Chapter 4| The Coupled-Cluster
Method

A. INTRODUCTION

The CI and MCSCF methods described earlier suffer from one significant
weakness. The slow convergence of the wavefunction as the configuration
size is increased is a problem that becomes more severe as the number of
electrons in the system grows. In fact, for extended systems the finite CI or
MCSCF wavefunctions (because they contain only a finite number of electron
pair interactions) become infinitesimal portions of the exact wavefunction.
Perturbation theory methods, whose wavefunction usually also contains
only finite numbers of interactions, sometimes provide some relief because
the total energy is not calculated as an expectation value. However, it is
often not appropriate to assume that the usual fluctuation potential (true
electron—electron interaction minus the HF potential) is small, i.e., to assume
convergence of the perturbation series. Moreover, it is quite often important
to be able to properly treat systems that are not adequately described by a
single-configuration zeroth-order reference wavefunction (such as is assumed
in most perturbation theories).

B. FORM OF THE WAVYEFUNCTION

The coupled-cluster (CC) method (Cizek and Paldus, 1971; Harris,
1977a,b; Bartlett and Purvis, 1978) is an attempt to introduce interactions
among electrons within clusters (predominantly pairs) as well as coupling
among these clusters of electrons and to permit the wavefunction to contain
all possible disjoint clusters. For example, we know, from the early work of
Sinanoglu (1962) and others, that electron pair interactions are of utmost
importance and that contributions of quadruply excited configurations to

an
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|0> arise predominantly as products of doubly excited configurations. CC
wavefunctions in which such electron pair interactions (clusters) are assumed
to dominate still contain terms that describe disjoint products of electron
pair clusters just as Sinanoglu’s observations would suggest. In fact, for a
system containing an even (odd) number of electrons N(N + 1), one has
products of 2, 3, .. ., N/2 disjoint pair clusters in the CC wavefunction. The
mechanism for introducing these cluster interactions is to write the wave-
function |0) in terms of a so-called cluster operator T acting on a reference
function describing noninteracting or noncoupled electrons |0°):

|0> = exp(T)|0°). 4.1)

The reference function [0°) has, in nearly all CC developments to date, been
limited to a ket corresponding to a single Slater determinant. In the treatment
given in this chapter, we therefore restrict our attention to this single deter-
minantal case. The cluster operator T generates one-, two-electron, etc.,
clusters

T=Tpsda bt -4 Iy 4.2)
with
T,—3 tr'e (4.3)
|
T,=-) tgrts*po (4.4)
4 aff

rs

etc. (the greek indices a, B, 7,... denote spin-orbitals occupied in |0°);
r,s, t,u, ... denote unoccupied spin-orbitals). To make some connection
between the CC wavefunction of Eq. (4.1) and the more conventional CI and
MBPT expressions for |0), we expand the exp(T)|0°) and collect terms of
common excitation level:

1
exp(?‘)|0°)=(1 +T,+ Tz+—2—, Tf+T3+§li T3+ T, T,+ T,
AT R 1 2 ]
+“"i T1+”j‘i T2+T3Tl+ii T’?2+"' 0 > {45}

By grouping the terms of a given excitation level together, we see that the
CC waveflunction can be rewritten as

exp(T)0°> =(1 + C, + C, + C5 + - -)|0°> (4.6)



92 4 The Coupled-Cluster Method

where the configuration excitation operators C,, C,, . .. are
1
C,=T,+ 31 13 (4.8)
- 1
Cy=T5 + 3 T+ T,T, 4.9)
=T, lT4 lT’ TsT lT’T 4.10
Ce= shgitn s sl 45 Tyl (4.10)

etc. We thus see, for example, that the quadruple excitations that would be
obtained in a CI or MCSCF treatment can be viewed within the cluster
framework as consisting of five separate parts. The T2 component is thought
to be the dominant term because it represents the simultaneous interactions
of two distinct pairs of electrons (e.g., electron pairs that occupy spatially
different molecular orbitals). The T, term is usually expected to be quite
small since it describes the simultaneous interaction of four electrons. The
single-cluster contributions to C4, C;, and C, can be made small by using
- MCSCEF orbitals.

If our normal description of chemical bonding in terms of electron pair
bonds is correct, it is likely that a description of molecular structure in
which T, is treated to high order [e.g., through exp(T,)] while T, T,, T,,
etc. are either neglected or treated less rigorously, is quite accurate. For this
reason we consider developing systematic procedures for truncating the
expansion of T given in Eq. (4.2). By truncating [approximating the cluster
operator T to some low-order (say pair clusters T,)], the resultant wave-
function contains not only these low-order clusters T,|0°) but also disjoint
clusters [e.g., (1/2)T,T,[0°), (1/3)T,T,T,|0°), etc.] that involve more
highly excited configurations than are present in T,|0°). Of course, these
higher-order excitations [e.g., quadruply excited for (1/21)T,T,|0°)] are
present in |0) only to the extent that their amplitudes can be described in
terms of products of the amplitudes belonging to the smaller clusters (e.g.,
t:ptys)- The fact that the product factors T,T,|0°) contain only disjoint
clusters arises because the operator product (r*s* ---af---)(t*ut - -y6---)
vanishes if any of the hole (a,f,v, . . .) or particle (r*,s*,t*, .. .) indices are
equal. An essential point of the CC approach is that even low-order trunca-
tions of T (which are usually based upon the physical assumption that
electron pair interactions dominate) lead to a wavefunction that contains all
of the disjoint higher excitations needed to make the resultant energy (and
other physical properties) size consistent.
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C. EQUATIONS FOR THE CLUSTER AMPLITUDES

The cluster amplitudes ¢} - are determined by insisting that exp(7)|0">
satisfy the usual Schriodinger equation (or at least certain projections of this
equation)

Hexp(T)|0°) = Eexp(T)|0%) (4.11)
which upon premultiplying by exp(— T') gives
exp(— T)H exp(T)|0°> = E|0°) (4.12)

The above exponential series gives, when expanded and collected together
as commutators,

(H +[H,T] + % [[H,T].7] + % [[[H.T].7].7]

+ 4', [[[H,T].T].T], T])

0 = Ej0°) (4.13)

The series truncates (exactly) after four commutators regardless of the level
at which (T,) T is truncated (if at all). This exact truncation is a result of the
fact that H contains at most two-electron operators, which involve four
general (particle or hole) operators i *j* Ik. Therefore [ H, T'] contains at most
three general operators, [[ H, T |, T ] contains two,and [[[[H,T ], T], T].T]
thus contains only (excitation) operators of the form r*s* - - - aff - - - . These
excitation operators clearly commute with T'; thus the next (fifth) commutator
in the series vanishes. The CC expression of the Schrodinger equation hence
yields a quartic equation for the cluster amplitudes (t;;...) appearing in T.

A closed set of equations for the desired amplitudes is obtained by insisting
that the final Schrodinger equation [Eq. (4.13)], when projected against a
set of low-order excitations out of [0°), yield zero. The particular excitations
are usually chosen to include up through n-fold excitations from |[0°> in the
case where T has been truncated at T,. The resultant set of algebraic equa-
tions will then be equal in number to the number of amplitudes ¢7;."" in T.
Once these amplitudes are obtained by solving the resultant nonlinear
equations, the total electronic energy is computed by projecting Eq. (4.13)
onto [0°>. We should stress that the energy expression thereby obtained is
not variational in 'the sense that it is not given as an expectation value of
the Hamiltonian. The quantity ;

<0° exp(T *)H exp(T)|0°)/<0°| exp(T *) exp(T)|0°)
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would give rise to a variational energy expression but the resultant commu-
tator expansion of the exponential operators would not truncate because T*
contains operators of the form a*f* -+ - rs- - -, which do not commute with
T. It is the presence of exp(— T), rather than exp(T"), in Eq. (4.12) that
gives rise to the exactly closed quartic equation for T. Moreover, the presence
of the commutators in the expression for E and the fact that T contains only
particle creation and hole annihilation operators makes the CC-calculated
energy contain only linked terms (in the sense discussed in Chapter 3). This
then makes E contain only size-consistent terms.

D. HARTREE-FOCK ORBITALS AND T =T,

Most CC calculations carried out so far have used the approximation
T ~ T,. In this section, we treat this model in some detail since doing so
will give us more insight into the structure of the CC equations. The physical
motivation for approximating T =~ T, relies on the fact that if the set of HF
orbitals are used, the BT suggests that single excitation T, operators, which
largely serve to optimize the spin-orbitals, should be less important than T,.
It is, however, now commonly felt that one should include both T, and T,
50 as to obtain a balanced or coupled description of the orbital and electron
pair cluster optimization. Let us, however, continue our analysis of the
T =~ T, case.

To see what the solution of the above discussed nonlinear equations
actually involves, let us examine these expressions in more detail for a case
in which the spin-orbitals {¢,¢s,...,9,,..., $,} are eigenfunctions of a
HF operator having orbital energies {e, ‘- ¢, - - -}. The decomposition of
the Hamiltonian H into H® + U is then given as in Eq. (2.84) by

H=H+ W — Vg 4.14)
where H° is the HF Hamiltonian

H° =Y giti 4.15)

W is the full electron interaction term in Eq. (2.84) and V- in the HF potential
[Eq. (2.91)].

The commutator expansion of exp(— T)H exp(T) in Eq. (4.12) given in
Eq. (4.13) demonstrates in an elegant manner that when Eq. (4.13) is projected
against low-order excitations {{}..%| =<0°y - -- Bar*s* --- n*, it gives equa-
tions that are at most quartic in the cluster amplitudes ¢;3..% . However, it
turns out that for finding equations for t;} it is equally simple to expand the
exponential operators directly. To determine the total energy E, we project
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Eq. (4.12) against [0°) to obtain
E = (0°| exp(— T,)H exp(T,)|0°)
= C0°l(L = T, + H(T))H(L + T, + HT,)* - -)|0%)
= 0°|H|0°) + <O°|HT,|0°)
=Eus + Y, {Pa||mn)ely (4.16)

m>n
a>fi

where we have used the fact that 0°|T, = 0 because of the appearance of
r*s*fBo in T,. We have also used the fact that (0°|HT,T,|0°) vanishes
because T3]0%) is quadruply excited and hence cannot couple through H to

(0°|. The 77 amplitudes are determined by projecting Eq. (4.12) against
doubly excited kets (74| to obtain

0 = (7| exp(— T,)H exp(T,)|0°) @.17)

Expanding the exponential then allows one to see that the only nonvanishing
contributions are contained in

0= (MH( + T, + 4TH0%) + (W|(— THH(L + T,)|0°)  (4.18)

which shows that we obtain only a quadratic equation for the cluster ampli-
tudes when T ~ T,. Explicitly evaluating the matrix element appearing in
Eq. (4.18) then leads to the following nonlinear equation for the cluster
amplitudes:

(Em + Ey — &y — Sﬂ)!:';

= (mn||apy — Y {mn||pg>tEd — Y (yd||apdiTy
>

r>q

+ 2 (on| [ Bp>ezy — Cyml [Bp>ey — Coml |apd a5y + Cymi| |p) )
e

+ X <ol |pa> [e53es — 2(5Fe53 + 3e5))
’oe
— 2(e7epd + t2gg) + APy + 22epD) ] (4.19)
In the next sections we describe how solutions may be obtained to Eq. (4.19)

and we discuss the relationship of the solution thereby obtained to results
of MBPT.

E. PERTURBATIVE SOLUTION TO THE
COUPLED-CLUSTER EQUATIONS

We describe here how Eq. (4.19) may be solved in a manner that shows
the connection between the CC and the MBPT approaches. We solve
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Eq. (4.19) in an iterative manner by performing an initial guess of {¢;3} and
then inserting this value on the right-hand side into Eq. (4.19) to obtain an
improved set of values of {t;3}. These are then inserted back into the right-
hand side of Eq. (4.19) to again give us improved values of {tJ3}, etc. As an
initial guess of the cluster amplitudes we set those amplitudes that appear
on the right-hand side of Eq. (4.19) equal to zero. The motivation for this
choice is that the terms containing ¢ on the right-hand side of Eq. (4.19) are
assumed to be smaller than those on the left-hand side of this equation. We
then obtain the following expression for the amplitudes:

= (mnl | (e, + &, — &, — £5) " (4.20)

Inserting this value of t;7 into the CC expression for the total energy as
given in Eq. (4.16) yields

E = Eye + ), {Paf|mn){mn||aB)(e, + &n — €. — &))"  (421)

m>n
a>f

This expression is nothing but the result obtained in second-order perturba-
tion theory, which is written explicitly in Eq. (3.38).

A second iteration may be carried out by inserting into the right-hand
side of Eq. (4.19) the cluster amplitudes obtained above. If we then neglect
the terms that are quadratic in the ;7 amplitudes [the eighth through four-
teenth terms on the right-hand side of Eq. (4.19)], we obtain cluster ampli-
tudes that, when used to compute the energy E via Eq. (4.16) give the same
algebraic expression as is obtained in third-order MBPT (see Problem 4.1,
question 1). If these cluster amplitudes are then inserted into the right-hand
side of Eq. (4.19) (keeping the quadratic terms this time), we obtain new
amplitudes that, when used to compute E, give all contributions to the
fourth-order MBPT energy that arise from quadruple excitations [C, in
Eq. (4.10)]. From the form of our working equation, Eq. (4.19), it is further
clear that the quadruple excitations obtained in this way can only arise from
the 4(T,)? and — T, T, terms. These terms, in a sense, correspond to two
simultaneous interactions of two electrons (electron pair interaction). The
T, term, which corresponds to a true four-body interaction, first enters at
fifth order in perturbation theory, thus indicating that electron pair inter-
actions are much more important than true four-body interaction (Sinanoglu,
1962). All fourth-order energy diagrams can, of course, not be obtained by
approximating T with T, since both single and triple excitations contribute
in fourth order. To obtain all fourth-order diagrams in a CC calculation
would require both T, and T to be included in the cluster expansion.

The iterative process carried out when determining the cluster amplitudes
from Eq. (4.19) may be continued by inserting the cluster amplitudes from
one iteration into the right-hand side of Eq. (4.19) to obtain the new ampli-
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tudes. The converged result would then correspond to summing all diagrams
that contain double and products of double excitations through infinite order.

F. NEWTON-RAPHSON METHOD

Clearly, either the equations obtained by taking T~ 7, [Eq. (4.19)] or
the general quartic equation obtained from Eq. (4.13) are nonlinear and
multivariable. Such equations can be represented in matrix form (by defining
typ as the rs, off element of the t column vector) as

0=a+ bt + ctt (4.22)

where, for example a,, ,; = {rs||aB) [see Eq. (4.19)]. The solution of these
nonlinear algebraic equations represents a substantial practical difficulty in
implementing the CC method. To solve these equations one can employ the
perturbative analysis described above. This technique has the advantages
that it is straightforward to program on a computer and that it has a close
connection with MBPT.

An alternative to the above described perturbative procedure is the multi-
variable Newton-Raphson method. Such methods were used in the first
molecular CC calculations (Paldus et al., 1972). Here, one attempts to choose
t such that the vector f(t) defined as

f(t) = a + bt + ctt (4.23)

becomes equal to zero. This is done by expanding f(t) about the “point™
t,. Keeping only linear terms in this Taylor expansion and setting f(t) equal
to zero, one obtains equations for the changes At in the t amplitudes, which
can be expressed as

fat)=0= fi3(ty) + Z ( v “”)t Aty (4.24)

yd

The step lengths (corrections to t,) can be obtained by solving the above
set of linear equations and then used to update the t amplitudes

t=t,+ At (4.25)

These values of t can then be used as a new t,, vector for the next application
of Eq. (4.24). This multidimensional Newton—Raphson procedure, which
involves the solution of a large number of coupled linear equations, is then
repeated until the At values are sufficiently small (convergence). Given the
set of 1;; amplitudes, Eq. (4.16) can then be used to compute E. Although
the first applications of the coupled cluster method to quantum chemistry
did employ this Newton—Raphson scheme, the numerical problems involved
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in solving the large multivariable inhomogenous equations [Eq. (4.24)] has
led more recent workers to use the perturbative techniques discussed in
Section E. Within the perturbative framework, more sophisticated methods
have been developed to solve the large number of quadratic (for T~T,)
equations that arise. One such device is based upon the so-called reduced
linear equations technique, which has also been widely used to find selected
eigenvalues and eigenvectors of large CI matrices (Davidson, 1975).

G. SUMMARY

Although the CC method possesses several advantages over CI and
MCSCF approaches, the fact that the resultant set of CC equations that
determine the t;} - - - amplitudes are nonlinear and of very large dimensions
even for modest-sized systems, has made the practical applications of this
theory rather limited. An analysis of the relationships between the solutions
of the nonlinear CC equations and the solutions of corresponding CI secular
problems has recently been provided (Monkhorst and Zivkovic, 1978). This
analysis thus provides some reason for optimism concerning the possibility
of finding efficient mechanisms for solving the CC equations. However, at
present, the nonlinear nature of the equations to be solved still makes the
practical utilization of the CC method something toward which we are still
working. Research aimed at achieving efficient solutions of the quadratic
(or even quartic) coupled equations and at extending the CC development
to open-shell and multiconfigurational reference states is necessary if the
CC method is to become widely used in quantum chemistry.

PROBLEMS

4.1 Perform a CC calculation where T is approximated with T,.

1. Show that the CCequaltions may be iterated to yield cluster amplitudes
that, when used in the energy expression, give the MBPT third-order energy
expression [ see discussions following Egs. (4.20) and (4.21)]. The third-order
MBPT energy expression is given in Problem 3.2.

Carry out a CC calculation on HeH* using the minimum basis HF results
found in Problem 2.1. In performing this calculation follow the steps given
below.

2. First use a linear (truncated) form of the CC equation to determine
the numerical values of the 175 parameters and then use these parameters
to compute the corresponding correlation energy.

3. Argue that although the above linear form (question 2) of the CC
equation and the perturbative solution (question 1) yield amplitudes that
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have the same formal structure, the correlation energy of HeH* determined
in question 2 and in third-order MBPT (question 1 and Problem 3.2) differ.

4. Use the quadratic form of the CC equations (which clearly has two
solutions) to determine the values of the two sets of t;7 parameters.

5. [Evaluate the total energy and the correlation energy contribution for
both of these two sets of solutions.

6. Show that the CC equations in Egs. (4.16) and (4.18) and the CI eigen-
value equation that contains doubly excited states become identical for a
two-basis-function two-electron problem. Why do the two configuration CI
total energies of Problem 2.4 and the CC total energies of question 5 differ?

Consider now n HeH* molecules that are separated at infinite distance
with each molecule described by the localized SCF orbitals of Problem 2.1.

7. Show by carrying out a perturbative solution to the CC equations
as described in Section E that the correlation energy for the n HeH ¥ mole-
cules becomes identical to n times the correlation energy of a single HeH *
molecule and that the CC model thus is size consistent.

SOLUTIONS

4.1

1. When the CC amplitudes on the right-hand side of Eq. (4.19) are set
equal to zero, we get

tog = <mn||aP (e, + €, — &, — &) !

Inserting this value of ;' on the right-hand side of Eq. (4.19) gives the next
approximation to t7g:

(00 = (6 + €, — &g — €5)~ ‘[(mn| B> — Y Cmn||pg>eig — ¥ (o] |oapoemy

r>q y>4
+ E(()n[ |Bp>ear — Cym||Bpdeat — Cynflap >ty + (ymlloapdept ]

The first term in the square brackets results in the second-order energy
expression [ Eq. (4.21)] when used in Eq. (4.16).

The second term in the square brackets gives, when inserted into Eq. (4.16),
the correlation energy contribution

s <Ba |mn Cmn| |pg) < pq| |f
m>n{'e‘.m o g £y — &g — Eﬂ}{gp + sq Ty E,‘])
B>a
r>q

which is identical to diagram A in Fig. 3.7.




100 4 The Coupled-Cluster Method

The third term gives
.y < Pol jmny (o] [aB <mnl |yo)>

m>n (em ) €y — &y — sﬂ)(em + &y — Sy T EJ‘)

a>f
>4

which is identical to diagram B of Fig. 3.7.
The last four terms give

) i ffall”?_ &) 2 (<om||Bp>e? — Cym||Bp)ecy
m>n \m n (3 b7
a>f

— Cyn||apHtg? + ym| |apdese

Substitution of variables [e.g, in the first term we substitute (m — p, « — y,
y—= B, n—>m, f—a, p— n)] allows these four terms to be rewritten as

L5 Coy| [pmy < Bm| jony { pn| [yB>
ity b B, g — B le b B — 6, — )
}';;lﬂ

L Coy| [mp) { Bm| |and Cpn| |yB >
mrp BT i6 =B, E)ES R €, — &)
¥ a

np

e <o [pm < B |eny {pn| [yB)
pomibg ity = e Mo, tE we— o))
rx:;’y

o5 o> (Bl an><prl B

mspltm b B — 8, — &6, + B~ 8, — )
a=y

np

The above four terms when collected together give diagram C of Fig. 3.7.
Hence, all second- and third-order diagrams have been accountered for.
2. The only nonvanishing cluster amplitude is t}234 . Equation (4.19) gives

0= 22| 1) + £2238(2e, — 26, — (22|22) — (11| 1) +4¢12| 12> — 2¢12|21))
2228

which gives 17375 = 0.0559. Inserting this value in Eq. (4.16) gives the cor-
relation energy contribution

AE,,, = —0.0070 a.u.

Notice that although ¢7234 is positive, the correlation energy of Eq. (4.16)
is negative, because (fa|mn)y = —(11]22).
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3. Both the third-order MBPT and the approximation in question 2 use
a linear form of the CC equations. However in the MBPT solution (question
1) the cluster amplitudes used in Eq. (4.19) are determined from perturba-
tion theory, which results in a second- and third-order correlation energy
of —0.0066 (Solution 3.2, question 5). The nonperturbation solution of
question 2 is different from the one obtained in question | and gives a cor-
relation energy —0.0070.

4. The quadratic CC equation reads

0 = (22|11 + 1353h(2e, — 2¢, — €22|22) — <11]|11)
+ 412|12) — 212|21)) + (11| 22> 3338338
which gives
1234 = 0.0560, 13238 = —17.8432

5 13228-00560, E=—42791, E, = —00071
13220 = —17.8432, E=-20220, E,, =22500

6. The CC (Schrodinger) Equation (4.12) contains only linear terms in
T, when applied to a two-electron system:

(1 — THH(1 + T,)|0°) = E|0°)

When this equation is projected against {0°| and {}2}§| = (}}| one obtains

1alp
CO°|H|0%) + (O|H|??>t=E (A)
CG2H|0°) + CGH|32>t — 1(0°|H|0°) — 20|H|2> =0 (B)

where {317 is denoted t. Substituting Eq. (A) into Eq. (B) gives
CHH|0% + (G}H|i >t = Et (©)

Equations (A) and (C) are nothing but the CI eigenvalue problem written
out in component form for an intermediate normalized eigenvector with
components (1,¢). The CC total energies (—4.2791, —2.0220) and the CI
total energies (—4.2790, —2.0079) differ only because of numerical errors
caused by using four significant digits in the integrals.

7. When the cluster amplitudes in the nonlinear part of Eq. (4.19) are
set equal to zero (as in the first step of the perturbative solution), the only
nonvanishing cluster amplitudes that remain (see the solution to question 1)
are those involving all four orbitals in 173 located on the same HeH * molec-
ule. This result is due to the fact that integrals involving orbitals on different
HeH* molecules are zero. Continuing this iterative process does not intro-
duce cluster amplitudes that couple different HeH* molecules again because
integrals involving orbitals on two or more different molecules vanish. Hence,
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the CC equations separate into equations for each HeH* molecule. Conse-
quently, the correlation energy as computed via Eq. (4.16) for n HeH* mole-
cules will be n times the contribution from a single HeH* molecule.
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