
Chapter 6 IGreen's Functions

A. INTRODUCfION

Having now seen how methods that are based upon stationary-state
N-eIectron wavefunctions caD be used to compute stale energies and other
physical properties, we tum to examine a cIass of so-called response func-
tions or Green's functions (GFs) (Linderberg and Ohm, 1973), which permit
a direct calculation of transition properties. For example, the one-particIe
GF (electron propagator) yields ionization potentials and electron affini-
ties, whereas the two particIe GF (polarization propagator) provides us
information about eIectronic excitation energies and oscillator strengths,
which then caD be used to calculate maur other observables (e.g., polariz-
abilities and spin-spin coupling constants). The general definition of a GF
belonging to the reference stale l°) is given as

i i
~A(t); B} = += fi O(t)<OIA(t)BIO) + fi O(- t)<OIBA(t)IO) (6.1)

where O(t) is the Heaviside step function

O(t)= {1,t > O; O,t < O} (6.2)

and A and B are arbitrary operators in the second quantization form. A(t)
is the Heisenberg representation of A,

A(t) = exp(iHtjh)A exp( - iHtjh) (6.3)

and B is the Heisenberg operator at t = O.If the operators A and B contain
an even num ber of creation or annihilation operators (e.g., r+ s, or r+ t+su)
the plus sigo is used in Eq. (6.1).For operators A and B havingan odd num ber
oCsuch operators (e.g., A = r+ or r+t+u, and B = r or rut+) the minus sigo
is used. The reasons for these choices are made cIear helowo
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To understand the physical content of such GFs, we introduce between
the A(l) and B operators in Eq. (6.1) a resolution of the identity involving
a complete set of eigenstates In). By inserting these resolutions and assuming
that the states In) are eigenfunctions of H, we obtain

j

[
l

]~A(l); B} = +fi O(l)~ <OlAIn) <I1IBIO)exp i fi(Eo - En)

+ ~ O(- l) L <OIBI'~)<I1IAIO)exP [i ~ (En - Eo)]
(6.4)

n I ,

The Fourier transform of ~A(t)B}, is given as

~A; B}E = f~oo dl ~A(l); B} exp(iEljft) (6.5) r

lf we straightforwardly insert Eq. (6.4) joto Eq. (6.5) we encounter improper
integrals. For example, the first term of Eq. (6.4) gives an improper integral
of the type .,

fooodl exP[i ~ (Eo - En + E)]

To overcome ibis problem we may define the Fourier transform to include
a convergence factor exp( -ltl'1), where 'I is a smali, real, positive quantity.
After the integration is performed, we caD then take the limit '1-+ 0+ (Mat-
Luck, 1967). The Fourier trans form of the. GF may then be expressed as

I. ,,:f: <OIAII1)<I1IBIO) ,,<OIBII1) <I1IAIO)
~A;B}E = Im L. . + L. .

,,~o+ n Eo - En + E + "1 n En - Eo + E - "1
(6.6)

A physical interpretation of the GF may naw be obtained by considering
the content of Eq. (6.6). If A and B are nurrber conservir.J (i.e., they butlI
contain equal numbers of creation and al1l..:.;'atj,,: 0perators) then the
states In) musi contain the same number of electrons as the reference stale
l°) to give a nonvanishing GF. However, if A contains, for example, one
maTe creation operator than annihilation operator, then In) musi contain
N :f: 1 electrons (notice that the fact that the second-quantized H is inde-
pendent of N is naw becoming convenient). From the frequency spectrum
of ~A; B»E it is clear that the GF contains information about ~nergy differ-
ences. lf A and B are of the one-particie excitation form r+s, then poles of
Eq. (6.6) occur at the energy differences En - Eo referring to electronic

excitation energies. The residues give the overlap amplitudes <OlAI") <"IBIO),
which, for example, express the electric dipole transition probabilities when
A and B refer to the electronic dipole moment operator. If A is of the form r +

(so that B is an annihilation operator s), then the energy differences arising
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in Eq. (6.6) raIl joto Iwo classes. The lirst factor, which bas (Olr+ In) (lIlsIO)
as its amplitude, clearly bas to do with ionization potentials E~ - EZ- 1.
The second factor, involving amplitudes (Olsln)(nlr+IO), relates to electron
affinities EZ+1 - E~.

The time derivative of Eq. (6.1) may be written as

d

i'l dt ~A(t); B) = c5(t)(OI::!:A(t)B + BA(t)IO) + ~[A(t), H]B)

= c5(t)(OIBA ::!: ABIO) + ~[A(t), H]B) (6.7)

where we have used the facts that A(t) satislies the Heisenberg equation of
motion

d

il1dt A(t) = [A(t),H] (6.8)

and that the Heaviside function is the integral of the Dirac c5-function

O(t) = foo c5(T)dT (6.9)

The Fourier transform of Eq. (6.7) then becomes [the delinition of the
Fourier transform of the GF always contains the exp( -'lItl) convergence
factor, although henceforth we do not explicitly express this fact]

E~A;Bh = (OIBA::!:ABIO)+ ~[A,H];Bh (6.10)

As we see later, Ibis result will prove useful in interrelating GFs when A and
B refer to the position and momentum operator, respectively.

Although the above spectral representation of ~A; Bh in Eq. (6.6)displays
the content of its frequency dependence and amplitudes, this equation is not
actually used to compute ~A; B)I>' To do so would involve computing, by
stationary-state methods described in earlier chapters, the energies and
wavefunctions l°), Eo, 1/1),and En. The philosophy of the GF method is to
avoid doing all of these stale calculations by obtaining an equation that caD
be solved directly for ~A; B)I>' In this manner one then attempts to obtain
an object (~A; Bh) that contains (through its poles and residues) stale
difference information directly.

B. SUPEROPERATOR ALGEBRA

1. Superoperator Resolvent

To demonstrate how one goes about linding an equation that permits
~A;Bh to be directly computed, leI us return to Eq. (6.1)and rewrite the
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time dependenceof A(t)as

A(t)==exp(~ H)Aexp( -~ H)
it 1

(
it
)

2

= A + fi[H,A] + 2! fi [H, [H, A]]

1

(
it

)
3

+3! fi [H,[H,[H,A]]]+'"

(
it ~

).. ==exp fi II A (6.IIJ

where the so-called superoperator il (pickup and Goscinski, 1973) is defined
by

HA == [H,A]

In terms of this superoperator, {A(t); Bl; can be expressed as

(6.12)

{A(t);Bl; = +~O(t)(°l(expG tH)A )BIO)

+ ~ O(-t)(OIBexpG til )AIO)
(6.131

[notice t "it the extra parentheses are needed in the first term on the right-
hand side v' Eq. (6.13) to ensure that il only operates on AJ. The Fourier
transform can 1 ""Wbe carried out to yield

{A;Bl;r; = :t (OI«Ef + O)~IA)BIO)+ (OIB(Ef+ Ol-lAlU> (6.141

where the unit superoperator is defined by

fA ==A (6.151

lt is conventional to combine the twa term s present on the righl-hand
side of Eq. (6.14) into a single factor by introducing the so-called super-
operator binary product. This product, between twa operators C and D, is
defined as

(cjD) ==(aIC+ DIO) :t (OIDC+IO) (6.16)

with the plus sigo pertaining to cases when C and D conlain odd numbers
of creation or annihilation operators (e.g., r+ s+t or u). With this definition,
the above GF caD be written as

{A;Bh = (B+I(El + il)-IIA) (6.17)
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In writing«A;Bh in this waJ, we say that we have expressed the GF as a
superoperator matrix element of the superoperator resolvent (El + R) - 1.

2. CompleteSets of Operators

The tools needed for evaluating the above matrix elements of the super-
operator resolvent are based upaD the idea of operators (of the same "type"
as A and B+) forming complete sets (Manne, 1917; Oalgaard, 1979).For
example, if A and B+ are number-conserving operators (e.g.,r+s), then the
set of operators (IX> P > y > .. . ; p > q > r > . . .)

{h} = {l,P+IX,p+q+PIX,p+q+r+ypIX,...} (6.18)

when operating on an N-electron ket corresponding to a single determinant
in which <P,.. <PP' <PY' . . . are "occupied" and <pp,<Pa,<P". . . are not occupied,
forms a complete set of N-electron kets. Similarly (IX>P> y > . . . ;p >
q> r>"')

{h} = {r+,r+p+IX,r+p+q+ap,...} (6.19)

and

{h}= {a,apr+,apyr+s+...} (6.20)

form, respectively,complete sets of(N :t 1)-electronkets when operating on
the above "referenceket". Manne and Dalgaard have shown that the above
sets of operators form complete sets of N- and (N :t 1)-electronkets even
when operating on amulticonfigurational referencestale l°) as tong as the
referenceket (whichdefinesa, p, y,... ; p,q,r,...) is not orthogonal to l°).

The above results having to do with completenessof operator manifolds
permit us to write a resolution of the identity as

1 = L hklO) (Olh +hIO)k-ll (Olh,+
k/

(6.21)

where the set {hk} is aDYof the above three sets of operator manifolds and
(O

l

h + hlo);, 1 is the k, l element of the inverse of the matrix having elements
(O hi:h/lO). The completeness relation mentioned above cannot be used in
a straightforward manner in manipulations having to do with the super-
operator resolvent because the superoperator hillary product appearing in
«A; Bh is more complicated than the scalar product occurring in Eq. (6.21).
The complete set ofoperators for N- and (N :t l)-electron kets may,however,
be used to generale a resolution of the identity that caD be used within the
superoperator hillary product. The completeness relation for a superoperator
hillary product may be written as

r= IT+)(T+IT+)-l(T+1 = LITt)(T+IT+);,l(T'+1
k/

(6.22)
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where T + for one-electron creation or annihilation operators A and B+

becomes (a> P> y > . . . ; p> q > r> . . .) (Dalgaard, 1979)

JT +
} - {T+' T + . 'r + .

}l - l' 3, 5""

= {p+,a+ ;p+q+a,rx+p+p;p+ q+r+ap,a+ P+y+pq;. ,.} (6.23)

For number-conserving operators A and B +, {T+} becomes

{T+} = {Ti; T4;...} = {p+a,a+p;p+q+ap;a+p+pq,...} (6,24)

To better appreciate the meaning of Eq. (6.22), we write in detail same
e'ements of the "overlap" matrix (T: IT,+) for the one-electron addition
operator case (recalI the definition of the "occupied" and "unoccupied"
orbitaIs, qJa,cPr)

(a+ Ip+) = (Olap+ + p+ala) = (jap = O

(a+ Ip+q+P) = (Olap+ q+p + p+q+palO)

= (Olp+ q+ ap + p+ q+palO) = O

(r+ Ip+ q+ a) = (Olrp+ q+a + p+q+ariO)

= Orp(Olq+aIO) - brq(O!p+aIO).

(6.25)

(6.26)

(6.27)

It is elear ~-omthe above equations that, in the superoperator binary produet,
each of the I :-rerators contributes both to the (N + 1)- and to the (N - ')-
electron aspecL of the problem. For example; in writing the binary produet
(,.+Ip+q+a), we (md (Olr, which refers to the adjoint of an (N + I)-electron
ket, whi'e riO) becomes an (N - I)-e'ectron ket.

3. The Superoperator Resolvent

In summary, the idea of a complete set of operators has been extended to
the superoperator binary product so as to introduce the powerfu' COllCept
of a completeness relation. This comp'eteness relation can now be exp'oited
to derive an equation tha! permits {A; Blh to be expressed in a computa-
tionally moce usefu' form (Simons, 1976). We begin by writing the identity

(T+ IT+) = (T+I(Ei + H)(Ei + H)-IIT+) (6.28)

which, by inserting the reso'ution of the identity in Eq. (6.22), becomes

rr+ IT+) = (T+IEi + RIT+)(T+ IT+)-I(T+I(Ei + R)~ lIT+) (6.29)

This equation can be arranged to yield

(T+I(El + H)-IIT+) = (T+IT+)(T+IEl + HIT+)-I(T+ IT+) (6.30)
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The operators B+ and A, which define the desired GF in Eq. (6.17),when
operating on 1O),caD be expanded in terms of the set {T+} operating on
l°):

AIO)= T+IO)(T+ IT+)-l(T+ lA) (6.31)

and the GF in Eq. (6.17) may thus, using Eqs. (6.30) and (6.31), be written
as

(A;B}E = (B+I(Ef + H)-lIA)

= (B+IT+)(T+IT+)-I(T+I(EI- H)-IIT+)(T+IT+)-I(T't/IA)
= (8+ IT+)(T+IEI + HIT+)-I(f+ lA) (6.32)

/

Equation (6.32) constitutes the working equation for deriving approximate
forms for the GF. Notice that the original GF, which involved the matrix
representative of an inverse superoperator (El + H)-I, bas been expressed
in termsoftheelements(B+ IT:),(T,+ IA), the"overlap" (T: IT,+),and matrix
elements of the superoperator Hamiltonian (T: IRIT,+). These latter two
matrices are analogous to the expressions that give ordinary resolvent
matrix elements in terms of configuration interaction Hamiltonian matrix
elements and configuration overlaps.

4. Pole and Residue Analysis

From Eq. (6.32), which expresses the desired GF, it is elear that the pole
structure (values of E at which (A; B}E bas poles) is determined entirely
by the ma trix (T+ lEI + RIT+)-I. This matrix bas poles when det[(T+IEI +
RIT+)] vanishes. Thus, the problem of finding the poles of (A; Bh, which
give ionization or excitation energies, caD be solved by examining the
superoperator generalized eigenvalue problem

2)T:IRIT,+)U/j = -Ej L(T: IT,+)U/j
/ /

(6.33)

which in matrix notation may be written as

Au. = -E.SU jJ J

The poles of (A; Bh occur thus at the eigenvalues E = Ej of Eq. (6.33)
and the eigenvectors enter in the evaluation of the corresponding residues.
To iIIustrate how the residues caD be determined, we rewrite the GF in
Eq. (6.32) so as to be in spectral form, assuming that Ais hermitian and that
S is positive definite (this is not always the case as we discuss in Section
6.E.2.a).Premultiplying Eq. (6.34)by S-1/2 gives

(S-I/2As-l/2)(SI/2Uj) = -Ej(SI/2Uj)

(6.34)

(6.35)
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The vectors Vj = SI/2Vj are ordinary eigenvectors oCH' ==S-I/2f!S-I/2, and
therefore H' caD be expressed in spectral form as

~, ~ +
H = L..Vj( - Ej)Vj

j
(6.36)

Because the Vjare eigenvectors of a hermitian matrix (H'), they form a
unitary matrix (V),which diagonalizes H'. Thus, one caD write the resolvent
ma trix as

(E~ + H)-I = S-I/2(Et + HrIS-I/2 = S-'/2V(E1 - E)-IV+S-I/2

= U(E1 - E)-IU+ (6.37)

where the diagonal matrix E contains the eigenvalues Ej'
By using Eq. (6.37), the expression for «A; B»,.; given in Eq. (6.32) caD

be rewritten in a form that clearly displays its pole and residue structure:

«A; Bh = (B+ IT+)U(E1 - E)-IU+(T+ lA)

Thus, the residueat pole Ej is given by

I (B+ IT:)UkPji(T,+ IA)
k.1

(6.38)

(6.39)

C. Al>l:10XIMATION METHODS

1. Operato~ Manifold Truncation

Although the above equations, in principle, permit one to find the poles
and residues of aDY GF (defined by the choice of B+ and A), it is never
really possible to employ a complete set of operators {T:}. Therefore, one
is faced both with mak ing some physically motivated choice of a finile
number of soch er:} operators and with choosing a reasonably accurate
reference wavefunction lO). Clearly the choice of lO) dictates which excila-
tion or ionization energies one obtains erom the poles of «A; B:h. The
choice or B+ and A determine whether one is interested in single-particie
excited states (A = j+j), primary ionization potentials (A = j), or shake-up
ionization potentials (A = !je). For example, by using as 1°) the 2S2 con-
figuration and A =r, one caD obtain ionization energies to the 2s22p or
2S1 and other anion and cation 'states; with A = m+(l, the 2sIlp excited
states may be reached. The truncation of the complete operator set {T:}
then determines, together with the approximation marle to get 1°), the
accuracy to which the resultant poles of «A; B~E describe the excitation
or ionization energies and their corresponding residues. Choices or {T+ }
most, of course, take joto consideration the srace and spin symmetry of
the states generated by T+IO). As a res~lt, th.e inherent symmetry or each
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T+ most be eoupled to that of l°) to give puce symmetry excited or jonie
stalego Beeause the reasons for mak ing specifie ehoices of A and B+ are
rather elear, we now foeus on explaining the strategies for ehoosing l°) and
truneations of {T:}. In the following seetions and in onr treatment of the
polarization propagator, we eonsider iwo different approaehes for attaeking
ibis problem. The fiest is based on a perturbation anaJysis wbite the seeond
is based on seJeeting a muJticonfiguration referenee stale and an appropriate
projeetion manifoJd.

2. Order Analysis

The most widely used, and historically oJder, approaeh involves pertur-
bation analysis ofthe GF using RSPT to obtain elements of(T+IEI + RIT+)
and (B+ IT+)(T+ lA) eorreet through a ehosen order (order is then assumed
to be related to accuracy). By decomposing the electronic Hamiltonian H
and the reference wavefunction l°) in perturbation series

H = Ho + V (6.40)

l°) = 1°°) + lO') + 1°2)+ . . . (6.41)

one then attempts to evaluate (T: IEl + R ITt) to sufficiently high order to
guarantee that the poJes of primary interest are obtained accurateJy through
a chosen order. If one is algo interested in calculating residues that are
accurate through some order, then the chosen operator manifold and
referenee stale l°) musi be taken to suffieient size and order to guarantee
this. We return to the problem on how to ehoose {T+} so as to determine
primary poles and residues accurate through a ehosen order in Section
6.c.4.

3. Hermiticity Questions

Earlier in this ehapter, we noted that the question of the hermitieity of
(T: IR ITt) bad tl? be examined in individuaJ eases (i.e., it was not auto-
matieally vaJid). When a perturbation expansion is used to determine the
reference stale, we may moce explieitly stale the conditions under which
the matrix is hermitian by examining the difference between the (kl)th and
the compJex conjugate of the (lk)th element of the superoperator
HamiItonian. When ibis differenee

(T:IRIT,+) - (T'+IRIT:)* = <OI[[T,+,TkJ,HJIO) (6.42)

is equaJ to zero, the superoperator Hamiltonian is hermitian.
When the referencestale l°) is determined through a certain order n in

RSPT, (1O)"= Ii: °10i» the Schrodinger equation is solved through the
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same order:

RIO)n = EnlO)n+ O(n+ 1) (6.43)

where En = LI=OEli). Inserting (6.43) joto (6.42) then states that Eq. (6.42)
is zerb through order n and that, as a result, the superoperator Hamiltonian
matrix is hermitian through that same order. This theorem is quite useful
for iwo reasons. First, it guarantees that the superoperator Hamiltonian
matrix will have no accidental or spurious nonhermitian terms ifit is properly
calculated. Second, it is onen easier to compute (TtIRIT,+) tban (T,+IR!Tn
(e.g., (p+q+allll"+) is easier than ("+IRlp+q+O()because the latter elemenls
require that the Hamiltoniao be commuted with p+ q + ex).Thus, we caD
choose to calculate the "easier" matrix elemeots and to theo obtaio the others
through hermiticity (i.e., by equating the complex conjugate of the former
to the I t.er).

4. ' 'perator Space Partitioning

We:. ~xtgo joto moce detail concerning the explicit evaluation of «A; B/h
for A = '~+, B+ = 1+ [referred to as the electron propagator (EP) or one-
particie J F] and for A = e I, B = i+j [referred to as the polarization
propagator (PP) or iwo-particIe GF]. However, it remains for us lo show
one moce approximatioo step that is onen employed in searching for the
poles of (ES + H)-1 in Eq. (6.37). Because, according to Eq. (6.38), all
element s of ibis inverse matrix possess poles at all of the Ej, it is possible
to search for the desired poles by computing a single element or a submatrix
of (ES + H)-l. That is, if the operator manifold is partitioned joto, sar, iwo
classes {T:} = {;rn + {T,;}, then because (ES + H) blocks joto four
submatrices

(ES + A)= (ESaa + Aaa ESab + ~ab )ESba + Aba ESbb + Hbb

one can solve for aDYelement(s) of (ES + A)-l in terms of the above four
submatrices. For example, it is easily show n that

(ES + H),;~.l= [(ESaa + Aaa) - (ESab + Aab)(ESbb + Hbh)- J(ESha + Hba)]-I

(6.45)

(6.44)

Even if the space {T/n includes a single element, if treated properly and to
all orders, Eq. (6.45) will yield all the poles of (ES + A)- 1.

It is, of course, natural to wonder both why one would be 'interested in
so partitioning (ES + H)- J and what ibis bas to do with an approximation
scheme for calculating «A; Bh. It onen toros out that if the sels {T:} and
[T,n are chosen properly, all the "olf-diagonal" elements (ESab+ Hab)
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(and hence ESba + Aba) contain only terms that Breof fiestor higher order,
whereas (ESaa + Aaa)contains zeroth- and (perhaps) higher-order terms. If,
therefore, one restricts the search for poles to energy ranges in which (ESbb +
Abb)-1 is not elose to being singular, then the term (ESab + Aab)(ESbb+ Abb)-l
(ESba + Hba)caD be assumed to be of second or higher order. This restric-
tion of the energy search range is often motivated by knowledge that the
zeroth-order poles of(ESaa + Haa)-l Bre good approximations (e.g., through
Koopmans' theorem for the IP) to the desired poles. If one is interested in
calculating poles that Bre accurate to, gaJ, second order, then the second-
and higher-order pieces of (ESab + Hab)and the first- and higher-order
pieces of (ESbb + Hbb)-I caD be neglected. In this waJ, one is often able to
greatly simplify the calculation of certain poles of «:A;B:h [those far erom
the singularities of (ESbb + Hbb)in the above example J.

Given a choice of {T:} and {T:} that permits a pole (say Ej) of «:A; B'h
to be evaluated through a certain order, it still remains to examine whether
the same partitioning will yield residues, which are given in Eq. (6.39),
accurate to SOfie chosen order. Thus, if (B+IT:) and (T:IA) are of zeroth
and higher order, whereas (B+IT:) and (T:IA) Bre of fiest and higher
order, it is convenient to so partition {T:} since the contributions to the
desired residues caD moce easily be order analyzed. This point is marle more
elear when analyzing the residues of the polarization propagator in Section
6.EA.

5. Nonperturbative Approaches

The perturbation theory approach to computing approximations to
«:A;B»" bas been widely used with significant success. However, its funda-
mental premise (that U is "smaIr') is known to break down under circum-
stances that are relatively widely appreciated (e.g., for Xl LgH2 at large
internuclear distance, the contribution of the la: configurationcan not be
accurately represented by RSPT). For this reason, researchers have begun
to explore the possibility of systematically calculating GFs in which the
reference stale lO) is taken to be of the MCSCF form. The MCSCF nature
of lO) turns out to be very convenient in a GF analysis because the GBT
results in hermiticity of certain blocks of the (T: IRIT'+) matrix.

The primary formai difficulty that arises in implementing such MCSCF-
based GFs bas to do with developing systematic procedures for truncating
(and perhaps partitioning) the {T:} operator srace. Because we have now
lost the concept of order, we must turn to SOfie other criterion for choosing
aD appropriate operator manifold. In the rew deve1opments of the MCSCF-
based e1ectron (Banerjee et al., t 978) and polarization propagators (Yeager
and ]Clrgensen, 1979; Dalgaard, 1980) that have been marle to dale, the
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{T:} manifold was chosen by examining the functions T:IO) and T.IO),
which result from the application of the T: operators to l°) as they occur
in the superoperator binary product. Decisions wece then marle to guarantee
that these functions contained an ofthe dominant singly and doubly excited
configurations needed to yield pro per orbituJ relaxation and electron
correlation (or bond-breaking) effects, respectively. For example, the

. operator manifold {T:} = {,.+s,s+,.".> s; 1")<°1,1°)</11}bas becHused to
express an MCSCF-based PP. The stale projectors 1")<01 and 1°)<"1 can
be viewed, when they act on lO), as compact representations of the set uf
{T:} operators given in Eq. (6.24). It is thus possible to choose another set
of operators than the one of Eq. (6.24) to describe accurately the poles and
rt'c;iduesof the PP. The decision to choose one truncation of {T:} over the

'Iler is usuany based upon considerations involving the dimension
of the resulting (T+IHIT+) matrix and the ease of calculation ofthe requisite
superoperator matrix elements. The fiest choice described above (involving
the stale projectors 1")<°1,10)<"1)seems to be especially promising because,
tS Dalgaard hus demonstrated, .this set of operators yields a PP whose poles
i'.1d residues automatically guarantee equality between electric dipole
transition moments computed within either the so-called length or velocity
representations. This is especiany convenient because one then bas a con-
tinuous range [flam the single-configuration time-dependent Hartree-Fock
(TDHF) or random-phase approximation (RPA) through the present
MCSCF case to the fun CI] of PP approximations ulI of which preserve
their lengthfvelocity equivalence. Another reagan for choosing the above
set of operators for use as {T:} lies in the fact that the resultant (T: IHIT,+)
matrix elements ale no dilferent than those arising in the original MCSCF
calculation of lO> [e.g.. (,.+sIHII,,><Oj) arises in <OIU.[H.S]]IO> of Eq.
(2.24)]. Also, if one wece to consider the elfect of an external one-eIectron
perturbation on the MCSCF stale 1°), one would find the same operators
{,.+s.s+",I"><OI.IO><,,nappearing naturally in the response of lO> to the
external perturbation, as in coupled multiconfigurational HF.

6. Discussion

Because of the high research °activity level on how to use an MCSCF
reference in the GFs (EP and PP), it is not presently elear how to optimally
choose truncated sets of {T:} operators. It is likely that many workers will
carry out test calculations involving mafiJ choices of the pertinent operator
manifolds before ibis situation is improved. Moreover, questions concerning
when and how to partition the resulting (T:IHITt) matrix so as to redlIce
the dimension of the matrix whose poles ale to be found remain unanswered
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for the case oCan MCSCF reCerenceCunction.Again, what is missing is same
concept oCorder (or sile or importance) in terms oCwhich to make decisions
about how to partition the operator maniCold. Il is aur opinion that signiC-
icant progress will be marle on these important questions within the near
Cutureand that, as a result, MCSCF-based GF methods will become common
tools in the quantum chemist's library.

Having given an introduction to the Cundamental properties oCGFs and
to the techniques that are used to obtain GFs whose poles and residues are
accurate to a chosen precision, we naw move on to consider the commonly
used EPs and PPs in same detail. We should mention that the resulting
working equations arising in the EP and PP cases have algo been derived
through the so-called equations-oC-motion (EOM) Cormalism (SchaeCerand
Miller, 1977, Chapter 9). This EOM Cormalism Cocuses on setting up the
superoperator generalized eigenvalue problem oCEq. (6.33) and, as a result,
is equivalent to the propagator development herc. We do not enter joto a
closer discussion oCthe EOM development herc because, for the EP and
PP treated below, this tool offers no new insight or convenience.

D. THE ELECfRON PROPAGATOR

If we choose the A and B+ operators to be oCthe one-electron addition
form (r+,s+), then the GF {A;B»E is known as the EP:

{r+ ;S»E = (s+I(El + 1/)-llr+) ==Gsr(E) (6.46)

This choice oC A and B+ is marle because we are interested in studying
primary ionization events [ionization potentials (Cederbaum, 1973; Pickup
and Goscinski, 1973; 0011 and Reinhardt, 1972; Purvis and Ohm, 1974)
and electron affinities (Simons and Smith, 1973; ]ergensen and Simons,
1975)], which may be reasonably described through acting with a single-
electron operator (r+ or r) on the reCerence stale 1°). To obtain computa-
tionally useCulexpressions for G,,(E) specific choices must be marle for the
reCerence stale l°) and for the operator maniCold {T+} in Eq. (6.32). We
des'cribe a CewoCthe most commonly employed choices oCthese quantities
and the resulting GF.

1. Koopmans' Theorem

The simplest approximation to the EP is obtained by taking the reCerence
stale to be a single configuration HF waveCunction and the projection
maniCold to be

{T+} = {Tt} = {ex,p+} (6.47)
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..

The EP in Eq. (6.32) then reads

- + + + + («+IEI + BI«+) (p+IEI + BI«+))
-I

(«+1"+)G... - «5 1« )(s Ip )) (p+IEI + BI«+) (p+IEI + Blp+ (p+I"+
(6.48)

The matrix elements appearing in Eq. (6.48) can easiJy be evaluated because
\...fthe single-determinant nature of 1°) :

(5+ 1111+)= <01[5,"'+]+10) = «>sm

(5+ Ip+) = «>sfl

(P+IEI + I1ly+) = «>flyE+ <OI[P,[H,y+]]+IO)
= E«>fly+ Itfl)' + L<Pkllyt)<oletIO)

kI

(6.49)

(6.50)

= (E + By)«>fly (6.51)

(m+IEI + RIIt+) = (E + Bm)«>"," ({j.52)

(III+IEI + Rlcx+)= O (6.53)
Here {Bj}denotes HF orbital energies. Using these results, Eq. (6.48) may be
expressed as

Gsr = L «>sm«>rm+ L «>sy«>ry
m E + Bs y E + Bs

By comparing the spectral representation of the GF in Eq. (6.6)with Eqs.
(6.48) and (6.54) we see that the pole of Eq. (6.54) at E = -Bm represents
an approximation to the electron affinity,wbiJe the pole at E = - Br COf-
responds to an ionization potential. The residue (the square or the transition
amplitude) at E = - Bm is «>smc)r""while the residue at E = - Br is c)s)'c5.r.
Ali transition amplitudes corresponding to primary ionization events thus
become equal to unity at this level of approximation. The above resull
expresses the EP analog of Koopmans' theorem. To go beyond Koopmans'
theorem, heller choices musi be marle for lhe reference stale and operator
manifold.

(6.54)

2. Rayleigh-Schrodinger Order Analysis

As discussed in Section A, RSPT has been widety used to develop syste-
matic approximations to G(E). Here the unperturbed I-Jamiltonian Ho is
tak en to be the HF Hamiltonian [Eq. (3.34)] and the orthonormaI basis
spin-orbitals are HF spin-orbitals having orbital energies Bj:

HO = L Bjj+j
j

(6.55)
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The reference function lO) caD be expressed, as in Chapter 3, as a perturba-
tion series in powers of the residual electron-electron interaction. The EP
is then used to describe the primary ionization events consistent through a
certain order by expanding the reference stale in powers of the fluctuation
potential and by choosing the projection manifold of Eq. (6.23) to be suf-
ficent1y large, the meaning of which will be discussed later. In this section,
we show how to determine the primary ionization events consistent through
zeroth, fiest,second, and third order. To do gO,it proves sufficient to consider
the truncated manifold

{T+} = {Tt;Tn. (6.56)

This conelusion is by no means obvious but should become elear shortly.
One must, in principie, examine the interaction between Tt, Tj and the
T;, Ti, etc., operators to conelude that these higher operators have no
etTect on the poles deseribing the primary ionization event through third
order (Redmon et al., 1975).

With the above choice of the projection manifold, the EP of Eq. (6.32)
takes the form

(
A e

)
-l

(Tt Ir+»)Gs,(E)= «s+ITi)(s+ITj» eT M (Tj Ir+)
(6.57)

where the matrices in Eq. (6.57) ale defined as

A = (TtlEf + BITi)

C= (TjlEf+ RITi)

M= (TjlEf + RITj)

(6.58)

(6.59)

(6.60)

The poles of the GF ale determined entirely by the inverse matrix of Eq.
(6.57). Since OUTinterest is in describing the primary ionization events, we
partition the inverse matrix as in Eqs. (6.44) and (6.45) with T: = Tt, and
T: = Tj. We then determine the poles that describe the primary ionization
events erom the partitioned form of the inverse matrix

p-I (E) = (A - eTM-IC)-1 (6.61)

By using H = Ho + U [see Eqs. (3.34) and (3.35)] and lO) = 10°) + 101)
+ . . ., we may carry out a detailed order analysis ofeach ofthe four matrices

A, 'l\ C, and M. For example, we write A as
00

A= L Aj
i=O

(6.62)

where the tabel i indicates the order of the contributions to the A matrix.
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Below we show all the contributions to the matrix A through third order:

.. (AO)jk= E(Ool[j,eJ+IOo) + (Ool[j,[HO,k+JJ+IOO) = (E + I:j)c5kj

A1=A2=O

(6.63)

(6.64)

(A3)jk= (011[j,[U,eJJ+101) + (021[j,[U,eJ+IOO)

+ (Ool[j,[U,eJJ+IO2) = I(jillk/) (I K~~K~~- IK~?K~?)il a> f/ q> p
p a

+ I«jbllkp) +(jpllkb»K~ (6.65)
pll

where the perturbation theory correlation coeillcients are given in Eqs. (3.53)
and (3.55). It should be noticed that both Al and A2are identically zero. This
ract will be sItowo to lead to the conclusion that the Koopmans' theorem
approximation to G(E) is accurate through first order. We algo list belowali
ofthe matrix elements ofthe C and M matrices, which are required to evaluate
P(E), and hence to obtain poles or G(E), through third order:

Co =0

(C1)pqa,j= (OOI[<x+ap,[U,j+JJ+IOO)= (pallj<x)

(Cl>af/m.j= - (aPlljl1l)

(C2)pqa.j = t I (iallby)K~~+ L [(imllyp)K:~ - (imllya)K~;J
1'11 ym.

(6.66)

(6.67)

(6.68)

(6.69)

(C2)af/m.j= -t L (imllpa)K~~+ L [(iyllpa)Kp':- (iyllpP)K:':l (6.70)
pq yp

(Mo)nma,qpf/ = bnqbmpbaf/(E + 6n + 6m - 6a)

(MO)lIy';,af/q= bllabyf/bpq(E + 611+ 61' - 6p)

(MO)nma.yllp = O

(6.71)

(6.72)

(6.73)

(Ml )nrna,qpf/= - bqn(mPllpa) - bpn.<nPllaa)

+ bqm(lIPllpa) + baf/(l1IlIllpa) + bpn(IIIPlla!X)

(Ml>IIJ'Poaf/q = byf/«(jallap) + b,sa(yaIIPp)

- bJ'a(baIIPp) + bpq(byIIPa) - b,\f/()'allrxp)

(M l)nma.,sj'p= O

a. Pole Structure tllrougll Secolld Order

The poles or the EP consistent through zeroth order are determined by
including all zeroth-order terms in P(E) [Eq. (6.61)]. Since C contains no
zeroth-order contributions, we find that

Po(E) = Ao

(6.74)

(6,75)

(6.76)

(6.77)
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which is the Koopmans' theorem result ance again. A determination of P(E)
through fiest order would not contain any moce terms than are already in Ao
since AI = Oand Co = O.The lowest-ordercorrection to Aogivenby CTM- JC
occurs in second order. In reaching this conclusion, we used the fact that the
order of a term that is a product of several matrices is determined by adding .
up the individual orders of the matrices appearing in the term. The term
C~MOICI would thus have been offirst order irGo bad not vanished. An EP
that contains only the Ao matrix is identical to the EP obtained in Section
6.0.1 and results in Koopmans' theorem-level estimates of electron affinities
and ionization potentials. The success ofusing Koopmans' theorem to assign
peaks in photoelectron spectra relies on the fact that corrections to Koop-
mans' theorem fiest appear in second order.

Proceeding naw to compute all terms in Eq. (6.61) through second order,
we find

P2(E)= Ao- clMoJcJ (6.78)

since A2 = O. In all of the matrices in P2(E), only the zeroth-order part of
the reference stale 10°) contributes, as can be seen by examining Eqs. (6.66)-
(6.76). Inserting the expressions for the individual matrix elements of CI and
Mo given in Eqs. (6.67), (6.68), (6.71)-(6.73) joto Eq. (6.78) gives explicit
expressions for the elements ofPiE):

[P2(E)]jk = (E + t:j)c5jk- L: (jallpq)(pqllka)
p>q E-t:", + t:p + t:q'"

'"

- L: (jpllap)(aPllkp)
p E + t:",+t:(J-t:p

"'>/1

(6.79)

Such second-order EPs have been used (0011 and Reinhardt, 1972; Purvis
and Ohm, 1974) to compute atomie and molecular ionization potentials,
electron affinities, and even eIectron-atom shape resonance positions and
lifetimes with som e success. Based uran the experience gained to dale, how-
ever, we cannot expect the accuracy of this approach to be better than
:!::O.5eV, even for systems that are described reasonably well by a single-
configuration reference function. Often, this numerical accuracy is not satis-
factory and hence the above formalism must be advanced to higher order (or
replaced by another development that does not depend uran the Rayleigh-
Schrodinger order concept). An example of such a second-order EP calcu-
lation is given in Problem 6.1.

b. Pltysicallnterpretation

The physical interpretation ofterms arising in clMo JCI in terms of orbital
relaxation and electron pair correlation effects bas been carried out by several
workers. To give same feeling for the physical content ofthe terms in (P2)ij,we
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examine the diagonal i = j = t term, which would be expected to be the
dominant contributor in the case of adding an electron to spin-orbital 4J"
Then, through second order, erom Eq. (6.79) we have

(P ) - E " l<tmIICltJ)12
211-&,+ + L.

a.>p.m&m+C,-Ca.-Cp

- L l<tClllta)12- L l<tClllpQ)12
q*';a. Cq- Ca. p>q*'Cp+ Cq - c,- Ca.a.

(6.80)

Clearly this term will vanish (G will have a pole) near E = -&" which is the
Koopmans' theorem estimate. The correction to Koopmans' theorem ex-
pressed in the three sums occurring above caD be given physical meaning in
the following manner. The second sum gives the orbital relaxation contribu-
lian to the jon-neutral energy difference. By expanding the HF orbitais ofthe
jon in terms ofthose ofthe neutral and then computing the ion'senergywith .
these orbitais correct through second order one could derive this term within
a wavefunction picture (pickup and Goscinski, 1973).The fact that this sum
bas an orbital energy denominator involving oni y a single orbital excitation
energy (6q- ca.)bas to do with the fact that, in a configuration interaction
language, this term arises erom single spin-orbital excitations (4Ja.--+4Jq).The
numerator l<tClllta)12caD be identified as the square of the perturbation
matrix element coupling orbitais 4Ja.and 4Jq.The perturbation is the coulomb
and exchange potential caused by the electron that bas been added joto 4J"
The third sum in Eq. (6.80) gives the approximate correlation energy of an
eIectron in 4J,with the remaining N electrons (in 4Ja.)and hence bas to do with
double excitations (4J,4Ja.--+4Jp4Jq),which would arise in a CI description of
such pair correlations. Finally, the first sum describes the changes in the
correlation energiesbetweenpairs of orbitais 4Ja.,f/Jpdue to the fact that spin-
orbital 4J,is occupied in the jon (and hence unavailable for correlating f/Ja.and
4Jp),but was not occupied in the neutral paTent molecule.

c. Tllird-Order Al1alysis oj Pole Structure

To obtain the expression for P(E) that contains all terms through third
order (Simons and Smith, 1973; jorgensen and Simons, 1975; Cederbaum,
1973), we introduce the matrices given explicitly in Eqs. (6.63)-(6.76) joto
Eq. (6.61)and neglect the fourth-order terms. This allows us to write Eq. (6.61)
as

P(E) = Ao + AJ - q(Mo + MI)- ICI - C1(Mo+ M1)-IC2

-C1(Mo+MI)-IC1 (6.81)

The inverse matrix (Mo+ MI)- l caDfurther be decomposed joto orders by
performing the expansion

(Mo + M1)-1 = Mol - MoiMIMoI + Mo,IMIMoIMIMo. +... (6.82)
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which caD be used in Eq. (6.81) to identify tht; ~--MSto keep through third
order:

PJ(E) = Ao + AJ - CTMolCI + CIMol~. .MOICI
- CIMi)IC2- cIMo ICI (6.83)

At this third-order level of approximation, the EP bas been sueeessfully
applied to a large number of inorganie and organie moleeules. The ionization
potentials (Von Niessen, et al., 1979) and eleetron affinities (Simons, 1977)
thus obtained are usually reliable to within :1:0.3eV.

d. Diagrammatic AllalY$is

The derivation of the EP eonsistent through a certain order may alterna-
tively be performed in a waJ very similar to that used in MBPT to express
the staLe energy and wavefunetion. As in MBPT, the result is expressed in
terms of a set of diagrams. In this seetion we give the results of performing
sueh a diagrammic perturbation analysisofthe EP. The eontribution to P(E)

beyond the (E + tj)(;jj is, in the diagrammatic analysis, referred to as the self-
energy or optical potential matrix E(E). The self-energy ma trix E(E) in a
given order II is expressed in terms of a set of Hugenholtz diagrams. The
diagrams, which enter in order n, are determined by applying the rules in
Table I of Chapter 3, with fule 3 modified sueh that when one is connecting
Iines eaeh diagram bas to have one ineoming and one outgoing line. The
translation of a Hugenholtz diagram joto an algebraic expression is, as in
MBPT, performed by translating the Hugenholtz diagram joto one of its
equivalent Brandow diagrams (Fig. 6.1; see Section 3.G). The algebraic ex-
pression for the Brandow GF diagram is obtained by applying the rules of
Table II of Chapter 3 with role 3 modified sueh that an energy parameter
equal to (-I)hE is added to each factor in the denominator L. to!- Lp tp if

Hugenholtz Brandow

~ t~~~o.
A A FIG. 6.1. AIl Hugenholtz and Brandow second-

order self-energy diagrams.

~ .r.~~--~o'
B B
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the sum of the number of internat hole and particie lines is an odd integer.
Here It is the number of internat hole lines in the diagram. Linesare counted
as internat only if they lie between the vertices from which the GF's two
free lines originate. If the GF's two free lines start at the same point, only
those hole lines that exist horizontal to this point are counted. For example,
diagrams A and C of Fig. 6.2 contain one and zero internalline, respectively.
Diagram G of Fig. 6.2 bas one internat hole line and thus cuch denominator
would get a - E factor added in.

If /-1°is taken to be the HF Hamiltonian, then, as in MBPT, all diagrams
containing the loop structure )o cancel with the corresponding diagrams
having the potential symbol >< { in the same location. No fust-order dia-
gram s then enter in the diagrammatic perturbation analysis. In second order
only the two diagrams displayed in Fig. 6.1 enter. To obtain some experience
in applying the rules in Table II ofChapter 3,we list the analytical expressions
for these two diagrams:

A = L(t)I( _1)1+l (jallpa)(pallka)
pq -E+Eo:-Ep-Eq
o:

(6.84)

B = L(t)l( -1)2+ I (aPI Ijp) (kPI laP)
0:/1 E+Eo:+E /I -E
p p

(6.85)

The second-order contribution to the EP given above is, of course, identical
to the one derived in Eq. (6.79).

In Fig. 6.2, we list the nonvanishing third-order self-energy diagrams.
These may, of course, also be identified with corresponding terms of the

~<$/~~~
A B C D E F

~ 0 ~ ~ 0 ~
G H I J K L

~ ~ ~ ~ ~ ~
M N o P Q R

FIG. 6.2. Ali third-order Hugenholtz self-energy diagrams.
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third-order expression of PJ(E) in Eq. (6.83). The sum of diagrams A and B
represents the fiest two terms of AJ in Eq. (6.65), while diagrams C-F may
be identified as orginating erom the last term of Eq. (6.65). The term
C1Mo .M.Mo 'C. gives rise to G, L, M, and R, while H-K and N-Q may be
shown to originate erom C1Mo 'C. and CTMolC2. The analytical third-order
expression thus gives a compact representation of the diagrams in Fig. 6.2.

E. THE POLARIZATlON PROPAGATOR

1. Introduction

IfwechoosetheoperatorsA andB+ both to be the electricdipolemoment
operator r, then the spectral representation of the resulting GF reads

~r;rh = \im L
{

<Olrlm><mlrIO>. + (Olrlm><mlrIO).
}

(6.86)
a-+O m E - Em+ Eo+ ItI E + Em- Eo- I"

The residue at the pole E = :t (Em- Eo) contains the transition dipole
matrix element between the states l°) and Im),

<Olrlm)= L(r)j.<Olj+slm)j.
(6.87)

where

(r)j. ==<cPArlcP.) (6.88)
"'

!,

j
j
~,
!
i

Since r is a number-conserving operator, the reference stale l°) and the
stale Im) must contain the same number N of electrons. The poles of this
so-calledpolarization propagator (PP) thus occur at the excitation energies
E = :t (Em- Eo) of the system described by l°>, while the corresponding
residuesgive the squares ofthe electricdipole transition moments 1<0Irlm)12.

The real part ofthe above GF may be expressedby combining terms over
a common denominator as

Re~r;rh = - L 2(Em- Eo)I<0Irlm)12
m E2 - (Em- Eo)2

(6.89)

which is identical to the conventional expression for the frequency-dependent
polarizability tensor (the frequency being represented by E).

To get some experience in using the PP to express second-order frequency-
dependent and -independent properties and to indicate som e problem s that
may appeal when using the PP in finite basis set calculations, we now derive
alternative but formally equivalent expressions for the frequency-dependent
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polarizability. We may employ Eq. (6.10) to reexpress the propagator
~r; r}E as

E~r;r}E = (OI[r,r]IO) + ~[r,H];r}E = i~p; rh

where we haveused(in a.u.)

(6.90)

[f, II] = ip (6.91)

For E #- O,iE-I ~p; r}E may alternatively be used to calculate the frequency-
dependent polarizability. Near E = O, however, we expect iE- l «p; rh
(which should, in principle, equal ~r; r}E) to have diffieulty in finite-basis-
set ealculations becauseof the explieit appearaneeof the E- l faetor. That
is, unless «p;r}E, as a calculated ruBelion of E, is proportional to E near
E = O, one might obtain ineorreet behavior of iE- l~p; r}E here.

Applying Eq. (6.10) ODcemore to Eq. (6.90) gives

E«p;rh = (OI[p,r]IO) + ~p;[H,r]}E = (OI[p,r]\O) - i«P;P}E (6.92)

Using the second-quantized forms for p and r, we caD explicitly calculate
the commutator in Eq. (6.92)as

[p, r] = L (p)ij{r)kl(Jjki+l - Jj/e j)
ijkl

= L[(pr)jl - (rp)jl]j+ l
jl .

= -i L Ijl.;+l
jl

(6.93)

where I is the unit tensor operator whose elements are Ijl = Jjrl, and

(WX = (wy = (1)"" = I, (WY = (W" = (I»)" = O (6.94)

Clearly Eq. (6.93) is valid only if the basis set is complete so that we caD
write (pr)jl - (rp)jl = (pr - rp)jl = -iJjll. We may now rewrite Eq. (6.92) to
obtain one further expression for the frequency-dependent polarizability

1
«r;rh = E2(NI + ~P;P}E) (6.95)

where the number N of electrons in l°) arises by evaluating I Lj (OI;+iIO).
As with i~pjr}EE- l, finite-basis-set ealculations of this form for the polar-
izability through the propagator ~p; ph would be expected to have difficulty
near E = O beeause the small-E portion of ~P,P}E' which should exactly
cancel the NI factor may, in a finite basis, not lead to exact cancellation.

We have naw diseussed how frequency-dependent polarizabilities can be
obtained direetly erom the PP ODcea closed algebraic equation for ~r; r}E
is found. Other seeond-order properties caD equally wen be determined by
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replacing A and B+ with other one-electron operators (e.g., the dominant
term in the indirect nuelear spin-spin coupling constant results when A
and B+ are taken to be the Fermi contact Hamiltonian).

In the following, we concentrate on how approximate elosed expressions
may be obtained for the ~r;r~E form ofthe polarization propagator. From
aur treatment of the PP it should become elear how to determine other
second-order properties corresponding to other choices for A and B + .

2. The Single-ConfigurationTOHF Approximation

In a simple and very commonly used approximation to the PP, the refer-
ence stale l°) is chosen to be a single-configuration (but not necessarily
single determinant) HF wavefunction.The operator manifold {T+} then is
taken as the set of particie-hole excitation and deexcitation operators used
for optimizing the referencestate:

T+ = {T;} = {Q+,Q} = {m+(X,(X+m;m(X} (6.96)

With these choices, the propagator takes the form (as expressed in Eq. (6.32)]

. - + (Q+IEI+RIQ+) (Q+IEI+RIQ» )
-I

(Q+lr»)~r, rh - «rlQ )(rIQ» (QIEI+ RIQ+) (QlEI + RIQ) (Qlr)

(6.97)

Since the one-particie density matrix is diagonal for the chosen HF reference
stale, we have

(QIQ+) = (Q+ IQ) = {(O[s+p,r+(X]IO)} = {O} (6.98)

and

S,a.sp == (Q+ IQ+),a,sP = (OI[(X+r,s+PJIO) = (J,l'ap(va- v,) (6.99)

and similarly

(rIQ+)sp = (vII - vs)(r)ps (6.100)

where v"is the occupancy of spin-orbital cP",Equation (6.97) may be written
in moce compact notation as

~r;rh = «rIQ+)(rIQ»(SE + Al1

Bl1

Bl1 )
-1

(Q + Ir»)-SE + Al1 (Qlr) (6.101)
j
1

j

\

where the matrices A11and Bil are identical to those defined in connection
with the MCSCF orbital optimization in Eqs. (2.29) and (2.30) except that
l°) is taken hece to be the single-configuration HF function. These matrix
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elements are evaluated explicitly in Problem 5.2 and used in Problem 6.2
to carry out a PP calculation.

Equation (6.101) is said to express the time-dependent Hartree-Fock
(TOHF) or the random phase approximation (RPA) to the PP (J"rgensen,
1975). The TOHF (or RPA) approximation has been derived in a variety
of ways, each of which tends to stress a certain aspect or point of view. In
the folIowing, we examine the physical content of the TOHF approximation
and tfY to point out various consequences of using it for calculating the
frequency-dependent polarizability, oscillator strengths, and excitation
energies.

a Pole (/Iul Residue Aftalysis

We now demonstrate how the TOHF propagator may be transformed to
a spectral form s;milar to the one appearing in Eq. (6.6). The poles of Eq.
(6.1Ol) caD be determined through solving the nonhermitian eigenvalue
problem

(Ali BII

)(
Z

)- E(
S O

)(
Z

)\BII Ali Y - O -S Y

whose dimension is the sum of both the number of nonredundant particIe-
hole and hole-particie operators. The solution of Eq. (6.102) may altema-
tively be obtained through performing a series of transformations involving
matrices of oBIJ the dimension of the particIe-hole operators (Linderberg
and Ohm, 1977; j"rgensen, Olsen, and Yeager, 1981).To achieve this reduc-
tion in the matrix dimension, we first write Eq. (6.102) in component form as

(6.102)

AIIZ + BIIY = ESZ

BIIZ + AIIY = -ESY

Successively adding and subtracting the above two equations gives

(6.103)

(6.104)

(A11+ Bl1)(Z + Y) = ES(Z - Y)

(Au - Bll)(Z - Y) = ES(Z + Y)

Equation (6.105) may then be rearranged,

Z + Y = E(Au + Bll)-IS(Z - \)

(6.105)

(6.106)

(6.107)

and inserted joto Eq. (6.106) to give

S-I(A11 + BI.)S-I(AIl - BI.)(Z - Y) = E2(Z - Y) (6.108)

The eigenvalues of Eq. (6.102) are thus determined by the nonhermitian
eigenvalue problem given in Eq. (6.108) for E2. lf Ali - Bil is positive def-
inite, we caD form the (AIl - Bll)1/2 matrix and premultiply Eq. (6.108)
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with (Ali - BII)1/2, thereby achieving the hermitian eigenvalue problem

(Alt - BII)1/2S-I(AII + BII)S-I(Alt - Blt)1/2(Alt - Blt)1/2(Z- Y)
=E2(AII - Blt)1/2(Z - Y) (6.109)

which bas eigenvalues E2 and eigenvectors equal to (Ali - BII)1/2(Z - Y).
The eigenvalues of the nonhermitian eigenvalue problem in Eq. (6.102) caD
thus be determined erom a hermitian eigenvalue problem of only the dimen-
sion of the particie-hole operators. When S is singular or nearly singular,
it may be useful to solve Eq. (6.108) or (6.109) using the inverse eigenvalue
equations with eigenvalues 11E2. Equation (6.108) then becomes

(Ali - BII)-IS(AII + BII)-IS(Z - Y) = (lIE2)(Z - Y) (6.110)

To interpret how transition moments are determined within the TDHF
approximation, we continue transforming the propagator to its spectral
form. We use the eigenvalues and eigenvectors of Eq. (6.108) together with
Eq. (6.107) to determine the Z and Y matrices. Equation (6.102) implies that
if the set (~)are eigenvectors corresponding to the eigenvaluesw, then G>

are eigenvectors with -w eigenvalues.This allows us to write Eq. (6.102)
in a form that displays its positive and negative eigenvaluespectrum

(Ali BII

)(
Z Y

) (
S O

)(
Z Y

)(
w O

)Bil Ali Y Z = O -S Y Z O -w

or alternatively as

(ES + Ali Bil

)(
Z Y

)= (
S O

)(
Z Y

)(
E1 + w O

)Bil -ES+AII y Z O -S Y Z O E1-w

(6.112)

(6.111)

Because of the appearance of the metric matrix (~ -~) in Eq. (6.102)the
(~)eigenvectors may be normalized according to

(Z, Y)A(~ -~)(~)~= JA~
(6.113)

To obtaina spectral representation of the propagator that contains a unit
metric, one must transform the set of particie-hole and hole-particie oper-
ators to the representation where they give a diagonal metric with unit
elements. This transformation is carried out using the excitation operators
defined below:

0+ = Q+Z + QY

0= Q+Y+ + QZ+

(6.114)

(6.115)
]
.~
.~
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For example, it is straightforward to show using Eqs. (6.98),(6.99),and
(6.113)that

(0+ 10+) = (Z+,y+)(~ -~)(~) = 1
(6.116)

This condition then implies that the fuli metric matrix involving these new
excitation operators becomes

(0+ 10+) (010+))= (
1

(0+ 10) (010) O

O

) (
z+ Y+

)(
S O

)(
Z Y

)-1 = y+ Z+ O -S Y Z (6.117)

The spectral form of the propagator is then obtained by taking the inverse
of Eq. (6.112),premultiplyingwith (~ ~),and using Eq. (6.117):

(
ES + AlI

811

811 )
-1

-ES + AlI

=(
Z Y

)(
E1 +w O

)
-1

( Z:y Z O E1 - w - Y
Y+

)-Z+ (6.118)

Introducing Eq. (6.118) joto Eq. (6.101) finally allows us to write the prop-
agator in spectral form

+
1

2[ 1 + 1 ]~r;rh = ~I(rlo}.) E - m}. E + w}.
(6.119)

A comparison of Eq. (6.119)and the spectral representation of the propagator
given in Eq. (6.86) shows that the pole at E = w}.correspouds to a total
energy difference E}. - Eo. The pole at E = ""-aJ}.corresponds to the same
to tal energy difference E}.- Eo, and the propagator therefore is au eveu
function in the excitation energy E}.- Eo. The pole at E = w}.bas a residue
of -1(rIO;W, which using Eq. (6.6) may be identified as -1<0Irl),)12. The
pole at E = -w}. bas the residue l(rIO;W, which is equal to 1<0Irl),)12.The
transition moments <Olrll1)may thus be determined from the residue at
either ofthe poles E = :t w}.. ILshould be noted that the above development
allows E}. - Eo to be either positive or negative corresponding to excitation

energies from ground or excited stalego However, in applications where l°)
refers to an excited stale, Eq. (6.108) must be used to determine the excitation
energies, because A - 8 is not then positive definite.

b. Tlre Stability Col1ditiol1

lf imaginary or negative roots are encountered when solving the non-
hermitian eigenvalue problem in Eq. (6.108), the RPA approximation is said
to have an instability. If AIl - 811 is positive definite, instabilities are not
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encountered if the matrix (AI1 - 811)1/2S-I(AI1+ 811)S-I(AI1 - 811)1/2
in Eq. (6.109) is positive definite; that is, if

X(AI1 - 811)1/2S-1(AI1 + 811)S-I(AI1 - 811)1/2XT> O (6.120)

for aDYvector satisfying IX!> O. Defining the vector

y = X(All - 811)1/2S-1

we may write Eq. (6.120) as

Y(A11 + 811)yT> O (6.122)

which says that Ali + 811 bas to be positive definite to ensure that Eq. (6.120)
is fulfilled. Thus if Ali - 811 is positive defmite and AlI + 811 is not,
then an RPA instability will be encountered. Although it is not obvious
erom the previous derivation ofthe solution to the RPA problem, it may be
shown by transforming the RPA eigenvalue problem to an equation similar
to Eq. (6.108)(but with Z + y occurring as the eigenvector) that if Ali + 811
is positive definite, then an RPA instability is encountered if Ali - 811 is
not positive definite. Hence if both AI1 :l: 811 are positive definite, insta-
bilities are not encountered in the RPA approximation. If both Ali :l: 81 I
are nonpositive definite, an explicit solution of Eq. (6.108) bas to be de ter-
mined before it be elear whether an instability is encountered. If Ali :l: 811
are both non-positive-definite, negative excitation energies (EA - Eo) are
obtained in TDHF approximations. Soch negative excitation energies may
correspond to excitations erom higher to lower "excited" stalego
- As was demonstrated in Chapter 2, the curvature of the energy hyper-
surface at a stationary point corresponding to the reference stale lO) is
governed by the same Ali - 811 matrix [Eq. (2.80)] as occurs hece in the
TDHF. Hence, if the HF wavefunction correspondsto a local energy mini-
mum, Ali - 811 would be positive definite. In aur derivation of the energy
optimization conditions as given in Chapter 2, we restricted aur orbital
variations to involve anty real variational parameters (i.e., we assumed real
spin-orbitals). If we bad instead examined the variations in the energy re-
suIting erom purely imaginary orbital variational parameters, the second
derivative of the Latal energy would involve the matrix Au + 811. Hence,
the conditions that Ali :t 811 be positive definite most be met if the HF
reference stale is to represent a local energy minimum both with respect to
real and imaginary orbital variations. Therefore, imaginary excitation ener-
gies arise in RPA if one of the matrices AI1 :l: 811 is non-positive-definite
and the other is positive definite. If negative excitation energies are obtained
in the RPA approximation both AI1 :l: 811 are non-positive-definite and
the reference stale lO) then represents a saddle point on the energy hyper-
surface.

(6.121)



E. The Polarization Propagator 149

c. Co/lnectionwith CoupledHartee-Fock Tlteory
Having defined the TOHF problem and having shown how excitation

energies and oscillator strengths are determined, we naw demonstrate that
the above TOHF propagator reduces, for E = O, to the equation obtained
in Chapter 5 for the second-order response pro pert y as expressed in the
coupled Hartree-Fock (CHF) approach. For E = O,the TOHF polarization
propagator given in Eq. (6.101) becomes

«r;rh=o = «rIQ+)(rIQ»(:::
Inserting unit matrices in the form

811

)
-I

(Q+ je»)At I (Qlr)
(6.123)

UU + = 1 (6.124)

where

u= ~G -~) (6.125)

before and after the above inverse matrix, allows us to express the inverse
matrix as

(At I BII )-I = U(AI1 + 811 O )-1 U+
811 Ali O Ali - 811

Because the dipole operator r is real, the elementary definition of the super-
operator scalar product given in Eq. (6.16) caD be used to write

(6.126)

(rIQ) = -(rIQ+)

which, together with Eq. (6.126), allows us to rewrite Eq. (6.123) as

(6.127)

«r;rh=o = 2(rIQ)(AI1 - BII)-I(Qlr) (6.128)

Comparing this expression to that of the CHF approach [Eq. (5.16)] shows
that these twa ways or writing the frequency-independent polarizability are .

indeed identical.

d. Equivalence oj Lengtlt and Velocity
Oscillator Strengths

Another important and attractive feature of the TOHF approximation
(and its MC extension described belo w) is that the oscillator strengths com-
puted within the dipole length and dipole velocity approximations become
formally equivalent. provided that a complete basis is used in the calculation.
From Eq. (6.119) it is elear that the transition moments in the dipole velocity
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approximation would given by

(plOn = (OI[p,O;]IO) (6.129)

which erom Eq. (6.91) is equivalent to

- i(OI[[r, H], 0:]1°) (6.130)

Using the matrix identity of Eq. (6.42) together with the BT theorem in the
form

(OI[[r,O;],H]IO) = O

we caDexpress the above as

(6.131)

(pl°1) = -i(OI[r,[H,O:]]IO) = -ir(O\[Q+ + Q,[H,O;]]IO) (6.132)

where r denotes a row vector that contains the particie-hole matrix elements
(r)m...Equation (6.132) may be rewritten, using the definitions of O;
[Eq. (6.114)]and the Au and B11matrices, as

I + (
Alt Bu

)(
Z

) (
S O

)(
Z

)(p O.d = - i(r,r) Bu Au y). = -w).i(r,r) O-S y). (6.133)

The last equality sigo follows erom the eigenvalue relation Eq. (6.102). Since

«rIQ+)(rIQ» = (r,r)(~ -~)
(6.134)

we may finally rewrite Eq. (6.133) as

(plO;) = -iw).«rIQ+)(rIQ»(~\ = -iw).(rl°1} (6.135)

'herc the last step followserom the definition of the excitation operator in
q. (6.114).Equation (6.135)states that oscillator strengths calculated in

he dipole length and in the dipole velocityapproximation becomeidentical
provided that the commutator relation in Eq. (6.91)is valid.Violation or the
commutation relation [Eq. (6.91)]occurs when a finite basis is used in the
calculation. .

The TDHF approximation thus has three very characteristic features that
nake it especially useful as a means for calculating excitation energies and
)scillator strengths. In ground-state calculations it indicates via imaginary
:xcitation frequencies if the ground stale is not slabie under the type or one-
:Iectron perturbation given by the choice of A and B+. A singlet instability
s thus encountered if A and B+ are chosen to be the dipole operator, whereas
riplet instabilities are obtained if A and B+ are chosen to be, for example,
.he Fermi contact Hamiltonian. Second, when the energy parameter E is
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set equal to zero, one obtains the same expression for the second-order
properties in the TDHF method as in the CHF approach. Finally, the
oscillator strengths ca\culated within the dipole length and the dipole velocity
approximations are formally equivalent. These attractive features are unique
to soch an approximate theory.

3. The Multiconfigurational Extension of TDHF

In maDY calculations on highly correlated or open-shell molecules, it
toros out that a single-configuration reference stale description of 1°) is
inadequate even ifoptimized orbitaIs are used to describe lO).1fthe excitation
operators of interest belong to the to tany symmetric irreducible representa-
tion of the Hamiltonian's point group, the results obtained are normany
better than if one attempts to calculate properties whose operators are not
to tany symmetric (e.g., tripiet operators). It is wen recognized, for example,
that the singlet excitation energies for a closed-shen molecule, are described
relatively wen (to about 10% accuracy) within the TDHF approximation,
wbite the description of the tripIet excitation energies is very poor. In fact,
tripIet instabilities are often encountered when using the above TDHF
method.

Approximations that go beyond the simple TDHF approximation are
therefore needed. We consider iwo soch approaches hece. The second method
outlined below is based on a RSPT analysis in which reference stale lO) is
expanded in powers of the residual electronic interaction [given by U in
Eq. (3.35)] and the projection manifold {T+} is chosen to be large enough to
guarantee that all terms in the PP are determined consistent through second
order. In light of ibis order analysis, it will be seen that the TDHF approxi-
mation corresponds to the approximation that is consistent through fiest
order in the electronic repulsion. Before presenting ibis RSPT treatment, we
address another approximation that goes beyond the single-configuration
TDHF approximation. This extension, which is based opon an MCSCF
description ofthe reference stale lO), bas the same three useful characteristics
mentioned above in describing the single-configuration-based TDHF
description. The multiconfigurational time-dependent Hartree-Fock
(MCTDHF) approximation thus provides a formalism in which oscillator
strengths in the dipole length and velocity approximation remain equivalent
as one ranges continuously through (MCTDHF) from a single-configuration
description (TDHF) all the way to the run-CI limit.

a. Choice oj RejerelIce Fullctioll alld Operator Mallifolcl

Having now motivated the consideration of moce sophisticated reference
states, lei us develop the above-mentioned approximation in some detaiL
In the MCTDHF approach (Yeager and J0rgensen, 1979; Dalgaard, 1980)
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an MCSCF wavefunction is used as the reference stale. The projection mani-
fold {T+} is then chosen to be the same nonredundant (see Section 2.B.7)
set of orbital and configuration space excitation [Eq. (2.26)] and deexcitation
operators that were used for optimizing the MCSCF reference stale

{T+} = {Q+,R+,Q,R} (6.136)

b. Hermiticity Problem

This choice of 1O)and {T+} then permits (r; r)E to be written in a form
analogous to that given in Eq. (6.97). In computing the requisite matrix
elements, one notices that the elements giving the coupling between orbital
and configuration space operators do not obey hermiticity:

(Q+IRIR:) - (R:IRIQ+)* = (OIHQln) - Eo(OIQln) :F O (6.137)

In the limit where one has in l°) an exact eigenstate

HIO) = EoIO) (6.138)

the lagi iwo term s in Eq. (6.137) cancel, and the matrix representative of il
within the {T+} basis consequently becomes hermitian. Therefore, we are
certain that this nonhermitian aspect of the problem is an artifact (i.e., it
arises because we do not have an exact 1°». To fOTcethe matrix to be her-
mitian even for approximate choices of 1°), we equate (Q+IHIR+) with
(R+IHIQ+)*. That is, we simply require the superoperator Uamiltonian to
operate on the orbital space (Q+, Q) when the coupling elements are eval-
uated. This choice yields a propagator that for E = Ogives the same result
for second-order properties as obtained in the coupled multiconfiguration
UF approach. An added advantage of this order of operations is that the
osciIlator strengths in the dipole length and in the dipole velocity approxi-
mations become Cormally equivalent. If we bad chosen an alternative means
oCimposing hermiticity on tbe matrix, soch would not be tbe case.

c. SpectralRepresentationoJ the Propagator
Inserting the projection manifold defined in Eq. (6.136)joto Eq. (6.32)

gives

(r;r)E = [(rIQ+)(rIR+)(rIQ)(rIR)]

(

Q + Ir»

)

x (E(
8 A

)+ (
A B

))
-1 (R+ Ir)

-A -8 B A (Qlr)
(Rlr)

(6.139)
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where

8 - (O\[Q,Q+JIO) (O\[Q,R+JIO»)- (O\[R,Q+JIO) (OI[R,R+JIO)

A - ( OI[Q,QJIO) (OI[Q,RJIO» )- (OI[R,QJIO) (OI[R,RJIO)

and 8+ = 8* and A + = -A*. The elements oC,for example, (OI[Q,R+JIO)
are given by

(OI[s+r,ln)(OIJIO) = (Ols+r\lI) . (6.142)

(OI[R;,RmJIO) = <Ol[In) <°l, l°) <ml]l°) = -(mili) = -15m" (6.143)

(6.140)

(6.141)

The A and B matrices are identical to thosedefined in Eqs.(2.29)and (2.30)
and moce explicitly written out in (2.42) and (2.44).Of course, now the
referencefunction l°) is the MCSCF stale; in the TDHF approximation it
wasthe single-configuration SCF stale. In Problem 5.3,the A and B matrices
are evaluated for a single molecular ion, and in Problem 6.3 the data are
usedto perform an MCTDHF calculation on that system.

Becausethe metric in the MCTOHF approximation [Eqs.(6.140)and
(6.141)] basa mocegeneral form than the one in the TDHF approximation
[Eqs. (6.98) and (6.99)] some minor modifications are required in the proce-
dure described in Section E.2.a. to get the propagator into spectral form.

By carrying out transformations of the MTDHF eigenvalue problem,
similar to that done in Eqs. (6.102)-(6.108),we obtain the resuIt analogous
to Eq. (6.107) (Jorgensen et al., 1981)

Z + Y = E(A + B)-1(8- A)(Z - Y) (6.144)

to Eq. (6.108)

(8 - A)-I(A + B)(8 + A)-I(A - B)(Z - Y) = E2(Z - Y) (6.145)

and to Eq. (6.109)

(A - B)I/2(8 - A)-I(A + B)(8 + A)-I(A - B)I/2(A- B)I/2(Z- Y) (6.146)
= E2(A - B)I/2(Z - Y)

Using theseequations, a spectral-representation may easily be derived as
was clonein the single-configuration case in Eqs. (6.109)-(6.119).

d. Special Characteristics ofthe MCTDHF Propagator

The MCSCFreferencestale representsa stationary point on the energy
hypersurface. If imaginary excitation energies are encountered, for example,
in an MCfDHF ground-state calculation, the minimum point is not stable
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(does not eorrespond to a loeal minimum) oRder the type of(spatial or spin
symmetry) one-eleetron perturbations deseribed by the operators A and B+.
AIso, as in the single-eonfiguration TOHF, the frequeney-independent polar-
izability obtained in the MCTOHF approximation beeomes identical to that
resuIting erom the multiconfiguration eoupled HF approaeh. The proof of
this equivalence folIows exactly the same lines as for the single-configuration
case; we refer to that proof for further details [see Eqs. (6.123)-(6.128)]. The
essential points of the proof are as follows. For E = O,Eq. (6.139) reduces to

(

Q+ Ir»

)
~r;r~E=O = (r\Q+)(rIR +)(r\Q)(rIR>J(: :) -I (~I~) (6.147)

(Rlr)

By next inserting the unit matrix or Eq. (6.124)before and after the above
inverse matrix and then using Eq. (6.127),we caD write the frequeney-
independent polarizability in the form

«r; r»E=O = 2[(rIQ)(rIR)](A - B)-IO~I::)
which is identical to the expression obtained in the multieonfiguration
eoupled HF calculation ofEq. (5.15). It bas further been proven by Oalgaard
(1980) that the oscilIator strength ealculated within the dipole length and
dipole veloeity approximations become identical if a complete basis is used
in (he MCTOHF calculation. A proof that follows lines very similar to the
DRes given in Section E.d for a single-eonfiguration case bas been given
(Albertsen et al., 1980).

The MCTOHF approximation thus bas the same eharaeteristics as the
single-configuration-based TOHF approximation. We therefore have the
possibility of determining approximate stale veetors that, at aDY level of
approximation, show these characteristics as the number of configurations
included in the MCSCF referenee stale is inereased erom the single-eonfigu-
ration case through the fulI-CI limit. Initial ealeulations using the MCTOHF
approximation have yielded very promising results. We now move to deserib-
ing an extension of the TOHF approximation that is based on perturbation
theory.

(6.148)

4. Rayleigh-SchrodingerAnalysis

The perturbation extension of the TOHF method is obtained by develop-
ing systematie approximations to the PP that are consistent through a
certain order in the perturbation (Oddershede, 1978).These approximations
are based opon expanding the referencestale lO) in powers of the residual
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electron-electron interaction as defined in RSPT [see Eq. (3.14)] and by
choosing the projection manifolds {T:} to be sufficient1y "large" to ensure
that the resulting matrix elements of the PP propagator are consistent
through the desired order.

In the EP case, aur goal was to determine the primary poles (the ionization
potentials and electron aillnities involving low-energy ionization oC the
parent molecule) through second or third order. In the analogous PP calcu-
lations, the primary poles correspond to those possessing dominant particIe-
hole nature; we attempt to determine these poles through a chosen order.
Because the residues at a given pole contain information about the transiOll
amplitudes for the given type of excitation, perturbation methods mayaiso
be employed to evaluate these residues through a specified order. Further,
since the PP expresses the reference states' frequency-dependent polarizabil-
ities, this response quantity mayaIso be calculated consistent through the
desired order by using a PP consistent through that order.

a. Choice oj Operator Space

As the unperturbed Hamiltonian, we choose the same HF Hamiltonian
as was employed in the above EP development, and we use a basis set of
real orthonormaI spin-orbitals. We develop an approximation to the PP
that yields the primary excitation energies and the corresponding transition
moments (and the frequency-dependent polarizability) consistent through
second order in the residual electronic repulsion (Nielsen et al., 1980). To
determine the poles belonging to the principal excitation energies, the corre-
sponding transition moments, and the frequency-dependent polarizability
through second order, it proves sufficient to consider the truncated projection
manifold

. {T+}= {T;;Tn (6.149)

This conclusion is by no means obvious. One musi, in principle, examine
the elfects of T:, T~, etc. on the ma trix elements (T+IRIT+), (B+IT+),
(T+ lA), and (T+ IT+) to conclude that these higher operators caD have no
elfect, through second order, on the computed poles and residues of the PP
(Oddershede and Jergensen, 1977).

b. Pole and Residue Structure oj tlte Propagator

With the above choiceof the operator projection manifold,the PP propa-
gator [Eq. (6.32)]becomes

I + I + (T;IEi + RITn
«r;r~E= [(f T2)(rT4)] (T1IEi+ RIT;)

(T;IEf + RIT1»)
-I

(T; Ir»)(T1IEf+ RIT1) (T1Ir)
(6.150)
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Introducing the shorthand notation

Mjj = (TtIEI + RITj) (6.151)

we may partition the inverse matrix of Eq. (6.150), as was clone in the EP,
to yield

(M22 M24 )
-1

M42 M44

(

M22 - M24MilM42)-1
= (-MilM42(M22

-MilMilM42)-I.

-(M22 - M24MilM42)-IM24Mil

)
Mil..,. MilM42(M22

- M24MilM42)-IM24Mil
j

(6.152)

By substituting the inverse matrix joto Eq. (6.150) and multiplying out the
factors we obtain

{r;r»E= [(rITi)- (rIT:)MilM42]P-l(E)[(Ti Ir)- M24Mil(T: Ir)]

+ (rIT:)Mij(T: Ir)
==W2(E)+W4(E) (6.153)

where

P(E) = M22 - M24MilM42 (6.154)

The principal poles of the propagator occur at. the eigenvalues of P(E).
Therefore, to obtain these poles consistent through second order, we require '

P(E) to be determined consistent through that same order. To compute the
transition amplitudes consistent through second order requires that the
quantity F(E) defined by

F(E) ==[(rITi) - (rIT:)MilM42] (6.155)

which contains zeroth- and higher-order factors, algo be evaluated consistent
through second order. Finally, if the frequency-dependent polarizability is
to be calculated through second order, both W2(E) and the W4(E) should be
computed through that order. Let us now analyze. in moce detail which of
the above matrices have to be evaluated explicitly through which order to
guarantee that the above quantities are calculated consistent through second
order.

c. Second-Order Analysis oj Pole Structure

We consider initially the calculation of the excitation energies that are
determined as poles ofP-1(E) [Eq. (6.154)]. After introducing the individual
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components Q, Q+, Q+Q+, and QQ, we may carry out an order analysis
of the individual matrices appearing in P(E). We consider initially the matrix
M22, which is expected to be the dominant contributor to P.

M _(E(Q+ IQ+)+(Q+\RIQ+)
zz - (QIRIQ+)

(
ES + A B

);: B -ES +A

(Q+IRIQ) )-E(QIQ)+(QIRIQ)

(6.156)

where

S = (Q+ IQ+)

A = (Q+IRIQ+)

B =(Q+IRIQ)

(6.157)

(6.158)

(6.159)

and where we have used the fact that

(Q+ IQ)my,n"= (OI[Y+I1I,b+n]IO) = O (6.160)

is identically zero through any order. This M22 is the same matrix that
occurred in the earlier TDHF treatment of the PP except that naw 1°)
represents an RSPT expansion or the rererence stale. As an example or how
to carry out the order analysis, we consider the S and A matrices:

SmtJ,niJ = (0\[ tX+ 111,n+ PJIO)

= (oOI[tX+m,n+pJIOo)+ (IOI[tX+l1I,n+PJIO') + 0(3)

= (SO)mtJ,niJ+ (SZ)mtJ,niJ+... (6.161)

where

(SO)mtJ,niJ = bmnc5tJiJ

(SZ)mtJ,niJ= !bmn L K~~Krr - !btJ/I L K~.fK~S
pq p
y ~

(6.162)

(6.163)

and, as in the EP analysis, the superscripts on 1O°), 1°1), etc, denote the
orders or these terms, No fiest-order term s thus appeal in S because lO')
contains only doubly excited configurations. The elements or A ale given by

. AmtJ,niJ= (°l [tX+';I,[H,n+p]JIO)

= (OOI[tX+m,[Ho, n+ P]JIOO) + (OOI[tX+m,[U, n+PJ]IOO)

+ (oOI[tX+m,[U,n+PJJIOI)+ (IOI[tX+m,[Ho,n+pJJIOI)+ 0(3)

(6.164)
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In the A matrix zeroth-, first-, and second-order terms appeal. The Ao, At,
and A2 matrices ale given by

(Ao)",..",P= (6", - 6p)(j"",(j..P

(A1)",..",P= (Pmllna)

(A2)",..",P = 1<>..p L (1tyllqn)K:': - 1(j"", L (P1tllqp)K::
"yq "q"

+ (S2)",..",P(6" - 6/1)

(6.165)

(6.166)

(6.167)

The 8 rnatrix may similarly be shown to contain only first- and second-order
terms 8 = 8t +2' The 81 matrix is given in Problem 5.2 and

(82)",..",P= - L {(pqll1tm)K~: + (aqll1tn)K;l:}
q"

- 1 L (pqllnm)K5: - 1 L (aPII1t<»K:'i
"q ,,6

(6.168)

In the term M24MilM42, the M42 matrix contains no zeroth-order terms
and since MJ4 = M42, we only need keep M42 through fiest order and M44
through zeroth order to obtain

M24MilM42 (6.169)

through second order. The nonvanishing parts oC the matrices M42 and
M44 become

(C.)""'P..",y = (OOI[a+p+mn,[U,p+y]]IOO)

= (j"",(ynllap)- (j",,(ymllap)
+ <>..y(mnllpp) - (j/ly(mnllixp)

(Do)"",/I..",qy6= E . (OOI[a+ p+mn,p+ q+y<>]IOO)

+ (0°1[a +p+mn,[Ho,p+q+y(j]]1°°)
= (E + 6..+ 8p- 8",- 8")<>",,(j,,,q(j/ly<>d

(Do)../I"""6yq,,= (- E + 8.. + 8/1- 8", - 8")<>",,(j,,,q(j/ly(j..6

(6.170)

'II

(6.171)

(6.172)

The excitation energies as computed through second order may thus be
obtained as poles oC

(

[ESO+2 + Ao+1 +2

P-1(E) = -cl°o1C1]
81+2 )

-1

81+2

[ -ESO+2 + AO+1+2

-cl0o1C1]

(6.173)
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We should algo Dole that Eq. (6.173), when used to determine the excitation
energies consistent anty through first order, reduces to the inverse matrix
occurring in the TDHF approximation described in Section E.2.

d. Second-Order Analysis oj Transition Mol11ents

When the excitation energies are determined through second order we
might algo wish to determine the corresponding transition moments con-
sistent through the same order. This would require us to evaluate the eigen-
vectors of p- t(E) and to further evaluate F(E) of Eq. (6.155) consistent
through second order. Because the eigenvectors of P(E) become energy
dependent, specialized techniques are required to determine the transition
moments (Oddershede et al., 1977).

To determine F(E) consistent through second order, we introduce the
individual components ofQ +, Q, etc., which then permits the first component
EgeeEq. (6.155)] ofF(E) to be expressed as

(rIQ+) = <oOI[r,Q+]IOO)+ <tOI[r,Q+]IOI)

+ eOI[r,Q+]IOO) + <001[r,Q+]102) + 0(3) (6.174)

which contains zeroth- and second-order contributions. The values of

(rlQ +)0are given in Eq. (6.100).The auly 1°2) terms that contribute to (rlQ + h
are those which contain singly excited configurations relative to 1°°). The
matrix (rIQ+Q+) bas no zeroth-order elements; thus from the expression
for F(E), it is obvious (because M42 is of at least first order) that auly the
first-order elements of (rIQ+Q+) caD contribute. Explicit expressions for
(rIQ+h and (rIQ+Q+)t have been obtained (Nielsen et al., 1980).The
expression for F(E) consistent through second order may then be written as

F(E) = {(rIQ+)0+2 - (rIQ+Q+hOotC\>(r\Q)0+2 - (rIQQ)tOotcd
(6.175)

which may be used to calculate the transition moments correct through
second order. If we wish to calculate the transition moments correct anty
through first order, F(E) reduces to {(rIQ+)o,(rIQ)o}, which is identical to
the expression for F(E) used in the TDHF approximation. Therefore, we
again see that in the TDHF approximation, both the excitation energies and
the transition moments are calculated correct through first order.

e. Frequency-Dependent Polarizability

To obtain the frequency-dependent polarizability correct through second
order requires that the W2(E) be evaluated consistent through second order
as described previously and further that W4(E) be calculated through second
order. By introducing the individual compnents Q+Q+ and QQ we caD
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reduce W4(E) to

W4(E) = (rIQ+Q+).Do-I(Q+Q+ Ir)1 + (rIQQ)tDo-t(QQlr)t (6.176)

Since W4(E) contains no fiest-order terms, the frequency-dependent polar-
izability is thus determined consistent through fiest order in the TDHF
approximation [which contains no analog to W4(E)].

f Diagrammatic Analysis

We have previously show n how the results of MBPT and the perturbative
analysis of the EP may be interpreted in terms of a set of diagrams. The
perturbative analysis of the PP may be given a similar interpretation. We
sketch in the following how the diagrammatic analysis of the PP propagator
may be carried out. Initially, we limit ourselves to considering how the
TOHF approximation may be understood in terms of diagrams. We con-
sider the TOHF PP approximation in the SCF spin-orbital basis, where it
reads

BI

)
-I

(Q+ je»)-E1 + Ao + At (Qlr)
(6.177)

which is identical to Eq. (6.101). The poles of the inverse matrix appearing
in Eq. (6.177) may be determined erom a partitioned form of the inverse
matrix with T: + T: of Section C.4 equal to Q+ + Q. The analog of Eq.
(6.45)then becomes

«r;r~E = [(rIQ+)(rIQ)] (E1 + Ao + At

Bt

P-I(E) = [E1 + Ao + Al - Bt(-E1 + Ao+ AI)-IBI]-I (6.178)

P(E) may be given a diagrammatic interpretation by expanding the inverse
matrix as

(- E1 +Ao+AI)-1 =( -E1 +AO)-I -( -E1 +Ao)-tAI( -E1 +AO)-I

+( - E1+AO)-IAI(-E1 +Ao)-tAI( -E1 +AO)-I +. . .
(6.179)

We then obtain

P(E) = E1 + Ao + Al - Bt( - E1 + AO)-IBI

+ BI(-E1 + AO)-IAt(-E1 + AO)-IBt -'" (6.180)

In Fig. 6.3 we have displayed the diagrammatic representation ofEq. (6.180)
in terms of Hugenholtz diagrams. Using !he rules in Table II of Chapter 3
for interpreting diagrams with the modifications to fule 3 similar to those
discussed in Section 6.0.2.d, we may interpret the At matrix as giving rise
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X + r+ N+oo+ ~ooJl
A B c o

FIG. 6.3. The RPA diagram series, which caD be summed to infinite order.

to diagram A in Fig. 6.3. The fourth, fifth, etc. terms in Eq. (6.180) may
similarly be interpreted as giving rise to diagrams B, C, etc. in Fig. 6,3.
The TDHF approximation to the PP propagator thus corresponds to sum-
ming the infinite series of diagrams represented in Fig. 6.3. We emphasize
that an explicit summation of ibis whole series of diagrams is obtained when
poles of the PP are determined as described in Section E.2.

A propagator that determines the poles consistently through second order
is determined erom a partitioned form of Eq. (6.173) to be

P2(E) = E1 + Ao+1+2 - cloc)lc1 - B1(-E1 + AO)-IBl (6.181)

All terms of order higher than iwo have been neglected in Eq. (6.181). In
Fig. 6.4 we have displayed all the second-order PP diagrams. The A2 matrix
gives rise to diagrams A and B in Fig. 6.4, whereas the term - CTOo1C ]

gives diagrams C through H. The last term in Eq. (6.181) corresponds to
diagram l in Fig. 6.4. This diagram is the' second diagram in the above
described TDHF series. We again stress that a deterroination of the poles
of the PP that contain all diagrams through second order [Eq. (6.181)]
differs erom the approximation we derived in Section E.4.c, which conlained
all malrices of the PP through second order. A diagrammatric inlerprelation
of ibis group of matrices would further contain maDY series of diagrams
lhat would be summed to infinite order. One of these series would be lhe
TDHF series given in Fig. 6.3. We do not go further joto the diagrammatic

I ~ ~
A B

l l
c D

~~~~\t1\
E F G H I

Fig. 6.4. Ali Hugenholtz seco,nd-order PP diagrams.
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interpretation of the PP herc; rather we refer the reader to the moce com-
prehensive discussion given in the literature (Oddershede and jergensen,
1977).

PROBLEMS

6.1

l. Use the formulas for the second-order matrix P2(E) appearing in
Eq. (6.79) to express the 2 x 2 matrix relevant to evaluating the ionization
potential and electron affinitiesof the minimal-basisHeH + problem.

2. Using the SCF orbital energies and two-electron integrals given in
Problem 2.1, insert numerical values for the requisite integrals and orbital
energiesto expresseach ofthe elementsofthe 2 x 2 matrix P2(E)as functions
of E.

3. Use the approximation (P2)11 = Oto compute the value of E at which
the primary ionization potential of HeH+ would be expected. This is dane
by using the Koopmans' theorem estimate in the denominators occurring
in the self-energyterms and then solving for the "corrected" value of E.

4. Use the approximation (P2)22= Oto compute the value of E at which
the primary electron affinity of HeH + would be expected.

5. Are the values of E found in questions 3 and 4 the only values of E
that make (P2)11or (P2)22vanish?

6.2 Carry out a TOHF calculation for HeH +. using the minimai basis
data of Problem 2.1.The SCF calculation was carried out in Problem 2.1,
and the matrix elements necessary for carrying out the TOHF calculation
are given in Problem 5.2.

1. Oetermine the excitation energies and transition moments in the
TOHF approximation.

2. Oetermine the frequency dependent polarizability tensor for E = O
and for E = 0.1 a.u.

6.3 Carry out an MCTOHF calculation for HeH+ that bas an MCSCF
reference stale containing the configurations 1(12and 2(12and that uses the
data of Problem 2.1. The MCSCF calculation was carried out in Problem
2.6, and most ofthe matrix elements necessary for carrying out the MCTOHF
calculation are given in Problem 5.3.

l. Oetermine the excitation energies and transition moments in the
MCTOHF approximation.

2. Compare the excitation energies and transition moments obtained
herc with the results of the fuli-CI calculation of Problem 5.1. Why are the
twa sets of results identical?

3. Oetermine the frequency-dependent polarizability tensor for E = O
and for E = 0.1 a.u. in the the MCTOHF approximation. Compare the
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MCTDHF polarizability with the coupled multiconfiguration HF result of
Problem 5.3 and the fuli-CI result in Problem 5.1. Why do these three results
~? -

SOLUTIONS

6.1
1. Because we have a closed-shell reference stale, one caD compute

(P2)ij for i and j having m. = :!:1/2. The terms having spins i ==(x,j = p,
vanish since lO) is an eigenfunction of Sz. Let us take i andj to be (Xspin:

(P2)ij=biiE+6j)- L <iyllmll)<nmljjy)L <imIIYb)<yc5ljjm)
m<n 6m + en - ey + E y<~ ey + 6~ - 6m + E

y m

Because HeH + bas only one occupied orbital, the second sum above must
have y = lu(X, J = lup, and (because i is (Xspin) m = 2up. Likewise, the
fiest sum must have In = 2u(X,II = 2up, and hence y = lup. Therefore,

(P2)ij = bij(E + ei) - <i1122)<22!jl) - <i2111)<11\j2)
262 - 61 + E 261- 62 + E

2. (P) = E - 1.6562 - 0.0159 - 0.0382
2 11 1.1984+ E - 3.0835+ E

(P) = E - 0.2289 - 0.00002 - 0.0159
222 1.1984+ E -3.0835 + E

0.0006 0.0246
(P2)12 = (P2hl = + 1.1984+ E + -3.0835 + E

3. (P2)1l ~ O, E - - 0.0159 0.0382
- 1.6562+ 1.1984+ 1.6562+ 1.6562- 3.0835

= 1.6350

This iteration process could then be continued by using this value of E
to form a new (P2)11erom which a new E could be obtained.

4. (P2h2 ~ O, E = 0.2289 0.00002 - 0.0159
+ 1.1984 + 0.2289 + 0.2289 - 3.0835

= 0.2233

5. No. Shake-upionizationsoccurnear E = el - 2e2and E = 62 - 261'
These arise due to the E dependence of the denominators in the above self-
energy terms.
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6.2

1. The singlet excitation operator 2: I",+ 2; 1/1gives rise to the overlap

S21,21 = (2:1", + 2; lpl2: 1",+ 2;lp) = 2.00

because of the closed-shetl reference stale. For these excitation operators,
the A and 8 matrix elements given in Problem 5.2 become

(Al1b.21 = 2.1464, (Bl1ht,21= -0.2522
The nonvanishing matrix element of r in Problem 5.2is

(0Iz(2: I",+ 2: 1",)1°)= 2(2IzI1) = 1.0884

The TDHF excitation energy obtained from Eq. (6.109) is

El = 1.0657

and the corresponding eigenvector is

Z = 0.7083, Y = 0.0418, (zIOi2)= 1.0884(0.7083- 0.0418)= 0.7255

2. The nonvanishing components of the polarizability tensor are

«Z;Z~E=O = 0.9878 = 21(z1Oi2W
Et

«Z;Z~E=O.1 = 0,9965 = 21(z1Oi2WEt
Et - (0.1)2

6.3
1. From Solution 5.3we caDform the elementsofthe 2 x 2 S matrix

S21.21 = (2: I",+ 2; 1/112:I",+ 2; lp)= (011: I",+ 1;lp - 2:2", - 2;2pI0)

Using the density matrices of Solution 5.3,we find

S21,21 = 2(0.9968) - 2(0.0033) = 1.9870

S21,ll) = (2: I",+ 2; lplln)(OI)= (°1(1:2",+ 1;2p>ll)(OIO)= O
SII),I!) = (II) (O liii) (Ol) = 1.0000

A - 8 =(
2.4251 0.4248

)0.4248 2.2643

(A - 8)1/2 = (
1.5510 0.1393

) (A - 8)-1/2 = (
0.6501

0.1393 1.4983' -0.0604

(
1.9870 0.°

)0.0 1.0000

- 0.0604

)0.6731

S=
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From Eq. (6.109) we know that we need (A - B)'/2S - '(A + B)S- '(A - B)I/2

to find the E2 eigenvalues:

(A - B)I/2 -I = (
0.7806 0.1393

)S 0.0701 1.4983'

Then

S-I(A -B)I/2 = (
0,7806 0.0701

)I 0.1393 1.4983

(A - B)I/2S - I(A + B)S- I(A - B)I/2 =(
1.2998 1.0247

)1.0247 5.1724

The iwo eigenvalues are E2 = 1.0454 and E2 = 5.4266, and the corres-
ponding eigenvectors are (0.9705, -0.2410) and (0.2410,0.9705). The excita-
tion energies are E = 1.0225 and 2.3295; (Z - Y) is obtained for each stale,
according to Eq. (6.109) as

- - 1/2 (
0.9705

)- (
0.6455

)(Z - Yh - (A- B) -0.2410 - -0.2208

Z - Y) = ( - )- 1/2 (
°.241°

)=(
0.0981

)( 2 A B 0.9705 0.6386

The (Z + Y) for each staLe caD then be obtained from

or from

(Z + Y)= E(A + B)- IS(Z - Y)

to yield

E-'S-'(A - B)(Z - Y)

(
0.7242

)(Z + Y), = -0.2209 ' (
0.1100

)(Z + Yb = 0.6388

Solving for Z and Y for each state and then renormalizing (Z, Y) for each
staLe soch that

(ZY)(~ ~~)(~)= 1= ZSZ - YSY
we obtain

(
0.6926

)ZI= -0.2233 '

(
0,1596

)Z2 = 0.9747 '

(
0.0397

)Y, = -0.0001

(
0,0092

)y 2 = 0.0002
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The desired transition moments are given by (rIO+), with

0+ = Z(Q.il.!l> <Ol>+ Y(Q21,10><11>

The data of Solution 5.3 tell us that

(rIQ.il) = 1.1076= -(rIQ21)
(rlln><°l>= -0.1551 = -(rIIO><nl)

and so

I + (
1.1076

) (
1.l076

)(r O. ) = (0.6926,-0.2233) -0.1551 - (0.0397,-0.0001) -0.1551

= 0.7578

Likewise,

(rIOi) = 0.0146

2. The fulI-CI calculation gave excitation energies of 1.0225 and 2.3295,
which is exactly what we get hece. The CI transition moments are 0.7578
and 0.0144, which are almost identical to ours. The MCSCF reference stale
is identical to the fuli-CI wavefunction even though it contains only the
1a2 and 2a2 configuration. This is true because the orbitais used in the
MCSCF wave function are optimized orbitaIs. The projection manifold
operating on lO>then yields two moce linearly independent functions, which,
taken together with 1O),form a three-dimensional space capable of deseribing
the results of the fulI 3 x 3 CI problem. We thus have both the exact re-
ference stale and a complete projection manifold {T+}, and the MCTDHF
calculation therefore is able to reproduce the fulI-CI result of Problem 5.1.

2

3. CXu = 2 L l(zIOIW(Ef- E2)-tEJ
j=1

[
0.75782 0.01462

]E = 0.0, CXu = 2 1.0225 + 2.3295 = 1.1234

E = O l = 2[°.75782(1.0225) 0.01462(2.3295)]= 11344. , CXu 1.0454- 0.01 + 5.4266- 0.01 .

Ali three calculations have the potential of giving the full-CI result as dis-
cussed in question 2.
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shake-up, 129, 163
Ionization potential, see Ionization energies
Iterative natural orbitaIs, 42, 104

K

Koopmans' tbeorem, 134, 137, 138

L

Linear convergence, 34, 36, 50, 57

Local maximum, 18, 27
Loca! minimum, 18,27
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M

Many-body perturbation theory, 74, 76, 78,
95, III

energy, 78, 79,82,83,86,97,98
wavefunction, 84

Matrix diagonalization

perturbation method, 43, 44, 45, 52

power method, 43

Mode damping, 28
Molecule dissociation, 85

Ma,lIer-Plesset perturbation theory, 74

energy, 74
wavefunction, 77

Multiconfigurational Hartree-Fock response,
106, 111

Multiconfigurational self-consistent field, 19,
28,31,32,42,53,104,114

Multiconfigurational time-dependent Har-
tree-Fock, 151, 162

equivalence of length and velocity oscillator

strengths, 152, 154

hermiticity in, 152
poles, 153
residues, 153

stability condition, 153

N

Natural orbital, 42
Newton-Raphson method, 97,114
Nonhermitian eigenvalue problem, 145, 146
Nonorthogonal orbita! transformation, 34
Nonorthonormal spin orbitais, 2, 104
Normal marle, 27
Nuclear displacements, IB, 114, 115
Number operator

occupation, 3
total, 3

o

One-electrQn operator, 5, 6
One-step second-order method, 24, 25, 26, 27,

31,34,53,64
Operator manifolds

complete, 126, 166
partitioning, 131, 132, 136, 160
truncation, 129, 133,136, 144, 151, 155
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Operator Tank, 9,10,14,15
Optical potential, see Self energy
Orbital and configuration coupling matrix

elements, 25, 28
Orbital energies, 36, 49, 74
Orbital relaxation, 41,138
Orthogonal complement, 20, 28, 108
Orthogonal transformation, see Unitary

transformation
OrthonormaI orbitais, II, 12
Oscillator strength, 149

p

Pair creation operator, 9

Particie-hole operator, 144

Partitioning, 25,131,136,160
PaDli principie, 2, 4

Perturbation theory

energy expression, 70, 71, 72, 73, 77

response, III
wavefunction expressions, 70, 76, 77

Polarizability

frequency-dependent, 117, 142, 143, 155,
156, 159, 162

frequency-independent, 105, 106, 1l7, 142,
143, 149, 154

Polarization propagator

diagrammatic analysis, 160, 161
excitation operator, 147

perturbation analysis, 154

pole, 142, 145, 146, 147, 154, 155, 156, 158,
161

residue, 142, 145, 146, 147, 154, 155, 156,
159

spectral representation, 146, 147
Polarized orbital, 52

Positivedefinite, 147,148

Potential energy surface, 113, 115
minima, 113, ll5

saddle point, 113, 115

stationarypoint, 115,116
Projection operator, 69

Q

Quadratically convergent, 24, 25, 31, 32, 34,
36,40,52,53,57,114
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R

Random phase approximation, see Time-
dependent Hartree-Fock

Rayleigh-Schrodinger perturbation theory,
68,72,74,76,77,85,103, III, 130

Reduced linear equations method, 98
Redundant operators, 28,41, 58,64, 72
Reference function, 4, 64, 90, 91, 122, 130,

153

Reference srace, 43
Replacement operator, 4, lO
Resolution of identity, 126
Resolvent, 69, 71
Response properties, 103, 105, 106, 108
Restricted Hartree-Fock, 38

s

Saddle point, 18,27
Second-quantized operators, 5, 6
Self-consistent field, 36,49,50
Self-energy, 140, 141, 163
Size consistency, 47,54,55,72,73,76,77,79,

82,85,92,99
Slater-Condon rules, 5, 6, 56
Slater determinant, I, 2, 5, 68
Slope, 18,27
Spectral representation, 124, 128, 153
Stability conditions, 147, 150
Stationary point, 18, 19,20,24,27,35
Step lengths, 27
Superconfiguration interaction, 32
Superoperator

binary product, 125, 126, 127, 133
completeness relation, 126, 127
eigenvalue problem, 128, 134
Hamiltonian, 125, 128, 130
resolvent, 126, 128, 131
unit, 125

Symmetry considerations, 39, 37,129,151
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T

Tensor operator, 8, 9, lO, 151
doublet, 9

singlet, 9, 10,26, 59, 62

triplet, 9, 10, 14, 15

Time-dependent Hartree-Fock, 133,144,160,
162

diagrammatic analysis, 160, 161

equivalence of length and velocity oscillator
strengths, 149, 150

normalization condition, 146, 147

poles, 149, 150, 158, 159
residue, 145, 147, 158, 159

stability condition, 147, 148, 150

Transition moment, IM, 116, 142, 146, 149,
159,162

Transition properties, 103, 104

Two-electron integral, 5, 26
derivative of, 116

Two-electron operator, 5, 7

Two-step procedure, 24, 26, 27, 28, 31, 53, 64

u

Unitary exponential operator, see Unitary
transformation

Unitary group
generators, 30
graphical, 46

Unitary transformation
configuration, 20, 21, 22, 29, 30, 53
orbital, 10, II, 12, 14,22,29,30,51,53

Unrestricted Hartree-Fock, 38

v

Vacuum ket, 2, 4
Variational parameters

linear, 18, 19, 21, 32, 35, 39,64
nonlinear, 18,21,40,64


