Chapter 3 | Perturbation T heory

A. INTRODUCTION

As an alternative to the variational approaches described in Chapter 2,
we may use perturbative approaches to solve the Schrodinger equation.
Our purpose in this chapter is not to survey the many developments and
applications that have been made of perturbation methods. Rather we
attempt to cast the most familiar perturbation theory (Rayleigh-Schrédinger,
RSPT) in the language of second quantization and then demonstrate how
this tool can be used to compute state energies and wavefunctions. In
Chapter 5 we extend this treatment to property average values and second-
order response properties. We also illustrate some of the strengths and
weaknesses of RSPT by comparing it with other perturbative and non-
perturbative methods.

To begin, let us assume that the total electronic Hamiltonian H is de-
composed into two pieces

H=H°+U (3.1)

the former of which is assumed to be “larger” in a sense that will be clarified
shortly. We also assume that we have available the complete set of eigen-
states of H® (including the continuum, in principle)

HOKY = EQ|k®) (32)

This latter assumption often places substantial practical restrictions on the
forms of HY that are possible. For example, choosing H° to be the N-electron
Fock operator (or its second-quantized equivalent) would be quite reasonable
because the |[k°) are then the usual Slater determinantal wavefunctions,
which one is often actually able to obtain to reasonably high precision. On
the other hand, choosing H® to include some factors (e.g., r;; ') of the inter-
electronic distance is probably not practical because one cannot usually
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obtain the eigenstates {|j°)} to high precision. Of course, the physical
context and requisite accuracy relevant to each specific problem must
ultimately dictate how one can most effectively split H into H® + U.

B. DERIVATION OF GENERAL ENERGY
AND WAVEFUNCTION EXPRESSIONS

Given the above decomposition of H, we now express the Schrodinger
equation

H|j> = Ej> (3.3)
as (March et al.,, 1967)
(6 — HO)|j> = (& — E; + U)|j> (3.4)

where the energy parameter &, which has simply been added and subtracted,
will be used shortly to define different kinds of perturbation theories. The
normalization of the exact state |j> will now be chosen such that |j> has
unit projection along its zeroth-order component |j*)

100> =15 (3.5)
The total wavefunction |j) can now be written in terms of the projector Q,
Q=1-1]/<"
as
1> =15 + 2l (3.6)

Making use of the fact that H°Q = QH", which is easily seen to be valid
from definition of Q, we can operate on Eq. (3.4) with the projector Q to
obtain a closed expression for Q|;>:

Q
QLY = QeI 16— 1006 — £+ V)l a7

The factor of Q, which when applied to Eq. (3.4) gave Eq. (3.7), is needed
because the resolvent (§ — H®)™! is singular at & = EY. The presence of Q
guarantees that (§ — H°)™' never operates on a state (|j°)) that would
cause a singularity at this value of EY. Clearly (6 — H®) "' is singular at
other values of & (& = Ej, k # j) but we need not be concerned with these
singularities as long as the parameter & is held in the neighborhood of Ef
and away from the other EP. This would, of course, be difficult to achieve
in systems such as metals, which possess many closely spaced (nearly degene-
rate) energy levels. Equation (3.7) is then inserted into Eq. (3.6) to yield the
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integral equation
[i> =1i% + (& - H)™'Q(€ - E; + U)|> (3.8)

If Eq. (3.8) is iterated, one obtains an order-by-order expansion of the
wavefunction

1> = go [(6 - H)'Q@& - E; + Ui (3.9)

Multiplying Eq. (3.3) on the left by (j"[ we get
E;= E} + (j°|U|i> (3.10)

which then may be used to obtain a perturbative expansion of the energy
in the perturbation U:

E,-E})= Zo GOULE — HO Q& — E;+ U)Ji®  (B.11)
We now consider two especially relevant choices of the, in principle, arbitrary
parameter &. If & is taken to be equal to E;, then the above perturbation
series describe the Brillouin-Wigner approximations to |j> and E;. The
choice & = E{ yields the Rayleigh—Schrddinger perturbation series.

To express any of the above perturbation expansions in terms of creation
and annihilation operators, we simply write |j°), H° and U in the second-
quantized manner. The zeroth-order Hamiltonian is virtually always taken
to be a one-electron operator

H® = E(%IH”I@)VI (3.12)

involving a one-electron potential V,

H= —iV2_ Y ZJr—RJ|'+V (3.13)

With this choice, the perturbation U becomes

U=1 Y <ijl kit = Y il V]idit (3.14)
4 i i
If the spin-orbitals {¢,} are chosen to diagonalize H°,
H® = Y (@ JHd Dk k=) ek *k (3.15)
k k

then the zeroth-order wavefunctions {|j°)} are simply N-electron Slater
determinants (or their second-quantized equivalent) involving these same
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spin orbitals {¢,}. This choice of H? is especially convenient because the re-
solvent (§ — H®) ™! becomes diagonal (and hence easy to treat) within this
representation.

To gain some experience in the evaluation of perturbation contributions
to |j) and E; and to motivate an analysis of a fundamental weakness of the
Buillouin—Wigner perturbation theory (BWPT), let us now consider a few
examples. First, we evaluate the first-order correction to the energy that
arises from the n = 0 term in Eq. (3.11):

1
ES® = CiOIULI®D = g X 5 D ol k> — <Gk 117 kv
ij

(3.16)

which by straightforward application of Slater—Condon-like rules to com-
pute the above density matrices, yields

1
g = 5 Y, vy = Y yviw. (3.17)
m.ye jo ME jo :

Note that because E{"’ contains no reference to the parameter &, RSPT and
BWPT have identical first-order energies.

C. SIZE CONSISTENCY PROBLEM IN THE ENERGY

Next, we consider the second-order energy and, in particular, we examine
E for a system consisting of two noninteracting subsystems (a and b). For
this case, the Hamiltonian H separates into

H=H?+U,+ H?+ U, (3.18)

and the zeroth-order states become (antisymmetric) product states (recall
that |j°> labels our specific state of interest whereas |[k°> labels the other
states):

5> = 172752, (K>} = {Ikais >, liaky >, [kaky >} (.19

The second-order energy expression from Eq. (3.11) reduces, using Q| j°> = 0,
to :

E® = (j°|Ue — H°)'QU|;® (3.20)
Expressing Q in the conventional sum-over-states manner gives

0=1-j%= ¥ k< (321)
KO# o
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and Eq. (3.20) becomes
EP = Y (jlUK®)<KO|U|j®/(& — E) (3.22)
kO # jo

Now, introducing the fact that we are dealing with two noninteracting
subsystems [through Eqgs. (3.18) and (3.19)] and breaking the sum over
k° into three sums corresponding to the partitioning of |k°) given in Eq.
(3.19), we obtain
g — v K2RV + Uk | 5. [<GajblUa + Unljakid]"
: kz d’ 7 E?b P E;’n kg 5 o E.?a e EE&
o 5 2RIV, + Uk
K2.kp ¢ — Eou = EE»

Using the orthonormality of the spin-orbitals and the fact that the systems
are noninteracting permits the simplification of the above matrix elements.
For example,

Ciais|Ua + UplkQjny = ialUdkd>,  <jais|lUs + Unlkoky> =0 (3.24)
Thus, we finally obtain

alUdkd® | < [KislUslks>[?
E(_z] it |<J'a| a|™a oy b b|"™b
P e -mtye-E -,

Notice that this total second-order energy is not, in general, a sum of the
second-order energies of the two separated species because of the appearance
of the Ej, and EY, terms in the denominators. We therefore say that the
general (i.e., with arbitrary &) perturbation theory energy is not size con-
sistent (Pople et al., 1977). However, if & is chosen, as in RSPT, equal to
& = E) = E}, + Ej},, then we indeed obtain a perfectly size-consistent
result:

(3.23)

(3.25)

EP = E + EP (3.26)

It is clear that the first-order energy expression {j°|U|j®) is also size con-
sistent. Because this size consistency property is important, especially if we
are interested in using perturbation methods to study molecular fragmenta-
tion, the use of RSPT must be favored over BWPT (& = E;) or any other
perturbation theory derived from alternative choices of &.

Even if we now decided to use only RSPT to compute |j> and E;, another

potential difficulty arises when we consider the third- (and higher-) order
energies

E}S! = (_folUQ(E? o Ho)_lUQ(E? A HO)_IUUU)
- E{"(OlUQ(EY — HO)2U | (3.27)
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Because E{' is an extensive property (i.e., size consistent), we should expect
possible size inconsistency from the last term in E{¥ if the (second-order)
factor in front of E{" is also extensive; E{*) would lhen contain terms that
are proportional 10 the square of the system's size (for identical noninter-
acting subsystems). Let us now look at this situation more closely. By intro-
ducing the spectral representation of the projector Q given in Eq. (3.21).
E{» can be written as

5 GOUKO KU <I°|uli®
o (ED—EJ(E? — ED)

3 - 3 <j0|U}k0><kU1ULf“>
J |U|J >Z (E?— EE)Z

(3) —

(3.28)

It is now important to demonstrate that the k® = [ terms appearing in the
first sum above exactly cancel the size-inconsistent terms in the second factor.
This cancellation can be brought about by combining these terms as

Uuku 2
s Zlfé"l tE")}'L [<KIU K> = <jO|U]j] (3.29)

Now, if we consider A for the special case of two noninteracting subsys-
tems (analogous to what was done above for E}z‘}. we see that the terms
CkO|UIK®Y — ¢ j°|U]j°> decompose, under partitioning of k® [as in Eq. (3.19)].

into T
X
Cak§|Ua + Uljakd> — <j2islUsliais> = <kJUskD> — CRlULLiR>  (3.30)
(notice that reference to system a has disappeared here) and
N

CkaislUa + Uylk2ipy — <jaiplUdjain» = <kalU k> = <jalUdlja>- (331)

(reference to system b has disappeared here).
The states {|k2ky>} give no contributions because the first factor in Eq.

(3.29) (j°|U[Kk®) becomes identically zero for these states. This then permits
A to be written as a sum of terms referring totally to system a:

Uk
i ~Z‘fé3| |E>}| [ = CBIULD] (332

and an analogous expression for A,. Hence A is size consistent even though
each of the two terms arising in it [see Eq. (3.29)] are not. When k° # [°
the first term in Eq. (3.28) may also be shown to be size consistent and E}'“
therefore is size consistent. RSPT energies are in general size consistent
even though substantial regrouping of terms as in E{) may be necessary
before it can be realized.
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If one wishes to use RSPT to perform ab initio quantum-chemical calcu-
lations that yield size-consistent energies, then care must be taken in com-
puting the factors that contribute to any given E{". For example, if E{’ were
calculated as in Eq. (3.28), limitations of numerical precision might not give
rise to the exact cancellation of size-inconsistent terms, which we know
should occur. This would certainly be the case for an extended system (for
which the size-inconsistent terms would dominate). In addition, it is unpleas-
ant to have a formalism in which such improper terms arise in the first place.
It is therefore natural to attempt to develop approaches to implementing
RSPT in which the size-inconsistent factors are never even computed. Such
an approach has been developed and is commonly referred to as many-body
perturbation theory (MBPT). The method of implementing MBPT is dis-
cussed once we have completed the present treatment of RSPT.

D. M@LLER-PLESSET PERTURBATION THEORY
FOR ENERGY

A very common choice of the potential V used to define H as in Eq. (3.13)
is the HF potential

V=YY Chky||ludk*i (3.33)

kJd pej

where the sum over u runs over those spin-orbitals that are occupied in the
specific zeroth-order state (the Slater determinant |j°)) whose perturbation
we are examining. The unperturbed Hamiltonian H® is then given in terms
of the HF orbital energies as

HY=)% gktk (3.34)

k
With the above choice of H° now made, the perturbation U becomes

Y Gl kit =Y, Y <kl |kt (3.35)

1
4w k1 pejo

These choices of H® and U, when used in RSPT, give rise to what is commonly
called (Pople et al., 1977) M¢ller—Plesset perturbation theory (MPPT) and
the expression for E{" reduces to the familiar form

E}“-—w% PRI (3.36)

n,ve jo

The RSPT expression for E{*’ can also be expressed in terms of orbital
energies and two-electron integrals. The kets [k®) appearing in Eq. (3.22) for
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E? refer to kets that are singly, doubly, etc. excited relative to the reference
ket | j°>. Because of the BT, {j°|U|k®) vanishes when |k®) is a singly excited
ket. Kets |k®) that are triply excited and higher also give no contribution to
{j°|U|k®>. Hence, E{? as given in Eq. (3.22) would contain only contributions
from the doubly excited kets,

jO\Urts* Bl j°> = Capl|rs) (3.37)
and therefore

g _y _leBllrp

a<pbr+ & — 8 — &

r<s

(3.38)

To obtain more insight into the structure of the size-consistent and -in-
consistent terms, we derive an explicit expression for the quantity A appearing
in Eq. (3.29) within MPPT. Realizing that only the doubly excited deter-
minants |k°) contribute in Eq. (3.29) because of the BT, we obtain

- g Ll

2 50177]50
Gty = = o7 [CRlUk> = GOULT - (339
where
=m*n*faj) (3.40)

The expectation value difference contained in the square brackets can be
expressed in terms of elementary two-electron integrals and, since U =
W — V, HF potential matrix elements as

2. [<my||my> + Cnyl Iy — <oyl |oey> — <By||By>] + Cmn fmny — <af| 2B
YT':E.S
= m|VIm)y — (n|V|n> + (| V]o) + <B|V|B> (3.41)

By then introducing the explicit form of V given in Eq. (3.33) this expression
can be reduced to

<mn||mn) + <afllap) — (1 + P )1 + P,g){mof |nf) (3.42)

where P,,, means interchanging the indices m and n. Upon inserting this into
Eq. (3.39) one obtains

|(o:[ﬂ Imn)l

A:
m<n (£a+5ﬂ Em

a<f

— (1 + P, (1 + P,)<mo|np>] (3.43)

¥ [<mn||mn) + C(apl||ap>
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The expression for A given in Eq. (3.39) may be written as a product of two
independent disjoint sums since part of the first term (™ [U| ¢ » and the
whole second term ¢ j°|U|j°> in the square bracket consists of a sum that is
independent of the sum m < n and « < . Equation (3.39) thus contains a
product of two disjoint terms. When the terms in the square brackets are
collected together in a different manner, Eq. (3.39) reduces to Eq. (3.43),
which cannot be divided up into disjoint sums. The expression for A given
in Eq. (3.43) is thus linked. It is the linked nature of the size-consistent terms
that is used in MBPT to assure that size-consistent terms alone will appear

in the many-body perturbation expressions for the electronic energy and
other state properties.

E. THE PERTURBED WAVEFUNCTION

Having now carried out some detailed analysis of the RSPT expression
for E;, let us turn to the perturbative corrections to the wavefunction 17>
The first-order RSPT wavefunction is, according to Eq. (3.9),

|/ = (Ef — H)'QES — E; + U)|j°) (3.44)
which, because Q|j°) = 0, reduces to
|7 = (E] — H%)~'QU|;°) ; (3.45)
By inserting the spectral representation of Q [Eq. (3.21)], we obtain

‘ KU
i = ko); —_'Eol U 2 o (3.46)

As we did above for the energy, it is instructive to analyze |j'"’) when it
pertains to two noninteracting subsystems (a and b). For this special case,

the sum in Eq. (3.46) separates into terms pertaining to each of the isolated
systems:

0
k20 *Z————-mé‘(,lu"lh liSke>  (347)

*I!I

k[) 0
T Z< IU 1Ja>

Thus, we see that, through first order, the wavefunction |j) contains only
terms of the form |07, |j%y, and |k js»; terms such as |k2k{) are not
present. One might have expected that, for two noninteracting subsystems,
the total wavefunction should be a (antisymmetric) product of the wave-
functions for each subsystem and that terms like [k2kY) would, thus, be
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The expression for A given in Eq. (3.39) may be written as a product of two
independent disjoint sums since part of the first term (™ [U| 7 » and the
whole second term ¢ j°|U|;j°) in the square bracket consists of a sum that is
independent of the sum m < n and « < f. Equation (3.39) thus contains a
product of two disjoint terms. When the terms in the square brackets are
collected together in a different manner, Eq. (3.39) reduces to Eq. (3.43),
which cannot be divided up into disjoint sums. The expression for A given
in Eq. (3.43) is thus linked. It is the linked nature of the size-consistent terms
that is used in MBPT to assure that size-consistent terms alone will appear

in the many-body perturbation expressions for the electronic energy and
other state properties.

E. THE PERTURBED WAVEFUNCTION

Having now carried out some detailed analysis of the RSPT expression
for E;, let us turn to the perturbative corrections to the wavefunction 17>
The first-order RSPT wavefunction is, according to Eq. (3.9),

/"> = (E§ — H°)'Q(EJ — E, + U)|;° (3.44)
which, because Q|j®) = 0, reduces to
/"> = (Ef — H°)~'QU|;% ' (3.45)
By inserting the spectral representation of Q [Eq. (3.21)], we obtain

kU °
i =ko); ————"_Eol L 2 k0 (3.46)
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-y Sl <k°IU 1;2>

0
[ Z——m—ﬁg{,w”l“’)| k> (3.47)
[+ ks

| =
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present. The RSPT first-order wavefunction certainly does not possess this
product-separable property.

It is natural to ask how the RSPT can have the physically consistent
property that its energy is extensive whereas its wavefunction does not reduce
to a product form for noninteracting systems. The answer has to do with the
manner in which the total energy E; is computed in perturbation theory:

E; = (OH|j> (3.48)

In contrast, the total energy is obtained, in variational approaches, by eval-
uating the expectation value

E; = (IH|i/Kli> (3.49)

Because of the structure of the matrix element appearing in Eq. (3.48) it is not
possible for terms such as |kJky > to contribute directly to the RSPT expres-
sions for E; even though these factors are certainly contained in the exact

wavefunction }j} (they will occur as higher order RSPT wavefunction cor-
rections). That is,

CaislHIkkY> = (j2ip|HY + HY + U, + Uplkdkp> =0 (350)

In a sense then, the first-order RSPT wavefunction contains faults (absence of
|kSkY>) that do not adversely affect its ability to yield, through

EP = (UL (3:51)

a size-consistent second-order energy. The same form of the wavefunction
(J7> = |j° +|i'")) when used in the expectation value [Eq. (3.49)] would
not yield a size-consistent result; one would have to add on the |k)kp> terms
to generate size consistency in the expectation value. This implies that in a C]
or MCSCF calculation one must use these disjoint excitations |kjk; > (e.g..
|oZa 2> for two H, molecules) in order to guarantee that the expectation value
formula for the energy is size consistent. This necessity that one include, in a
Cl study of a composite system, excitation levels (in Slater determinants) that
are higher than those included for the individual constituent fragments is a
problem of the CI and MCSCF methods.

F. M@LLER-PLESSET WAVEFUNCTION

If the unperturbed Hamiltonian H® is taken to be the‘H F Hamiltonian, the
first-order MPPT wavefunction [ Eq. (3.46)] can be expressed in terms of the
doubly excited kets r*s* fa|j”) (again BT makes the contributions due to
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singly excited kets vanish):

lj‘”) = z K;;r+s+ﬁa|j°) (3.52)
a<f
where
oo oodieh (3.53)

E 1+ & —¢8 — &

The explicit expression for the second-order wavefunction for this (HF) H°
case contains singly, doubly, triply, and quadruply excited kets
i =¥ Kr*a]j%> + ¥ Kor*s*Bolj%

F.a

a<fp
r<s

+ X KGyrtsTeyBeli + X KgrtsTttutoypali®)
a<fi<y a<f<y<d
r<s<t r<s<t<u

(3.59)
where, for example,

K, = l(z <ry| |mny {mn| [yor) + % {By| |oemy {mr| |yB)

2 mn (Eu Sy Er)(sy T Ey — &y — gm) m (Eu g 3,.](8), o e Eﬂ TR Em)
Y b7

(3.55)
G. MANY-BODY PERTURBATION THEORY

Having now completed our treatment of RSPT, let us return to the problem
of finding a mechanism for explicitly computing, in any given order, only
those terms in EY or |j™) that are size consistent. Recall that RSPT, as
normally expressed, contains size-inconsistent terms that cancel when
grouped together properly, but that nevertheless appear in the formal RSPT
expression. Recall also that the size-inconsistent terms could be characterized
by a factorization into products of two or more terms that did not share
common summation indices. In MBPT, the formal cancellation of size-
inconsistent terms in RSPT is carried out explicitly (Brueckner, 1955a,b;
Bartlett and Silver, 1975; Kelly, 1969; Lowdin, 1968; Brandow, 1977). For-
mally, we may thus write E{> as

EPRSPT) = (j|UQ(ES ~ H)™'U(E] — HY)™'QU|j°>
— E{'C°lUQ(E] — H*)*U|;%
= (J°|U(E] — H%)~"U(E] — H°)"'U|j°), = Ef(MBPT)  (3.56)
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or E{” in general, using Eq. (3.11), as
EP = (OIUYE] — HO) QUi (3.57)

The subscript L indicates that only the size-consistent terms in that expres-
sion are included. The term involving E{" in Eq. (3.56) give rise to purely
size-inconsistent terms. In MBPT, the size-consistent terms are said to be
linked, while the size-inconsistent terms are referred to as unlinked. If all
of the unlinked terms were trivial to identify, such as the second term in
E*(RSPT), one could merely exclude them. However, as we demonstrated
earlier, there are also unlinked contributions in the first term in E}"(RSPT]
that cancel those in the second term and that are not easily identified. It is
the strength of MBPT that it allows us directly to identify all the linked
terms of RSPT. The derivation that shows how to identify the size-consistent
or linked terms is rather tedious and is described in detail in many textbooks
(March et al., 1967; Raimes, 1972; Linderberg and Ohrn, 1973). We do not
carry out that derivation but simply familiarize the reader with the language
of MBPT and report the results of the derivation. The implementation of
the MBPT method for evaluating only the linked contributions to E{" is
commonly given in terms of a set of diagrams, the numerical values of which
are the desired size-consistent components. We use the so-called Hugenholtz
diagram rules to determine the number of diagrams, which enter in a given
order (n) in the perturbation. In Table I, we report the rules for constructing
these diagrams and in Fig. 3.1, the Hugenholtz energy diagrams that enter
up through second order are displayed. The translation of the Hugenholtz
diagrams into algebraic expressions is commonly performed by translating
the Hugenholtz diagram into one of its equivalent Brandow diagrams
(Brandow, 1977). The algebraic expression for the Hugenholtz diagram is then
obtained by applying the rules given in Table II to the Brandow diagram.

Table 1

Rules for Constructing All Hugenholtz Diagrams for a Given Order n

1. Represent each of the two-electron interactions (W) with a dot having two incoming and
two outgoing lines (e.g. X ) and each of the one-electron terms (— 1) with a solid line
having one endpoint at which one line is entering and one leaving (e.g.>—=) (H = Iy +
W — V)

2. To a given order n in the perturbation, write all possible ways (on a time axis) of drawing
m(m=0,1,...,n)dots and n — m solid lines with one endpoint.’

3. Connect the lines entering and leaving a dot and a solid line with one endpoint in all
possible different ways such that the resulting diagrams are linked. A linked diagram cannot
be pulled apart into two separate diagrams without cutting lines. An example of an unlinked
diagram is given in Fig. 3.3A.
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Hugenholtz Brandow
3 O-----0
A A
e

FIG. 3.1. First- and second-order
Hugenholtz and Brandow energy diagrams.

¢
1
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A Hugenholtz diagram is translated into one of its equivalent Brandow
diagrams when the dots (which represent the two-electron interaction) are
extended into dashed lines, where one arrow is entering and one leaving at
both end points of the dashed line, e.g, A — .~--<. The Hugenholtz
diagram in Fig. 3.2, may, for example, be translated into one of the eight
Brandow diagrams given in Fig. 3.2. At first glance, these eight diagrams
look very different, but when applying the rules in Table II, their algebraic
expressions become identical. To illustrate this and to get some experience
in applying the rules in Table 11, we evaluate Brandow diagrams A and E
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Table 11

Rules for Evaluating Brandow Diagrams.

1. Label the diagram with general “hole” (a, 1, 7, . . .) (down arrow) and “particle” (m.n.p, .. .)
(up arrow) indices. A line that starts and ends at the same interaction is labeled with a hole
index. An example of the labeling is given in Fig. 3.2A.E.

2. The numerator of the diagram contains products of the one-electron integrals (il any) and

the antisymmetrized two-electron integrals. The indices of the one- and two-electron
integrals are assigned according to the rule

{out|—V]in)
¢left-out, right-out| |left-in, right-in}
Examples:
Pwfla- = pl=V>
[AVCLAV i <pqllop>
9\/3__,(‘: 5 <pallor>

3. The denominator corresponding to a given diagram is obtained by taking a factor equal
to the sum of the hole orbital energies minus the sum of the particle orbital energies for
each horizontal cut the eye draws between successive pairs of either dotted or solid lines.
These n — 1 individual factors are then multiplied to form the denominator.

4, Multiply the diagram by (3)", where n is the number of “equivalent pairs™ of lines. Two
lines form an equivalent pair if they both begin at the same interaction, both end at the
same interaction, and both go in the same direction (e.g., Fig. 3.1C has two pairs, Fig. 3.3A
has one pair, and Fig. 3.2A-H has no pairs).

5. Multiply each numerator by (—1)'** where h is the number of hole lines in the diagram
and [ the number of closed loops. A closed loop is formed when one can trace from one
endpoint of an interaction along the direction of an arrow and end up back at the same
point without ever having to cross an interaction (dashed) line (Fig. 3.3A contains three
loops, Fig. 3.2C contains two loops, and Fig. 3.2B has one loop).

6. Sum over all particle and hole states that occur in the diagram.

Hugenholtz Brandow

G H

Ty 650

FIG. 3.2. Translation of a third-order Hugenholtz diagram into corresponding Brandow
diagrams.
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in Fig. 3.2. We obtain, using the labeling of particle and hole lines given in
the figure

A= 3 (= 1prs Sl imed <l s Cop 1B

ol (6, +6,—5,—8)e, +86,—8&,—8)

mnp

(3.58)

Diagram A contains three hole lines and three closed loops. Diagram E may,
in a similar way, be expressed as

E=Y (—1)*3 oyl |mp> < Bm jan) <mp| |By>

;v (e, +E, ~ 5 — ENEy T &, — £, —¢,)
mnp

(3.59)

since E contains two closed loops. Interchanging a and n in the second elec-
tronic interaction in E gives a minus sign and A and E thus become identical.

The reason for including only the linked diagrams in the expression for
E{" is further clarified by examining the value of an unlinked diagram, e.g.,
the one given in Fig. 3.3A:

A= (=)' Y plVImy (uVIpdi(—1)22 >;<aﬁllaﬁ> (3.60)

Because, for two noninteracting subsystems, both of the disjoint sums occur-
ring in Eq. (3.60) are size consistent (i.e., proportional to the size of the system),
the product would not be size consistent. Hence, unlinked diagrams corre-
spond directly to non—-size-consistent factors, which should not be included.

If H? is taken to be the HF Hamiltonian, so that ¥ = V¢ of Eq.(3.33), then
certain simplifications occur. In particular, all diagrams containing the loop
structure ©f cancel with corresponding diagrams having the potential
symbol >— in the same location except in first order. For example, dia-
grams B and C of Fig. 3.3 cancel since the value of diagram C is

(mp| |0!I3> (“ﬂl l”P)( T <"| Vilp|m>)

=1(_1)2+2 61
Lot g(s,+£,—£P—s,,}(£,+t:,—sp—sm) Hah)
mnp
which, because
<nlVglmy = 3 < |mpe (3.62)
I

Eﬁ_-o : -O O z O
A o i 0
FIG. 3.3. Diagram A is unlinked and diagrams B and C demonstrate the cancellation
of the Fock potential.
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is equal to (but opposite in sign from) diagram B:

=§(-1P* Y <mpl B> <npel [mpd <o | |np)

o (&o + 85— 8, — 8 )E, + 85 — &, — &)

mnp

(3.63)

Because of the cancellation of X and < that occurs in all orders beyond
first, we need only consider diagrams A, B, and C in Fig. 3.1 to determine the
energy consistent through second order when V = V.

The first-order diagrams shown in Fig. 3.1A,B combine as follows:

A+B=35(—12*"2Y (af|lop> + (= D' Y (= K| Vg| >
aff o
-1 Y <ap||p> (3.64)
aff

The second-order contribution may be written as

C= Z( G | i $aplirsd<re|lef> (3.65)
&+ 8 —8& — &

Both the first- and the second-order contributions are, of course, identical

to the RSPT expression for E{" and E{* given in Egs. (3.36) and (3.38),

respectively.

In the application of MBPT to certain physical problems, it has been
noticed that special families of diagrams seem to make important contri-
butions to the energy in all orders. Attempts have been made to identify
such diagrams and then to evaluate their energy contributions in a manner
that permits these terms to be algebraically summed through all orders.
One example of such a family of diagrams is shown in Fig. 3.4. We can apply
the rules for Brandow diagrams given in Table I1 to each of these diagrams
to obtain

-0 y- 2 SoBllrs)<rs 1B

S ity (3.66)

- (s Capl|rs) {ap||ap ) Crs||ap>
(B) = (3)° g{ )2+ o (3.67)
(C) 2] (%)2 Z(_ 1)2+6 (aﬁl ll’S) (aﬂl |aﬁ)2(rs| iaﬁ> (368}

O 6D D

FIG. 3.4. A sequence of diagrams lhat can be summed to |nﬁn|te order.

(e, + & — & — &)°.
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It should be clear that expression for higher-order diagrams analogous to
Fig. 3.4A but with one or more additional interaction lines connecting o and
B would involve higher powers of {ap||«B>(e, + &5 — &, — &)~ '. Therefore,
the series represented by the sum of Fig. 3.4A-C is an easily summed geo-
metric series of the form y + yx + yx? + yx3 + - - - . The result of summing
this series is to yield

(2 Y CaB|rsy<rs| |aB (e, + 85— &, — &) ' [1 — Caf| [ ) (e, + g —6,—8) ']}
i (3.69)

which can be rearranged to read

%Z(um s> <rs| |aBD (e, + &5 — €, — & — <aB||oef>) " (3.70)
af

rs

We see that the result of summing the class of diagrams given in Fig. 3.4
is to generate an expression that is identical to the value of Fig. 3.4A except
for the “denominator shift” of —{ap||ap).

In addition to expressing E; in terms of diagrams, we may write the per-
turbation corrections to |j) in this language. A few first- and second-order
Brandow wavefunction diagrams are shown in Figs. 3.5. The rules for eval-
uating these diagrams are similar to those for the energy except in two ways.
First, in counting the number of hole lines to determine the sign (—1)",
the external hole lines are not included. Second, each free external line
has associated with it an excitation operator and an orbital energy term. For
example, the value of diagram D in Fig. 3.5 is

D=4(—1)*2 Y <pq|[aB><op] lvg>

" (6. + &85 — &, — &)(e, — &)

p*[0% (3.71)

As was the case for diagram contributions to E, the factors Yo and >— that
occur in equivalent locations, for example, in Figs. 3.5A,B, exactly cancel
when V is V. The cancellation in Fig. 3.5A,B is the diagrammatic expression
of the BT; that is, the first-orcs:r wavefunction contains no singly excited
configurations. '

The kind of perturbation theories (RSPT and MBPT, in particular) de-
scribed above have proven to be useful quantum-chemical tools. However,
these methods are expected to fail whenever the perturbation (the electronic

i SV

FIG. 3.5. All first- (A-C) and one (D) second-order wavefunction diagrams.
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fluctuation potential if H® is the HF Hamiltonian) is not small or if the
system under study is not well described in terms of a single Slater deter-
minant. This would be the case, for example, when one or more of the states
|k°> is energetically close to |j®> (i.e, E? — Ef is small). This arises often
when one breaks chemical bonds. Also, it is often not possible to describe a
system in terms of a single determinant whose spin-orbital occupation is held
constant throughout a large position of nuclear configuration space [e.g.,
LiH(16220?) gives improper dissociation into ionic states at large R]. For
these reasons, there has been recent research activity aimed at developing
MBPT for a multiconfigurational reference state, but such tools are not yet
commonly available. Thus although MBPT is indeed a size-consistent theory
in that it yields total energies proportional to the size of the system for a
collection of noninteracting subsystems, it still may suffer from the improper
dissociation problem common to most single-configuration-based theories.
Size consistency and proper dissociation are different characteristics. The
question of proper dissociation has to do with whether the wavefunction
contains configurations that can yield proper dissociation products and
whether the method used to compute the amplitudes of these configurations
(e.g., CI, MBPT, MCSCF) can be trusted to be accurate as dissociation
occurs. The MBPT may indeed contain the 1622630 configuration needed
to dissociate LiH, but the amplitude of this configuration (which dominates
at large R) cannot be obtained from an MBPT calculation based upon using
the 162262 configuration as [0°) unless a very high correlation level is
considered. Hence although MBPT would yield a size-consistent energy for
two or more noninteracting LiH molecules (each at their equilibrium bond
lengths) it fails to describe even one LiH molecule at large bond lengths.

PROBLEMS

3.1 Using the orbital energies and two-electron integrals found in
Problem 2.1, carry out a RSPT calculation of the first-order wavefunction
[162>™" and the second-order energy E® for the case in which the zeroth-
order wavefunction is taken to be the 162 Slater determinant.

1. Show that the first-order wavefunction is given by

[16%)" = —0.0442]202)

2. Why does the |1620) configuration not enter into the first-order
wavefunction?

3. Normalize the resultant wavefunction that contains zeroth- plus
first-order parts and compare it to the wavefunction obtained in the two-
configuration CI study of Problem 2.3.
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4. Show that the second-order RSPT correlation energy of HeH™ is
given by —0.0056 a.u. How does this compare with the correlation energy
obtained from the two-configuration CI calculation?

5. Show that the second-order RSPT energy of a collection of n non-
interacting HeH* ions reduces to n times the correlation energy of one
such ion. ;

3.2 Using MBPT, determine the third-order contribution to the correla-
tion energy for the HeH *.

1. Write all Hugenholtz diagrams that contribute in third order when
the perturbation U = — V + W consists of the electronic repulsion W and a
one-electron perturbation V.

In the following, assume now that V = V..

2. Which of the diagrams of question 1 cancel?

3. Write the algebraic expression for the diagrams in question 2 that
did not cancel.

The third-order contribution to the correlation energy for the HeH™* of
Problem 2.1 can now be determined, using the HF orbital energies and the
one- and two-electron integrals in the HF basis that is determined there.

4. Determine the third-order contribution to the correlation energy for
the HeH* system.

5. Compare the third-order contribution with the second-order con-
tributions determined in Problem 3.1 and the full CI correlation energy.

SOLUTIONS
3.1

; <rs||ap) ,
(tix PR e 0
L %Erﬂs_%_%r s* pa|j*>

In our case a = loa, f = laf, r = 200, s = 20p:

(22|11) 0.1261

2L i 10 2 2

el 2, —81)126 ? = 3102289 + 1.6562] Re>
= —00442]26%)

2. The BT gives {10%|H|1620) = 0; hence the |162¢) configuration does
not enter into the first-order wavefunction.

3. |0) = |le?) — 0.0442|26%). To normalize, we divide by
[1 + (0.0442)2]'2 = 1.0010:

0> = 0.9990|162) — 0.0441|202)



Solutions 87

In the CI, we got
0> = 0.9984|16%) —0.0556|20%)

ST L e (012617
' 26, —¢,)  2[—02289 + 16562]
= —0.0056 a.u.

From the two CI energy, compared to the SCF energy {(l1o?|H|10%), the
correlation energy is —4.2790 — (—4.2720) = —0.0070 a.u.
5. E is generally given by

|<mp| B

a<p bt Eg— &, —E
m<p

r

For n noninteracting HeH* ions, the integrals (mpT 'a:ﬁ) involving orbitals
on different ions vanish. Thus all four orbitals in {mp||xf> must be on the
same ion. Hence

2
BNty |<._"'p|,,|f'_fﬁ?.|_
A=1\a<p b T Ep — &y — &
m=p on A
where A runs over the n HeH* ions.
32

1. See Fig. 3.6, where the Hugenholtz diagrams are displayed.

2. Diagrams D1-X1 cancel with diagrams D2-X2 such that D1 cancels
D2, El cancels E2, etc.

3. The Hugenholtz diagrams in Fig. 3.6A-C are translated into the
corresponding Brandow diagrams in Fig. 3.7A-C, respectively. Each of these
diagrams is then evaluated according to the rules to give

Ay <ap||mn) (mn||pg) < pql B )

mnga Ble,. teg—ey— &), +6p—6,— e;}

By 1 Cap||mn)<yo|[aB > Cmnl [yd)

afiyd 8 (Ea A Sﬂ — &y — sﬂ){sy + €5 — &y — ﬂ")
mn i

c o5 ol collpy

o GtE -t 5 —)
affy
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FIG. 3.7. The only nonvanishing third-order Brandow diagrams arising with HF orbitals.
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_ <11]22)¢22|22)¢22|11)

4, A & = 0.0012
_(11122)(11]1])(22“1)_
B= s = 0.0019
e (l]|22>(22|l]>((12|212) - 2(12‘12)) — _0.0042
2(gy — &)

A+ B+ C= —-00011

5. Second order, —0.0056; second + third order, —0.0067; full CI
—0.0072.
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