
Chapter 3 IPerturbation Theory

A. INTRODUCfION

As an alternative to the variational approaches described in Chapter 2,
we may use perturbative approaches to solve the Schrodinger equation.
aur purpose in Ibis chapter is not to survey the maDYdevelopments and
applications that have been marle of perturbation methods. Rather we
attempt to cast the most familiar perturbation theory (Rayleigh-Schrodinger,
RSPT) in the language of second quantization and then demonstrate how
Ibis tool caD be used to compute stale energies and wavefunctions. In
Chapter 5 we extend Ibis treatment to property average values and second-
order response properties. We algo musIcale SOfie of the strengths and
weaknesses of RSPT by comparing it with other perturbative and non-
perturbative methods.

To begin, lei us assume that the total electronic Hamiltonian H is de-
composed joto Iwo pieces

H = Ho + U (3.1)

the former of which is assumed to be "larger" in a sense that will be clarified
shortly. We algo assume that we have available the complete set of eigen-
states of Ho (including the continuum, in principie)

HOlkO)= E~lkO) (3.2)

This latter assumption often places substantial practical restrictions on the
forms of Ho that are possible. For example, choosing Ho to be the N-electron
Fock operator (or its second-quantized equivalent) would be quite reasonable
because the IkO) are then the usual Slater determinantal wavelunctions,
which one is often actually able to obtain to reasonably high precision. On
the other band, choosing Ho to include SOfie factors (e.g., rij 1)of the inter-
electronic distance is probably not practical because one cannot usually

fili
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obtain the eigenstates {ll>} to high precision. Of course, the physical
context and requisite accuracy relevant to each specific problem must
ultimately dictate how one caD most eITectivelysplit H joto Ho + U.

B. DERIVATIONOF GENERALENERGY
AND WAVEFUNCTIONEXPRESSIONS

Given the above decomposition of H, we now express the Schrodinger
equation

HID = EjU>

as (March et al., 1967),
~

(C - RoM> = (C - Ej + U)U>

(3.3)

(3.4)

where the energy parameter C, which bas simply been added and subtracted,
will be used shortly to define dilTerent kinds of perturbation theories. The
normalization of the exact stale IDwill now be chosen such that U> bas
unit projection along its zeroth-order component Ijo>

IjO><jOID = jjo> (3.5)

The total wavefunction IDcaD now be written in terms of the projector Q,

Q ==1 - jjo><jOI

as

Ij> = Ijo> + QU> (3.6)

Making use of the fact that HoQ = QHo, which is easily seen to be valid
erom definition of Q, we caD operate on Eq. (3.4) wilII lhe projector Q lo
obtain a closed expression for QU>:

Q Ij) =- Q Qlj> =1~ - RO)-IQ($ - Ej + U)U>

The factor of Q, which when applied to Eq. (3.4) gave Eq. (3.7), is needed
because the resolvent (C - RO)- I is singular at tE= EJ. The presenceof Q
guarantees that ($ - HO)- I never operates on a stale (UO»that would
cause a singularity at this value of EJ. Clearly (@- HO)-I is singular at
other values of C (@= Er, k ol-j) but we need not be concerned with these
singularities as tong as the parameter tff is held in the neighborhood of EJ
and away erom the other Er. This would, or course, be difficult to achieve
in systems such as metais, which possess maDYclosely spaced (nearly degene-
fale) energy levels. Equation (3.7) is then inserted joto Eq. (3.6) to yield the

(3.7)



70 3 Perturbation Theory

integral equation

jj) = jjO) + (tS'- HO)-1Q(tS'- EJ+ U)lj) (3.8)

If Eq. (3.8) is iterated, one obtains an order-by-order expansion of the
wavefunction

'T.J

Ij) = L [(tS'- HO)-1Q(tS' ..;..EJ + U)]"jjO)
"=0

(3.9)

Multiplying Eq. (3.3) on the left by (jol we get

Ej = EJ+ (jOIUlj) (3.10)

which then may be used to obtain a perturbative expansion of the energy
in the perturbation U:

OC)

Ej - EJ = L (jOlU[(tS'- Ho)-1Q(tS'- EJ+ U)]"ljO)"=0
(3.11)

We now consider two especially relevant choices ofthe, in principie, arbitrary
parameter tS'.lf tS'is taken to be equal to EJ' then the above perturbation
series describe the Brillouin-Wigner approximations to jj) and EJ' The
choice tS'= EJ yields the Rayleigh-SchrOdinger perturbation series.

To express aDYof the above perturbation expansions in terms of creation
and annihilation operators, we simply write Il), Ho, and U in the second-
quantized manner. The zeroth-order Hamiltonian is virtually always taken
to be a one-electron operator

HO = L (4J"IHol4J,)el",'
(3.12)

involv!ng a one-electron potential V,

Ho = -i\72 - L Zair- Ral-1+ V (3.13)
a

With this choice, the perturbation U becomes

1
U = 4 L (ijllkl)i+j+lk - L (i!Vjj)i+j'i'" ,Ii

If the spin-orbitals {4J,,}are chosen to' diagonalize Ho,

(3.14)

HO = L (4J"IHol4J,,)k+k==L e"k+k" " (3.15)

then the zeroth-order wavefunctions {ljO)} are simply N-electron Stater
determinants (or their second-quantized equivalent) involving these same
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spin orbitais {cJ>/c}. This choice of Ho is especially convenient because the re-
solvent (8 - 1-1°)-1becomes diagonal (and hence easy to treat) within ibis
representation.

To gajo same experience in the evaluation of perturbation contributions
to I.i> and Ej and to motivate an analysis of a rundamental weakness or the
Buillouin-Wigner perturbation theory (BWPT), lei us naw consider a rew
examples. First, we evaluate the fIrst-order correction to the energy that
arises erom the Il = O term in Eq. (3.11):

1
E~I) = <jOlujjo>= - L Goli+j+Ikjjo><ijllkl>- L Gole IjjO><k!V11)

4 ij/cl kI

(3.16)

which by straightrorward application of Slater-Condon-like rules to com-
pule the above density matrices, yields ~

1
E~I) = - I <J,vIlPv>- I <1'!Vlp>.

2/l.,oEjO /lEjo
(3.17)

Note that because E~1)contains no reference to the parameter 8, RSPT and
BWPT have identical fIrst-order energies.

C. SIZE CONSISTENCYPROBLEM IN THE ENERGY

Next, we consider the second-order energy and, in particular, we examine
E~2)for a system consistingoftwo noninteracting subsystems (o and b). For
ibis case, the Hamiltonian H separates joto

II = H~ + Ua + H~ + Ub (3.18)

and the zeroth-order states become (antisymmetric) product states (recalI
that IjO) labeIs our specific stale of interest whereas IkO) labeis the other
states):

IjO) = Ij~jg>, {!kO)}= {lk~jg),lj~kg>,!k~kg>} (3.19)

The second-order energy expression erom Eq. (3.11) reduces, using QI/> = O,
to -

Ef) = <jOIU(8- Hor IQul/> (3.20)

Expressing Q in the conventional sum-over-states manner gives

Q ==1- jjo><jOI = I Iko><kol
, 1°*1'"

(3.21)
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and Eq. (3.20) becomes

E~2) = L <jOIUlko><koIUljo>/(8- Er)
kO ~ 1'0

(3.22)

Now, introducing the fact that we are dealing with two noninteracting
subsystems [through Eqs. (3.18) and (3.19)] and breaking the sum over
ko joto three sums corresponding to the partitioning of Iko> given in Eq.
(3.19), we obtain

Ef:2) - L l<j~j~IU" + Ublk~j~>12 + L l<j~j~IU" + Ublj~k~>12
j - o 8-EI?-E~ o 8-E jO-E~ka Jb a kb a b

" l<j~j~IU" + ublk~kg>12+ L., O O
ko ko 8 - Ek - Et.a' b a v

Using the orthonormality of the spin-orbitals and the fact that the systems
are noninteracting permits the simplificationof the above matrix elements.
For example,

<j~jglu" + Ublk~jg>= (j~lu"lk~>,

Thus, we finallyobtain

(3.23)

(j~jglu" + ublk~kg> = O (3.24)

E1.2' = L l<j~I[f"lk~>12 + L l<jglublk~>12
J ol-EI?-E~ 08-E jO-E~ka Jb a kb a b

(3.25)

Notice that this total second-order energy is not, in general, a sum of the
second-order energies ofthe two separate:d species because ofthe appearance
of the EJ" and EJ" terms in the denominators. We therefore say that the
general (Le., with arbitrary 8) perturbation theory energy is not size con-
sistent (PopIe et al., 1977). However, if I is chosen, as in RSPT, equal to
I = EJ = EJ"+ EJ", then we indeed obtain a perfectly size-consistent
result :

F},.2)= E1.2) + F},2) (3 26)J Ja l" .

It is elear that the first-order energy expression <jOIUljo> is algo size con-
sistent. Because this size consistency property is important, especially if we
are interested in using perturbation methods to study molecular fragmenta-
tion, the use of RSPT must be favored over BWPT (8 = Ej) or aDY other
perturbation theory derived erom alternative choices of 8.

Even if we now decided to use only RSPT to compute Ij> and El' another
potential difficulty arises when we consider the third- (and higher-) order
energies

E}3) = <jOIUQ(EJ - HO)-tUQ(EJ - HO)-tU/jo>

- E}1)<jOluQ(EJ- HO)-2Ull> (3.27)
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BecauseE}l) is an extensive property (Le.,size consistent), we should expect
possible size inconsistency from the last term in E}3) if the (second-order)
factor in front of E?) is algo extensive; Ef) wou'd then contain terms that
are proportional to the square of the system's size (for identica' noninter-
acting subsystems). Let us now 'Dok at this situation moce close'y. By intro-
ducing the spectra' representation of the projector Q given in Eq. (3.21),
Ef) caD be written as

(3) - <jOIUlko><kolulto></olul/>
Ej - L (EO EO)(EO EO)kO,/O j - k j - I

- <jOlujjo> L <jOlul:o><k:I~ljo> (3.28)
kO (Ej - Ek)

It is now important to demonstrate that the ko = 1° terms appearing in the
fiest sum above exactly cancel the size-inconsistent terms in the second factor.
This cancellation caD be brought about by combining these terms as

11= L l<j:lulk01r[<koIulko>.: <jOlujjo>]
kO (Ej - Ek)

Now, if we consider 11for the specjal case of twa noninteracting subsys-
tems (analogous to what was clone above for Ef). we see that the terms
<koI Ulko> - <jOlUljo> decompose, under partitioning of ko [as in Eq. (3.19)].

i~ ~~.)c
(j~k~IUa + Ubjj~k~> - (j~j~lubjj~jg> = <kglubikg> - <jglubjjg> (3.30))

(3.29)

(notice that reference to system a bas disappeared herc) and
~V'"

<k~j2IUa+ Ublk~j~>- <j~j2IUalj~j2>= <k~IUalk~>- <j~IUajj~>.(3.31)

. (reference to system b bas disappeared herc).
The states {Ik~k~>} give no contributions because the fiest factor in Eq.

(3.29) <jOIUlko>becomes identically zero for these states. This then permits
11to be written as a sum of terms referring totally to system a:

11 = ~ l<j~IUalk~>12[<kOIu Iko>
- <l,oIU 11

'°
>]

a 'rf (El! - EO )
2 a a a a a a

ka Ja ka
(3.32)

and an ana'ogous expression for I1b'Hence 11is size c6nsistent even though
each of the twa terms arising in it Egee Eq. (3.29)] are not. When ko f=l°
the fiest term in Eq. (3.28) may algo be shown to be size consistent and E}3)
therefore is size consistent. RSPT energies are in general size consistent
even though substantial regrouping of terms as in Ef) may be necessary
before it caD be realized.
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If one wishes to use RSPT to perform ab initio quantum-chemical caIcu-
lations that yield size-consistent energies, then care musJ be taken in com-
puting the factors that contribute to any given E}").For example, if E}3)wece
caIculated as in Eq. (3.28), limitations of numerical precision might not give
rise to the exact cancelIation of size-inconsistent terms, which we know
should occur. This would certainly be the case for an extended system (for
which the size-inconsistent terms would dominate). In addition, it is unpleas-
ant to have a formalism in which such improper terms arise in the fiest place.
It is therefore natural to attempt to develop approaches to implementing
RSPT in which the size-inconsistent ractors are never even computed. Such
an approach bas been developed and is commonly referred to as many-body
perturbation theory (MBPT). The method of implementing MBPT is dis-
cussed ance we have completed the present treatment of RSPT.

D. M0LLER-PLESSET PERTURBATlONTHEORY
FOR ENERGY

A very common choice of the potential V used to define Ho as in Eq. (3.13)
is the HF potential

V = I I (kJLIIIJL)k+ I
k.I/H;,J'"

(3.33)

where the sum over JLruns over those spin-orbitals that are occupied in the
specific zeroth-order state (the Stater determinant IjO»whose perturbation
we are examining. The unperturbed Hamiltonian Ho is then given in terms
or the HF orbital energies as

HO = I6kek
k

With the above choice of Ho naw marle, the perturbation U becomes

(3.34)

. l
U = 4 I (ijllkl)i+j+Ik- I I (kJLII/JL)eIIjkl k.1 /lejo

(3.35)

These choices or Ho and U, when used in RSPT, give rise to what is commonly
called (PopIe et al., 1977) M~lIer-Plesset perturbation theory (MPPT) and
the expression for E}l) reduces to the familiar form

1
E~l)= -- I (JLVIIJLv)

J 2/l._ejo
(3.36)

The RSPT expression for E}2)can algo be expressed in terms of orbital
energies and two-electron integrals. The kets IkO)appearing in Eq. (3.22)for
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E~2)refer to kets that are singly, doubly, etc. excited relative to the reference
ket IjO). Because of the BT, <jOlUlkO) vanishes when IkO) is a singly excited
ket. Kets IkO) that are triply excited and higher algo give no contribution to
(jol UlkO).Hence, Ej2)as given in Eq. (3.22)would contain only contributions
from the doubly excited kets,

(j°IUr+s+pal/) = <aPllrs) (3.37)

and therefore

E~2) = - L l<aPllrs)12
,,<per+es-e -er<s "p

(3.38)

To obtain more insight joto the structure of the size-consistent and -in-
consistent terms, we derive an explicit expression for the quantity A appearing
in Eq. (3.29) within MPPT. Realizing that anty the doubly excited deter-
minants IkO) contribute in Eq. (3.29) because of the BT, we obtain

A = L l<iXPllmn)122[<:;IUI:;) - <jOIUljO)] (3.39)
",<n(e"+ep-e,,,-en) r

"<P

where

I:;)==m+n+pa\jO) (3.40)

The expectation value dilTerence contained in the square brackets caD be
expressed in terms of elementary two-electron integrais and, since U =
W - V, HF potential matrix elementsas

L [<mylimy)+ <nyll"}')- <a}'II!!}')- <PyliP}')] + <m"IIII1I1)- <afJllaP)
rejO

r#".P

- <mlVlm) - <nlVl") + <iXlVla)+ <PIVIP) (3.41)

By then introducing the explicit form of V given in Eq. (3.33) this expression
canbe reduced to

<mnllm,,) + <aPI laP) - (1 + p ",n)(l + P"p)<mall"p) (3.42)

where P",nmeans interchanging the indices 111and ". Upon inserting this joto
Eq. (3.39) one obtains

l<aPllnm)12
A = "'~n (B"+ Bp - B", - Enf [<nlllll",n) + <aPIlaP)

,,<P

- (I + P",n)(l + P"p)<n~iXlI"p)] (3.43)
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The expression for /).given in Eq. (3.39) may be written as a product of two
independent disjoint sums since part of the fiest term <:a;IUI:;)and the
whole second term (j°IUljO) in the square bracket consists of a sum that is
independent of the sum m < n and O(< {J.Equation (3.39) thus contains a
product of two disjoint terms. When the terms in the square brackets are
collected together in a ditTerent manner, Eq. (3.39) reduces to Eq. (3.43),
which cannot be divided up into disjoint sums. The expression for /). given
in Eq. (3.43) is thus linked. Il is the linked nature of the size-consistent terms

that is used in MBPT to assure that size-consistent terms alone wiUappear
in the maur-body perturbation expressions for the electronic energy and
other stale properties.

E. THE PERTURBEDWAVEFUNCTION

Having now carried out som e detailed analysis of the RSPT expression
for Ej' let us tum to the perturbative corrections to the wavefunction Ij).
The fiest-order RSPT wavefunction is, according to Eq. (3.9),

If1) = (EJ - HO)-lQ(EJ - Ej + U)ljO)

which, because QljO) = O,reduces to

(3.44)

Ipl) = (EJ - HO)-lQUjjO)

By inserting the spectral representation of Q [Eq. (3.21)],we obtain

(3.45)

Ipl) = L <koIUljO)
k°#-]""El! - Eo IkO)

J k
(3.46)

As we did above for the energy, it is instructive to analyze 1/1) when it
pertains to two noninteracting subsystems (a and b). For this special case,
the sum in Eq. (3.46) separates into terms pertaining to each of the isolated
systems:

I.(ll ) = - '\' <k~IUalj~) Iko ,O) - '\' <kglubljg)
' ,okO)l ~ Eo - El! alb ~ EO - El! la bka ka Ja k. /t. J.

(3.47)

Thus, we see that, through fiest order, the wavefunction jj) contains only
terms of the form Ij~jg), U~kg), and Ik~jg); terms such as Ik~kg) are not
present. One might have expected that, for two noninteracting subsystems,
the total wavefunction should be a (antisymmetric) product of the wave-
functions for each subsystem and that term s like Ik~kg)would, thus, be
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presenl. The RSPT fiest-order wavefunction certainly does not possess ibis
product-separable property.

Il is naturai to ask how the RSPT caD have the physically consistent
property that its energy is extensive whereas its wavefunction does not reduce
to a product form for noninteracting systems. The answer bas to do with the
manuel in which the total energy Ej is computed in perturbation theory:

Ej = </IHIj) (3.48)

In contrast, the total energy is obtained, in variational approaches, by eval-
uating the expectation value

Ej = (jIHjj)/(jjj) (3.49)

Because ofthe structure ofthe matrix element appearing in Eq. (3.48) it is not
possible for terms such as Ik~kg) to contribute directly to the RSPT expres-
sions for Ej even though these factors ale certainly contained in the exact
wavefunction jj) (they will occur as higher order RSPT wavefunction cor-
rections). That is,

<j~jgIHlk~kg) ==<j~jgIH~ + Hg + Ua+ ublk~kg) = O
!

(350)

In a sense then, the first-order RSPT wavefunction contains faults (absence or
Ik~kg») that do not adversely affect its ability to yield, through

E]2) = </IUI/1) (3.51)

a size-consistent second-order energy. The same form of the wavefunction
(jj) ~ IjO) + 1i1)) when used in the expectation value [Eq. (3.49)] would
not yielda size-consistentresult; one would have to add on the Ik~kg>terl11s
to generale size consistency in the expectation value. This implies that in a CI

or MCSCF ca\culation one musi use thesei'disjoint excitations Ik~kg)(e.g..
1(1~(T~)for Iwo H2molecules) in order to guarantee that the expectation value
formula for the energy is size consistenl. This necessity that one include, in a
CI study of a composite system, excitation levels (in Siatce determinants) that
are higher than those included for the individual constituent fragments is a
problem or the CI and MCSCF methods.

F. M0LLER-PLESSET WAVEFUNCTION

Ifthe unperturbed Hamiltonian Ho is taken to be the HF Hamiltonian, the
fiest-order M PPT wavefunction [Eq. (3.46)] caD be expressed in term s or the
doubly excited kets r+s+fJIXjjO)(again BT makes the contributions due to
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singly excited kets vanish):

IP» = L K~j,r+s+paljO)
a.<{J
r<.

(3.52)

where

K~j, = - (rsllaP)Br+B.-B _ Ba. (J
(3.53)

The explicit expression for the second-order wavefunction for this (HF) Ho
case contains singly, doubly, triply, and quadruply excited kets

IP» = L K~r+aljO)+ L K~j,r+s+paljO)
~a. a.<{J

r<.

+ L K~pyr+s+t+yPaljO)+ L K~p;6r+s+t+u+bypajjO)
a.<{J<y a.<{J<y<6
r<'<1 r<.<I<u

(3.54)

where, for example,

K~= ~
(
L (ryllmn)(mnllya) + L (pyllam)(mrllyp)

)2 mn(Ba.- Br)(By+ Ba.- Bn- Bm) m (Ba.- Br)(By+ B{J- Br - Bm)
y y{J .

(3.55)

G. MANY-BODYPERTURBATlONTHEORY

Having now completed our treatment ofRSPT, lei us return to the problem
of finding a mechanism for explicitly computing, in aDYgiven order, only
those term s in E}n'or Ij(n,) that are size consistent. Recall that RSPT, as
normally expressed, contains size-inconsistent terms that cancel when
grouped together properly, but that nevertheless appear in the forma I RSPT
expression. Recall algo that the size-inconsistent terms could be charactecized
by a factorization joto products of iwo oc moce terms that did not share
common summation indiees. In MBPT, the format cancellation of size-
inconsistent terms in RSPT is carried out explicitly (Brueckner, 1955a,b;
Bartlett and Silver, 1975; Kelly, 1969; Lowdin, 1968; Brandow, t977). For-
mally, we may thus write Ef' as

E}3>(RSPT)= (jOIUQ(EJ - HO)-l U(EJ - HO)-lQUjjO)

- E}l>(jOIUQ(EJ- HO)-2UljO)
==(j°IU(EJ - HO)-l U(EJ - HO)-1 UjjO)L = E<l'(MBPT) (3.56)
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or E)"I in general, using Eq. (3.11),as

E)"I = (jolU {(EJ - HO)-lQU}"jjO)L (3.57)

The subscript L indicates that only the size-consistent terms in that expres-
sion are included. The term involving E)l) in Eq. (3.56) give rise to purety
size-inconsistent terms. In MBPT, the size-consistent terms are said to be
linked, white the size-inconsistent terms are referred to as unlinked. If aH
of the unlinked terms wece trivial to identify, such as the second term in
E)31(RSPT), one could merely exclude them. However, as we demonstrated
earlier, there are algo unlinked contributions in the first term in Ef'(RSPT)
that cancel those in the second term and that are not easily identified. Il is
the strength of MBPT that it allows us directly to identify aH the linked
terms of RSPT. The derivation that shows how to identify the size-consistent
or linked terms is rather tedious and is described in detait in maDYtextbooks
(March et al., 1967; Raimes, 1972; Linderberg and Ohm, 1973). We do not
carry out that derivation but simply familiarize the reader with the language

of MBPT and report the results of}he derivation. The implementation or
the MBPT method for evaluating only the linked contributions to E)"I is
commonly given in term s of a set of diagrams, the numerical values of which
are the desired size-consistent components. We use the so-called Hugenholtz
diagram rules to determine the number of diagrams, which enter in a given
order (n) in the perturbation. In Table I, we report the rules for constructing
these diagrams and in Fig. 3.1, the Hugenholtz energy diagrams that enter
up through second order are displayed. The translation of the Hugenholtz
diagrams joto algebraic expressions is commonly performed by translating
the Hugenholtz diagram joto one of its equivalent Brandow diagrams
(Brandow, 1977).The algebraic expression for the Hugenholtz diagram is then
obtained by applying the rules given in Table II to the Brandow diagram.

Table I

RuJes for Constructing Ali Hugenholtz Diagrams for a Given Order /I

I. Representeachof the two-e\ectroninteractions (W) with a dol havingIwo incomingand
Iwo outgoing lines (e.g..X) and each of the one-e\ectron terms (- VI with a solid lilIe
having one end point at which one line is entering and one leaving (e.g.,}--.) (H = 110+
W- V).

2. To a given order /I in the perturbation, write BIlpossibJe ways (on a time axis) of drawing
", (m = O, I.. . . . /I)dots and /I - m solid lines with one endpoint.'

3. Connect the lines entering and leaving a dol and a solid line with one endpoint in BIl
possibJe different ways such that the resulting diagrams Bre linked. A linked diagram call!1ot
be pulled apart joto twoseparate diagrams without cutting lines. An example ofan unJinked
diagram is given in Fig. 3.3A.
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FIG. 3.1. First- and second-order

Hugenholtz and Brandow energy diagrams.
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A Hugenholtz diagram is translated joto one of its equivalent Brandow
diagrams when the dots (which represent the two-electron interaction) are
extended joto dashed lines, where one arrow is entering and one leaving at
both end points of the dashed line, e.g., .t. - "'--{. The Hugenholtz
diagram in Fig. 3.2, may, for example, be translated joto one of the eight
Brandow diagrams given in Fig. 3.2. At fiest glance, these eight diagrams
look very different,but when applying the rules in Table II, their algebraic
expressions become identical. To ilIustrate this and to get some experience
in applying the rules in Table II, we evaluate Brandow diagrams A and E

80
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TableII

Rules for Evalualing 8randow Diagrams.

I. Label the diagram with general "hole" (IX,{I,}', . . .) (down arrow) and "particie" (111.II. p, . . .)

(up arrow) indices. A line thal starts and ends at the same interaction is labeled wilh a hole
index. An example ofthe labeling is given in Fig. 3.2A,E.

2. The numeralor of lhe diagram contains products of the one-eleclron inlegrals (if aBY)and
the antisymmetrized two-eleclron inlegrals. The indices of the one- and two-electron
integrals Bre assigned accordil1g to the fule

(ouII- Vlin)

(Ieft-oul, right-oulllleft-in, right-in)
Examples:

("I-VIIX)

("qIIIX{I)

PV-!x_--<~ - (pqIlIXr)

3. The denominator corresponding to a given diagram is obtained by taking a factor equal
to the sum of the hole orbital energies minus Ihe sum of the particie orbita' energies for
each horizontal cut the eye draws between successive pairs of eilher dotted or solid lines.
These II - I individual factorsare then multiplied to form the denominator.

4. Multiply the diagram by (l)", where /I is the number of "equivalent pairs" of lines. Two
lines form an equivalent pair if they both begin at the same interaction, both end at the
same interaction, and both go in the same direction (e.g., Fig. 3.1C has Iwo pairs. Fig. 3.3A
has one pair, and Fig. 3.2A-H has no pairs).

5. Multiply each numerator by (_I)'H, where " is the number of hole lines in the diagram
and l the num ber of closed loops. A closed loop is formed when one can trace from one
endpoint of an interaction along Ihe direction of an arrow and end up back at the same
point without ever having to cross an interaction (dashed) lilIe (Fig. 3.3A contains three
loops, Fig. 3.2C contains Iwo loops, and Fig. 3.28 has one tour).

6. Sum over all particie and hole states that occur in the diagram.

p~

pV-!x..9yp

Hugenholtz Brandow

~
po~~~~Dvl!tJ ~ o~-~

C DA B.
A

:e~~~~Dy 0~~:D Q() G<
E F G H

FIG. 3.2. Translation of a third-order Hugenholtz diagram into corresponding Brandow
dial\rams.



82 3 Perturbation Theory

in Fig. 3.2.We obtain, using the labeling of particie and hole lines given in
the figure

A = L (-1)3+3 <ocrllmp)<pmllmx)<nPIlPr)
{1.py (B{1.+ By - Bm - Bp)(Bp + 8 - B - B )
mnp y n p

(3.58)

Diagram A eontains three hole lines and three closed 100ps.Diagram E may,
in a similar way, be expressed as

E = L (-1)2+3 (ocrllmp)<pmllocn)<nPIIPr)
{1.{ly (B{1.+ By - Bm - Bp)(8p + 8 - B - B )
mnp y n p

(3.59)

since E eontains iwo closed loops. Interehanging OCand n in the seeond elee-
tronie interaetion in E gives a minus sigo and A and E thus become identical.

The reason for including only the linked diagrams in the expression for
E}n)is further clarified by examining the value of an unlinked diagram, e.g.,
the one given in Fig. 3.3A:

A = (-1)1 + 1 L(p!VIJL) (JL!Vlp)l< -1)2+2 L (ocPllocP)
/lP liP

(3.60)

Because, for iwo noninteracting subsystems, both of the disjoint sums o,:cur-
ring in Eq. (3.60)are size consistent (Le.,proportional to the size ofthe system),
the produet would not be size consistent. Hence, unlinked diagrams corre-
spond direetly to non-size-consistent factors, which should not be included.

If Ho is taken to be the HF Hamiltonian, so that V = VHFofEq. (3.33), then
certain simplifications occur. In particular, all diagrams containing the loop
structure o( eaneel with eorresponding diagram s having the potential
symbol ) o< in the same loeation except in fiestorder. For example, dia-
grams B and C ofFig. 3.3 caneel since the value of diagram C is

C=t(-I)2+2 L (mPllllp)(ocPllnp)(-(n!VHFlm»
{1.{l(8{1.+ Bp - Bp - 8,,)(811 + 8p - Bp - Bm)

m"p

(3.61)

which, because

(n!VHFlm) = L (nJLllmJL)
/l

(3.62)

~~~O
A B c

FIG. 3.3. Diagram A is unlinked and diagrams B and C demonstrate the cancellation
or the Fock potential.

E---o Q~~O
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is equal to (but opposite in sigo erom) diagram B:

B = H-1)3+3 L (mpllcxp>(l1jlllmjl>(cxPlll1fJ>
~(J"(6"+ 6p - 6p - 6")(6" + 6p - 6p - 6m)
m"p

(3.63)

Because of the cancellation of ~ and ~ that occurs in all orders beyond
fiest, we oecd only consider diagrams A, B, and C in Fig. 3.1 to determine the
energy consistent through second order when V = VHF'

The fiest-order diagrams shown in Fig. 3.1A,B combine as follows:

A + B = H_1)2+2 L (cxpllcxp>+ (_1)1 + I L(- )(CXIVUFlcx>
~ ~

= -t L(cxPllcxp>
~p

The second-order contribution may be written as

C = L(W( -1)2+2 (cxPllrs>(rsllcxp>
~(J 6" + 6p - 6r - 6s
r.

(3.64)

(3.65)

I

Both the first- and the second-order contributions are, of COllege,identica]
to the RSPT expression for E)1) and E)2) given in Eqs. (3.36) and (3.38),
respectively.

In the application of MBPT to certain physical problems, it bas been
noticed that special families of diagrams seem to make important contri-
butions to the energy in all orders. Attempts have been marle to identify
such diagrams and then to evaluate their energy contributions in a manner
that permits these terms to be algcbraically summed through all orders.
One example of such a family or diagrams is shown in Fig. 3.4. We can apply
the rules for Brandow diagrams given in Table II to each of these diagrams
to obtain

(A) = (l)2 L( -1)2+2 (cxPllrs>(rsllcxp>
~p 6" + 6p - 6 - 6
rs r s

(B) = (t)2 L(- W+4 (cxpllrs>(cxPllcxp>(rsllcxp>
~p (6~ + 6p - 6 - 6 )2

rs r s

(C) = (l)2 L( -1)2 +6 (CXPII"S>(CXPllcxp>2(rsllcxp>
"fi (6"+ 6p - 6 - 6 )

3

rs r ..

(3.66)

(3.67)

(3.68)

.o~~~~. 'OEJ} .a~:!n
A 8 c

FIG. 3.4. A sequence of diagrams Ihat can be summed lo infinile order.
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It should be elear that expression for higher-order diagrams analogous to
Fig. 3.4Abut with one or moceadditional interaction linesconnecting a and
p would involve higher powers of (aPI laP) (B,.+ Bp- Br - Bs)-I. Therefore,
the series represented by the sum of Fig. 3.4A-C is an easily summed geo-
metrie series of the form y + yx + yx2 + yx3 + . . . . The result of summing
this series is to yield

(t)2 L (aPI Irs) <rsl IIXP)(EII+ep -er- esf 1[1- (aPllap)(e,. +ep- Er- e.)-I]-1
liP
rs (3.69)

which caD be rearranged to read
1
4L <aPIIrs)<rsllaP)(e,.+ ep- er - es - (aPlllXp»-1,.p

(3.70)
rs

We see that the result of summing the elass of diagram s given in Fig. 3.4
is to generale an expression that is identical to the value of Fig. 3.4A except
for the "denominator shift" of - <aPIlaP).

In addition to expressing Ej in term s of diagrams, we may write the per-
turbation corrections to U) in this language. A rewfirst- and second-order
Brandow wavefunction diagrams are shown in Figs. 3.5. The rules for eval-
uating these diagrams are similar to those for the energy except in two ways.
First, in counting the num ber of hole lines to determine the sigo (- 1)h,
the external hole lines are not included. Second, each free external line
bas associated with it an excitation operator and an orbital energy term. For
example, the value of diagram D in Fig. 3.5 is

D = l( -1)1 +2L (pallap)(aPII}'a)
pa (e,. + ep - ep - e )(e - e )

p+}'IOO)

liPy a Y P

(3.71 )

As was the case for diagramcontributions toEJ,the factors )o and >- that
occur in equivalent locations, for example, in Figs. 3.5A,B, exactly cancel
when Vis VHF'The cancellation in Fig. 3.5A,B is the diagrammatic expression
of the BT; that is, the first-orl-;r wavefunction contains no singly excited
configurations. .

The kind of perturbation theories (RSPT and MBPT, in partieular) de-
scribed above have proven to be useful quantum-chemical tools. However,
these methods are expected to fail whenever the perturbation (the electronic

V_--D L V__V V~~~T)A B C D

FIG. 3.5. Ali first- (A-C) and one (D) second-order wavefunction diagrams.
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fluetuation potential if Ho is the HF Hamiltonian) is not smalI or if the
system under study is not welI deseribed in terms of a single Stater deter-
minant. This would be the ease, for example, when one or mate of the states
IkO) is energetically close to jjO) (Le., EJ - Er is smali). This arises often
when one breaks ehemieal bonds. Also, it is orten not possible to describe a
system in term s of a single determinant whose spin-orbital oeeupation is held
eonstant throughout a large position of nuclear eonfiguration srace [e.g.,
LiH(10-22u2)gives improper dissoeiation into jonie states at large RJ. For
these reasons, there bas becH reeent research activity aimed at developing
MBPT for a multieonfigurational referenee stale, but sueh tools are not yet
eommonly available. Thus although MBPT is indeed a size-eonsistent theory
in that it yields total energies proportional to the size of the system for a
eolleetion of noninteraeting subsystems, it stiIl may sulfer from the improper
dissoeiation problem common to most single-configuration-based theories.
Size eonsisteney and proper dissoeiation are dilferent eharacteristies. The
question of pro per dissoeiation bas to do with whether the wavefunetion
eontains eonfigurations that ean yield proper dissociation produets and
whether the method used to compute the amplitudes of these eonfigura,tions
(e.g., CI, MBPT, MCSCF) can be trusted to be aeeurate as dissociation
oeeurs. The MBPT may indeed contain the 10-220'30'eonfiguration needed
to dissociate UH, but the amplitude of ibis eonfigllration (whieh dominates
at large R) cannot be obtained erom an MBPT calculation based upalI using
the 10'220-2configuration as 10°) unless a very high correlation level is
eonsidered. Henee although MBPT would yield a size-eonsistent energy for
twa or mate noninteracting LiH moleeules (eaeh at their equilibrium band
lengths) it fails to deseribe even one LiH moleeule at large band lengths.

PROBLEMS

3.1 Using the orbital energies and two-eleetron integrals found in
Problem 2.1, carry out a RSPT ealculation of the first-order wavefunction
110'2)(1)and the seeond-order energy E(2) for the ease in whieh the zeroth-
order wavefunetion is taken to be the 10'2Stater determinant.

I. Show that the first-order wavefunetion is given by

110'2)(1) = -0.0442120'2)

2. Why does the 110'20') eonfiguration not enter iato the first-order
wavefllnetion?

3. Normalize the resultant wavefunetion that eontains zeroth- plus
first-order parts and eompare it to the wavefunetion obtained in the two-
configuration CI study of Problem 2.3.
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4. Show that the second-order RSPT correlation energy of HeH + is
given by -0.0056 a.u. How does this compare with the correlation energy
obtained eromthe two-configuration CI calculation?

5. Show that the second-order RSPT energy of a collection of n non-
interactingHeH+ ions reducesto n limes the correlationenergyof one
suchjon. .

3.2 Using MBPT, determine the third-order contribution to the correla-
tion energy for the HeH + .

1. Write all Hugenholtz dtagrams that contribute in third order when
the perturbation U = - V + W consists of the electronic repulsion Wand a
one-electron perturbation V.

In the following, assume now that V = VHF'
2. Which of the diagrams of question 1 cancel?
3. Write the algebraic expression for the diagrams in question 2 that

did not cancel.

The third-ordercontributionto the correlationenergyfor the HeH+ of
Problem 2.1 caD now be determined, using the HF orbital energies and the
one- and two-electron integrals in the HF basi s that is determined there.

4. Determine the third-order contribution to the correlation energy for
the HeH + system.

5. Compare the third-order contribution with the second-order con-
tributions determined in Problem 3.1 and the fulI CI correlation energy.

SOLUTlONS

3.1

1. jj(1» = - L (rsIlIXp) r+s+PIXljO)
«<P 6, + 6s - 6« - 6p
,<s

In our case IX= 1(10(,P = l(1p, r = 2(1IX,s = 2(1P:

11(12(1»= - (22\11) \2(12)= 0.1261 12(12)2(62- 61) 2[-0.2289 + 1.6562]

= -0.044212(12)

2. The BT gives (1(12IHI1(12(1)= O;hence the 11(12(1)configuration does
not enter joto the first-order wavefunction.

3. lO) ~ 11(12) - 0.044212(12). To normalize, we divide by
[1 + (0.0442)2]1/2= 1.0010:

lO) = 0.999011(12)- 0.0441\2(12)
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In the CI, we got

lo> ~ 0.998411(12> -0.055612(12>

4. E(2) = J(22111>12= - (0.1261f
2(B2- BI) 2[ -0.2289 + 1.6562]

= -0.0056 a.u.

From the two CI energy, compared to the SCF energy (l(12IHI1(12>.the
correlation energy is -4.2790 - (-4.2720) = -0.0070 a.u.

5. E(2)is generally given by

L: l(mplliXp>12
a<p Ba + Bp - B -
m<p m Bp

For Il noninteracting HeH + ions, the integrals (mplliXp> involving orbitais
on different ions vanish. Thus aU four orbitais in (mPlliXp>must be ón the
same jon. Hence

E(2) = L:

(
L: l(mplliXP>12

)A=I a<pBa+Bp-Bm-Bp
m<p onA

where A runs over the Il HeH + ions.
3.2

1. See Fig. 3.6, where the Hugenholtz diagrams are displayed.
2. Diagrams Dl-Xl cancel with diagrams D2-X2 such that Dl cancels

02, El cancels E2, etc.
3. The Hugenholtz diagrams in Fig. 3.6A-C are translated juto the

corresponding Brandow diagrams in Fig. 3.7A-C, respectively. Each ofthese
diagrams is then evaluated according to the rules to give

A = L:! (iXPII/I1l>(mnllpq>(pqlliXP>
78~+~-~-~~+~-~-~

B = L:! «xPIInm>(y«51liXP>(mlll ly«5>
apyIJ8 (Ba+ Bp- Bm- B.)(By + BIJ - Bm - Bn)
m.

c = L: (iXylImp> (Pml IniX>(llpl IP}'>
m.p(B"+ By- Bm- Bp)(Bp+ By- B - B)apy . p
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4. A = <1l122><22122>;22111>= 0.0012
4(&1- &2)

B = <1l122><1l11l>;22111> - 0.0019
4(&1- &2)

C = <11 122><22111>«1212l; - 2(12112» = -0.0042
2(&1- &2)

A + B + C = -0.001l

5. Secondorder, -0.0056; second+ third order, -0.0067; fuli CI
- 0.0072.
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