
Chapter 41 The Coupled-Cluster
Method

A. INTRODUCTION

The CI and MCSCF methods described earlier suffer from one significant
weakness. The slow convergence of the wavefunction as the configuration
size is increased is a problem that becomes moce severe as the number of
electrons in the system grows. In fact, for extended systems the finite CI or
MCSCF wavefunctions (because they contain only a finite number of eIectron
pair interactions) become infinitesimal portions of the exact wavefunction.
Perturbation theory methods, whose wavefunction usually algo contains
oni y finite numbers of interactions, sometimes provide some relief because
the total energy is not calculated as an expectation value. However, it is
often not appropriate to assume that the usual fluctuation potential (true
eIectron-eIectron interaction minus the HF potential) is smali, i.e., to assume
convergence of the perturbation series. Moreover, it is quite often important
to be able to properly treat systems that are not adequately described by a
single-configuration zeroth-order reference wavefunction (such as is assumed
in most perturbation theories).

B. FORM OF THE WAVEFUNCTION

The coupled-cIuster (CC) method (Cizek and Paldus, 1971; Harris,
1977a,b; Bartlett and Purvis, 1978) is an attempt to introduce interactions
amon g electrons within cIusters (predominantly pairs) as well as coupling
among these cIusters of eIectrons and to permit the wavefunction to contain
all possible disjoint cIusters. For example, we know, from the e~rIy work of
Sinanoglu (1962) and others, that eIectron pair interactions are of utmost
importance and that contributions of quadruply excited configurations to
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l°) arise predominantly as products of doubly excited configurations. CC
wavefunctions in which such electron pair interactions (clusters) are assumed
to dominate stin contain terms that describe disjoint products of electron
pair clusters just as SiDanoglu's observations would suggest. In fact, for a
system containing aD even (odd) number of electrons N(N + 1), one bas
products of 2, 3, . . . , N /2 disjoint pair clusters in the CC wavefunction. The
mechanism for introducing these cluster interactions is to write the wave-
function 1°) in terms of a so-called cluster operator T acting on a reference
function describing noninteracting or noncoupled electrons 1°°):

l°) = exp(T)IOO). (4.1)

The reference function 1O°)bas, in nearly all CC developments to dale, been
limited to a ket corresponding to a single Stater determinant. In the treatment
given in ibis chapter, we therefore restrict our attention to ibis single deter-
minantal case. The cluster operator T generates one-, two-electron, etc.,
clusters

T=Tl+T2+"'+TN (4.2)

with

Tl = L t~r+1X (4.3)
a,r

1
T =-~trs,.+S+ PIX

2 4L-aPap
rs

(4.4)

etc. (the greek indices IX,p, y, . .. denote spin-orbitals occupied in 1O°);
r, s, t, u,. . . denote unoccupied spin-orbitals). To mak e SOfie connection
between the CC wavefunction ofEq. (4.1)and the moce conventional CI and
MBPT expressions for lO), we expand the exp(T)IOO) and collect terms of
com mon excitation level:

l o ( 1 2 1 3

exp(T)O)= I+Tl+T2+2! T1+T3+3! Tl+ T1T2 + T4

1 4 1 2 1 2

)1

o
+ 4! Tl+2! T2+T3T1+2! T1T2-:'" O)

(4.5)

By grouping the terms of a given excitation level together, we see that the
CC wavefunction can be rewritten as

exp( T)IOO)= (I + CI + C2 + C3 + . . .)10°) (4.6)
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where the configuration excitation operators Cl, C2,.. . are

Cl = T1

1 2
C2 = T2 + 2! T1

(4.7)

(4.8)

1 3
C3 = T3 + 3! T 1 + T1 T2

1 4 1 2 1 2
C4 = T4 + 4! Tl + 2! T2 + T3 Tl + 2! T 1T2

(4.9)

(4.10)

etc. We thus see, for example, that the quadruple excitations that would be
obtained in a CI or MCSCF treatment caD be viewed within the cIuster
framework as consisting of five separate parts. The T~ component is thought
to be the dominant term because it represents the simultaneous interactions
of two distinct pairs of electrons (e.g., electron pairs that occupy spatially
different molecular orbit ais). The T4 term is usually expected to be quite
smali since it describes the simultaneous interaction of four electrons. The

single-cIuster contributions to C4, C3, and C2 caD be marle smali by using
.MCSCF orbitais.

If Dur normai description of chemical bonding in terms of electron pair
bonds is correct, it is likely that a description of molccular structure in
which T2 is treated to high order [e.g., through exp( T2)] wbite T l' T3' T4'
etc. are either neglected or treated less rigorously, is quite accurate. For this
reason we consider developing systematic procedures for truncating the
expansion of T given in Eq. (4.2). By truncating [approximating the cIuster
operator T to some low-order (say pair cIusters T2)], the resultant wave-
function contains not only these low-order cIusters 7210°) but algo disjoint
cIusters [e.g., (1/2!)T2 T2Io0), (1/3 !)T2T2T2Io0), etc.] that involve moce
highly excited configurations than are present in T2Io0). Of COllege,these
higher-order excitations [e.g., quadruply excited for (1/2 !)T2T2Io0)] are
present in lO) only to the extent that their amplitudes caD be described in
terms of products of the ampIitudes belonging to the smaIIer cIusters (e.g.,
l~pl~). The fact that the product factors T2 T21o0) contain only disjoint
cIusters arises because the operator product (r+s+ . . . rx{3. . ')(l +u+ . . . y<5. . .)
vanishes if aDY of the hole (rx,{3,y, . . .) or particIe (r+,s+,l+, . . .) indices are
equaI. Anessential point of the CC approach is that eyen low-order trunca-
tions of T (which are usually based upon the physical assumption that
electron pair interactions dominate) lead to a wavefunction that contains all
of the disjoint higher excitations needed to make the resultant energy (and
other physical properties) size consistenL.
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C. EQUATIONS FOR THE CLUSTER AMPLITUDES

The cluster amplitudes t~~ are determined by insisting that exp(T)IOO)
satisfy the usual Schr6dinger equation (or at least certain projections of this
equation)

H exp(T)IOO) = E exp(T)IOO) (4.1I)

which uran premultiplying by exp( - T) gives

exp( - T)H exp(T)IOO) = EIOO) (4.12)

The above exponential sedes gives, when expanded and collected together
as commutators,

(
1 1

H + [H, T] + 2! [[H, T], T] + 3! [[[H, T], T], T]

+ ~! [[[[H, T], T], T], T] )\(r) = EIOC)
(4.13)

The series truncates (exactly) after four commutators regardless of the level
at which (Tn) T is truncated (if at all). This exact truncation is a result of the
fact that H contains at most two-e1ectron operators, which involve four
general(particieor hole)operators i +j+ Ik.Therefore[H, T] containsat most
three general operators, [[H, T], T] contains twa, and [[[[H, T], T], T]. T]
thus contains anty (excitation) operators of the form r+ s+ . . . IY.{J . . . . These
excitation operators clearly commute with T; thus the next (fifth)commutator
in the sedes vanishes. The CC expression of the Schr6dinger equation hence
yields a quartic equation for the cluster amplitudes (t~p' .'.'.) appearing in T.

A closed set of equations for the desired amplitudes is obtained by insisting
that the final Schr6dinger equation [Eq. (4.13)], when projected against a
set of law-order excitations out of 10°), yield zero. The particular excitations
are usually chosen to include up through II-fald excitations from 10°) in the
case where T bas been truncated at Tn. The resultant set of algebraic equa-
tions will then be equal in number to the number of amplitudes t~p'.'.'.in T.
ODce these amplitudes are obtained by solving the resultant nonlinear
equations, the total e1ectronic energy is computed by projecting Eq. (4.13)
anto 1°°). We should stress that the energy expression thereby obtained is
not variational in 'the sense that it is not given as an expectation value of
the Hamiltonian. The quantity ,

(0°1 exp(T+)H exp(T)IOO)/(OOIexp(T+) exp(T)IOO)
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would give rise to a variational energy expression but the resultant commu-
tatar expansion ofthe exponential operators would not truncate because T+
contains operators of the form a+p+ . . . rs' . . , which do not commute with
T. Il is the presence of exp( - T), rather than exp(T+), in Eq. (4.12) that
gives rise to the exactly cIosed quartic equation for T. Moreover, the presence
of the commutators in the expression for E and the fact that T contains only
particie creation and hole annihilation operators makes the CC-calculated
energy contain only linked terms (in the sense discussed in Chapter 3). This
then makes E contain only size-consistent terms.

D. HARTREE-FOCK ORBITALS AND T ==:Tz

Most CC calculations carried out so far have used the approximation
T ~ T2. In ibis section, we treat ibis model in same detail since doing so
will give us moce insight joto the structure ofthe CC equations. The physical
motivation for approximating T ~ T2 relies on the fact that if the set of HF
orbitaIs are used, the BT suggests that single excitation T1 operators, which
largely serve to optimize the spin-orbitals, should be lessimportant than T2'

Il is, however, naw commonly Celtthat one should include both T1 and T2
so as to obtain a balanced or coupled description of the orbital and electron
pair cIuster optimization. Let os, however, continue OUTanalysis oC the
T ~ T2 case.

To see what the solution of the above discussed nonlinear equations
actually involves, lei us examine these expressions in moce detail for a case
in which the spin-orbitaIs {cprr.CPfJ"'"CPr,. . . , CPs}are eigenfunctions of a
HF operator having orbital energies {Brr.'. . Br' . '}. The decomposition of
the Hamiltonian H joto Ho + U is then given as in Eq. (2.84) by

H = Ho + W - VHF

where Ho is the HF Hamiltonian

(4.14)

HO = }:>r i
i

(4.15)

Wis the fuli eIectron interaction term in Eq. (2.84)and VHFin the HF potential
[Eq. (2.91)].

The commutator expansion of exp( - T)H exp(T) in Eq. (4.12) given in
Eq. (4.13) demonstrates in an elegant mann er that when Eq. (4.13) is projected
against law-order excitations <~P""'~rI= <0°1 y . . . par+ S + . . .n + , it gives equa-
tions that are at most quartic in the cIuster amplitudes t~p""'~y'However, it
toros out that for findingequations for t~p it is equally simple to expand the
exponential operators directly. To determine the total energy E, we project
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Eq. (4.12) against 10°) to obtain

E = (0°1exp( - T2)Hexp(T 2)10°)

= (0°10 - Tz + l(Tz)2)HO + Tz + l(Tz)2.. ')10°)

= (OOIHIOO)+ (00IHT2Io0)

= EHF + L (prxllmll)t:;
m>n
a>p

(4.16)

where we have used the fact that (OOITz= O because of the appearance of
,'+s+prx in Tzo We have algo used the fact that (00IHT2TzI00) vanishes
because T~IOO)is quadruply excited and hence cannot couple through H to
(0°1. The t:; amplitudes are determined by projecting Eg. (4.12) against
doubly excited kets (:J'I to obtain

0= (:;1 exp(- Tz)H exp(Tz)IOO) (4.17)

Expanding the exponential then allows one to see that the Dulynonvanishing
contributions are contained in

0= (:;IH(l + Tz + ln)IOO) + (:;I( - Tz)H(l+ Tz)IOO) (4.18)

which shows that we obtain Doly a quadratic equation for the cluster ampli-
tudes when T ~ Tz. Explicitly evaluating the matrix element appearing in
Eq. (4.18) then leads to the following nonlinear equation for the cluster
amplitudes:

(Bm+ Bn- Ba - Bp)t:;
= (mllllrxp)- L (mllllpa)t~»- L (y(jllrxP)t~;

p>a y>~

+ L «YIIIIPp)t:! - (ymIIPp)t:~- (Yllllrxp)tP'!+ (ymllo:p)ti:n
yp

+ L (y(jllpa)[t~»t~;- 2(t:ift;i + t:»t~f)
y>~
p>a

- 2(t~tSi + t~~tp';)+ 4(t~~tii~+ t:~tp'f)] (4.19)

In the next sections we describe how solutions may be obtained to Eq. (4.19)
and we discuss the relationship of the solution thereby obtained to results
of MBPT.

E. PERTURBATIVESOLUTlON TO THE
COUPLED-CLUSTEREQUATIONS

We describe herc how Eq. (4.19) may be solved in a manner that shows
the connection between the CC and the MBPT approaches. We solve
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Eq. (4.19) in an iterative manner by perCorming an initial guess oC{(.;,} and
then inserting ibis value on the right-hand side joto Eq. (4.19) to obtain an
improved set oCvalues oC{t~p}.These are then inserted back joto the right-
band side oCEq. (4.19) to again give us improved values oC{t~;,}.etc. As an
initial guess oCthe duster amplitudes we set those amplitudes that appear
on the right-hand side of Eq. (4.19) equal to zero. The motivation for ibis
choice is that the term s containing t on the right-hand side of Eq. (4.19) are
assumed to be smali er than those on the left-hand side of ibis equation. We
then obtain the following expression for the amplitudes:

t:'P= (mnllocfJ)(em+ ell- ell - e/l)- 1 (4.20)

Inserting ibis value of 1':; joto the CC expression for the total energy as
given in Eq. (4.16) yields

E = EHF + L (fJocllmn)<mnllocfJ)(em+ Ell- ell - e/l)-I (4.21)
m>1I
11>/1

This expression is nothing but the result obtained in second-order perturba-
tion theory, which is written explicitly in Eq. (3.38).

A second iteration may be carried out by inserting joto the right-hand
side of Eq. (4.19) the dusteramplitudes obtained above. If we then neglect
the terms that are quadratic in the t:; amplitudes [the eighth through four-
teenth terms on the right-hand side of Eq. (4.19)], we obtain duster ampli-
tudes that, when used to compute the energy E via Eq. (4.16) give the same
algebraic expression as is obtained in third-order MBPT (see Problem 4.1,
question 1). If these duster amplitudes are then inserted joto the right-hand
side of Eq. (4.19) (keeping the quadratic terms ibis time), we obtain new
amplitudes that, when used to compute E, give all contributions to the
fourth-order MBPT energy that arise erom quadruple excitations [C4 in
Eq. (4.10)]. From the form of OUTworking equation, Eq. (4.19), it is further
elear that the quadruple excitations obtained in ibis way caD only arise erom
the l(Tz)z and - Tz Tz terms. These terms. in a sense, correspond to iwo
simultaneous interactions of iwo electrons (electron pair interaction). The
T4 term, which corresponds to a true four-body interaction, fiest enters at
fifth order in perturbation theory, thus indicating that electron pair inter-
actions are much moce important than true ronT-body interaction (Sinanoglu,
1962). Ali fourth-order energy diagrams caD, of COllege,not be obtained by
approximating T with T z, since both single and triple excitations contribute
in fourth order. To obtain all fourth-order diagrams in a CC calculation
would require both TI and T3 to be induded in the duster expansion.

The iterative process carried out when determining the duster amplitudes
erom Eq. (4.19) may be continued by inserting the duster amplitudes erom
one iteration joto the right-hand side of Eq. (4.19) to obtain the new ampli-
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tudes. The converged result would then correspond to summing all diagrams
that contain double and products of double excitations through infinite order.

F. NEWTON-RAPHSON METHOD

Clearly, either the equations obtained by taking T ~ 1; [Eq. (4.l9)] or
the general quartic equation obtained erom Eq. (4.13) are nonlinear and
multivariable. Such equations caD be represented in matrix form (by defining
t~.pas the /'s,afJelement of the t column vector) as

O = a + bt + ctt (4.22)

where, for example ar..all= <rsllafJ) [see Eq. (4.19)]. The solution of these
nonlinear algebraic equations represents a substantial practical difficulty in
implementing the CC method. To solve these equations one can employ the
perturbative analysis described above. This technique has the advantages
that it is straightforward to program on a computer and that it haS"a close
connection with MBPT.

An alternative to the above described perturbative procedure is the multi-
variable Newton-Raphson method. Such methods were used in the first
molecular CC calculations (Paldus et al., 1972).Here, one attempts to choose
t such that the vector f(t) defined as

f(t) ==a + bt + ctt (4.23)

becomes equal to zero. This is clone by expanding f(t) about the "point"
to. Keeping only linear terms in ibis Taylor expansion and seUing f(t) equal
to zero, one obtains equations for the changes tlt in the t amplitudes, which
caD be expressed as

(
a'lr..

)f
rs

(t) = O= f
rs

(t ) +" ~ MuWa/l a/l o L.., ~tUW y~
uw (J I'~ to
y.!

(4.24)

The step lengths (corrections to to) caD be obtained by solving the above
set of linear equations and then used to update the t amplitudes

t = to + tlt. (4.25)

These values of t caD then be used as a new to vector for the next application
of Eq. (4.24). This multidimensional Newton-Raphson procedure, which
involves the solution of a large num ber of coupled linear equations, is then
repeated until the tlt values are sufficiently smali (convergence). Given the
set of t~p amplitudes, Eq. (4.16)caD then be used to compute E. AlthQlIgh
the first applications of the coupled cluster method to quantum chemistry
did employ ibis Newton-Raphson scheme, the numerical problems involved
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in solving the large multivariable inhomogenous equations [Eq. (4.24)]bas
led moce recent workers to use the perturbative techniques discussed in
Section E. Within the perturbative framework,mocesophisticated methods
have been developedto solvethe large numberof quadratic(for T~ T2)
equations that arise. One soch device is based opon the so-called reduced
linear equations technique, which bas algobeen widelyused to find selected
eigenvaluesand eigenvectorsoflarge CI matrices (Davidson, 1975).

G. SUMMARY

Although the CC method possesses several advantages over CI and
MCSCF approaches, the fact that the resultant set of CC equations that
determine the t~~ . . . amplitudes are nonlinear and of very large dimensions
even for modest-sized systems, bas marle the practical applications of ibis
theory rather limited. An analysis of the relationships between the solutions
of the nonlinear CC equations and the solutions of corresponding CI secular
problems bas recently been provided (Monkhorst and Zivkovic, 1978).This
analysis thus provides same reagan for optimism concerning the possibility
of finding efficient mechanisms for solving the CC equations. However, at
present, the nonlinear nature of the equations to be solved stm makes the
practical utilization of the CC method something toward which we are stm
working. Research aimed at achieving efficient solutions of the quadratic
(or even quartic) coupled equations and at extending the CC development
to open-shell and multiconfigurational reference states is necessary if the
CC method is to become widely used in quantum chemistry.

PROBLEMS

4.1 Perform a CC calculation where T is approximated with T2.
1. Show that the CC equations may be iterated to yield cluster amplitudes

that, when used in the energy expression, give the MBPT third-order energy
expression [see discussions following Eqs. (4.20) and (4.21)]. The third-order
MBPT energy expression is given in Problem 3.2.

Carry out a CC calculation on HeH + using the minimum basis HF results
found in Problem 2.1. In performing ibis calculation follow the steps given
helowo

2. First use a linear (truncated) form of the CC equation to determine
the numerical values of the tr;;parameters and then use these parameters
to compute the corresponding correlation energy.

3. Argue that although the above linear form (question 2) of the CC
equation and the perturbative solution (question 1) yield amplitudes that



Soltttions 99

have the same formai structure, the correlation energyof HeH+ determined
in question 2 and in third-order MBPT (question 1 and Problem 3.2) dilTer.

4. Use the quadratic form of the CC equations (which clearly has Iwo
solutions) to determine the values of the Iwo sets of t;;parameters.

5. Evaluate the total energy and the correlation energy contribution for
both of these Iwo sets of solutions.

6. Show that the CC equations in Eqs. (4.16) and (4.18) and the CI eigen-
value equation lhal contains doubly excited states become identical for a
two-basis-function two-electron problem. Why do the twa configuration CI
total energies of Problem 2.4 and the CC total energies of question 5 dilTer?

Consider now IIHeH + molecules that are separated at infinite distance
with each molecule described by the localized SCF orbitais or Problem 2.1.

7. Show by carrying out a perturbative solution to the CC equations
as described in Section E that the correlation energy for the Il HeH + mole-
cules becomes identical to /I limes the correlation energy of a single HeH +

molecule and that the CC model thus is size consistenl.

SOLUTIONS

4.1

1. When the CC amplitudes on the right-hand side of Eq. (4.19) are set
equal to zero, we get

t;; = (nmllcxp)(em+ en- e~- e/l)- l

Inserting this value or t':; on the right-hand side or Eq. (4.19) gives the next
approximation to t':;:

t;;=(em+en-e~-e/l)-l [ (mllllcxP) - L (mllllpa)t~J- I (}'c5lllXp>t~
p>q r>~

+ L (}'IIIIPp)t~~- (}'IIIIIPp)t:V- (}'lIlllXp)ti:'t+ (}'lIllllXp)tpn
]rp

The fiest term in the square brackets results in the second-order energy
expression [Eq. (4.21)] when used in Eq. (4.16).

The second term in the square brackets gives, when inserted into Eq. (4.16),
the correlation energy contribution

- L (plXllnm)(/Itllllpa>(paIIIXP)
m>n (em + I'.n- I'.~- 1'./I)(l'.p+ I'.q - I'.~ - 1'./1)
/I>~
p>q

which is identical to diagram A in Fig. 3.7.
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The third term gives

- L <palImn)<yJIlaP) <mnllyJ)
m>n (8m + 8n - 8a - 8p)(8m + 8n - Ey - e,,)
a>p
y>"

which is identical to diagram B of Fig. 3.7.
The last four terms give

L <pallmn) L «ynIlPp)t::- <ymIIPp)t:f
m> n (Em + Bn - Ca - Bp) yp
a>p

- <ynllap ) t';;:+ <ymllap )tjj~)

Substitution of variabies [e.g., in the fiest term we substitute (m -+ p, a -+ y,
i y -+ p, n -+ m, p -+ a, p -+ n)] allows these four terms to be rewritten as

+ L <ayllpm)<pmllan)<pnllyp)
p>m (Bp + Bm - Ca - By)(ep + En - ey - Bp)
y>a
pn

- L <ayl Imp)<pml lan) <pnllyp)
m> p (em + Ep - Ea - Cy)(Bp + En - Cy - ep)
y>a
np

- L <yallpm)<pmllan) <pnilyP)
p>m (Bp + Bm - ey - c,,)(ep + Cn - ey - Bp)a>y
np

+ L <yallmp)<pmllan)<pnllyp)
m> p (Bm + Ep - Cy - Ba)(Cp + En - ey - Ep)
a>y
np

The above four terms when collected together give diagram C of Fig. 3.7.
Hence, all second- and third-order diagrams have been accountered for.

2. The anty nonvanishing cluster amplitude is ti:i~. Equation (4.19) gives

0= <22111) + ti:i~(2El - 2e2- <22122) - <11111) +4<12112) - 2< 12121»)

which gives ti:i~ = 0.0559. Inserting this value in Eq. (4.16)gives the cor-
relation energy contribution

j1

AEcorr = -0.0070 a.u.

Notice that although ti:i~ is positive, the correlation energy of Eq. (4.16)
is negative, because <pallmn) = -<11122).
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3. Both the third-order MBPT and the approximation in question 2 use
a linear form ofthe CC equations. However in the MBPT solution (question
1) the cIuster amplitudes used in Eq. (4.19) are determined erom perturba-
lian theory, which results in a second- and third-order correlation energy
of -0.0066 (Solution 3.2, question 5). The nonperturbation solution or
question 2 is different erom the one obtained in question 1 and gives a cor-
relation energy - 0.0070.

4. The quadratic CC equation reads

0= <221li) + t:::~(2Et - 2E2- <22122) - <li IlI)

+ 4<12112) - 2(12121» + <11122)t:::gt:::~

which gives

t:::~ = 0.0560, a::~ = -17.8432

5. a::g = 0.0560, E = -4.2791, Ecorr= -0.0071
a::~ = -17.8432, E = - 2.0220, Ecorr= 2.2500

6. The CC (Schrodinger)Equation (4.12)contains anty linear terms in
T2 when applied to a two-electron system:

(1 - T2)H(1+ T2)IOO)= EIOO)

When this equation is projected against <°°1 and <:::~I = <ni one obtains

<OOIHIOO)+ <OIH!n)t= E

<nlHIOO)+ <nlHln)t - t<OoIHIOO) - t2<0IH!n)= O

where a::g is denoted t. Substituting Eq. (A)into Eq. (B)gives

<nlHIOO)+ <nlHln)t = Et

(A)

(B)

(C)

Equations (A) and (C) are nothing but the CI eigenvalue problem written
out in component form for an intermediate normalized eigenvector with
components (I, t). The CC to tal energies (-4.2791, -2.0220) and the CI
to tal energies (- 4.2790, - 2.0079) differ anty because or numerical errors
caused by using rour significant digits in the integraIs.

7. When the cIuster amplitudes in the nonlinear part of Eq. (4.19) are
set equal to zero (as in lhe fiest slep or the perturbative solution), lIte anty
nonvanishing cIuster amplitudes that remain (see the solution to question 1)
are those involvingaUrour orbitaIs in t;;located on the same HeH + moIec-
ule. This result is due to the fact that integrals involving orbitaIs on different
HeH+ molecules are zero. Continuing this iterative process does not intro-
duce cIusteramplitudes that couple differentHeH + moleculesagain because
integrals involving orbitaIs on twa or moce different molecules vanish. Hence,
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the CC equations separate joto equations for each HeH + molecule. Conse-
quently, the correlation energy as computed via Eq. (4.16) for n HeH + mole-
cules will be n limes the contribution from a single HeH + molecule.
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