Chapter 5 | Physical Properties

A. CLASSES OF PROPERTIES

Given wavefunctions belonging to one or more states that are obtained
from an MCSCF, HF, CI, RSPT, or CC calculation, one is often interested
in subsequently using these wavefunctions to compute physical properties of
the system other than the total electronic energy. Below we discuss how the
three distinct classes of properties—expectation values, transition properties,
and response properties—may be evaluated, and we show also how stationary
points on the potential energy surface may be determined using a quadrati-
cally convergent procedure.

1. Expectation Values

State average values such as dipole and quadrupole moments and electron
spin densities are usually evaluated as expectation values of their corre-
sponding quantum-mechanical operators. For example, the electronic con-
tribution to the dipole moment operator is

=2 epilrlé;>iti (5.1
iJ

and theelectroniccontribution to the dipole moment of state [0) thus becomes
—(0Jr|0>. In evaluating expectation values, we must be careful that the wave-
function being used is of sufficiently high quality to permit accurate results.
For example, in computing the expectation value of the electronic contribu-
tions to the dipole moment beyond the SCF level, it is important to include
singly excited configurations in the Cl or MCSCF wavefunction. A perturba-
tion analysis of the order in which singly excited, doubly excited, etc. con-
figurations enter in the calculation of the dipole moment makes this statement
easily understood. The first-order RSPT function, which includes only doubly
excited configurations (relative to the single determinantal zeroth-order
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function |0°)), yields a dipole moment average value that differs from
<0°r|0°> only in second order since <0°r|zj; > vanishes as a result of the fact
that r is a one-electron operator. As both the singly and doubly excited states
contribute in second order, it becomes equally important to include both
singly and doubly excited configurations in the calculation. This observation
demonstrates the point that those configurations that are optimal for de-
scribing the total electronic energy may not be adequate for obtaining accu-
rate expectation values. This conclusion is now generally accepted as applying
to all types (MCSCF, CI, HF, CC) of wavefunctions and is important to keep
in mind when choosing which configurations to employ in any calculation.

Within the class of expectation values, we might also include calculations
of electronic excitation and ionization energies as differences in individual
state energies. The excitation and ionization energies are small numbers
compared to the individual state total energies. For this reason, alternative
procedures have been developed that can be employed to directly calculate
such excitation (and ionization) energies as well as their corresponding oscil-
lator strengths and that avoid the difficulties that might appear when sub-
tracting two large numbers the difference of which is a small number. These
direct evaluation techniques are based upon the so-called Green’s function
(GF) methods described in Chapter 6. The energy differences obtained either
from a GF or by subtracting two wavefunction expectation values no longer
have the upper bound property that individual state energies possess. Thus,
there is no fundamental reason to insist that excitation energies be calculated
as differences between state expectation values each of which are upper
bounds to two state energies.

2. Transition Properties

The second class of quantities in which one is likely to be interested we
refer to as transition properties. They include, for example, the electric dipole
transition moment (Or|n) between stationary states |0> and |n)>. The primary
difficulty in evaluating such transition moments has to do with treating the
overlap between nonorthogonal orbitals that arises in computing (0}i*jjn).
That is, unless |n) and |0) are both expressed as linear combinations of
determinants involving a common set of orthonormal spin-orbitals, the
determinants in |n) will not be orthogonal to those in |0>. Rather than being
an exceptionally rare situation, this is actually the most likely case. For
example, MCSCF calculations or INO-CI calculations on two electronic
states of a molecule invariably result in different optimal (MCSCF or INO)
orbitals for the two states. Although these nonorthogonality problems do
indeed make the evaluation of transition properties quite difficult, it is still
possible to compute the requisite overlap matrices and thereby obtain the
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desired quantity. However, this formidable difficulty provides strong moti-
vation for us to treat the evaluation of transition moments through the GF
framework as described in Chapter 6. Suffice it to say for now that these GF
methods are designed to yield both transition moments and electronic energy
differences directly rather than as matrix elements and energy differences of
two separate slates.

3. Response Properties

In addition to expectation values and transition moments, we have a third
class of important physical properties, which we refer to as second-order
response properties. To develop some understanding for the meaning of and
theoretical methods for studying these responses, let us investigate the
response of a state |0) corresponding to H to an external time-independent
one-electron perturbation (xH,)

H-H +aH, (5.2)

Such perturbations could, for example, include electric field (2 = & ) effects or
nuclear coordinate displacements. The total electronic energy in the presence
of the perturbation becomes a function of & and may (for small &) be expanded
in a power series

E(@) = <O|H + aH,[0) = E, — aE, — 1aE, — ta’Ey — 40*E, ... (5.3)

The terms that are nonlinear in « arise because the state wavefunction [0)
depends on a (i.e., the state has responded to aH ;, which gives rise to the name
“response property”). When, for example, o, represents a static electric
field (xH, = & ' r), E, yields the permanent electric dipole moment () of the
unperturbed state |0), E, gives this state’s polarizability («), and E,, E,, etc.
yield successively higher hyperpolarizabilities (f3, 7, etc.).
a. Finite-Field Approach

One way of determining the first- and second-order response properties
would be to calculate the total electronic energy of the system with aH,
present (using the CI, HF, RSPT, MCSCF, or CC method) for several small
values of « and to then attempt to fit these computed E(a) values to the series
given in Eq. (5.3). This numerical procedure is usually referred to as the
finite-field method. As an alternative to performing a least-squares fit to
Eq. (5.3) one may, by judiciously choosing the values of the field at which
E(x) is computed, employ versions of Eq. (5.3) that contain only odd or even
powers of « [E; = E(x) + E(—a)]. Furthermore, by combining computed
values of E, (x) and E . (2a), one can selectively remove higher (odd or even)
powers of a from the resultant equation. For example, by using —3E _(x) +
12E _(2x) one obtains E,a + O(a®) since the E o> was cancelled by taking the
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proper (—2, 1) combination of E_(x) and E_(2x). Alternatively, using E . ()
and E,(2x) one can obtain

—$E, (@) + 13E,(20) + 5E, + 0(°) = o’E, (5.4)

Again, notice the cancellation of the power of o two higher than the power
occurring in the property being evaluated. These finite-difference fits (Bartlett
and Purvis, 1979) of Eq. (5.3) to calculated values of E(«) then permit one to
obtain the dipole moment u from E, and the polarizability from E,.

Although the numerical procedure outlined above may permit one to
efficiently and precisely extract from computed energy values [E(x)] the
desired response properties, it by no means guarantees the accuracy of these
properties. The accuracy of the comguted response properties is determined
by the quality of the wavefunction |[0> used to evaluate E(a). It is not at all
straightforward to choose an atomic basis set that permits the orthonormal
molecular orbitals appearing in [0) to properly polarize in the presence of the
field. Furthermore, it is difficult to choose a set of configurations for use in
constructing |ﬁ) that is certain to yield the same accuracy in the computed
E(x) values for all values of the field strengths a. Because of these difficulties,
it is important to look for alternative methods for computing response
properties. In Section B, we outline an analytical approach to this problem
that does not involve fitting values of the energy that are computed at finite
values of the applied-field strength.

b. Analytical Approach

As an alternative that does not suffer from these difficulties, analytical
expressions for the response properties may be derived. If we are able to
obtain a closed-form expression for the response of a state wavefunction |0)
to the presence of the “field” aH |,

0> = A~12[|0) + of0'> + a?|0?> + - -] (5.5)

(A is a normalization constant), then this result can be used in Eq. (5.3) to
express the Hamiltonian expectation value (O|H + aH .[0> as a power series
in o, upon which the desired second-order response is identified as the multi-
plier of a2, Of course, for each specific choice of the form of |0> (i.e., MCSCEF,
CI, RSPT, CC) the prescription for evaluating Eq. (5.5) is different; the basic
approach is, however, identical for all such wavefunctions.

B. MCSCF TREATMENT OF RESPONSE

To illustrate the analytical approach, let us consider how an MCSCF
wavefunction would respond to a one-electron external perturbation of the
form

H-H+aH, +a’H, (5.6)

B R P b e gt g
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The total energy of the system in the presence of the external field may be
written as

E(x, 4, 5) = <O|exp(—iS)exp(—iA)(H + aH, + a?H,)exp(iA) exp(iS)|0)
= (O|H + aH, + «>H,|0> — iCO|[S + A, H + o«H,]|0)
+ 3C0[[S.[H,5]]]0> + 3<O|[4, [H,1]][0>
+ CO|[S,[H,A1]|0> + ... (5.7)

The values of P and k appearing in S and A, respectively, may be expanded as
power series in a:

S =50 4 a8 4 o252 4 ... (5.8)
A=29 4 qdV 4 2] 4 ... (5.9

Since the 4 and S operators are determined by making the total energy
expression in Eq. (5.7) stationary, the zeroth-order terms that appear in
Egs. (5.8) and (5.9) become zero because the state |0) was optimized in the
absence of the one-electron perturbation. The terms —iC0|[A" + SV, H]|0D,
which are of first order in @, and —i0|[A® + $®, H]|0), which are of second
order, vanish because of the GBT. Hence, in Eq.(5.7) all of the terms remaining
should be viewed as containing A"’ and S‘"' since we are only keeping terms
up through «? in our energy expansion.

Using Egs. (2.29) and (2.30), we may express the above total energy in a
form similar to the one given in Eq. (2.25):

E(x,,5) = E(0,0,0) + a<0|H,|0) + «2<0|H,|0)

& aZ(KP)(g) + &P)A — B)(:) L (5.10)

where the matrices F and G are defined as
F = (0|[Q,H,]|0> (5.11)
G = <O|[R,H,]|0) (5.12)

and Q and R are given in Eq. (2.26).

Since the total energy must be stationary in the presence of the external
perturbation, we may determine x and P from Eq. (5.10). Neglecting third-
and higher-order terms, we obtain by differentiating with respect to k and P

F K
—Za(G)+2(A—B}(P)=0 - (5.13)

which may be written as
K _— —_— o I
( ) =o(A — B) ( ) (5.14)
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Note that the A — B matrix is evaluated from Egs. (2.29) and (2.30) and does
not contain H, or H,. Using Eq. (5.14) to eliminate x and P in Eq. (5.10), we
obtain an expansion of the total energy as a function of a:

E(x) = O|H|0) + a(O|H|0> + a2(0|H,|0)

F
2 —1
o} (FG)(A — B) ( G
Notice that in this MCSCF result, the multiplier of a is equal to the expecta-
tion value of the perturbation operator H,. We have thus obtained an analyti-
cal expression from which to determine the desired first- and second- order
response properties. This analytical approach for determining the second-
order properties is referred to as the coupled multiconfiguration Hartree—
Fock (CMCHF) approach (Dalgaard and J¢rgensen, 1978).
If only one configuration is used for expanding the reference state |0> the
above development can still be used to give

E(2) = CO|H|0> + a<0|H,|0) + a2(0|H,|0)
— o?F(A,, — B,,)"'F + 0(o%) (5.16)

where A, and B, are defined in Egs. (2.29) and (2.30). This approximation

to second-order properties has been denoted the coupled Hartree—-Fock
(CHF) method.

) + O(®) (5.15)

C. CI RESPONSE PROPERTIES

In a CI approach to this same problem, the variation of the reference state
is described through variations in the configuration expansion coefficients.
These variations may be described either by the exp(iS) operator or through
the linear variational parameters C,,. Because orbital variations are not
considered in such a CI calculation, first- and second-order properties may
be easily determined from Eq. (5.15) by neglecting all terms that involve the
orbital optimization parameter x:

E(x) = <O|H|0) + a{0|H,|0)> — a®>GA;,'G + O(?) + «?(0|H,|0)> (5.17)

where
G, = <{n|H,|0> (5.18)
and
(A22)n = <m|H|n) — 3,,,<O|H|0) (5.19)

The matrix A,, contains the CI matrix involving all states |n) except the
reference state |0). Carrying out a CI calculation (with H not including «H,)
within this orthogonal complement space would lead to the following famil-
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iar expression for the second-order property:
GAZ'G = Y |KO|H,|n)|XE, — Eo) ! (5.20)

n#0

However, this diagonalization of <n|H|m) is not necessary; Eq. (5.17) still
gives the CI approximation to the desired second-order property. It should
be noted that the second-order properties obtained from Eq. (5.20) simulate
a finite-field CI calculation where the same orbitals are used to obtain the
total energy at various strengths of the field. Hence, it is appropriate to take
k = 0 in deriving Eq. (5.20) because the orbitals used have not been deter-
mined in the presence of the external field.

A finite-field CI calculation in which the orthonormal orbitals used to
construct |()> are determined via an SCF calculation in the presence of the
applied field could not easily be described in the analytical framework given
here. Taking k = 0 is not appropriate because the orbitals are “optimized”
with the field present. However, the orbitals are determined from a single-
configuration (SCF) calculation rather than through the simultaneous
optimization of k and P for a multiconfiguration wavefunction. Hence a
significant disadvantage of such a finite-field CI method is that it can not
easily be directly connected with the analytical response equation given
earlier.

D. THE HELLMANN-FEYNMAN THEOREM

It follows from the above MCSCF-based derivation that the Hellmann-
Feynman theorem is fulfilled both for SCF and MCSCF wavefunctions since
Eq. (5.15) yields, upon differentiation with respect to a,

dE(e)
do

a=

= (0|H,|0> (5.21)
0

It should, however, be pointed out that this result is a consequence of the
fact that the SCF and MCSCF wavefunctions |0) have been optimized with
respect to all variational parameters in |0) and that 1 and §' in Egs. (5.8)
and (5.9) therefore vanish. If the orbital optimization is carried out using
a limited number of the total set of variational parameters in |0), the ex-
pansions in Egs. (5.8) and (5.9) contain zeroth-order elements. The expansion
of the total energy E(x) would then contain first-order terms in o beyond
{0|H,|0> and the Hellmann-Feynman theorem would therefore not be
fulfilled. This is the case in a limited CI calculation where the orbital vari-
ations are not considered explicitly [ Eq. (5.9) contains zeroth-order terms].
Of course, the Hellmann-Feynman theorem is fulfilled in the full CI limit,
where the orbital optimization parameters are redundant.
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. THE COUPLED-CLUSTER RESPONSE PROPERTIES

The above described linear-response approach to calculating first- and
nd-order properties can also be applied within the CC and RSPT frame-
orks. In the former (Monkhorst, 1977) theory we consider the CC working

uations for a Hamiltonian to which a one-electron perturbation oH, has
pen added:

H(w) = H + aH, (5.22)
exp[ — T(2)]H(x) exp[ T(0)]|0°) = E(«)[0°) (5.23)

eglecting the variationsin the orbitals when the field is applied, the equation
rr E and the cluster amplitudes t;3"".

0% exp[ — T(oc)]H(a} exp[T(a)]|0°) E(a) (5.24)

d
r 5 |exp[— T(@)]H(@) exp[ T()]]0°) = 0 (5.25)

in be expanded in powers of the field a once the cluster operators T'(«) and
(o) are so expanded:

T(@)=T° + " + &2T? + - - - (5.26) ¢

E(x) = E® + «E"" + «2E® + - - - (5.27)

he resultant first- and second-order equations read

E® = (0% exp(— T°){H, + [H, T"]} exp(T?)|0°) (5.28)
0= {5 |exp(— TO){H, + [H, T""]} exp(T°)|0°) (5.29)

hd
E® = (0%exp(— T°){[H,, T"] + §[[H, T"V], T"]
+ [H, T®]} exp(T°)|0°) (5.30)
0= <;?J"""1°"P(— T°){[H,, T'""] + L[[H, T"], T™]
+ [H, T} exp(T°)|0%) (5.31)

spectively. The zeroth-order (in «) equations are, of course, nothing but
e original CC equations in the absence of aH,. We assume that we have
ready solved these equations. It is probably most reasonable to choose
™ and T'® to contain the operators r*s* ---af -+ -, which are of no
gher cluster size than those in T° (e.g., T® = T, + T, is quite likely to be
josen for physical and practical reasons).

The above first-order equation for T'" [Eq. (5.29)] expresses a set of linear
gebraic equations for the cluster amplitudes in T*, which can be written
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in matrix form as
D¢ = H, (5.32)
where the elements of H, and D, respectively, are
— G| exp(— TO)H, exp(TO)|0%,
lexp(—= TO)[H,p*q* - - - yd - - -Jexp(T?)|0%)

In principle, D and H, can be computed in terms of the known (unperturbed)
cluster amplitudes and integrals involving the H, operator. The second-order
equation that determines T can also be expressed as a set of linear algebraic
equations

Dt =C (5.33)
where D was given above and C has elements
~ < exp(=TO[Hy T] + 4L, TV T exp(T)0°

Clearly, the evaluation of C requires that Eq. (5.32) first be solved for T'".
Then given T and T, Egs. (5.28) and (5.30) can be used to obtain the
desired first- and second-order response properties as E'"? and E'®), respec-
tively. We should point out that the term T arising in this CC development
has no analog in the MCSCF treatment given earlier. The absence of such
quadratic terms in the MCSCF analog arises because, even if the energy
expression given in Eq. (5.7) contained the term —i{0|[S® + 2%, H]|0), it
would vanish by the GBT. In the CC treatment of E‘® one needs both T"
and T because the CC wavefunction does not obey a GBT. We should
also mention that, unlike the analogous result for the MCSCF response
properties, the CC linear response energy E'" is not simply equal to the
average value of H,. The term (0% exp(— T°)[H, T} exp(T°)[0°) has no
counterpart in the MCSCF expression for E'". In the event that the CC
unperturbed energy (0°|exp(— T°)H exp(T°)[0°) were stationary with re-
spect to variations in T, this term would vanish.

F. PERTURBATIVE CALCULATION
OF RESPONSE PROPERTIES

The RSPT or MBPT approach to computing response properties for
atomic and molecular system is, in principle, straightforward (Kelly, 1969;
Barlett and Silver, 1975). The perturbed Hamiltonian H + oH is decom-
posed into an unperturbed part H®, which is most commonly taken to be a
HF Hamiltonian, and a perturbation that contains both aH, and (I — H?):

H(x) = H® + aH, + H — H® (5.34)
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hen RSPT or MBPT is employed, as discussed in Chapter 3, to calculate
serturbation corrections to the system energy. However, the terms E}"’ are no
onger simply grouped together according to their order in the total per-
urbation aH, + (H — H°) but rather they are regrouped and labeled by
wo order indices E{"™, which tell their separate orders in aH, and (H — H®),
espectively. This additional decomposition is introduced because it is not
ractical to formulate a perturbation theory of the system’s response to
tH, in terms of the exact eigenstates of the full H.

The desired first- and second-order response properties of the state |j)
ire calculated by summing E{'"™ and E{*"™, respectively, over the index m
labeling order in H — H°):

ED= ¥ Em (5.35)
m=0

ED =Y E@m (5.36)
m=0

‘or practical reasons related to difficulty and expense in evaluating the
igher-order contributions to E{'"™ and E{*"™, the index m is usually limited
o rather small values.

Either the algebraic methods of RSPT or the diagrammatic methods of
ABPT can be used to evaluate E{""™ and E{*™, as described in Chapter 3
n terms of the usual orbital energies, two-electron integrals, and one-electron -
ntegrals involving H, ({¢,|H,|$,>). Because both forms of perturbation
heory yield energies that are size consistent, the evaluation of response
roperties as E'"’ and E'® guarantees that these properties will also be size
onsistent. As an example of how second-order properties may be evaluated,
ve display in Fig. 5.1 for a set of HF orbitals all of the zeroth- and first-order
in electron interaction) diagrams appropriate to a second-order response
roperty whose perturbation operator [aH, of Eq. (5.2)] is denoted by a
quare figure. The evaluation of each of these diagrams is treated in the

FIG. 5.1. All zeroth- and first-order dia-
grams for a second-order response property.
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manner described in Table I1 of Chapter 3 with the matrix elements of the
(one-electron) perturbation aH, being treated as the one-electron operator
V. For example, the value of diagram D in Fig. 5.1 is given by

D= {_])2+2 Z <ﬁ|“H1|P>(Pq||ﬁ}’>(}'|0th'1|q)

rq (ey + &5 — &, — £;)ep — ’;a’)
P ‘I

(5.37)

The evaluation of all the diagrams in Fig. 5.1 would thus give the desired
second-order property consistent through first order in electronic interaction.

G. MOLECULAR GRADIENTS AND FORCE CONSTANTS

The determination of minima and saddle points on the potential-energy
surface of a molecule plays an important role (Schaefer and Miller, 1977,
Chapter 4) in describing the electronic structure and chemical reactivity of
molecules. In this section, we show how such stationary points on a mole-
cule’s potential energy surface may be found by using an approach similar
to that employed in Section 5.B. We first consider how the electronic
Hamiltonian changes when the nuclear positions are changed from an
initial set of positions, R} to R, i.e, R, —» R} + u,. The electron-nuclear
interaction is the only term in the Hamiltonian that depends explicitly on
the nuclear position. Performing a Taylor expansion of this potential about

the point RY, we obtain
F—Rf™'=[r—Ri—u,| "' =|r—RY| ! —(u,-Wr—RY"*
+3(u, - VP e — RY| ™' + O(u))
(5.38)

We may thus identify the changes in the electronic Hamiltonian through
second order in the nuclear displacements (u,) as

W= Z + ZA(¢:I[(“A e V]lr = Rﬂl" !]ltfis)”S (5.39)
A

Va=2 —3Z (@, - VPr — R oot *s (5.40)
A .

Is

Here, V| clearly represents the forces on the electrons due to the nuclear
displacement, whereas V, describes electric-field gradient terms induced by
movement of the nuclei. A stationary point on the potential energy surface
occurs when the average value of the first-order term in zero:

O|W4]0> =0 (5.41)
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\s demonstrated below, stationary points on the potential-energy surface
hay be determined in a quadratically convergent procedure using an
Inalytical expression for the total energy that is accurate through second
rder in the nuclear displacement, and a Newton—Raphson procedure to
etermine the step length of the nuclear displacement. We now develop a
rocedure for carrying out such gradient calculations when |0) refers to a
CSCF wavefunction. Since the changes in the electronic Hamiltonian are
termined in Eqgs. (5.39) and (5.40) through second order in the nuclear
isplacement, an analytical expression of the total energy through second
der in the nuclear displacement may be determined from the coupled
ulticonfiguration HF expression for the total energy given in Eq. (5.15)
ce aH, is identified as ¥, and «’H as V,. The first-order term o< 0|H,|0>
Eq. (5.15) may be written as

Oy =Y u, -V, (542)
A

yhere the cartesian components of the force vector for displacement of
ucleus A are

Via= Vi Vi Vid (5.43)
rith
i d 0]-1 + .

Via=2 ZLd) FT Ir— RE[ ! |@<0l*s0),  i=x,y,z (5.44)
15

'he second-order term a?{0|H,|0) becomes

OWl0) =Y u, - V,, -u, (5.45)

A

vhere V, 4 is a tensor operator, the components of which are defined as

- o2

Yo=Y - ﬁmf'[ﬁ?@- e~ R ‘]I¢,><0|r+s|0>, ij=xyz (546)
Is 5

[he matrix oF given in Eq. (5.11) may similarly be written as

aF—_—zuA'FA (54?]
A

vhere

)
Vi o Z,.<¢J[f%,. Ir =Rl ']Id's)(ﬂI[Q»t*SJlO% i=xyz (548)

nd an analogous expression can be written for the «G matrix of Eq. (5.12).
'he last term of Eq. (5.15) therefore can be written as

2 uy D pup (5.49)
AB
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where the tensor operator D is defined through its components as

. SE F}
Dijp = (F4G)A —B)"! (G'j). hj=xyz2 (5.50)
B

The total energy that contains all terms through second order in the nuclear
displacement may thus be expressed as

E) = COH|0> + Y u, -V + Y u, My -uy (5.51)
A AB

where
M, = Vu‘sm — Dup (5.52)

is the force constant matrix. This expression contains Hellmann-Feynman
force terms in V, , field gradient terms in V, 4, as well as terms in D 5 that
describe how the MCSCEF orbitals and CI coefficients respond to displace-
ments of the nuclei. A stationary point on the molecular potential energy
surface is determined when 6E(u) = 0. Neglecting third- and higher-order
terms in the energy function given in Eq. (5.51) and differentiating with
respect to u thus gives

Vi+2Mu =20 (5.53)
where V, and u are column vectors containing the elements Vi ,, V4, Vi,

Vig,...and u}, v, u5, uj, ..., respectively. The elements of the matrix
M are defined as the components of the tensor operator M, in Eq. (5.52):

Maip; = Mifp,  iLj=x1,z (5.54)
The nuclear displacements are thus given as
u=—3M7'V, (5.55)

In the above derivation we have assumed that the atomic orbital basis
employed in forming the MCSCF orbitals was complete. This assumption
allowed us to write [in Egs. (5.39) and (5.40)] the Hamiltonian both at R,
and RY + u, in terms of the MCSCF orbitals, which were obtained from
an MCSCEF calculation performed at the “starting” geometry RY%. In most
molecular calculations, limited basis sets are used and the basis therefore
depends on the nuclear positions. This dependence was not considered in
the above derivation although it may be quite important depending on the
basis set used in any particular calculation. Let us now assume that we shall
attempt to describe the potential energy surface of a molecule by using an
atomic orbital basis that is attached to the atomic nuclei and that thus moves
with the nuclei. The above described formalism will be useful in locating the
desired stationary points on the potential surface if both the first and second
derivatives (with respect to nuclear displacement) of the dominant basis



116 5 Physical Properties

orbitals can be expanded in this basis. This can be seen by considering that
the coulomb potential |[r — R,|™" of Eq. (5.38), when integrated over an
electronic charge density p(r), yields an interaction energy that can be ex-
panded in powers of u, = R, — RY either by expanding |[r — R,| ™' as in
Eq. (5.38) or by expanding the charge density p(r — u,). The expansion of
this charge density then gives rise to the derivatives of the atomic basis
orbitals. This criterion—that the first and second derivatives of the important
basis functions can be expanded in the same basis—may, of course, in
principle never be met. For practical purposes we can, however, fulfill the
criterion if the basis consists of a set of gaussian functions. We know that
the nuclear displacement derivative of a gaussian function just is another
gaussian with one higher angular momentum value. Thus by including such
gaussian basis functions of higher angular momentum in the original basis,
we could gaurantee that the derivatives of the important gaussian atomic
orbitals will indeed bfdescribed within our finite basis. If the derivatives of
the basis functions cannot be expanded in the basis, the fulfillment of Eq.
(5.41) may not lead to an accurate stationary point. As an alternative to
including in the atomic orbital basis sufficient flexibility to describe the first
and second derivatives of the more important basis functions, one can ex-
plicitly evaluate derivatives of the one- and two-electron integrals (Thomsen
and Swanstrem, 1973). Suppose, for example, that s, p, and d atomic orbitals
were used in a calculation on CH,. Even if only the s and p orbitals were im-
portant in describing the orbitals having nonneglible occupation numbers,
one would have to include full sets of d and f orbitals in the basis to guarantee
that the second derivatives of the s and p functions could be described.
As a result, many two-electron integrals involving d and f functions would
have to be computed over the atomic orbital basis. On the other hand, this
can be avoided by calculating only the first and second derivatives of the
integrals over the s and p orbitals. These derivatives would then involve a
very restricted subset of integrals containing d and f functions. For example,
the second derivative of {pp|pp) would involve {pp|pf> and {pp|dd)
integrals; integrals such as (dd|dd) or (dd|fp) or (jfuf) could not arise.
The smaller number of difficult integrals arising in approaches that explicitly
evaluate integral derivatives rather than those using very large basis sets
has made these integral derivative schemes more commonly used in state-
of-the-art calculations.

PROBLEMS

5.1 Determine the excitation energies and transition moments for HeH *
using the full CI calculation for HeH* again making use of SCF data of
Problem 2.1. The nonvanishing matrix elements of the dipole operator
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r(x, y, z) in the atomic basis are
(Isylz|isue) = 02854,  (Lsylz|lsy) = 1.4

1. Determine the matrix elements of r in the SCF orbital basis.

In Problem 2.4, a full CI calculation was carried out on HeH* in the SCF
orbital basis.

2. Use the results of Problem 2.4 to determine the excitation energies and
transition moments from the ground state to the two excited singlet states of
HeH*.

3. Determine the frequency-independent polarizability and the f[re-
quency-dependent polarizability at a frequency E = 0.1 a.u. for HeH ".

5.2 Carry out a coupled Hartree-Fock (CHF) calculation of the frequen-
cy-independent polarizability tensor for the closed-shell HeH" system. To
achieve this goal, follow the steps given below.

1. Show that

O|[r,m, o, + mgog]10> = 2{Plr|pm>

2. Use the A,, and B,, matrix elements derived in Problem 2.2 to show
that the A, , and B,, matrix elements in a CHF calculation may be written as

(A Dnpoma = O|[ B 1z + Bg g, HomS o, + mg05]]0)
= 2((£, — €,)0n0qp + 2{nax| fm> — (nx|mpy))
(By npma = O|[n oty + ng B, HomS o, + my 0,]|0>
=2""mn|foy — 2{mn|af))

To obtain these results rou must use the definition of the Fock potential
given in Eq. (2.92) and as*'me that the orbitals are HF orbitals,

Now carry out the CHF calc .'~tion on HeH *, using the single zeta Slater
basis and the SCF data given in Problem 2.1. The nonvanishing matrix
elements of r(x, y,z) in the SCF basis are given in Solution 5.1, part I.

3. Evaluatethe matrixelementsofr, which enter into the CHF calculation.

4. Evaluate the A, and B,, matrix elements.

5. Determine the frequency-independent polarizability tensor in the CHF
approximation for HeH*.

5.3 Carry out a CMCHF calculation of the frequency-independent
polarizability tensor.

1. Show that

Ok, P . + Py apd|0) = Y {rgp <Oy ., + 55 45|0)> — £, <Olps' s, + pg 520>}

3

2. Show that
CO|[r, 1n)<0[Jj0> = ¥ r,,<O0lp. g, + pj qgln>
rq
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3. Indicate the simplifications that occur in the formulas for the A and
B matrix elements in Egs. (2.29) and (2.30), when converged MCSCEF orbitals
are used for evaluating the A and B matrices.

Now carry out the CMCHF calculation of the frequency-independent
polarizability tensor for HeH*, using the minimum basis given in Problem
2.1. The multiconfiguration reference state includes the two configurations
162 and 26%. A MCSCF calculation using these two configurations was
carried out in Problem 2.6. The one- and two-electron integrals in the
MCSCEF basis are given below:

(Ulh|1y = —2.6119, (2|h|2) = —1.3193, (1]h[2) = 0.2078
(11]11) = 09521, {12|12) = 0.6100, 12|11) = —0.1963
(11]22) = 0.1298, (22|21 = —0.0069, (22|22) = 0.6161,
where 1 and 2 denote the 1¢ and 2¢ orbitals, respectively, which are
lo = 0.8920 Isy, + 0.1701 1sy, 20 = —0.8410 s,y + 1.2140 15,
The MCSCEF states are

|0) = 0.9984|162) — 0.0574|26%),  E, = —2.8506
1> = 0.0574|162) + 09984]26%),  E, = —0.5863

4. Calculate the nonvanishing one- and two-electron density and transi-
tion density matrix elements of the form

Glrts w0y, <ilr*sl0y, <Olrtslid, i= o, 1>

The matrix elements of r in the atomic basis are given in Problem 5.1.

5. Calculate the matrix elements of r in the MCSCF basis.

6. Calculate the numerical values of matrix elements given in questions 1
and 2.

7. Determine the A and B matrix elements.

8. Determine the frequency-independent polarizability tensor in the
CMCHF approximation.

SOLUTIONS

5.1
1. (1fz]1) = 2(0.9000)(0.1584)(0.2854) + (0.1584)%(1.4) = 0.1165
2|z2) = 2(—0.8324)(1.2156)(0.2854) + (1.2156)*(1.4) = 1.4911
(12|12 = [(0.9000)(1.2156) — (0.8324)(0.1584)]0.2854
+ (0.1584)(1.2156)(1.4) = 0.5442
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2. Excitation energies are 4.2792 — 3.2567 = 1.0225 and 4.2792 — 1.9497
= 2.3295. Transition moments:

(1a?z|1e?) = 2¢1|2|1), (22t = KDY, (Qo¥zj2e?) =0

(102021020 = (1|z|1) + (2|2|2), (lo?|z|1620) = %(I[z[Z),

)
20%z|1620) = = (2|z|1).
|1 ﬁ< l2[1>
Therefore

<0|z| 1) = (0.9982)(—0.0261)2(0.1165) + (—0.0573)(—0.2098)2(1.4911)
+ (0.0143)(0.9772)(0.1165 + 1.4911) + [(0.9982)(0.9772)
+ (0.0143)(—0.0261) + (—0.0573)(0.9772)

0.5442
~0.2098)(0.0143)]( == )2
+( ) )]( 7 )
= 0.7578
0|22 = (0.9982)(0.0530)2(0.1165) + (—0.0573)(0.9761)2(1.4911)

— (0.0143)(0.2109)(0.1165 + 1.4911) + [(0.9982)(0.2109)
+ (0.0143)(0.0530) + (—.0573)(0.2109)

0.5442
+ (0.0143)(0.9761) ] (—)2
Nz

=0.0144

|<0lz|m]*(E, — Eo)
3 E)=12 L
an{ ] n=zl.2 (Err W5 Eﬂjz —E

0.5742  0.0002°
E=0, a,,=2[ +00{mJ=1‘1233

1.0225 * 2.3295

E =01, o 2[(0.5?42)(1.0225) (.0002)(2.3295}] L1342

1.0456 — 0.01 5.4266 — 0.01
5.2

1. COl[r,m)S o, + mgog][0> =3 <@, lr|d >0 p* g, m,f o, + mj )]0
= Z <¢i"[r|¢¢> <Ulp+“a‘sm=q Y 40 s,

+ p+°‘ﬂ‘sqm T m; q‘smal(])
= 2 ¢,|r|p.>
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2. Thedefinition of the Fock potential in Eq. (2.92) results in the following
definition of the orbital energies

hes + Y 2<ry|sy) = {ry|vs)) = b,e6,

and the 4, matrix element in Problem 2.2 therefore may be rewritten as
(A 1 l)nﬂ,ma T 2[(_81 + em)aaﬂamn e 2(na!ﬁm) i <ﬂ0’.|mﬁ>]

3. Let |l and 2 denote 1o and 20, respectively. As was shown in Problem
5.1 {1|z]2) = 0.5442. Hence

0|22 1, + 27 1,)|0) = 2(0.5442)
4 (Araian = 20, — & + 221[12) — (21|21)) = 2.1464,
(By1)ar.21 = 2(€22|11) — 2¢22|11)) = —0.2522

5. Only the zz component of the polarizability tensor is nonvanishing.
This component becomes 2 - 4 - 0.5442?/(2.1464 + 0.2522) = 0.9878.
5.3

1. Usingr =) r,(s}t, + s; t5) we obtain
st
Ol[r, s’ 4a + P5 45110) = X w0l 50 + 1555, P 4 + P7 95110D
st

Performing the commutations then leads immediately to the result asked for.
2. CO|[r,[n><0[]]0> = <Oleln> = 3 r,o<O|p.’ g, + p5 apln>
rq
3. The A, and B, matrices in Egs. (2.29) and (2.30) can, when conver-

gence is reached and the GBT is obeyed, be evaluated directly using Eq. (2.42),
which does contain the double commutator form.

. Jt Gl=qof =
Loy 0.9968 0.0573
j2;} 2,0y 00033  —0.0573
il 1,10> 0.9968 0.0573
Gt 14262,]0>  —00573  —0.0033
225 1,100 —00573 0.9968
2,24 252, J0) 00033  —0.0573

We also have 0|1, 1,]1> = 0.0573, 0|2 2,|1) = —0.0573. See text below
Solution 2.6, question 1.

5. zy, = 01271, z,, = 1.4805, z,, = 0.5574.
6. 0|z 271, + 2, 1,]10) = 22,,{<0|1} 1, — 27 2,]05} = 1.1076
O|2,[15€0[JJ0) = 22,101 1,]1)> + 225,027 2,|1> = —0.1551
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7. Formulas for the A and B matrix element are derived in Solution 2.6,
question 2:

_ (21756 04018 _(—02495 —00230
~\04018  2.2643)° ~ \~0.0230 0
04264 —0.0800
. (A-B) 1= j
e (—0‘0300 0.4566)

The zz component of the frequency-independent polarizability becomes

0.4264 —0.0800)( 1.1076

o, = 2(1.1076, -0‘1551)(_00800 04566 )\ —0.1551

)= 1.1232
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