
Chapter 5 I Physical Properties

A. CLASSES OF PROPERTIES

Given wavefunctions belonging to one or moce states that are obtained
erom an MCSCF, HF, CI, RSPT, or CC calculation, one is often interested
in subsequently using these wavefunctions to compute physical properties of
the system other than the total electronic energy. Below we discuss how the
three distinct classes of properties-expectation values, transition properties,
and response properties-may be evaluated, and we show aIso how stationary
points on the potential energy surface may be determined using a quadrati-
cally convergent procedure.

1. Expectation Values

Stale average values soch as dipole and quadrupole moments and electron
spin densities are usually evaluated as expectation values of their corre-
sponding quantum-mechanical operators. For example, the electronic con-
tribution to the dipole moment operator is

r = L e<4>ilrl4»i+j
i,j

(5.1)

and theelectroniccontribution to the dipole moment ofstate lO) thus becomes
- <OlriO).In evaluating expectation values, we most be careful that the wave-
function being used is of sufficiently high quality to pennit accurate results.
For example, in computing the expectation value of the electronic contribu-
tions to the dipole moment beyond the SCF level, it is important to include
singly excited configurations in the CI or MCSCF wavefunction. A perturba-
tion analysis of the order in which singly excited, doubly excited, etc. con-
figurations enter in the calculation ofthe dipole moment makes ibis statement
easily understood. The fugi-order RSPT function, which includes only doubly
excited configurations (relative to the single determinantal zeroth-order
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function 1O°», yields a dipole moment average value that differs erom
(OOlrIOO)only in second order since (OOlrl~p)vanishes as a result of the fact
that r is a one-electron operator. As both the singly and doubly excited states
contribute in second order, it becomes equally important to include both
singly and doubly excited configurations in the calculation. This observat,ion
demonstrates the point that those configurations that are optimal for de-
scribing the to tal electronic energy may not be adequate for obtaining accu-
cale expectation values. This conclusion is naw generally accepted as applying
to all types (MCSCF, CI, HF, CC) ofwavefunctions and is important to keep
in mind when choosing which configurations to employ in aDYcalculation.

Within the class of expectation values, we might also include calculations
or electronic excitation and ionization energies as differences in individual
stale energies. The excitation and ionization energies ale smalI numbers
com pa red to the individual stale to tal energies. For this reason, alternative
procedures have been developed that caD be employed to directly calculate
such excitation (and ionization) energies as well as their corresponding oscil-
lator strengths and that avoid the difficulties that might appeal when sub-
tracting twa large num bers the difference of which is a smalI number. These
direct evaluation techniques are based upaD the so-called Green's function
(GF) methods described in Chapter 6. The energy differences obtained either
erom a GF or by subtracting twa wavefunction expectation values no longer
have the upper bound pro perty that individual stale energies possess. Thus,
there is no fundamental reason to insist that excitation energies be calculated
as differences between stale expectation values each of which are upper
bounds to twa stale energies.

2. Transition Properties

The second class of quantities in which one is likely to be interested we
refer to as transition properties. They include, for example, the electric dipole
transition moment <Olein)betweenstationary states l°) and In). The primary
difficulty in evaluating such transition moments bas to do with treating the
overlap between nonorthogonal orbitals that arises in computing <Oli+jln).
That is, unless In) and l°) ale both expressed as linear combinations of
determinants involving a common set of orthonormal spin-orbitals, the
determinants in In) will not be orthogonal to those in l°). Rather than being
an exceptionally race. situation, this is actually the most likely case. For
example, MCSCF calculations or INO-CI calculations on twa electronic
states of a molecule invariably result in different optimal (MCSCF or INO)
orbitals for the twa states. Although these nonorthogonality problems do
indeed make the evaluation of transition properties quite difficult, it is still
possible to compute the requisite overlap matrices and thereby obtain the
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desired quantity. However, ibis formidable difficulty provides strong moti-
vation for us to trent the evaluation of transition moments through the GF
framework as described in Chapter 6. Suffice it to sar for now that these GF
methods are designed to yield both transition moments and electronic energy
ditTerencesdirectly rather than as matrix elements and energy ditTerences of
iwo separate stalego

3. ResponseProperties

In addition to expectation values and transition moments, we have a third
cIass of important physical properties, which we refer to as second-order
response properties. To develop some understanding for the meaning of and
theoretical methods for studying these responses, lei us investigate the
response of a stale l°) corresponding to H to an external time-independent
one-electronperturbation (aHl)

H-+H+aHl (5.2)
(

Such perturbations could, for exampIe, include electric field (a = ,f,) etTectsor
nuclear coordinate displacements. The to tal electronic energy in the presence
ofthe perturbation becomes a function of IXand may (for smalI IX)beexpanded
in a power series

_
I 1

- l 2 . J l 4
E(a) = (OH + aHl O) = Eo -IXE. - la Ez - 6a EJ - Z4a E4'" (5.3)

The terms that are nonlinear in a arise because the stale wavefunction l°)
depends on a (Le., the stale bas responded to aH l' which gives rise to the name
"response pro perty"). When, for exampIe, aH I represents a stalic electric
field (exl!l = 8 .f), El yields the permanent electric dipole moment (JI)of the

unperturbed stale lO), Ez gives ibis state's polarizability (oc),and EJ, E4, etc.
yieId successively higher hyperpolarizabilities (P, y, etc.).

a. Fillite-Field Approach

One war of determining the first- and second-order response properties
would be to calculate the lotnI electronic energy of the system with IXH1
present (using the CI, HF, RSPT, MCSCF, or CC method) for several smalI
valuesof IXand to then attempt to fil thesecomputed E(a)valuesto the series
given in Eq. (5.3).This numericaI procedure is usualIy referred to as the
finite-field method. As an alternative to performing a least-squaresfilto
Eq. (5.3)one may, by judiciously choosing the valuesof the field at which
E(a) is computed, employ versions ofEq. (5.3)that contain anty odd or even
powers of a [E:!: = E(a):t E(-a)].Furthermore, by combining computed
values of E:!:(IX)and E:t(2a), one caD selectiveIy remove higher (odd or even)
powers of IXfrom the resultant equation. For example, by using - tE _(a) +
.l2E_(2a) one obtains Eta + O(rx5)since the EJIXJwas cancelled by tak ing the
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proper (-l, /2) combination of E_(a) and E_(2ex).Alternatively, using E+(ex)
and E+(2ex)one caD obtain

-lE+(ex) + .l2E+(2ex)+ jEo + O(ex6)= ex2E2t..
Again, notice the canceUation of the power of extwa higher than the power
occurring in the property being evaluated. These finite-difference fits (Bartlett
and Purvis, 1979) of Eq. (5.3) to calculated values of E(ex)then permit one to
obtain the dipole moment J1.erom El and the polarizability erom E2.

Although the numerical procedure outlined above may permit one to
efficiently and precisely extract erom computed energy values [E(ex)] the
desired response properties, it by no means guarantees the accuracy of these
properties. The accuracy of the computed response properties is determined
by the quality of the wavefunction 1°) used to evaluate E(ex).ILis not at aU
straightforward to choose an atomie basi s set that permits the orthonormai
molecular orbitais appearing in l°) to properly polarize in the presence ofthe
field. Furthermore, it is difficult to choose a set of configurations for use in
constructing l°) that is certain to yield the same accuracy in the computed
E(ex)values for all values of the fieldstrengths ex.Becauseof these difficulties,
it is important to look for alternative methods for computing response
properties. In Section B, we outline an analytical approach to this problem
that does not involve fitting values of the energy that are computed at finite
values of the applied-field strength.

b. Analytical Approacll
As an alternative that does not suffer erom these difficulties, analytical

expressions for the response properties may be derived. If we are able to
obtain a closed-form expression for the response of a stale wavefunction lO)
to the presence of the "field" exHI'

l°) = A-I/2[1°) + exlOI)+ ex21O2)+"'J

(5.4)

(5.5)

(A is a normalization constant), then this result caD be used in Eq. (5.3) to
express the Hamiltonian expectation value (OIH + exH11°) as a power series
in ex,opon which the desired second-order response is identified as the multi-
plier of ex2.Of COllege,for each specific choice ofthe form of l°) (Le.,MCSCF,
CI, RSPT, CC) the prescription for evaluating Eq. (5.5) is different; the basic
approach is, however, identical for aU soch wavefunctions.

H --+H + exHI + ex2H 2 (5.6)
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B. MCSCF TREATMENT OF RESPONSE

To iIIustrate the analytical approach, let us consider how an MCSCF
wavefunction would respond to a one-electron external perturbation of the
form
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The totaJ energy of the system in the presence of the externaJ field may be
written as

E«(X,A,S) = <Olexp( - iS) exp( - iA)(U + (XUt+ (X2U2) exp(iA)exp(iS)IO)

= <OlU + (XUI + (X2U21o) - ;<O1[S + A,U + (XUIJl°)

+ l<OI[S, [U,SJJIO) + l<OI[A,[H,AJJIO)

+ <Ol[S, [U,AJJIO) +... (5.7)

The vaJues of P and Kappearing in S and A,respectiveJy, may be expanded as;
power series in (X:

S = SIO) + (XS(I) + (X2S(2) + . . .

A = A(O) + (XA(I) + (X2A(2) + .. .

(5.8)

(5.9)

Since the A and S operators are determined by making the to taJ energy
expression in Eq. (5.7) stationary, the zeroth-order terms that appear in
Eqs. (5.8) and (5.9) become zero because the stale l°) was optimized in the ~

absence ofthe one-eJectron perturbation. The term s - i<OI[A(I)+ S(1),UJ l°),
which are offirst order in (x,and - ;<O1[A(2)+ S(2),UJ l°), which are of second
order, vanish because ofthe GBT. Hence, in Eq. (5.7)all ofthe terms remaining
shouJd be viewedas containing A(I) and S(I)since we are onJykeepingterms
up through (X2in aur energy expansion.

Using. Eqs. (2.29) and (2.30), we may express the above totaJ energy in a
form similar to the one given in Eq. (2.25):

E ((X,A,S) = E(O,O,O)+ (X<OIUtIO) + (X2<0Iu21°)

- (X2(KP)(~)+ (KP)(A- B)(;) +. . .
(5.10)

where the matrices F and G are defined as

F = <OI[Q,UIJIO)

G = <OI[R,HtJIO)

(5.11)

(5.12)

and Q and R are given in Eq. (2.26).
Since the totaJ energy must be stationary in the presence of the externaJ

perturbation, we may determine K and P from Eq. (5.10). Neglecting third-
and higher-order term s, we obtain by dilferentiating with respect to Kand P

-2(X(~) + 2(A- B{;) = O

which may be written as

(5.13)

(;) = (X(A - B)-I (~) (5.14)
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~Note that the A - B matrix is evaluated erom Eqs. (2.29) and (2.30) and doesw'

~. not contain H I or H2' Using Eq. (5.14) to eliminate Kand P in Eq. (5.10),we
obtain an expansion of the total energy as a function of a:

E(ex)= (OIHIO) + ex(OIHIIO)+ ex2(0IH21°)

- ex2(FG)(A - B)-I (~) + O(ex3)
(5.15)

Notice that in ibis MCSCF result, the multiplier of exis equal to the expecta-
tion value ofthe perturbation operator H I' We have thus obtained an analyti-
cal expression erom which to determine the desired first- and second- order
response properties. This analytieal approaeh for determining the seeond-
order properties is referred to as the eoupled multiconfiguration Hartree-
Foek (CMCHF) approaeh (Dalgaard and J~rgensen, 1978).

If only one eonfiguration is used for expanding the reference stale lO) the
above development ean still be used to give

E(ex)= (OIH/O) + ex(OIHdO) + ex2(01H21°)
- ex2F(AII - BII)-IF + O(ex3) (5.16)

where Ali and Bil are defined in Eqs. (2.29) and (2.30). This approximation
to seeond-order properties bas been denoted the coupled Hartree-Fock
(CHF) method.

C. CI RESPONSE PROPERTlES

In a CI approach to ibis same problem, the variation of the referenee stale
is deseribed through variations in the eonfiguration expansion eoeffieients.
These variations may be deseribed either by the exp(iS) operator or through
the linear variational parameters Cgo' Beeause orbital variations are not
considered in sueh a CI ealculation, first- and second-order properties may
be easily determined erom Eq. (5.15) by negleeting aU terms that involve the
orbital optimization parameter K:

E(a) = (OIHIO) + ex(OIHdO) - ex2GAijG + O(ex3)+ ex2(01H21°) (5.17)
where

and
Gn = (nlH 11°)

(An)mn = (mIHln) - bmn(OIHIO)

(5.18)

(5.19)

The matrix An eontains the CI matrix involving aU ~tates In) exeept the
reference stale l°). Carrying out a CI ealculation (with H not including exHI)
within this orthogonal eomplement spaee would lead to the foUowing farni1- ,)~

~
,I
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jar expression for the second-order property:

GA221G= L 1<0IHlln)12(E"- EO)-I
"*0 .

(5.20)

However, this diagonalization of <I1IHlm) is not necessary; Eq. (5.17) still
gives the CJ approximation to the desired second-order property. ILshould
be noted that the second-order properties obtained erom Eq. (5.20) simulate
a finite-field CJ calculation where the same orbitaIs are used to obtain the

to tal energy at various strengths of the field. Hence, it is appropriate to take
K = O in deriving Eq. (5.20) because the orbitaIs used have not been deter-
mined in the presence of the external field.

A finite-fie'd CI calcu'ation in which the orthonorma' orbita's used to

construct lO) are determined via an SCF calcu'ation in the presence of the
applied field could not easily be described in the analytical framework given
here. Taking K = O is not appropriate because the orbitaIs are "optimized"

with the field presenL. However, the orbitaIs are determined erom a single-
configuration (SCF) ca1culation rathel' than through the simultaneous
optimization of K and P for a multiconfiguration wavefunction. Hence a
significant disadvantage of such a finite-field CJ method is that it caD not
easily be directly connected with the analytical response equation given
earlier.

D. THE HELLMANN-FEYNMAN THEOREM

It follows erom the above MCSCF-based derivation that the Hellmann-
Feynman theorem is fulfilled both for SCF and MCSCF wavefunctions since
Eq. (5.15) yields, upon differentiation with respect to oc,

d~~OC)Lo = <OIHIIO)
(5.21)

It should, however, be pointed out that this result is a consequence of the
fact that the SCF and MCSCF wavefunctions lO) have been optimized with
respect to all variational parameters in lO) and that AIO)and SIO)in Eqs. (5.8)
and (5.9) therefore vanish. Jf the orbita' optimization is carried out using
a limited number of the total set of variational parameters in lO), the ex-
pansions in Eqs. (5.8) and (5.9)contain zeroth-order elements. The expansion
of the total energy E(oc)would then contain fiest-order terms in. ocbeyond
<OIH110) and the Hellmann-Feynman theorem would thererore not be
fulfilled. This is the case in a 'imited CI calculation where the orbita' vari-

ations are not considered explicitly [Eq. (5.9) contains zeroth-order terms].
ar course, the Hellmann-Feynman theorem is fulfilled in the fuli CJ limit,
where the orbital optimization parameters are redundanL.
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THE COUPLED-CLUSTERRESPONSE PROPERTIES

The above described linear-response approach to calculating first- and
:ond-order properties caDalgo be applied within the CC and RSPT frame-
orks. In the former (Monkhorst, 1977) theory we consider the CC working
uations for a Hamiltonian to which a one-electron perturbation a.H1 bas
en added:

H(rx)= H + rxH1

exp[ - T(rx)]H(rx)exp[T(a.)] 10°) = E(a.)IOO)

(5.22)

(5.23)

eglecting the variations in the orbitais when the field is applied, the equation
r E and the duster amplitudes t~po::.,

(OOlexp[ - T(rx)]H(rx)exp[T(a.)] 10°) = E(rx) (5.24)

d

Gp'::.1 exp[ - T(rx)]H(rx)exp[T(rx)] 10°) = O (5.25)

n be expanded in powers of the field rxODcethe duster operators T(rx)and
°a.)are so expanded:

T(rx) = To + d\f(1) + a.2T(2) + . . .

E(rx)= Eo + rxE(1)+ rx2E(2)+ . . .
e resultant first- and second-order equations read

(5.26) .

(5.27)

E(I) = (OOlexp(- TO){H1 + [H, T(l)]} exp(TO)IOO)

O= <~po::olexp(- TO){H1+ [H, T(1)]}exp(TO)IOO)

(5.28)

(5.29)

d

E(2) = (0°1exp( - TO){[H I' T(1)] + t[[ H, T(I)], T(I)]

+ [H, T(2)]} exp(TO)IOO)

O = <~i;::0Iexp(-ro){[H1, T(I)] + U[H, T(1)], T(I)]

+ [H, T(2)]}exp(TO)IOO)

(5.30)

(5.31)

;pectively. The zeroth-order (in rx)equations are, of course, nothing but
e original CC equations in the absence of rxHl' We assume that we have
'eady solved these equations. 1t is probably most reasonable to choose
1) and T(2) to contain the operators r+ s+ . . . rxp. . . , which are of no
~her duster size than those in To (e.g., To = Tl + T2 is quite likely to be
osen for physical and practical reasons).
The above fiest-order equation for T(I) [Eq. (5.29)] expresses a set oflinear
gebraic equations for the duster amplitud es in T(1),which caD be written

~.
,.,
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in matrix form as

Dt(1) = Hl

where the elements of Hl and D, respectively, are

- Gp'::.1exp( - TO)Hl exp(TO)IOO),

<~p.::.1exp( - TO)[H,I'+ q+ . . . y~' . .] exp(TO)IOO)

(5.32)

In principIe, D and H. caDbe computed in terms ofthe known (unperturbed)
cluster amplitudes and integrals involving the H l operator. The second-order
equation that determines T12)caDalso be expressed as a set of linear algebraic
equations

Dt(2) = C

where D was given above and C has eIements

(5.33)

- Gii::.1 exp( - TO){[H l, TIl)] + ![[H, TII)],TO)]}exp(TO)IOO)

Clearly, the evaluation of C requires that Eq. (5.32) first be solved for T(l).
Then given TlI) and T(2), Eqs. (5.28) and (5.30) caD be used to obtain the
desired first- and second-order response properties as EO) and E(2),respec-
tive!y. We should point out that the term T12)arising in this CC deve!opment
has no analog in the MCSCF treatment given earlier. The absence of soch
quadratic terms in the MCSCF analog arises because, even if the energy
expression given in Eq. (5.7) contained the term -i<01[SI2) + ,.1,(2),H]IO),it
would vanish by the GBT. In the CC treatment of E12)one needs both TIO
and T12)because the CC wavefunction does not obey a GBT. We should
also mention that, unlike the analogous result for the MCSCF response
properties, the CC linear response energy E(I) is not simpIy equal to the
average value of Hl' The term <OOlexp(-TO)[H, T(I)]exp(To)IOO) has no
counterpart in the MCSCF expression for Ell). In the event that the CC
unperturbed energy <°°1exp( - TO)Hexp(TO)IOO)were stationary with re-
spect to variations in T, this term would vanish.

F. PERTURBATIVECALCULATlON
OF RESPONSE PROPERTlES

The RSPT or MBPT approach to computing response properties for
atomie and molecular system is, in principle, straightforward (Kelly, 1969:
BarIett and Silver, 1975). The perturbed Hamiltonian H + aH I is decom-
posed joto an unperturbed part Ho, which is most commonly taken to be a
HF HamiItonian, and a perturbation that contains both aH l and (H - Ho):

H(a) = Ho + aH1 + H - Ho (5.34)
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rhen RSPT or MBPT is employed, as diseussed in Chapter 3, to calculate
:>erturbation eorreetions to the system energy. However, the terms Ej")are no
onger simply grouped together aeeording to their order in the tatar per-
urbation rxH1 + (H - HO)but rather they are regrouped and labeled by
wo order indiees Ej".m),which tell their separate orders in rxH1 and (H - HO),
espeetively. This additional decomposition is introdueed beeause it is not
~raetical to formulate a perturbation theory of the system's response to
cH1 in term s of the exaet eigenstates of the fuli H.
;The desired first- and seeond-order response properties of the stale JJ>
lee calculated by summing Ejl.m)and EjZ.m),respeetively, over the index m
labeling order in H - HO):

00

E(1) = L Ejl.m)
m=O

(5.35)

00

EIZ) = L E)Z.m)
m=O

(5.36)

'or praetical reasons related to diffieulty and expense in evaluating the
ligher-ordereontributions to Ejl.m)and EjZ.m),the index m is usually limited
o rather smali values.
I Either the algebraie methods of RSPT or the diagrammatie methods of
~BPT caD be used to evaluate Ejl.m)and Ejz.m),as deseribed in Chapter 3
~ term s ofthe usual orbital energies, two-eleetron integrals, and one-eleetron .

ntegrals involving HI «4>rlH114>.».Beeause bot h forms oC perturbation
heory yield energies that are size eonsistent, the evaluation oCresponse
Iroperties as Ell) and EIZ)guarantees that these properties will also be size
onsistent. As an example oChow second-order properties may be evaluated,
~edisplay in Fig. 5.1 for a set oCHF orbitaIs all ofthe zeroth- and fiest-order
in eleetron interaetion) diagrams appropriate to a second-order response
Iroperty whose perturbation operator [rxHI oCEq. (5.2)] is denoted by a
quare figure. The evaluation oCeaeh oC these diagrams is treated in the
I

L
, A

--L

c

~
B

'c

"

tjFIG.S.1. Alt zeroth- and first-order dia-

grams for a second-order response property.
'.1

~j
::.,

~ (fv:
D
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manner described in Table 11of Chapter 3 with the matrix elements of the
(one-electron) perturbation rxRI being treated as the one-electron operator
V. For example, the value of diagram D in Fig. 5.1 is given by

D = (-1)2+2 L (PlrxR IIp)(pqIIPY)(ylrxR ,Iq)
pq (Ey + Ep - El' - Eq)(Ep - ~
~ f

The evaluation of aU the diagrams in Fig. 5.1 would thus give thecdesired
second-order pro perty consistent through first order in electronic interaction.

(5.37)

G. MOLECULAR GRADlENTS AND FORCE CONSTANTS

The determination of minima and saddle points on the potential-energy
surface of a molecule plays an important role (Schaefer and Miller, 1977,
Chapter 4) in deseribing the electronic structure and chemical reactivity of
molecules. In ibis section, we show how such stationary points on a mole-
cule's potential energy surface may be found by using an approach similar
to that employed in Section 5.B. We first eon sider how the eleetronic
Hamiltonian changes when the nuclear positions are changed erom an
initial set of positions, R~ to RA' i.e., RA-+ R~ + DA.The eleetron-nuclear
interaetion is the only term in the Hamiltonian that depends explicitly on
the nuclear position. Performing a Taylor expansion of ibis potential about
the point R~, we obtain .

Ir-RAI-I =lr-R~-uAI-1 =lr-R~I-I-(uA'V)lr-R~I-1

+ !(DA' V)21r - R~I-' + O(D~)
(5.38)

We may thus identify the changes in the eleetronie HamiItonian through
seeond order in the nuclear displaeements(DA)as

VI = L + ZA(4J,I[(DA'V)lr- R~I-']I4Js)t+s
A
's

(5.39)

V2 = L - !ZA(4J,I(DA' V)21r - R~I-'I4Js)t+s
A
's

(5.40)

Here, VI clearly represents the forces on the eIeetrons due to the nuclear
displaeement, whereas V2 deseribes eleetrie-fieid gradient terms indueed by
movement of the nuclei. A stationary point on the potentiaI energy surface
oeeurs when the average value of the first-order term in zero:

(OWljO) = O (5.41)
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s demonstrated below, stationary points on the potential-energy surface
ay be determined in a quadratically convergent procedure using an

nalytical expression for the total energy that is accurate through second
,rder in the nuelear displacement, and a Newton-Raphson procedure to
etermine the step length of the nuelear displacement. We now develop a
'rocedure for carrying out such gradient calculations when lO) refers to a
ICSCF wavefunction, Since the changes in the eIectronic Hamiltonian are

letermined in Eqs. (5.39) and (5.40) through second order in the nuelear
'splacement, an analytical expression of the to tal energy through second
'der in the nuelear displacement may be determined erom the coupled
ulticonfiguration HF expression for the latal energy given in Eq. (5.15)

nce aR I is identified as VIand a2J-/2 as V2. The first-order term a<OIJ-/IIO)
Eq. (5.15) may be written as

<OWIl°) = L DA. V lA
A

(5.42)

here the cartesian components of the foTce vector for displacement of
ueleus A are

VIA = (ViA' VIA' ViA) (5.43)
ith

viA = ~ ZA < 4>ti[ :i Ir - R~I-1J l4>s)<Olt+sIO),

he second-order term a2<01J-/lI0) becomes

<OW21°) = L DA' VlA . DA
A

'here VlA is a tensor operator, the components of which are de~ned as

i = x, y, z (5.44)

(5.45)

j' "I

I[
a2

I ol-I
JI

I + I'1A=f:-2ZA<4>t 2iajr-RA 4>s)<Otsa),
i,j = x, y, z (5.46)

he matrix aF given in Eq. (5.11) may similarly be written as

aF = LDA' FA
A

(5.47)

here

F~ = ~ ZA<4>ti[~iIr - R~I-IJl4>s)<OI[Q,t+s]IO),
i = x, y, z (5.48)

od an analogous expression caD be written for the aG matrix of Eq. (5.12).
he lagi term of Eq. (5.15) therefore caD be written as

L DA . DABDB
AB

(5.49)
~
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where the tensor operator DAB is definedthrough its components as

.. .. t (
F~)D'1B= (F~G~)(A - B)- G~' i,j = x, y; z

The total energy that contains all terms through second order in the nuelear
displacement may thus be expressed as

(5.50)

E(u) = <OIHIO) + L UA .V tA + L UA . MAB . UB
A AB

(5.51)

where

MAli = V2A()AlI - DAli (5.52)

is the COfceconstant matrix. This expression contains Hellmann-Feynman
Cofceterms in VIA' field gradient terms in V2A, as wen as terms in DA8 that
describe how the MCSCF orbitals and CI coefficients respond to displace-
ments of the nuelei. A stationary point on the molecular potential energy
surface is determined when t5E(u)= O. Neglecting third- and higher-order
terms in the energy function given in Eq. (5.51) and dilferentiating with
respect to u thus gives

Vt + 2Mu = O (5.53)

where Vt and u are column vectors containing the elements ViA, nA, V1A,
ViII, ... and u~, u~, u~, UB,"" respectively. The elements of the matrix
M are defined as the components of the tensor operator MABin Eq. (5.52):

(M)Ai,Bj==M~B' i,j = x, y, z

The nuelear displacements are thus given as

u = -iM-ty t

(5.54)

(5.55)

In the above derivation we have assumed that the atomie orbital basis
employed in forming the MCSCF orbitais was complete. This assumption
allowed us to write [in Eqs. (5.39) and (5.40)] the Hamiltonian both at R~
and R~ + UAin terms of the MCSCF orbitals, which were obtained erom
an MCSCF ealculation performed at the "starting" geometry R~. In most
molecular calculations, limited basis sets are used and the basis therefore
depends on lhe nuelear positions. This dependence was not considered in
the above derivation although it may be quite important depending on the
basi s set used in aDYpartieular ealculation. Let us naw assume that we shall
attempt to deseribe the potential energy surfaee of a molecule by using an
atomie orbital basis that is attached to the atomie nuelei and that thus moves
with the nuelei. The above deseribed formalism will be useful in locating the
desired stationary points on the potential surface if both the first and second
derivatives (with respect to nuelear displaeement) oC the dominant basis
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orbita1s caD be expanded in this basis. This caD be scen by considering that
the coulomb potentia1 jr - RAI- 1 of Eq. (5.38), when integrated over an
electronic charge density per), yields an interaction energy that caD be ex-
panded in powers of UA==RA - R~ either by expandingIr- RAI-1as in
Eq. (5.38) or by expanding the charge density per - UA).The expansion of
this charge density then gives rise to the derivatives of the atomie basis
orbitaIs. This criterion-thatthe first and second derivatives of the important
basis functions caD be expanded in the same basis-may, of course, in
princip1e never be met. For practieal purposes we caD, however, fu1fill the
criterion if the basis consists of a set of gaussian functions. We know that
the nuclear displacement derivative of a gaussian function just is another
gaussian with one higher angular momentum value. Thus by including such
gaussian basis functions of higher angu1ar momentum in the origina1 basi s,

1 we ~ou1d ~a~rantee that th~ deriv~ti~es of th~ impo~tant gaussi~n ~tomie
orblta1s:wllI mdeed bldescnbed wlthm OUTfimte basls. If the denvatlves of
the basis functions cannot be expanded in the basi s, the fu1fillment of Eq.
(5.41) may not 1ead to an accurate stationary point. As an a1ternative to
including in the atomie orbital basis sufficient flexibility to describe the fiest
and second derivatives of the moce important basis functions, one caD ex-
plicitly evaluate derivatives of the one- and two-electron integra1s (Thomsen
and Swanstrem, 1973).Suppose, for example, that s, p, and d atomie orbitaIs
wece used in a calculation on CH2. Even if only the s and porbitaIs wece im-
portant in describing the orbitaIs having nonneg1ible occupation num bers,
one would have to include fuli sets of d and f orbita1s in the basis to guarantee
that the second derivatives of the s and p functions could be described.
As a result, maDYtwo-electron integra1s involving d and f functions would
have to be computed over the atomie orbita1 bask On the other hand, this
caD be avoided by ca1culating only the fiest and second derivatives of the
integrals over the s and p orbita1s. These derivatives would then involve a
very restricted subset of integrals containing d and f functions. For example,
the second derivative of (pplpp) wou1d inv01ve (pplpf) and (ppldd)
integrals; integra1ssuch as <ddldd) or <ddlfp) or <fflff) could not arise.
The smaller number of difficult integrals arising in approaches that explicitly
evaluate integral derivatives rather than those using very large basis sets
has marle these integral derivative schemes moce commonly used in state-
of-the-art calculations.

PROBLEMS

5.1 Oetermine the excitation energies and transition moments for HeH +

using the fuli CI calculation for HeH + again making use of SCF data of
Problem 2.1. The nonvanishing matrix elements of the dipole operator
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r(x, y, z) in the atomie basis are

<tsHlzllsHe) = 0.2854, (l sHlzllsn)= 1.4
l. Determine the matrix elements of r in the SCF orbital basis.
In Problem 2.4,a fuli Ct ealculation was earried out on HeH + in the SCF

orbital basis.
2. Use the results of Problem 2.4 to determine the exeitalion energies and

transition moments from the ground stale to the iwo excited singlet states of
HeH+.

3. Determine the frequeney-independent polarizability and the fre-
queney-dependent polarizability at a frequeney E = 0.1 a.u. for HeH +.

5.2 Carry out a eoupled Hartree~Foek (CHF) ealculation of the frequen-
eJ-independent polarizability tensor for the closed-shellHeH + system.To
aehieve this goal, follow the !\teps given below.

l. Show that

<Ol[r, m; a" + mp ap] 10) = 2<4>"lrl4>m)

2. Use the A.. and B.. matrix elementsderived in Problem 2.2to show
that the Ali and B.. matrix elementsin a CHF ealculation may be written as

(A.I)n/l,m"= <OI[P:II" + Ppll/l,H,m:a" + mpa/l]IO)

= 2«Em - B")c5mnc5,,p+ 2<llaIP",)- </I(xl"'P»)
(8 I "n/l.III" = <O1[11;a" + lip Pll' H, »1,,+a" + "'p ap]IO)

= :,'IIlllllfJa) - 2<mlllafJ»

To obtain these results 'OlI musi use the definition of the Foek potential
given in Eq. (2.92) and a~"'lme that the orbitaIs are HF orbitais.

Now earry out the CHF cal-: ,""ion on HeH +, using the single zela Stater
basis and the SCF data given in Problem 2.1. The nonvanishing matrix
elemenls of r(x, y, z) in the SCF basis are given in Solution 5.1, part I.

3. Evaluatethematrixelementsofr, which enter joto the CHF ealculation.
4. Evaluate the A.t and B.. matrix elements.
5. Determine the frequency-independent polarizability tensor in the CH F

approximation for HeH +.
5.3 Carry out a CMCHF ealculation of the frequency-independent

polarizability tensor.
1. Show that

<Ol[r,p;q" + ppq/l]IO) = L: {rsp<Ols;q" + spq/lIO) - ras<Olp;s" + ppsplO)}
s .

2. Show that

(Ol[r, 111)(0\]\0) = L: rp/Olp; q" + PPq/ll")
pa
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3. Indicate the simplificationsthat occur in the formulas for the A and
Bmatrix elementsin Eqs. (2.29)and (2.30),whenconvergedMCSCF orbitaIs
ale used for evaluating the A and B matrices.

Now carry out the CMCHF calculation of the frequency-independent
polarizability tensor for HeH+, using the minimum basis given in Problem
2.1. The multiconfiguration referencestale includes the two configurations
1(12and 2(12.A MCSCF calculation using these two configurations was
carried out in Problem 2.6. The one- and two-eleetron integrals in the
MCSCF basis ale given below:

(1Ihll) = -2.6119,
(11\11) = 0.9521,

(11122) = 0.1298,

(2IhI2) = -1.3193,
(12\12) = 0.6100,
(22\21) = -0.0069,

(1IhI2) = 0.2078
(12111) = -0.1963
(22\22) = 0.6161,

where 1 and 2 denote the 1(1and 2(1orbitaIs, respectively, whieh ale

1(1= 0.8920 tsHe + 0.1701tsH,

The MCSCF states ale

lO) = 0.998411(12) - 0.057412(12),

II) = 0.057411(12)+ 0.998412(12),

2(1= -0.8410 lsHe + 1.2140lsH

Eo = - 2.8506

El = -0.5863

4. Calculate the nonvanishing one- and two-eleetrondensity and transi- .
tion density matrix elementsof the form

(ilr+s+ tuiO), (ilr+sIO), (Olr+sli), i = 10),II)

The matrix elements oh in the atomie basis ale givenin Problem 5.1.
5. Caleulate the matrix elements of r in the MCSCF basis.
6. Caleulate the numerical valuesofmatrix elementsgivenin questions 1

and 2. .
7. Determine the A and B matrix elements.
8. Oetermine the frequeney-independent polarizability tensor in the

CMCHF approximation.

SOLUTIONS

5.1

1. (1IzI1) = 2(0.9000)(0.1584)(0.2854) + (0.1584)2(1.4)= 0.1165

(2IzI2) = 2( -0.8324)(1.2156)(0.2854) + (1.2156)2(1.4)= 1.4911

(1IzI2) = [(0.9000)(1.2156) - (0.8324)(0.1584)]0.2854
+ (0.1584)(1.2156)(1.4)= 0.5442
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2. Excitation energies are 4.2792 - 3.2567 = 1.0225 and 4.2792 - 1.9497
= 2.3295. Transition moments:

(la2Izlla2) = 2(1lzlI), <2a2IzI2a2)= 2<2IzI2), (la2IzI2a2)= O
2

(l0-2alzll0-20-)= (llzll) + <2IzI2), (l0-2IzII0-20-)= fi (llzI2),

2

<20-2IzI10-2a) = fi <2IzI1).

Therefore

<Olzll) = (0.9982)(-0.0261)2(0.1165) + (-0.0573)( -0.2098)2(1.4911)

+ (0.0143)(0.9772)(0.1165 + 1.4911) + [(0.9982)(0.9772)

+ (0.0143)(-0.0261) + (-0.0573)(0.9772)

(
O5442

)+ (-0.2098)(0.0143)] 'J2 2

= 0.7578

<0IzI2)= (0.9982)(0.0530)2(0.1165)+ (- 0.0573)(0.9761)2(1.4911)
- (0.0143)(0.2109)(0.1165+ 1.4911)+ [(0.9982)(0.2109)
+ (0.0143)(0.0530)+ (- .0573)(0.2109)

+ (0.0143)(0.9761)]C.;2)2

= 0.0144

3. IXzz(E)= 2 I 1<0Izlll)12(E;- Eo)n=1.2 (En - Eo) - E

E = O = 2[°.5742 O.OOO~
J

-
, IXzz 1.0225 + 2.3295 - 1.1233

E = 0.1 = 2
[

(0.5742)(1.0225) (.0002)(2.3295)

J
= 1.1342

, lXu 1.0456 - 0.01 + 5.4266- 0.01

5.2
1. <OI[r,m;lX<I+ m;IX/l]IO) = I «pplrl<pq)<OI[p+q,m;lX<I + m;cx/l]IO)

pq

= I <<pplrl<pq)<olp +IX/Jmma- m: qc'5p<lm
pq

+ P+IX/lc'5qm/l - m; qc'5p<l/lIO)

= 2«p<Ilrl<Pm)



120 5 PhysicalProperties

2. Thedefinition ofthe Fock potentialin Eq.(2.92)resultsin the following
definition of the orbital energies

hrs+ L(2(rylsy) - (rylys» = <>rser
r

and the All matrix element in Problem 2.2 therefore may be rewritten as

(A l1)n/l.m"= 2[( -B" + Bm)(j"/I(jmn+ 2(naIPm) - (nalmP) J
3. Let 1 and 2 denote la and 2a, respectively. As was shown in Problem

5.1 (1IzI2) = 0.5442. H ence

<0Iz(2,,+l" + 2p 1/1)10) = 2(0.5442)

4. (Allh1.21 = 2(B2 - BI + 2(21112) - (21121» = 2.1464,
(Bllhl.21 = 2«22111) - 2(22111» = -0.2522

5. anly the zz component of the polarizability tensor is nonvanishing.
Thiscomponentbecomes2.4. 0.54422/(2.1464+ 0.2522)= 0.9878.

5.3

1. Using r = L rsr(S: t" + Sptli)we obtain
s/

(Ol[r,p: a" + PPa/lJIO)= L r,s(OI[t:s"+ t;sp,p: a" + p; a/lJIO)s/

Performing the commutations then leads immediately to the result asked for.

2. (OI[r,ln)(OIJIO) = (Olrln) = L rpa<°lp"+q,,+ p;qpln)
pq

3. The AlI and 811 matrices in Eqs. (2.29) and (2.30) can, when conver-
genre is reached and the GBT is obeyed, be evaluated directly using Eq. (2.42),
which does contain the double commutator form.

We algo have (011,,+1,,11)= 0.0573, (°12,,+2,,11)= -0.0573. See text below
Solution 2.6, question 1.

5. Zll = 0.1271, Z22= 1.4805,Z12 =0.5574.
6. (°l [z, 2:1" + 2;I/1JI0) = 2Z12{(011:1" - 2:2,,10)} = 1.l076

<OI[z,II>(OIJIO) = 2z11<011:1"ll) + 2z22(012:2"ll> = -0.1551

4. <ii = <ol <ii = <II

<ill.+1.10) 0.9968 0.0573

<iI2.+2.lo) 0.0033 -0.0573

<;11.+I; 1,1.10) 0.9968 0.0573

<iiI: 1;2,2.10) -0.0573 -0.0033

<iI2.+2; 1,1.10) -0.0573 0.9968

<;12.+2;2,2.10) 0.0033 -0.0573
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7. Formulas for the A and B matrix elementarederived in Solution 2.6,
question 2:

A = (
2.1756 0.4018

) B = (
-0.2495

0.4018 2.2643' -0.0230

8 (A - - I = (
0.4264 - 0.0800

). B) -0.0800 0.4566

-0.~230)

The zz component of the frequency-independent polarizabilitx becomes

cx" = 2(l.JO76, -0.1551) (
0.4264

- 0.0800

-0.0800

)(
l.J076

)0.4566 -0.1551 = l.J232
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