +- -
(6.179)

We then obtain
P(E)=E1+ Ay, + A, —B,(—E1+ Ay 'B,
+By(—E1+A) 'A(—E1+Ay) " 'B;—--- (6.180)
In Fig. 6.3 we have displayed the diagrammatic representation of Eq. (6.180)
in terms of Hugenholtz diagrams. Using the rules in Table II of Chapter 3

for interpreting diagrams with the modifications to rule 3 similar to those
discussed in Section 6.D.2.d, we may interpret the A; matrix as giving rise
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FIG. 6.3. The RPA diagram series, which can be summed to infinite order.

to diagram A in Fig. 6.3. The fourth, fifth, etc. terms in Eq. (6.180) may
similarly be interpreted as giving rise to diagrams B, C, etc. in Fig. 6.3.
The TDHF approximation to the PP propagator thus corresponds to sum-
ming the infinite series of diagrams represented in Fig. 6.3. We emphasize
that an explicit summation of this whole series of diagrams is obtained when
poles of the PP are determined as described in Section E.2.

A propagator that determines the poles consistently through second order
is determined from a partitioned form of Eq. (6.173) to be

Pz(E] = E1 +' A0+l+2 Frx CIDE‘CI =Te Bl{_E1 + AD}_|BI (6.]81}

All terms of order higher than two have been neglected in Eq. (6.181). In
Fig. 6.4 we have displayed all the second-order PP diagrams. The A, matrix
gives rise to diagrams A and B in Fig. 6.4, whereas the term —C'D, 'C,
gives diagrams C through H. The last term in Eq. (6.181) corresponds to
diagram I in Fig. 6.4. This diagram is the second diagram in the above
described TDHF series. We again stress that a determination of the poles
of the PP that contain all diagrams through second order [Eq. (6.181)]
differs from the approximation we derived in Section E.4.c, which contained
all matrices of the PP through second order. A diagrammatric interpretation
of this group of matrices would further contain many series of diagrams
that would be summed to infinite order. One of these series would be the
TDHEF series given in Fig. 6.3. We do not go further into the diagrammatic

E E G H |
Fig. 6.4. All Hugenholtz second-order PP diagrams.
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interpretation of the PP here; rather we refer the reader to the more com-
prehensive discussion given in the literature (Oddershede and Jorgensen,
1977).

PROBLEMS

6.1

1. Use the formulas for the second-order matrix P,(E) appearing in
Eq. (6.79) to express the 2 x 2 matrix relevant to evaluating the ionization
potential and electron affinities of the minimal-basis HeH* problem.

2. Using the SCF orbital energies and two-electron integrals given in
Problem 2.1, insert numerical values for the requisite integrals and orbital
energies to express each of the elements of the 2 x 2 matrix P,(E) as functions
of E.

3. Use the approximation (P,);, = 0 to compute the value of E at which
the primary ionization potential of HeH* would be expected. This is done
by using the Koopmans’ theorem estimate in the denominators occurring
in the self-energy terms and then solving for the “corrected” value of E.

4. Use the approximation (P,),, = 0 to compute the value of E at which
the primary electron affinity of HeH* would be expected.

5. Are the values of E found in questions 3 and 4 the only values of E
that make (P,),, or (P,),, vanish?

6.2 Carry out a TDHF calculation for HeH*, using the minimal basis
data of Problem 2.1. The SCF calculation was carried out in Problem 2.1,
and the matrix elements necessary for carrying out the TDHF calculation
are given in Problem 5.2.

1. Determine the excitation energies and transition moments in the
TDHF approximation.

2. Determine the frequency dependent polarizability tensor for E =0
and for E = 0.1 a.u.

6.3 Carry out an MCTDHF calculation for HeH* that has an MCSCF
reference state containing the configurations 16? and 202 and that uses the
data of Problem 2.1. The MCSCF calculation was carried out in Problem
2.6, and most of the matrix elements necessary for carrying out the MCTDHF
calculation are given in Problem 5.3.

1. Determine the excitation energies and transition moments in the
MCTDHF approximation.

2. Compare the excitation energies and transition moments obtained
here with the results of the full-CI calculation of Problem 5.1. Why are the
two sets of results identical?

3. Determine the frequency-dependent polarizability tensor for E =0
and for E =0.1 a.u. in the the MCTDHF approximation. Compare the
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MCTDHF polarizability with the coupled multiconfiguration HF result of

Problem 5.3 and the full-CI result in Problem 5.1. Why do these three results
agree? ;

SOLUTIONS

6.1

1. Because we have a closed-shell reference state, one can compute
(P,);; for i and j having m, = +1/2. The terms having spins i = o, j = f3,
vanish since |0> is an eigenfunction of S,. Let us take i and j to be a spin:

i o iyl |pan) <mnf]jy) Ciml [yo) Cyo| | jm)>
{PZJ”_éij(E—l_si) ,,?;,, e e L e A Ll L O
¥ m

Because HeH* has only one occupied orbital, the second sum above must
have y = loa, § = laf, and (because i is o spin) m = 2af. Likewise, the
first sum must have m = 200, n = 2gf3, and hence y = 1o f. Therefore,

_<itf22yqlity  <i2|11ycin] 2

(Py)ij = 6;4(E + &)

2e, — gy + E 26, — e, + E
(Pdiz = (P22 =+ 1.1(;2(4)0+6 £ 3%2?5164‘?
0.0159 0.0382

3. P ;U, = |. ——— I e B S st S
(P2 E=16562 + {984 + 16562 * 1.6562 — 3.0835

= 1.6350

This iteration process could then be continued by using this value of E
to form a new (P,),, from which a new E could be obtained.
0.00002 0.0159

4. (Py);,=0, E=02289 2
il =9, oo 1.1984 + 0.2289 * 0.2289 — 3.0835

= 02233

5. No. Shake-up ionizations occur near E = ¢, — 2¢, and E = ¢, — 2¢,.

These arise due to the E dependence of the denominators in the above self-
energy terms.
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6.2
1. The singlet excitation operator 21, + 25 1, gives rise to the overlap
Sa121 =23 1.+ 2515|251, + 25 15) = 2.00

because of the closed-shell reference state. For these excitation operators,
the A and B matrix elements given in Problem 5.2 become

(Ay1)21,21 = 21464,  (Byy)zy,21 = —0.2522
The nonvanishing matrix element of r in Problem 5.2 is
0l2(2¢ 1, + 22 1)]0) = 2¢2)2|1) = 1.0884
The TDHF excitation energy obtained from Eq. (6.109) is
E, = 1.0657
and the corresponding eigenvector is
Z = 0.7083, Y =00418,  (z]|0f,) = 1.0884(0.7083 — 0.0418) = 0.7255
2. The nonvanishing components of the polarizability tensor are
2|(z[07)]?
1

|(z]012)|’E,
EZ —(0.1)2

Kz;2)g-0 = 09878 =

€z;2Pp_0., = 09965 = 2
6.3
1. From Solution 5.3 we can form the elements of the 2 x 2 S matrix
Syt =@ la+ 2515|120 1, + 25 1) = 0|1} 1, + 151, — 22, — 2724/0)
Using the density matrices of Solution 5.3, we find
S31.21 = 2(0.9968) — 2(0.0033) = 1.9870

Sanny = (24 Lo + 25 15| [n><0)) = <0J(1.°2, + 152)[1)<0[0) = 0
Sisary = (|1 <0 |]]1> €0}) = 1.0000

A_p (24251 04248
04248 2.2643

1.5510 0.1393 0.6501 —0.0604
A—B)2 = A—B) 12 =
( ) ((}.1393 1.4983)’ ( ) (-0.0604 0.6?31)

ol 19870 00
= 00  1.0000
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From Eq. (6.109) we know that we need (A — B)'/2S™ (A + B)S™'(A — B)'/?
to find the E? eigenvalues:

0.7806 0.1393 0.7806 0.0701
_@lize-1 _ 1A _ B2 =
i (0.0701 1.4933)’ il ) (0. 1393 1 ‘4983)

Then

1.2998 1.0247
_ myli2g-1 KA —B)Y2 =
(A-B)"?S" /(A + B)S"'(A — B) (1_0247 5.1?24)

The two eigenvalues are E? = 1.0454 and E? = 54266, and the corres-
ponding eigenvectors are (0.9705, —0.2410) and (0.2410,0.9705). The excita-
tion energies are E = 1.0225 and 2.3295; (Z — Y) is obtained for each state,
according to Eq. (6.109) as

(Z-Y),=(A-8B)" uz( 0-9705) ( 0.6455)

—0.2410) ~ \ —0.2208
0.2410 0.0981
— e —_— 12 ==
ot e Y (0.9?05) (0.6386)

The (Z + Y) for each state can then be obtained from

(Z+Y)=EA+B)'S(Z-Y)

or from

E"'STYA-B)Z-Y)
to yield

0.7242 0.1100
£ (-0.2209)’ it (0.6388)

Solving for Z and Y for each state and then renormalizing (Z, Y) for each

state such that
S 0N\/Z
7Y =1=12587Z - YSY

0.6926 0.0397
Z = =
- (—0.2233)‘ i (— 0.0001)

0.1596 0.0092
b (0.9747)‘ Yaw (0.0002)

we obtain
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The desired transition moments are given by (r|0*), with

0% = Z(Q3,,[1><0]) + Y(Q24,[05<1))
The data of Solution 5.3 tell us that

(r|Q3)) = 1.1076 = —(r|Q;,)
(r]|n><0]) = —0.1551 = —(r||0><n|)

and so

1.1076

+ —3 -—
(r]0}) = (0.6926, 0.2233;(_0_1551

1.1076
) — (0.0397, —0.0001) (h0.1551)

=0.7578

Likewise,
(r|0§) = 0.0146

2. The full-ClI calculation gave excitation energies of 1.0225 and 2.3295.
which is exactly what we get here. The CI transition moments are 0.7578
and 0.0144, which are almost identical to ours. The MCSCF reference state
is identical to the full-CI wavefunction even though it contains only the
16% and 2062 configuration. This is true because the orbitals used in the
MCSCF wave function are optimized orbitals. The projection manifold
operating on |0) then yields two more linearly independent functions, which,
taken together with |0), form a three-dimensional space capable of describing
the results of the full 3 x 3 CI problem. We thus have both the exact re-
ference state and a complete projection manifold {T*}, and the MCTDHF
calculation therefore is able to reproduce the full-CI result of Problem 5.1.

2
3 w,=2 Y |elo)E - B,
i=1

0.75782 i 0.01462
1.0225 23295

E=00, oa,= 2[ ] =1.1234

S _[0.7578%(1.0225) | 0.0146%(2.3295)
T =T AR 001 54266 — 001

All three calculations have the potential of giving the full-CI result as dis-
cussed in question 2.

:l= 1.1344
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