
Chapter 2 I Energy and Wavefunction
Optimization Methods

A. INTRODUCTlON

The total electronic energy of a system described by a stale l°) is given as

E = (OIHIO), (010)= 1 (2.1)

In approximations commonly used to describe the true stale function, l°)
may depend on variational parameters CI, C2' . . . , Cj, which may be expan-
sion coefficientsdeseribing either the linear combination of configurations
in l°) or the orbitals [Eq. (1.18)]appearing in these configurations.The total
energy forms an energy hypersurface in these parameters E(CI, C2, . . . , Ci)'
Wewishto determinestationary points or extremaofthe energyhypersurface
that, of course, occur when

OE(C1,C2,...,cNaci=0, i'= 1,2,...,j (2.2)

In ibis chapter, theproblem of making E( CI, C 2, . . . , Cj) stationary will be
treated for both linear and nonlinear parameters that arise in treating the
most common quantum-chemical energy expressions. The fiest derivatives
of the total energy determine the slol» at a given point of the energy hyper-
surface, wbite the second derivatives of the total energy

o2E(C1,C2,..., cNaCjOCj (2.3)

determine the curvature or the energy hypersurface and thus may be used
to characterize the stationary point as a local minimum, a saddle point, or
a local maximum. In attempting to find excited states of a given symmetry,
one most use care to guarantee that the procedure does not permit a collapse
to the lowest stale of that symmetry. Procedures soch as constraining the
class of wavefunctions given by {Cj} to be orthogonal to the ground stale
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or monitoring the dominant components (largest Cj) of each wavefunction
are commonly used to avoid ibis difficulty.

In the fiest optimization procedures we examine below, the parameters
Cj characterize a unitary transformation of the wavefunction within the
space ofboth orbital and configuration variations. To determine a stationary
point (SP) on the energy hypersurface in ibis case, we derive an iterative
scheme that is quadratically convergent both for ground and excited stalego
We use knowledge of the fiest and second derivatives of the total energy to
determine the iterative step lengths that we have to take to reacIi the SP. If
the energy hypersurface wece parabolic in all of the parameters considered,
we would reach the SP in one step. The iterative nature of the solution
originates erom the nonparabolic terms in the true energy hypersurface,
whose description we truncate after quadratic terms.

To be moce explicit about the kinds of variational parameters that com-
manty arise, we write the wavefunction l°) as a linear combination of the
orthonormai basis states {l4>g)}that may originate erom several electronic
configurations:

l°) = L l4>g)cgo
g

(2.4)

Each of the states l4>g)is formed erom a single electronic configuration and
is defined as

l4>g) = n r+lvac) (2.5)
rell

where the product nreg r+ refers to an ordered set of creation operators.
The coefficients CgOare the expansion coefficients for the considered stale
l°) within ibis configuration basis {14>,I)}. Variations of the spin-orbitals
{4>r}are commonly expressed in terms of variations in the linear expansion
coefficients deseribing the {4>r}within an atomie orbital basis. [Eq. (1.18)].

In a multiconfigurational self-consistent field (MCSCF) calculation (Dal-
. gaard and jergensen, 1978; Schaefer and Miller, 1977, Chapters 3 and 4),
: we consider both the configuration expansion coefficientsand the orbitais
~. as variational parameters. The optimization techniques required to determine

r an MCSCF wavefunction are discussed in Section B. In a configuration
~... ' interaction (CI) calculation, the coefficients ClIOare determined erom Eq. (2.2)
lt under the assumption that the orbitais are fixed. We discuss various ap-
~) proaches to the CI problem in moce detail in Section D. The Hartree-Fock
'. (HF) approximation assumes that the reference stale refers to a single

configuration but the orbitais (or creation operators) are allowed to vary
and are determined erom Eq. (2.2). Several techniques that have been pul
forth to generale optimal HF orbitais are considered in moce detail in
Section C.
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B. MULTICONFIGURATIONALSELF-CONSISTENTFIELD

l. Unitary Transformation of the Wavefunction

Let us now describe how one determines SPs on the energy hypersurface
when the wavefunction bas the form given in Eq. (2.4). We allow variations
to occur in both the orbitais and the configuration expansion coefficients.
In Eqs. (1.52) and (1.57) we have described how the orbital variations may
be carried out by performing a unitary transformation among the orbitais.
The variations in the expansion coefficients may be described in a similar
manner (Dalgaard, 1980). The expansion coefficients for the stale lO) form
one column of a unitary matrix in which the remaining columns are the
expansion coefficients for the orthogonal complement states within the
configuration space being considered:

In) = L l4>g)Cg/l
g

(2.6)

The states {lO),In)} and {l4>g)}thus are related through a unitary transfor-
mation matrix C. Variations in the expansion coefficients Cg/lmay be achieved
either by a direct variation of these linear parameters or alternatively in
terms of parameters S'm deseribing a unitary transformation among the
states {II)}. The operator

S = L S'mll)<ml
I,m

(2.7)

when applied on the set of states {Ik)} results in a general transformation
amon g the states {Ik)}. The operator exp(iS) therefore may be used to
describe a general unitary transformation among the states Ok)}.

This unitary transformation shows great resemblance. to the unitary
transformation exp(iA.)in Eq. (1.36). The operator S is hermitian and the
parameters SImform a hermitian matrix that determines the unitary trans-
formation to be performed. Since we consider oBly realorbitats here, it
becomes sufficient to use only the imaginary part of the variational param-
eters S'm,denoted iP'm[analogous to using oBly the iKr.part of A.in Eq. (1.54)],
and the S operator then takes the form

S = i L P'm(II)<ml-lm)<II)
I>m

(2.8)

Further, because our interest is in optimizing the totat energy for the stale
l°), we need only include the m = O parameter PlO in Eq. (2.8), which then
limits the operator S to be of the form

S = i L P/lo(ln)<OI-IO)<n!>
II~O

(2.9)
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where the elements PnOare real. The matrix P is a real antisymmetric matrix
that, in its lower triangle, has aU zero elements except for the elements PnO:

The nonlinear variational parameters P"o are one less in num ber than the
linear expansion coefficients Cgo' This is due to the fact that a normalization
condition has to be imposed on the linear expansion coefficients {Cgo} if
they are used as variational parameters, whereas variations described by the
parameters PnOautomaticaUypreserve the orthonormality ofthe stalego

Let us now carry out the above unitary transformation. We obtain by
expanding the exponential

exp(iS)lm) = [1 + iS + ;, (iS)2 + ;, (iS)3 +.. '}n).

The second term in the expansion may be written as

(2.11)

iSlm) = ii L Pno<ln)<ol-IO)<nl)lm)= - LI1)P'm'
n*O I

(2.12)

The last identity foUowsby the definition ofthe (sparse) P matrix in Eq. (2.10).
The third term in the expansion in Eq. (2.11) may be determined through
successive applications of Eq. (2.12) to be

+ liSiSlm) = -liS LI1)P'm = l Llp)PpIP'm
I p.1

(2.13)

Successive terms in the expansion of the exponential in Eq. (2.11) are deter-
mined in a similar manner. after which it becomes obvious that the terms
may be summed to give an exponential matrix

exp(iS)lm) = L 11)[exp(- P)]'n.'
I

(2.14)

~;

The actual evaluation of the exponential matrix in term s of the unitary
transformation that diagonalizes iP may be carried out in a manner analo-
gous to that described in Eq. (1.57) for exp(il).

Because of the especiaUy simple nature of the above P matrix, the unitary
transformation in Eq. (2.14) may be carried out analyticaUy. We obtain by
coUecting together the terms arising in the (l/n!)(is)nlm) factors as sine and
cosine components:

exp(iS)IO) =cosxIO) _! sinx L PnO\")x n
(2.15)

o -PlO -P20 ... -P nO
p O O ...

p =, 10
O O \ (2.10)

P20

O
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exp(iS)lm)=/m) + pmo! sinxIO)+--;'(cosx-l)P mOIln)Pno (2.16)
X X n

where

X2 ==L:P;o
n

(2.17)

A unitary transformation of the reference stale may naw be described as

l°) = exp(i;') exp(iS)\O) (2.18)

Using the technique of Eq. (1.40) to transform aU of the creation operators
appearing in l°) and in exp(iS) (Le., those in I'»), we caD write

l°) = exp(iS)IO) (2.19)

where S and l°) are defined as in Eqs. (2.9) and (2.4), respectively, with
creation operators ;:+ referring to the transformed set of orbitals. The unitary
transformation of the stale l°) caD thus be thought of as fiest carrying out a
unitary transformation among the orbitals in l°) and S and then performing
a unitary transformation in the configuration space [Eq. (2.19)]. This same
transformation caD be viewed in a somewhat different manner. One may
interpret it as fiest performing the configuration transformation involving
aU untransformed orbitals (or creation operators)

exp(iS)IO) = L: [exp( -p)]1O11>
I

(2.20)

as given by Eq. (2.14) and then transforming the orbitaIs in the functions
In) to give

exp(U)[ exp(iS)IO)] = L:[exp(- P)]1O11)
I

(2.21)

where

11) ==exp(i;')I') (2.22)

Of COllege,both of these interpretations of Eq. (2.18) amount to nothing
moce than twa ways of working at the same configuration and orbital
transformation.

An alternative description of a unitary transformation of the reference
stale involves using the exponentials in Eq. (2.18) in the opposite order. This
form implies that the reference stale may be rewritten as

l°) = exp(iS)IO) (2.23)

where the creation operators in l°) refer to the set of transformed orbitais,
while the creation operators in S correspond to the nontransformed set.
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The subsequent evaluation of exp(iS)IO) would be very difficult because it
would involve the computation of overlaps between states <111°)involving
both transformed and nontransformed orbitais. This would complicate tre-
mendously the determination of the transformed stale 1°); we therefore
consider in the following only the unitary transformation of the reference
stale given in Eq. (2.18).

2. Variation oCthe Total Energy

The total energy corresponding to the transformed reference stale is given
as

E(Jc,S) = <Olexp(- iS) exp( - iJc)Hexp(iJc) exp(iS)IO)

= <OIHIO)- i<OI[S+ Jc,H]IO) + l<OI[-S,[H,S]]IO)

+ l<OI[Jc,[H,J.]]IO)+ <OI[S,[H,Jc]]IO)+... (2.24)

By introducing a matrix notation in which the variational parameters /(r5
and PnOform row and column vectors, we caD rewrite Eq. (2.24) as

E(J.,S) = E(O,O)- 2(KP)(~) + (KP)(A- B)(;) +...
(2.25)

Q+ = {r+s}(r > s),

and defined the matrices
R+ = {I")<°l}

We have introduced in Eq. (2.25) the short-hand notation for the operators

(2.26)

(
AliA=
A21

(BilB=
B21

w = <OI[Q,H]IO)

V = <OI[R,H]\O)

A12) «
OI[Q,H,Q+]IO)<OI[[Q,H],R+,JIO» )Au = <OI[R,[U,Q+]]IO)<OI[R,H,R+]IO)

B12)=
«

OI[Q,U,Q]IO)<OI[[Q,Il],R]IO» )Bu <OI[R,[H,Q]IO)<OI[R,H,R]IO)

For convenience, we have introduced the double commutator, defined as

[Q,H,Q+] = l{[Q,[H,Q+]] + [[Q,H],Q+]}

which arises naturally in AlI, Au, Bil' and Bu because

<Ol[A, [H,J.]]IO) - <OI[[A,Il],Jc]IO) = <OI[[Jc,J.],H]IO) = O (2.32)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

, and an analogous result for S. The matrices W, V determine the first-order
. variations of the energy function, which at a SP on the energy hypersurface
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are zero. The condition that V and W are zero at a SP is often referred to as

the generalized BriIlouin theorem (GBT).
The matrix A - B defines the second-order variation of the energy func-

tion and is often referred to as the Hessian matrix. The double-commutator
form of the Hessian matrix allows these second-order terms to be expressed
as a quadratic form.

3. One-Step Second-Order Procedure

As stated previously, a SP on the energy hypersurface is obtained when
()E(A.,S) = O.Neglecting third- and higher-order terms in the energy function
[which rigorously no longer makes E(Jc,S) a true expectation value] we
obtain erom Eq. (2.25), by differentiating with respect to K and P,

-(~) + (A - B) (;)= O
(2.33)

or equivalently

(;) = (A - B)-I(~)
(2.34)

as the conditions for a SP. The matrices K and P may then be determined
erom Eq. (2.34) and a set of transformed orbitais and states obtained erom
Eqs. (1.52) and (2.14), respectively. If the energy hypersurface contained no
higher than quadratic term s, we would reach a SP in one iteration of the
above procedure. The third- and higher-order terms in the energy function
do, however, require that an iterative scheme be applied to determine a SP.
The iterative scheme may be described as follows: From an initial guess of
orbitais and a choice of the configuration space, we determine a set of ap-
proximate eigenstates I") (e.g., by performing a configuration interaction
calculation). The matrices V, W, A, and B are then determined and Eq. (2.34)
is solved to give the matrices Kand P. A transformed set of orbitais and
states may then be obtained erom Eqs. (1.52) and (2.14) and the procedure
repeated until the numerical values of Wand V are smaller than a specific
tolerance. The above described approach bas included all terms in the energy
function through second order and is therefore quadratically convergenl.
We therefore denote this scheme the one-step second-order approach (Yeager
and ]ergensen, 1979).

4. Two-Step Procedure

Another approach, which differs slightly in its realization of the iterative
procedure, bas algo been used and is referred to herc as the two-step second-
order scheme. Il may be described as follows: After an initial guess of orbitais,
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a configuration interaction calculation (see Section D) is carried out to~deter-
mine the starting set of CI eigenstates II). We then have

(mIHI1) =<E,(jm' (2.35)

and the V matrix

Vn= (OI[Rn, H]IO) = (01[1°)(111,H]IO) = O (2.36) I
becomes equal to zero. Equation (2.34)may then be partitioned (L6wdin,
1968)to give(using 822 = O)

K = [A" - B" - (AI2 - BI2)Ai}(A21 - B21)]-tw (2.37)

and the K matrix caD be determined erom this set of linear equations.
A transformed set of orbitaIs may now be obtained using this K in Eq.

(1.52) and a new CI calculation (diagonalization of (I\Hlm» carried out.
This process is then continued until convergence is reached. In the two-step
second-order procedure, Eq. (2.34) is thus always applied in a basi s where
the states are determined erom a CI calculation. The matrix P is never ex-
plicitly calculated. In contrast, in the one-step procedure the configuration
expansion coefficients of l°) and I") are determined erom the unitary trans-
formation given in Eq. (2.14), where P is obtained °from Eq. (2.34) rathcr
than erom a CI calculation.

The terms AI2 - BI2 coupling the configuration and orbital space vari-
ation have been neglected in maDYcalculations. In maDYcases, these terms
show liule effect on the convergence fale ofthe procedure. It should, however.
be pointed out that a quadratically convergent scheme is only obtained when
these coupling terms are included.

5. Explicit Hessianand GeneralizedBrillouin
Matrix Elements

Let us now consider the evaluation ofsome ofthe matrix elements appear-
ing above. In (he one-step procedure we have to calculate. .

(Admn = <Ol[Rm,lf, R,;JIO) = <lIIIHI") - ()",n<OIHIO) (2.38)

Vn= (OI[Rn, H]IO) = <IIIHIO) (2.39)

The elements A22 and V thus contain all matrix elements contained in a
configuration interaction calculation within the considered configuration
space. When the iterative MCSCF procedure has converged, nIl elements of
V are zero and the interactions between the reference stale l°)and the residual
states are thus eliminated. The diagonal and olT-diagonal matrix elements\ .
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of the Hamiltonian in {he residual space {In)} may, however, all be non-
vanishing.

In the iwo-step second-order approach, the CI calculation that is carried
out in each step prior to the evaluation of the matrices simplifies the evahia-
tion of V and A22' The V matrix becomes, as stated earlier, zero and the
A22 matrix

(A22)mn = (jmn(Em- Eo) (2.40)

becomes diagonal. These simplifications remain in each step of the iterative
process because a,CI calculation is performed in each iteration.

Except for A22 and V, the form of the matrix element in the one- and
iwo-step procedures are the same. The matrix elements of W, A11, and 811
may be derived erom Eqs. (2.41) and (2.42) by index substitution. Tl'1eexcita-
lian operators in these equations have singlet spin symmetry, since they
arise in the operator A, which musi preserve the symmetry of l°) in forming
exp(i,1)IO). These matrices can be expressed in terms of one- and two-electron
integrals and the one- and two-electron density matrices as given below.
Note that no more than two-electron density matrices appear in W, A11,
and 811:

(O\[t:Ua + tpup,H]\O) = L hu/Olt:PuIO) - L hpt(Olp:uuIO)
up up

- L (pqlrt)Pqpru + L (uqlrs)Plqsr (2.41)

pqr ar\6,{)~') q:s (\,.I~\1;»)eA(c
(OI[I:ka+lpkp,[H,t:ua+tpUp]]IO) o ,r ,,(J'

= hkl L (°11: uulO) + hu'L (Olt: kulO) - I5klL hup(OI/: PulO)
u u ~

- D,u L hpI(Olpu+kulO)- (j,uL (pqlrt)ppqkr - DklL (uqlrs)p'qsr .
pu pqr qrs

- L (pq\Lt)PpqUk- L (uklrs)Ptlsr + L (kplrt)p,pur
pq rs pr

+ L (kpi tr)pp'ur + L (uq\LS)PlqSk+ L (uqls/)pqtsk
pr qs qs

(2.42)

where (I 9 (

- '. ,) r.
Pijkl= L,(Oli:j:.k~.luIO)

U,(1
(2.43)

and a and a' run over the electron spin indices lXand {l.
The elements of A21and 821 reduce as follows:

(01[10)("1, [H, t:ua + 'p lip]] \0) = (ni [H, t:ua + tpup]IO) (2.44)
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and an explicit final formula for Eq. (2.44) may be obtained from Eq. (2.41)
by replacing the one- and two-electron density matrices with the correspond-
ing transition density matrix elements.

6. Mode Damping

The GBT matrix and the Hessian matrix arising in the one-step second-
order procedure determine the energy slope and curvature, respectively,
for a given point on the hypersurface. When a SP point bas been reached, the
eigenvalues of the Hessian matrix thus caDbe used to characterize ibis point.
We have reached a local minimum if all eigenvalues are positive. Mixed
positive and negative eigenvalues correspond to a saddle point on the energy
hypersurface. In employing the iwo-step procedure outlined above, one no
longer bas the opportunity to characterize the stale by its Hessian eigen-
values, because the full Hessian matrix is not employed and the partitioned
Hessian of Eq. (2.37) does not have the same eigenvalues as the full Hessian.

Som e insight joto the step lengths (K,P) that should be taken in second-
order procedures may be obtained by transforming the second-order equa-
tion to a form in which the Hessian matrix is diagonal. Let us consider initially
the diagonalization (by the unitary matrix U) of the full A - B matrix ap-
pearingin the one-step second-order equation

,I

~

J
A - B = UBU+ (2.45)

Equation (2.34) then becomes

(;) = e-t(~) (2.46)

where

(;) = u+(;)

(~) = U+(~)

(2.47)

(2.48)

,; Each normaI mode on the energyhypersurfaceis decoupledand hence may
be described independently. This is particularly useful in the initial iterations

. of an MCSCF calculation, where third- and higher-order term s may be
. important and even dominate as a result of the poor initial guess of the
orbitaIs. The second-order scheme may, in soch cases, be forced to take step
lengths (K,P) that are too large. The normaI mode analysis of Eq. (2.46),which

:displays the slopes ('W,V) and curvature (e) of each marle independently,
}hen becomes a convenient tool to use for changing the step length for those
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modes that tak e very large steps. This is dane by restricting the allowed size
of the K and P matrix elements. In ground-state calculations where the
Hessian matrix has to be positive definite, we may even change the direction
of the step (Le.,change the sigo arK) if smalI negative eigenvalues 8j appear.
This situation occurs frequently in the initial iterations ofactual calculations.
If the matrix elements that couple the orbital and coefficient optimization
(the A12 - B12 matrix) are very smalI, K then predominantly refers to the
orbital optimization while P refers to the coefficient optimization. In these
cases, it is reasonable to impose same ditTerent limits upon the size of the
maximum elements of the step length vectors Kand P. At present, there is
little experience on how to optimally make these restrictions although results
of initial calculations indicate that the basic philosophy is correct. When
strong coupling occurs between the configuration and the orbital space, z

more refined damping schemes may oecd to be introduced (Yeager et al.,
1980).

In the twa-step second-order procedure, damping may only be performed
in the space that is dominated by the orbital space. Froni applying the unitary
transformation to Eq. (2.37) we get

K = 8-1W (2.49)

where

A11 - Bil - (A12 - B12)Ai"l(A21 - B21) = U8U+

K = U+"

w= U+W

(2.50)

(2.51)

(2.52)

Because the reference stale lO) and its orthogonal complement states lit)
are determined from a CI calculation, it is not generally possible to impose
constraints on the step lengths in the configuration space. Further, the CI
steps are not necessarily tak en along the normal modes. In particular, when
strong coupling elements exist between the configuration and orbital spaces,
large fluctuations in the amplitude of the dominant configuration may be
encountered, which may lead to difficulties in converging to the stale under
consideration.

7. Elimination oCRedundant Operators

Having naw given a general discussion of quadratically convergent second-
order MCSCF methods together with same analysis ofhow such techniques
might best be implemented, we can move on to describe other MCSCF
methods, as well as to give more detail about the numerical requirements
of such calculations. Before do ing sa, however, it is important that we
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~~t'addressa technical point that must be understood if one is to be successful
t~, in carrying out such MCSCF calculations.

The unitary transformation or the reference stale given in Eq. (2.1 8) has

,~::'as generators the operators,. +8 of A and 1/1)<Ol of S. It is possible that the
,3 operators ,.+S and In) <Ol gran the same srace. That is, the effects of the
~foperators ,.+s may be expressed in terms or those of the stale projections in
~'. the configuration srace. To determine whether the effects of a given operator
lr+s can be expressedin termsof the kets UIII)},weexaminethe following

I" difference ket::'
,

: II)= "+511)- 2: Im) <ml,.1-811) (2.53)
& m

~Irthe norm oClI) vanishes, then II) itselfvanishes and hence ,,+sll) can be
~<J;'.exactlyrepresented as a sum ofthe {Im)} functions. The norm ofl/) vanishes
~.when .

(2.54)

"1;'" 2:1(1II1,,+sll)12= (1Is+""+511) (2.55)
m

~When bot'l the operators ,.+s and s+,. fulfilI Eq. (2.55), for aDYstale I') the
l~ariations described by the para.meters Arowill be denoted as r.edundant.
~".,.The search for redundant vanables may, of course, alternatlvely be per-
i;formed in the configuration srace {Iq,g)} since this srace is related to the
'~space {II)} through a unitary transformation. Because the states {/'+slq,g):

!f
,

:~
,

!are,norm~IiZ~d to unity, the search for redundant variabIes may be achieved
~:by tnveshgatmg whether the sum
'.~:.

2:1<q,g,I,,+slq,g)12
g'

(2.56)

~~.
~}~ equal to zero or one for any stale Iq,g)'"'."
1/' We now show how orbital changes caused by redundant variabIes can

1;00 represented as configuration changescaused by S and can thus be elimi-
~i1ated floro the energy optimization procedure. The redUlldant set of oper-
i.!tors form a hermitian operator
,,:~
,t

AU = 2: A:", + s
rs

(2.57)
'j

,~Jhe operator A', which contains all of the ,.+s that are not redUlldant algo
Uorms a hermitian operator
'\~~

A'= 2:A~".+S (2.58)
rs
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Since the operators in Eq. (2.57) ale generators of a subgroup of the unitary
group, exp(iA)may be factorized to give

exp(iA) = exp(iA')exp(iA") (2.59)

Equation (2.59) is thus a representation of an arbitrary group element ex-
pressed as a left coset of this subgroup. Expressed in other words, the unitary
transformation that is described by exp(iA) may alternatively be described
by the unitary transformation exp(i).') exp(i)."). It should bepointed out that
there exist no simple relations between the Ar. parameters and the A~.and
A~~ parameters. With the above factorization of the "redundant" part (A"),
the unitary transformation of the reference stale may be written as

lo> = exp(iA')exp(i).")exp(iS)IO>

Since II> in Eq. (2.53) is zero for aDYproduct of redundant operators,

exp(i).")jl> = IIp><plexp(iA'')jl> (2.60)
p

Using this relation together with Eq. (2.14) gives

lO> = exp(iA')exp(iA")I II) [exp( - P)]1O
I

= exp(iA') I Ip><plexp(i).")ll>[exp(- P)]1O
p,l

(2.61)

The matrix {<plexp(i).")ll >} is unitary since the scalar product of Eq. (2.60)
with <qlexp( - iA") gives

I <qlexp( - iA")lp><pl exp( + i).")ll> = Jal
p

Therefore, the product matrix

I <pl exp(i).")ll > . [exp( - P)]1OI
(2.62)

must consequently also be unitary. Because a single unitary transformation
ofthe form given in Eqs. (2.10) and (2.14) is sufficient for optimizing the to tal
energy, the redundant variabies may be left out when optimizing the energy.
That is, the )." factors caD do nothing moce, in a wavefunction optimization,
than caD be clone by the exp(iS) operator.

8. Practical Considerations

So far, no attention bas been given to the spatial and spin symmetry
features of the reference stale. The theory we have outlined thus far may
hence be described as unrestricted multiconfigurational HF. In most appli-
cations (Eyring et al., 1967),we require the referencestale to have a certain
symmetry (Le.,the referencestale should transform according to an irreduc-



B. Multicorifigurational Self-Consistent Field 3l

ible representation ofthe Hamiltonian's point group). For the wavefunction
symmetry to be conserved under a sequence of unitary transformations, the
operators A and S have to be tensor operators belonging to the totally sym-
metric irreducible representation. In this way, the symmetry of the wave-
function would be conserved during the iteration procedure.

Calculations of the matrix elements that are used to define the above

procedures requires knowledge of the one- and two-electron integrals in the
MCSCF spin-orbital basis. Therefore, a two-electron integral transformation
(Schaefer and Mi11er, 1977, Chart. 6) has to be performed in each step of
the iterative procedure. MCSCF approaches, in general, require such re-
peated two-electron integral transformations to be performed. Since these
transformations may, in maDYcases, be the computationally most demanding
step of the calculation, it becomes very important to use MCSCF procedures
that converge re1iably in a minimum num ber of iterations. We have chosen
to emphasize herc the one- and twa-step second-order procedures because
they are quadratically convergent and because they allowa controlled
(damped) "walk" to be performed on the energy hypersurface when cubic
and higher-order terms and/oT coupling between orbitaIs and configuration
optimizations are important.

9. Generalized Brillouin-Theorem-Based Procedures

So far we have used the condition that the energy function be stationary to
define MCSCF schemes. The existence of a stationary point on the energy
hypersurface requires that the GBT be fulfilled at this point. Hence, iterative
MCSCF procedures may alternatively be developed by insisting that the
GBT be satisfied as the iterative procedure converges. A quadratically con-
vergent scheme may be obtained by further insisting that the erraT in the
GBT matrix in the (II + 1)th iteration should be the square of tlte erraT in
tlte 11thiteration. Oenoting the operators and states in the (II+ I)th iteration
with a tilde and those of the ,,'th with no tilde, using Eqs. (2.18) and (1.38)
we obtain

Wn+1 = (OI[Q,H]IO) = (OI[Q,H]IO) + i(OI[Q, [H,A]]O)

+ i(OI[[Q, H], S]IO) + 0(/(2, p2)

Vn+1 = (OI[R,H]IO) = (OI[R,H]IO) + i(OI[R, [H, A]] l°)

+ i(OI[R,[H,S]]IO) + 0(/(2,p2)

(2.63)

(2.64)

since, for example,

(°l [Q, [H,A]]IO) - (OI[[Q,H],A]IO) = (OI[[Q, A],H]IO)

= K(OI[[Q,Q- Q+],H]IO)

= 0(/(2) (2.65)
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The lagi identity arises because the GBT is not fulfilled until convergence is
reached,and thus <OI[[Q,Q - Q+],H]IO) is of order K itself. The double
commutator may be introduced in Eq. (2.63), and Eqs. (2.63) and (2.64) may
then be combined to give

(~)n+l = (~)n - (A - B)n(;) + O(K2,P2)

where we have used Eqs. (2.27)-(2.30).A quadratically convergent scheme
is thus obtained when the K and P matrices aredetermined erom

(2.66)

(~)n = (A - B)n(;)
(2.67)

which is identical to the one-stepsecond-orderequation [Eq. (2.33)].Hence
the one-step second-order procedure described earlier caD aiso be viewed
as arising erom the GBT.

Most MCSCF procedures that have been employed to dale (Schaefer and
Miller, 1977, Chapters 3 and 4) have concentrated on deriving iterative
schemes based upon only insisting that

<OI[H,r+s]IO) = O (2.68)

in each step of the iterative procedure. Assuccessivesets of M CSCF orbitais
are determined in each step of the iterativeprocedure, the configurationspace
equivalent ofthe GBT <Ol[H, In)<OI]IO) = Ois achieved through performing
a CI calcu'ation within the limited configurationspace.

To see how Eq. (2.68) caD be used to define an iterative proces s, lei us con-
sider the first iwo terms in the expansion of exp(iA)IO):

l°)- L Kr.(r+s - s+r)IO)
f>'

(2.69)

This first-order approximation to the true exp(iA)IO)then leads us to consider
the variational wavefunction

1°)~ XoIO) + L Xr.(r+s - s+r)\O) (2.70)
f>'

containing the linear variational parameters X o and {Xr.}' The optima'
va'ues of these parameters may then be determined erom the superconfigura-
tion interaction (SCI) secular problem (Banerjee and Grein, 1976)

HX = ESX (2.71)

The SCI Hamiltonian matrix elements are defined as

Ho.r. = <OIH(r+s - s+r)IO) (2.72)
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which for realorbitais reduces to Eq. (2.68):

Ho.rs= (01[H".+5JI0) = Hrs.o

The other matrix elements of H are

(2.73)

Hoo = (OIHIO)

Hrs.lu = (01("+s - s+r)+H(t+u - u+ t)IO)

(2.74)

(2.75)

The scalar product matrix S is defined in a similar fashion (e.g., SO.rs=
(Ol,.+s - s+rIO) = O) and the eigenvector X bas the components X =
{Xo' Xrs}' The G BT therefore states that in the so-called SCt secular problem
[Eq. (2.71)], the stale l°) should be noninteracting with its single excitations
(,.+s - 5+")10). ODce this occurs, Eq. (2.71) will have, as one ofits eigenvalues,
the MCSCF energy (OIHIO). The other eigenvalues, as in all variational
secular problems, represent upper bounds to other true energy levels.

The eigenvector X obtained erom the SCI secular problem caD be used to
define a transformation of the orbitat appearing in lO). To see how this
transformation arises, we rewrite Eq. (2.70) as

lo) = Xb-N
[
X~+ L x~-IXrS<r+s - s+r)

J
L CgolePg)

r>s g
(2.76)

The elTectof Lr>s(r+s - s+,.)Xr.,on each configuration lePg)results in twa
new configurations in which spin orbital ePsis replaced by ePrand vice versa.
For example, the effect on 1+2+ . . . N+lvac) is to give

N'

[i~l r~i Xril+2+ "'(i-1)+r+(i+ 1)+ "'N+

- L.Xirl+2+""(i-l)+,.+(i+1)+ "'N+ ]lvac)
r<1

(2.77)

If the spin-orbitals occupied in aDYconfiguration lePg) are denoted by 1',.
then the above SCI wavefunction in Eq. (2~76)caD be expressed as

1

- I-N ~ n[ +,' + ~ +]I 2
O)=Xo L.,CgO Xot +L.,Xr," -L.,X'rr vac)+O(Xr.,) (2.78)

g lEg r>1 r<1

That is, the wavefunction used in the SCt calculation (Eq. (2.?0)) is identical.
through fiest order in the Xrs parameters, to a new linear combination of
configurationswith the same CgOcoefficientsbut with orbitais ifJ, that caDbe
expressed in terms of the original orbitais as

i
ifJ, = XOeP,+ L XrlePr - L X'rePr (2.79)

!:' r>1 r<1
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Because this orbital transformation is not properly unitary (the {cPk}are
normalizedand orthogonalantythroughfirstorderin the Xrs),the set {cPk}
must, in each iteration, be orthonormalized (by, for example, the Schmidt or
Lowdin procedure).

The SCf iterative procedure thus consists of guessing a starting set of
orbitalsand generating the {CI/o}expansion coefficients erom a CI calculation.
The SCI secular problem is then constructed and solved (to give X) after
which the neworbitaIs {cPdare computed as in Eq. (2.79) and subsequent1y
orthonormalized. These neworbitaIs are then used to perform a new CI
calculation to generale new {Cgo} coefficients and hence a new SCI secular
problem. This iterative procedure is continued until convergence is achieved
at which time the GBT is fulfilled. A significant drawback of most SCI
procedures as now implemented is that they do not treat the coupling between
orbital and configuration optimization. SCI methods that treat both optimi-
zations on equal footing represent a significant improvement. In situations
for which strong coupling exists between the orbital and configuration space,
the above-described twa-step SCI process might thus be expected to converge
slowly. As we mentioned above, the quadratically convergent one-step second
order procedure discussed in the preceding section could algo be viewed as
being defined, through Eq. (2.66), to make the GBT obeyed. It is then impor-
tant to explore how the twa iterative methods, both of which can be stated
through the GBT, dilfer. The dilference arises erom terms in

<Ol exp( - iS) exp( - iA)H exp(iA) exp(iS)IO)

that are quadratic in S or Aand that arise erom the second-order components
of the individual exponential operators. For example, <OIHiAiAIO)and
<OliSiSHIO) arise in the exponential formulation but do not arise in the
expectation value of the SCf wavefunction given in Eq. (2.69).The neglect of
second-order terms and the requisite reorthogonalization of the MCSCF
orbitaIs dilferentiate between the twa methods and render the SCf approach
not quadratically convergent.

Because SCf approaches to the MCSCF problem are not based upon
extremizing the fulI second-order energy expression described above, their
convergence fale is linear rather than quadratic, although in practice such
SCf methods may sometimes demonstrate approximate quadratic con-
vergence. Because the SCI energies result erom solutions of an eigenvalue
problem, each SCI energy is an upper bound to the respective true energies
(ground and excited). The values of X ijobtained erom the SCI secular problem
[Eq. (2.71)] when used to carry out orbital modifications [through Eq. (2.79)]
yield a new multiconfigurational wavefunction whose Hamiltonian expecta-
lian value is, because of the subsequent orthonormalization needed, no
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longer identical to the eigenvalue E that was obtained erom the SCI secular
problem.

In the unitary second-order method, the energy expression E(A,S) given in
Eq. (2.25), when truncated after terms linear and quadratic in A and S, is no
longer an expectation value of H and thus no longer bounds the ground-state-
total energy. Thus, the stationary points of E(A,S) do not form rigorous
upper bounds to the respective true ground- and excited-state energies. or
course, there are geod reasons to believe that, in the neighborhood of an
eigenstate, E(A,S) caD be wen approximated by this quadratic hypersurface.
Moreover, the values or P and K obtained erom making E(A.,S) stationary,
when used in Eqs. (1.52) and (2.14) to obtain 1°), do give a proper upper-
bound energy through <OIHIO).

Having new discussed how one caD go about optimizing the electronic
energy of an MCSCF waveCunction, we turn our attention to twe specjal
subelasses of ibis procedure; the single-configuration SCF problem and the
frozen-orbital CI problem. Because we choose to view these situations as
specjal cases of the above MCSCF problem, we obtain a specialized view or
SCF and CI theory. There already exist in the literature extensive and elear
treatments oCSCF and CI as they are moce commonly treated within the
linear variational framework. Hence we have not attempted to cover the moce
conventional aspects of these topics herc.

C. SINGLE-CONFIGURATlONSELF-CONSISTENT
FIELD METHODS

.
1. Quadratically Convergent Scheme

Le( us consider a situation in which we choose to wark with a one-coll-
figuration wavefunction for which the orbitaIs are allowed to vary. This
single configuration lO) may still consist or a linear combination or deter-
minants whose (fixed) coefficients are determined by the srace and spin
symmetry imposed on lO).The orbital variations may be described by exp(U)
and an optimal set of orbitaIs determined as in the previous section [by
simply neglecting terms involving exp(iS)]. The second-order Eq. (2.33) then
reads

w = (Ali - BIt)rc (2.80)

where A" and B" are defined in Eqs. (2.29)and (2.30).A quadratically
convergentschemeforoptimizingorbitaIsmay bedescribedas follows.Givell
an initial guess for the "occupied" orbitaIs, we use Eq. (2.80)to determine
K,and then we use Eq. (1.52)to generale a transformed set of orbitaIs. This

1:-.

~..
~:;
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process is repeated until convergence is reached. This process requires, even
in the one-configuration case, a partial two-electron integral transformation
in each step of the iterative procedure. For a sing1e-configuration case, a
more restricted two-electron integral transformation caD be used in each
step if, instead of the above quadratic procedure, one uses an approach that
is based on the Brillouin condition alone. These so-called first-order BT-
based self-consistent-field (SCF) procedures are, however, not quadratically
convergent, much as the SCI method treated earlier is only a linearly con-
vergent MCSCF method.

2. Brillouin-Theorem-BasedMethods

The HF or SCF approaches based opon the BT itself,

(OI[H,r+sJIO) = O (2.81)

introduce a decomposition of the Hamiltonian joto a Fock operator (which
the spin-orbital basis is chosen to diagonalize)

F = ~)hrs + v,s)r+s= L Brr+r (2.82)
r.s

where I1rsis the one-eIectron part of the Hamiltonian. A Fock potential

v = L v,sr+s
r,s

(2.83)

and the eIectron repulsion term W combine with F so that

H=F-V+W (2.84)

The one-eIectron Fock potential V is thus far arbitrary. Different choices
for V correspond to diITerent choices of the spin-orbitals {tPr} and their
corresponding orbital energies {Br},since we require the tPrand Brto obey

hrs + v,.s = (jrsBr (2.85)

The BT [Eq. (2.81)] caD now be used to determine V and hence to determine
the spin-orbitals tPr.By inserting the H ofEq. (2.84) joto Eq. (2.81) we obtain

0= (OI[r+s,HJIO) = (Bs- 8r)(0Ir+sI0) + L(~'<°lrsIO) - v,j(Olr+jIO»
j

+ L (sklljl)(Olr+e 1j10)+ (lklljr)(OII+ejsIO»
k./,j

(2.86)

where

(ijllkl) ==(ijlkl) - (ijllk) (2.87)
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Since the one-electron density matrix is diagonal for the single-configuration
case considered here, we have

<°11' + slO) = <>rs"s (2.88)

where I'. denotes the occupation num ber for orbital <1>.in l°). Because l°)
may consist of a linear combination or determinants, tlte "s are not neces-
sarily zero or unity. The Fock potential determined from Eq. (2.86) is then

v,.s(l'r- Vs)= L «sklljl)<ol,.+eljlo) + <lkljj,.)<oll+ejsIO»)(2.89)
"./.j

which is only defined from the Brillouin condition when Vr- "s is nonzero.
Notice that the symmetry of the Fock operator defined in Eq. (2.82) is deter-
mined by the symmetry of the above Fock potential. This in turo depends
uran the symmetry of the density matrices appearing in Eq. (2.89). As a
result, the Fock operator may not have the same symmetry as the fuli elec-
tronie Hamiltonian for specific choice of the reference stale l°).

Before discussing various possibilities for how to choose the part of the
Fock potential that is not determined from the BT, let us describe the itera-
tive procedure that can be used for obtaining a set of optimized orbitaIs
given aDYfinal choice for the form ofthe fuli Fock potentiaI. From an initial
guess of orbtials, we use Eq. (2.89) together with one of many choices or
the remainder of the V to determine a Fock potential. The Fock matrix
F = h + V (whieh is hermitian) is then diagomilized, and a new set or orbitais
is determined, whieh are then used to set up a new Fock potentiaI. This
(first-order) process is continued until convergence. The above HF iteration
process is nothing but a variant of the commonly used Roothaan SCF pro-
cedure (Roothaan, 1951, 1960).

3. Choices of the Nondefined Blocks of the
Fock Potential

The part ofthe Fock potential not defined through the Brillouin condition
is onen chosen on physical ground [e.g., to have the resultant orbital energies
represent ionization potentials and electron affinities (via Koopmans' theo-
rem)] (McWeeney and Sutcliffe, 1976).For a reference stale containing a set
of occupied spin-orbitals that we denote by (1.,(J,y, <>and a set of unoccupied
spin-orbitals denoted 11/,II,p, q, the Fock potential in Eq. (2.89) is defined by
the BT oBly between occupied and unoccupied orbitals. From Eq. (2.89) we
get

Vm<x= L <myllay) (2.90)
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One commonly used choice of the remaining blocks of V results in a Fock
potential that caD be expressed as

V = L <ryllsy)r+s (2.91)
y,r,s

where r and s run over all spin-orbitals. With ibis choice, the orbital energies
represent (through Koopmans' theorem) the ionization potentials and elec-
tron affinities of 1°). Of COllege,other choices of the nondetermined part of
V have been marle in the literature. For example, the (unoccupied-unoccu-
pied) part of the Fock potential (Vmn)bas been chosen to correspond to a
so-called vN-t potential (Kelly, 1964), thereby making the virtual orbitaIs
moce suitable for use in the calculation of excitation energies.

Calculations soch as the one discussed above do not involve imposed
symmetry restrictions on the reference wavefunction. Hence ibis approach
is referred to as the unrestricted Hartree-Fock (UHF) method. When sym-
metry restrictions are imposed opon the reference wavefunction the resulting
calculation is denoted a restricted Hartree-Fock (RHF) calculation. When
the simplest RHF type calculation is carried out for a cIosed-shell reference
stale (Le., one having doubly occupied orbitaIs), the nondefined part of the
Fock potential (the occupied-occupied) and (empty-empty) part is often
chosen to have the same form as the (occupied-empty) part defined from
the BT. We then would obtain for the entire Fock potential

V = 2)2<rylsy) - <rylys»)(r;s/I + rp sp)
y

r,s

(2.92)

where the indices r, s, and y refer to orbital indices and the subscripts IX,p
denote the electron spin ms componenl. The orbital energies er then corre-
spond to approximate ionization energies. For a state,that bas SOfie doubly
occupied and SOfie partially filled orbitaIs, the choice of the nondefined
blocks of the Fock potential is less obvious. The BT defines the blocks that
connect (occupied-partly occupied), (occupied-empty),and (parHy occupied-
empty) orbitaIs. The (occupied-occupied), (parHy occupied-parHy occupied),
and (empty-empty) blocks of the Fock potential are not defined through
the BT and maDYchoices have been suggested. One common feature or aDY
of these choices is that the sets of orbitaIs one obtains in a converged calcu-
talion using aDYarbitrary choice ofthe nondefined Fock matrix blocks would
represent the same SP on the energy hypersurface. The physical interpre-
tations of the orbital energies do, of course, depend on the actual choices
marle for these "diagonal blocks" ofV. For ibis reason, much work bas been
devoted to finding particular choices of diagonal blocks that are optimal for
particular physical situations. It is not Dur intention to provide a lengthy
discussion of the merits and weaknesses of numerous soch methods. Rather,
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we merely wish to stress that the undetermined blocks ofV represent a certain
freedom Ol'flexibility that can be exploited to generale orbitais whose orbital
energies have some approximate physical meaning.

4. Practical Considerations

Although it is not obvious erom Eq (2.89) that a two-electron integral
transformation is not required to set up the Fock potential matrix for a
general rererence stale, it becomes elear upon actually working Ollt the
matrix eIements for a particular case. For exampte, for either a spin-
unrestricted rererence stale Ol' a elosed-shell rererence stale, the Fock po-
tentials or Eqs. (2.91) and (2.92), respectively, Bre scen to involve oBly a
two-index transrormation [e.g., sum over y in Eq. (2.92)].

From the above discussion it should be elear that the first-order procedures
based upon using the BriItouin condition to define V suffer rrom some draw-
backs. They involve arbitrary choices or certain elements of V (this is related
to the invariance of lO) under certain orbitat rotations). They are not qlla-
dratically convergent and may thus suffer erom convergency difficlllties. On
the other band, the freedom in choosing elements of V (ineluding the diagonal
blocks) is useful when one wishes to cause the resultant orbital energies to
have certain physical interpretations (e.g., Koopmans' theorem or ionization
energies Ol' excitation energies). The exp(iA) approach to HF orbital opti-
mization is quadratically convergent but contains no orbital energies for
use in physical interpretation. Il avoids the problems related to arbitrary
choices by simply eIiminating rrom the orbital optimization operator srace
those operators ("+05- o5+~)that Bre redundant and that therefore have no
effect on the energy to be extremized.

D. CONFIGURATIONINTERACTIONMETHOD

l. Connection \VithSecond-Order MCSCF Theory

Next we consider the optimization or the total energy when orbital relax-
ation is not explicitly accounted for in the ca\culation. The optimization or
the total energy may then be carried out either in terms or the configuration
expansion coefficients CgOof Eq. (2.4) Ol' in terms of the parameters P of
Eq (2.9). Let us consider initially the optimization of the total energy when
the configuration expansion coefficients of Eq. (2.4) Bre used as linear vari-
ational parameters. The total energy then becomes

E(CIO'C2O"") = L Cg'OCgo<cPg,/HlcPg)!LICgoI2
g,g' g

(2.93)
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where we have assumed that the configuration basis states Icf>g)are ortho-
normaI. Because the energy function contains no higher than quadratic
terms in the CI/O'determination of stationary points of the energy function

bE(C1o,C20"") = O (2.94)

leads to a set of eigenvalue equations in the. configuration expansion coef-
ficients

HCo = ECo

where H is the matrix representative of the Hamiltonian

(2.95)

HI/g' = (cf>I/IHIcf>I/') (2.96)

and the eigenvector

CO={C1OC2O"'CI/O} (2.97)

determines the values of the set of parameters at the SP, where the value of
E is Eo. In fact, the same eigenvalue equation, Eq. (2.95), caD be used to
determine aIl extrema of the energy within a given configuration space be-
cause the energy function contains no moce than quadratic terms in C.
Equation (2.95) is referred to as the CI eigenvalue equation.

The optimization of the total energy might alternatively be expressed in
terms of the variation parameters P [in exp(iS)]. The energy function E(S)
would not be quadratic in these parameters P but would contain cubic,
quartic, etc. terms jn P. An explicit solution erom which to determine a SP
of the energy function when this unitary exp(iS) operator is used is very
difficult to establish; hence an iterative procedure is required to determine
SPs of the energy hypersurface. One iterative scheme that is. quadratically
convergent is obtained if the terms that refer to the orbital optimization
[exp(iA)] are neglected in the MCSCF derivation performed in Section B.
The second-order Eq. (2.33) then would read

v = A22P

where A22 is defined in Eq. (2.29) as

(2.98)

(A22)mn = (mIHln) - bmn(OIHIO)

Vn = (OI[Rn,H]IO) = (nIHIO)

(2.99)

(2.100)

and the indices 11,m are different erom O. The iterative procedure may be
described as foIlows. For an initial set of configurations (1°), In» the matrices
A22 and V caD be formed. The matrix P then is determined erom Eq. (2.98),
and Eq. (2.14) is used to obtain a transformed set of states [one caD use
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alternatively Eqs. (2.15) and (2.16)], and the whole process is repeated until
convergence is obtained. The stale l°) that would be determined in this
iterative procedure would, of COllege,be the same as that obtained by solving
the CI eigenvalue problem.

In the derivation ofSection B we considered the energy function to depend
on both orbital variation parameters and the configuration expansion coef-
ficients. By freezing the orbital variation parameters, we prohibit orbital
relaxation eITects erom being eonsidered explicitly. To obtain with a CI
calculation, which does not permit sueh orbital relaxation, the same quality
as in an MCSCF ca\culation would require the inclusion of many moce
configurations, whose purpose would be to compensate for the neglect of
explicit orbital relaxation. These additional funetions would include a large
number of singly excited eonfigurations, but same double, triple, etc. excited
configurations would algo be needed to fully compensate. If all eonfigurations
arising erom a given orbital basis wece included in a CI ealculation (fuli CI),
the need for considering orbital relaxation effeets explicitly would, of COllege,
not be present beeause all orbital variation parameters (..1.)would then be
redundant variabies. However, the num ber of configurations required to
perform a full CI ea\culation is usually prohibitively large even for systems
of modest size. Beeause CI expansions eonverge very slowly (as a function
of the dimension of the CI secular problem) and the requisite eomputer
time increases very rapidly as moce and moce configurations are included,
eITorts must be marle to optimize the convergence of a CI calculation by

facing twa major problems. First, we must make a reasonable ,choice of
orbitais to use in the ealculation, and seeond, the eonfigurations that are to
be included in the ealculation must be picked by same physically motivated
procedure.

2. Choice of Orbitais for Use in CI

The most commonly used set of spin-orbitals for setting up a CI matrix
eigenvalue problem is the set of orbitais obtained in a RHF calculation.
These orbitais form a particularly convenient set in the sense that they ful-
fili the BT (Le., there are no matrix elements eonnecting the HF ground
stale and singly excited configurations). However, these orbitais are not
especially well suited for use in the CI problem if one desires a reasonably
short CI expansion to give high precision. One major problem with the
HF orbitais comes erom the fact that the electrons in the virtual eanonical

HF orbitais "feel" an N-electron potential and not an N-l eleetron poten-
fial, as would be physically moce proper.

One partial solution to this problem is to use a set of orbitais obtained
in a MCSCF calculation for setting up a CI matrix problem whose dimension
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is much larger than that ofthe MCSCF calculation. The orbitais would then
be relaxed with respect to the configurations included in the MCSCF calcu-
lation. Since ibis MCSCF function normally would include the dominant
configurations, a very large fraction of the orbital relaxation etTects would
would thus explictly be accounted for in the following CI calculations.

Another set of orbitals that bas been used as a basis for CI calculations
is the so-called iterative natural orbitais (INO) (Bender and Davidson, 1967),
which are obtained in the following manner: From a limited num ber of
configurations (tbe same in all iterations) a reference stale l°) is determined
by the CI procedure. This reference stale is then used to set up the one-
electron density matrix <Olr+slO), which upaD diagonalization gives a set
of "natura l orbitais." These orbitais are then used for setting up a new CI
problem, a new reference stale l°) is then determined, and the procedure
is continued until a self-consistent set of natural orbitais is determined.
Clearly, the INOs are not identical to the MCSCF orbitais discussed earlier.
The farmer are obtained by diagonalizing the fiest-order density matrix,
whereas the MCSCF orbitais are determined by minimizing the electronic
energy~The use oflNOs in CI calculations is motivated by Lowdin's (Lowdin,
1955) analysis, which showed that soch orbitais result in the most compact
configuration expansion of lO) (Le.,the fewest configurations being required
to generale a wavefunction of a given overlap with the true wavefunction).

The choice of configurations to include in an INO calculation requires
particular attention. If the configuration list only includes configurations
that are doubly excited with respect to each other, aDYset of orbitais would
be naturai orbitais. To make the natural orbital concept useful, the list of
configurations bas to contain configurations that are singly excited with
respect to each other. For example, for the ground stale of the beryllium
atom, a natura l choice of configurations in an MCSCF calculation would
be 1522s2and Is22p2. In the INO calculation, the configuration list would
further have to inc\ude Is22.ms and ts22pllP, II= 3,4,5, . .. . These configu-
rations would then, to a certain degree, simulate the orbital optimization
parameters Kn.2.and Knp2pcontained in the MCSCF calculation.

3. Selection of Configurations

Let us naw move on to discuss same basic ideas (Schaefer and Miller,
1977,Chapter 6) behind selecting the number of configurations to be inc\uded
in the CI calculation. With a well-chosen set of orbitais, it is thought that a
very small fraction of al! possible configurations gives the most important
contributions to the total energy. Estimates of the importance of the indi-
vidual configurations may be obtained erom a perturbation theory analysis



D. ConfigurationInteractionMethod 43

of the CI secular problem [Eq. (2.95)]. An order analysis based upaD
Rayleigh-Schrodinger perturbation theory (RSPT) shows immediately the
order in which aDYparticular class of configurations enters into the wave-
function. For example, for a set of HF orbitais of a dosed-shell system, onIy
the doubly excited configurations contribute to the fiest-order wavefunction
(see Section 3.F). Estimation of the coefficients of the individual configura-
tions through perturbation theory may then be used to select the important
configurations by specifying a certain tolerance for the coefficient (or the
energy contribution) below which the configurations are not induded. For
cases in which several configurations are very important to the description
of the system, these configurations may be used to form a so-called reference
space whose coupling with other configurations caD then be estimated
through perturbation theory. Another approach is based on performing a
series of (11+ l)-dimensional CI calculations among the n-dimensional refer-
ence space and a sequence of configurations that are obtained as law-order
excitations out of these reference functions. The criterion for rejecting con-
figurations tested in ibis manner usually bas to do with the energy lowering
of one or moce of the 11reference-state energies caused by the "added con-
figuration" (Buenker and Peyerimholf, 1974).

4. Treating Large CI Matrices- Direct Methods

When aDYsuch preselection of configurations has been performed. one is
often faced with the problem that 10-300,000 configurations have to be
included in the final CI calculation. Conventional matrix diagonalization
routines such as the one used in the Householder algorithm, which modifies
the elements of the matrix as it proceeds, cannot be used to determine the
eigenvalues and eigenvectors of the CI matrix. For ibis reason, specialized
approaches have been developed (Schaefer and Miller, 1977, Chapters 7 and
8) to determine a few selected roots (usually the lowest) of sllch very large
CI matrices. One very important feature of these methods is that they do
not entail modification of the CI matrix wbiJe determining a particular root.
To darify ibis point, we describe twa such techniques, which are referred
to as the power method and the perturbation theory method. Althollgh
much moce efficient approaches have become available, we have chosen to
discuss these techniques because they stress, in a simple manner, the basic
principles underlying the direct determination of particular eigenstates. In
the power method one considers a sequence of operations ofthe Hamiltonian
matrix on aD, in principie, arbitrary initial guess of the stale vector Co:

{CO,HCO,H2CO,..., H"CO} (2.101)
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The information content of the converged vector lim"- 00H"Co caDbe under-
stood by expanding the vector CO in terms of the (unknown) exact eigen-
vectors Cj of the Hamiltonian matrix

HCj = EjCj

Co = L a"C", a" = <COIC">

(2.102)

(2.103)
"

By assuming that the eigenvalues of H are ordered such that

lEGI~ lEli ~ lEli ~... ~ O (2.104)

we obtain the formai result

H"Co = E~{aoCo + j~l aj(:~)" Cj}
(2.105)

which, because lE/Eol < 1, reduces for large n to

H"Co= aoE~Co (2.106)

Of course, to arrange the energy ordering assumed above, one might have
to subtract from all diagonal elements of H a constant that depends on the
largest positive diagonal Hu elemenl. This constant would then be added
back onto the resultant Eo value to obtain the true lowest desired eigenvalue.
Hence we see that, for large enough n, the vectors H"+lCO and H"Co should
be proportional, with their proportionality constant equal to Eo, and Co
should be the eigenvector of the Hamiltonian matrix having the largest
eigenvalue Eo. Notice from Eq. (2.106) that the norm of H"Co grows with
n; therefore, normalization of the eigenvector CO may be required during
the above iterative scheme. Eo and Co are obtaine,d without ever modifying
the elements of matrix H; only simple row-by-row multiplication of H with
a vector is involved. In fact, as we show below, one caD ev~n circumvent
the explicit reference to elements of H by using integral-driven matrix multi-
plication techniques. Such steps become advantageous when one must avoid
having to read through the integrals maDYlimes. The convergency fale of
the power method is governed by the rafio El/Eo and by the choice of Co.
An inappropriate choice of the initial stale vector CO may lead to slow
convergence (e.g., if ao vanishes, the power method, in principie, cannot
converge to Co). ODce one bas obtained the desired Eo and Co, the next
eigenvalue of H caD be found by employing H + IEoIICo><Col instead of H
in the next application of the power method. The lowest root of this

(H + IEoIICo><Col>

matrix should then be El'
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The rower method as outlined above is not very widely used in large-scale
CI calculations because it is not usually very rapidly convergent. In contrast.
variants of the perturbation method describedbe1ow do constitute viable
approaches to finding eigenvalues of large CI matrices. In the basic pertur-
bation method one introduces a decomposition of the fuli CI Hamiltonian
matrix

H = Ho + V (2.107)

In what follows, we make the simplest possible choice of Ho; we take it to
be the diagonal part of H. Another choice of Ho that bas been widely used.
(Davidson, 1975) involves tak ing Ho to be a certain smali subblock of H
(with H lek e1ementsfilling the remaining diagonal entries of Ho), which
involves the Hamiltonian matrix elements of the most dominant configura-
tions in the desired eigenvector. Given a choice ofHo, the CI secular problem
becomes

(HO- E)C = -VC (2.\08)

By iterating on this equation according to the prescription

Cln) = (E - Ho)-lvCln-1) (2.109)

one generates successively higher approximations to the desired C vector.
Corrections to the eigenvalue E are achieved at each iteration by premulti-
plying Eq. (2.108) on the left by the transpose of COto yield I

(EO - E)(CO)TC= _(CO)fVC (2.110)

Initial estimates CO and Eo must, of course, be marle consistent with the
choice of Ho. FOf the diagonal choice of Ho, COwould correspond lo a linii
vector CO= (1,0,0,. . ., O)and Eo to the diagonal element of H (Eo = 111d.
If HOwere taken to be a smali subblock of a very large H matrix, Eq. (2.108)
could still be solved perturbatively since the dimension ofthe matrix (Ho - E)

to be inverted would not be large. The iterative scheme contained in Eqs.
(2.109) and (2.110) generates successive1y higher-order corrections to Ihe
desired energy and eigenvector.

To demonstrate how such perturbative methods lead lo so-called direct
CI techniques, let us consider a simple application of Eqs. (2.109) and (2.1tO)
to a CI wavefunctionconsistingof a dominant HF configuration Iq,UF>plus
all pair excitations of the form Iq,~>=111;111;11/111~1q,IIF)'The elemellls or
the V matrix can be easily written in terms af two-e1ectron integrais

VUF.nr/l = (1l1l11ll1ll)

Vnr/l.n,'= c5nrn(vvlllJl) + c5,.,.(11I111I",,)

(2.111)

(2.1t 2)
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whereas

< cPHFIHolcPHF > = EHF (2.113)

and <cP~IHolcP~>is the Hamiltonian expectation value for the doubly excited
configuration IcP~>.The matrix produet vc<n-I)appearing in Eq. (2.109)can
be written as follows:

" V. c<n-l) = " < vvlkk >c <n-I)
L, HF.kv kv L, kv
kv kv

(2.114)

L Vm/l.kvC~~.-1) = L<vVIJ1lt>C~v-l) + L<mmlkk>C~~-l)
kv v k

(2.115)

Using these results in Eq. (2.109)we obtain an explicit formula for the elements
ofc<n):

c~~= L(E - EHF)-l<vvlkk>q~-l)
kv

(2.116)

c~~ =(E - <cP~IHolcP~»-l (~<vVIJ1J1>C~v-l)+ t <mmlkk>C~~-1)) (2.117)

By writing out the elements of V and Ho in terms of the integrals, we see that
the iterative scheme for the evaluation of C and E can be written entirely in
terms of sum s over integrals and c<n- I) and E values erom the preceding
iteration. This fact allows this perturbation scheme to be programmed on a
computer in an integral-driven manner. That is, as the two-electron integrals
<ij!kl> are brought into the core memory ofthe computer, all contributions
of each successive integral to all of the sums appearing in Eqs. (2.116) and
(2.117) can be evaluated, multiplied by appropriate factors, and added to the
appropriate expansion coefficients. In this way, the computer is required to
read through the (presumably long) list of two-electron integrals only ance
for each iteration. In this war, one avoids the explicit construction and storage
of the Hamiltonian matrix, which may be very large and much larger than
the num ber of two-electron integrais.

Techniques that permit the working numerical equations [e.g., Eqs. (2.116)
and (2.117)] to be expressed as sums over explicit two-electron integrals are
referred to as integral-driven direct CI methods. The perturbation solution
described above is only a simple example ofsuch methods. For moce general
classes of CI wavefunctions, the expressions for the V matrix elements are
moce involved. However, the basic structure and philosophy ofthe direct CI
techniques remain as outlined. These techniques have proven to be quite
useful in carrying out large-scale CI calculations, and such integral-driven
strategies have been used to efficiently implement the graphical unitary group
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approach (GUGA) for electronic structure calculations (Paldus and Boyle,
1980; Shavitt, 1978; Brooks and Schaefer, 1979).

5. Size Consistency

Thus far, we have concentrated on describing how the CI procedure is used
in practical applications and how it caD be viewed as relating to the MCSCF
method. Il is important to realize that even though difficulties having to do
with large CI matrices may be overcome, a serious problem remains inherent
in nearly all of the above methods. To understand the difficulty, consider how
one might perform a calculation of a potential-energy curve for the diatomic
Be2. Assume that a prior calculation on a single beryllium atom indicated
that the 2S2and 2p2 ts configuration should be included in order to describe
the electron correlation in beryl1ium. Then to describe the correlation in Be2
in a balanced manuel (Le., such as to yield a 2S2 + 2p2 level description of
both beryllium atoms uran dissociation), one musi include the 2si2s~,
2si2p~, 2pi2s~, and 2pi2p~ configurations, where A and B labet the twe
beryllium nudei. Hence, although a double-excitation CI or MCSCF could
be employed for Be, one needs to include (certain) quadruple excitation
(relative to 2si2si) for Be2. Clearly, for mOle complex molecular clusters
one would oecd to include even higher level excitations (e.g., eightfold for
Be4) to achieve a qualitatively balanced description of the complex and its
fragments. This is, of course, essential if one is trying to compute energy
changes (bond energies and energies of formation) for chemical reactions.
Then one musi use a method that yields the same value for the molecular
complex energy (e.g., Be2) when evaluated at large interfragment separation
as the sum of the fragment (e.g., twe beryllium atoms) energies evaluated
separately within the same method. Such methods ale said to be size con-
sistent (PopIe et al., 1977).The use of a restricted CI or MCSCF wavefunction
(e.g., doubly excited for Be2) could indeed yield a smooth potential-energy
curve free of obvious pathological behavior. However, such a wavefunction
would preferentially describe the electron correlation in the complex (Be2)
BeaTits equilibrium geometry and would dissociate to yield fragments that
ale described to a laweT correlation level (e.g., the 2si2sfi configuration
would dominate).

The size consistency problem may be less significant if an appropriate
configuration selection is performed at each geometry on the molecular
potential surface, but the problem still remains as to how to efficiently choose
configurations that describe equally well an entire potential energy surface.
Il may in fact be mOle straightforward to achieve this goal using an MCSCF
wavefunction, since the orbital optimization thereby induded caD make the
configuration expansion length short enough to be physically understood
and hence correctly chosen. As we discuss in mOle detail in Chapter 3, ibis
question relating to achieving a balancecl description of a molecule and its
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fragments is important and not easily addressed within a variational frame-
wark.

6. Discussion

Because the CI teehnique has been the most widety used approaeh to
treating electron eorrelation problems, maDYadvanees have been marle in
matrix storage techniques, two-electron integral transformations, the use of
unitary group tools, matrix eigenvalue and eigenvector determinations, and
configuration selection proeesses. Weby no means intend to treat these
advanees here; maDYor them are reviewed well in Chapters 6 -8 or Sehaerer
and Miller (1977).1t is essential that one realize that the monumental develop-
men t or exactly these same data management methods is what makes it
possible to implement not only effieient CI eomputer program s but algo
highly efficient MCSCF, HF, eoupled-cIuster, and Green's function routines.
To implement aDYofthe above quantum-chemieal methods in a state-of-the-
art manner, onemust make extensive use of maDYofthe advanees in numerieal
methods and data handling that the seientists who have been instrumental in
developing effieient CI program s have marle.

PROBLEMS

2.1 Using the one- and two-eIeetron integraIs given below, earry out an
SCF ealculation for the la2HeH + ground staLeusinga fiest-orderprocedure.

1. By expanding the moleeular orbitaIs {cPk}as linear eombinations or
atomie orbitaIs {X/l}'

cPk = L C/lkX/l

/l

and using the definition of the cIosed-shell Foek operator given in Eq. (2.92),
show that the Foek eigenvalue equation caD be written in terms of the atomie
orbital basi s as

Fc = SCt

where the overlap matrix is

S/lv=(lllv)

the eIements or the Foek matrix are

FIIv = (Illhlv)+ L Pp,,{2(llplva)- (Ilplav)} (A)
p"

h is the one-eIeetron operator in the Hamiltonian, and the charge band
order matrix P is defined as

Pp" = L C;kC"k
k
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2. Show that the HF Latal energy for a closed-shell system may be writ-
ten in terms of integrals over the orthonormal HF orbitaIs as

occ occ

E(SCF) = 2 L <4Jkl"l4Jk)+ L {2<kllkl)- <kl!ik)} + L (Z"Z,.jR",.)
k kI ">,,

(B)

3. Show that the HF latal energy may alternatively be expressed as
occ

E(SCF) = L {€k + <4Jkl'tl4Jk)} + L(Z"Z"IR'I\')
k ">,,

(C)

where the {f:d refer to the HF orbital energies.
To earry out an SCF ealculation on the ground stale of HeH + at R =

1.4 a.u., the following information is to be used. The orbital exponents of
the Is, Stater orbitals of the He and H are 1.6875 and 1.0, respeetively. The
atomie integrals required to earry out the HF ealculation are (in a.u.)

SlI = S22 = 1.0, S12= 0.5784

"11 = -2.6442, "22 = -1.7201, "12 = -1.5113, ("ij ==<illtlj),

(11111)=1.0547, <11121)=0.4744, \(12112)=0.5664,

<22111) = 0.2469, <22121) = 0.3504, <22122) = 0.6250

where 1 refers to ISlle and 2 to Isll' In this and the following problems we
ghalI employ the indiees 1 and 2 to tabel either the moleeular orbitals or the
atomie orbitals whenever do ing so is not eonfusing. We ghalI reserve the
notation 1/Tand 2/Tprimarily for deseribing the orbital oeeupancies arising
in the wavefunetion~. As an initial guess for the oeeupied moleeular' orbital
use 4Jt ~ lslle'

4. Form, with this initial guess of the oeeupied moleeular orbita\, a
2 x 2 Foek matrix, using Eq. (A) for F/l",

5. Solve the Foek matrix eigenvalue equations given above to obtain
the orbital energies and an improved oeeupied moleeular orbita\. In so
doing, note that the normalization eondition <4Jtl4Jt) = 1 = cTsCt gives
the needed normalization eondition for the expansion eoeffieients of the 4Jt
in the atomie orbital basis.

6. Oetermine the latal SCF energy using Eq. (C) at this step of the
iterative proeedure. When will this energy agree with that obtained by using
the alternative expression for E(SCF) given in Eq. (B)?

7. Use the 4Jl moleeular orbital erom question 5 to determine a new
Foek matrix.

8. Oetermine a new set of orbital energie s and an improved oecupied
molecular orbita\.
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9. Determine from Eq. (C) the SCF to tal energy at this step of the
'terative procedure.

The iterative process may be continued until convergence. As a conver-
~ence criterion, assume that the difference between the SCF to tal energy
n two successive iterations must be less than 10-6 a.u. Listed below are
.he HF total energies (in a.u.) obtained during the iterative procedure beyond
he two iterations performed above:

-2.842151, -2.843221, -2.843393,

- 2.843420, - 2.843425, - 2.843425

10. Show, by comparing the difference between the SCF total energy at
ne iteration and the converged SCF to tal energy, that the convergence of
he above SCF approach is linear or first order.

11. Is the SCF total energy listed above in each iteration of the SCF
rocedure an upper bound to the exact ground-state total energy?
The converged self-consistent set of molecular orbitais <Pland <P2is

<Pl= 0.9000Is". + 0.1584 ls", <P2= -0.8324 lsile + 1.2156 ls"

12. Show, using the one- and two-electron integrals in the molecular
rbital basis,

<llhll) = -2.6158,
<11111) = 0.9596,
<12121) = 0.1261,

<llhI2) = 0.1954,
<11121) = -0.1954,

<22121) = -0.0045,

<2IhI2)= -1.3154

<12112) = 0.6063,
(22122) = 0.6159

at the converged ~alues of the orbital energies are

el = -1.6562, e2 = - 0.2289

13. Does this SCF wavefunction give rise (at R --. 00) to proper dissocia-
on products?
2.2 Now carry out an SCF calculation for the same cIosed-shen HeH +

rstem using a second-order SCF procedure. Sofie of the integraIs used in
roblem 2.1 wilI be useful again here.
1. Show that the one- and two-electron density matrices decouple as
nows for a cIosed-shen reference staLe:

L <°l,.; SalO)= brs2v"
a L <Olr:s;ta,uaIO) = (4brub., - 2brAu)vrv.aa'

here Vris the occupation of orbital 4Jr'That is, if 4Jris an occupied orbital
= 1, and if 4Jris unoccupied Vr= O.
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2. Show that the AlI, B II' and W matrices of Eqs. (2.29), (2.30), and
(2.27), respectively, may be written for a closed-shell system as

(AII)n/l,m" = (°l[P: II" + p;"f',H,m:a" + ",;a/l]IO)

= 2[ -11"/I(jmn+ I1nm(5"/I+ {J"/I~ {2(lIylmy) - (lIylrm)}

- {Jmn L {2(aylpy)- (aylyp)}
r

+ 2(lIaIPm) - (na 1mIJ) J
(Bl1)n/l,m"= (Ol[p:n" + p;n/l,H,a:m" + a;m/l]IO)

= 2[ (mnl pa) - 2(111111aP)]

w"m = (Ol[a:m" + a;m/l,H]IO) = 2[hm"

+ ~ {2(mylay) - (mylya)} J
Again use as the initial guess of the occupied molecular orbital lsH..

3. Given this guess for 4Jl' determine the virtual or unoccupied moJecular
orbitaJ 4J2 using a Schmidt orthogonaJization procedure. The atomie
integrals required are given in Problem 2.1.

The second-order SCF procedure requires knowledge or the integraJs in
the basis of the set of initial orthonormal moiecuJar orbitaJs (4JI and 4J2

obtained above). The one- and two-electron integrais in this basis are given
below (in a.u.):

1111 = -2.6442,

(11111) = 1.0547,
(22111) = 0.0765,

h22= -1.2870,

(11121) = -0.1663,

(22121) = 0.0171,

1112= 0.0223

(12112) = 0.5567,
(22122) = 0.6200

where, as before, 1 denotes the occupied and 2 the unoccupied moiecuJar
orbita!.

4. Determine the SCF totaJ energy that corresponds to this initiaJ guess
of moJecuJar orbitais.

5. Determine the A II' B II' and W matrix elements.
6. Determine the rematrix and the unitary matrix X = e-"'.
7. Determine the new improved set of orthonomaJ moJecuJar orbitaJs

resuJting erom applying X to 4JI and 4J2'
The one- and two-electron integrals may naw be evaluated in the set of

improved molecular orbitaJs and the iterative procedure thus may be con-
tinued untiJ convergence is obtained. The HF to taJ energies obtained during
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the iterative procedure become

- 2.80504513, - 2.84303574, - 2.84342526, - 2.84342527

8. Show by comparing the difference between the SCF total energies at
successive iterations and the converged SCF total energy that the con-
vergence or the above SCF approach is quadratic or second order.

2.3 Given the one- and two-electron integrals in the SCF orbital basis
round in Problem 2.1, carry out a two-configuration CI calculation on HeH +

using the 1112and 2112 configurations.

l. First obtain expressions for the CI matrix elements H ij (i, j = 1112,2112)
in term s of one- and two-e1ectron integrals.

2. Show that the resultant CI matrix is (ignoring the nuclear repulsion
term)

(
-4.2720

0.1261
0.1261

)-2.0149

3. Obtain the iwo CI energies and eigenvectorsfor the above matrix.
4. Show that the lowest-energy CI wavefunction is equivalent to the

followingiwo-determinant (singleconfiguration) wavefunction:

HI(a1l2q,1 + b1/2q,2)a(al/2q,1 - b1/2q,2)PI

+ l(al/2q,1 - b1/2q,2)a(al/2q,1 + b1/2q,2)PI]

involving the polarized orbitais al/2q,1 :!:b1/2q,2' where a = 0.9984 and
b = 0.0556.

2.4 Using the same information as in Problem 2.3, carry out a three-
configuration CI calculation on HeH+ at R = 1.4 a.u. using the 1112,2112,
and 10-20-electronic configurations.

I. First express the proper singlet spin-coupled' 10-20-configuration as
a combination of Slater determinants.

2. Compute aU elements or the 3 x 3 CI matrix.
3. Obtain the eigenenergies and corresponding normalized eigenvectors

for this problem.
2.5 Use the perturbative method described in Section D.4 on the CI

matrix eigenvalue problem of Problem 2.4 to find the lowest eigenenergy and
its corresponding eigenvalues. Use as the initial guess for the eigenvector
Co = (1.0000,0.0,0.0)and take

(

- 4.2720 O O

)
Ho = O -2.0149 O

O O -3.1988

and Eo = - 4.2720 for the first iteration. Use the energy computed using
Eq. (2.110) to start the second iteration, but notice that the C(1) vector you
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then obtain is so much different erom Clij) that convergence of the process
is not likely. Therefore, average these Clij)and C(1)to obtain a new damped
C(1)Córuse in determining CI2).

2.6 Perform a one-step second-order multiconfiguration HF calculation
on HeH +, using the minimum SIatcebasis of Problem 2.1.The multicon-
figuration reference stale will include the twa configurations IU2 and 2U2.
As an initial guess of orbitais use the set of single-configuration HF orbitaIs
of the principal configuration lu2. The HF orbitals wece determined in
Problem 2.1, and the one- and two-electron integraIs in the HF basis are
given there. The initial guess of the configuration stale functions (denoted
l°) and II») will be the ones determined in the two-configuration CI calcu-
tatian given in Problem 2.3.

1. Determine all of the nonvanishing one- and two-electron density
matrix elements

(OlrtsIO),(OlrtsttujO)

and the nonvanishing one- and two-electron transition density matrix
elements

Olrt siO), (llrt st tujO)

2. Determine the V, W, A, and B matrix elements.
3. Determine the Kand the P matrix elements via the one-step second- .

order MCSCF method.

4. Determine the transformed set of orbitais and states (l°) and 11».
5. Discuss whether the orbitaIs and states obtained after the fiest iteration

of the one-step second-order MCSCF procedure (question 4) differ erom
the orbitais and states that would be obtained after the fiest iteration of the
twa-step second order MCSCF procedure. If they differ, describe how they
would be obtained in the twa-step procedure.

From the orbitais and states obtained in question 4 new one- and two-
electron integrals and one- and two-electron densityand transition density
matrix elements may naw be evaluated, and the iterative procedure thus
continued. The multiconfigurational HF Latal energies obtained during this
iterative procedure are

- 2.85044942, - 2.85066435, - 2.85066436

6. Show by comparing the difference between the MCSCF to tal energies
at each iteration and the converged MCSCF total energy that the convergence
fale ofthe used MCSCF approach is second order.

7. How musi the converged MCSCF ground-state total energy compare
with the ground-state total energy obtained in the fuli CI calculation?
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8. Write a priori the ground-state total energy that would be obtained
if we used the three eonfigurations 1u2, 2U2,and lU12ul in an MCSCF
calculation.

9. Write a priori the ground-state total energy that would be obtained
from a eonvergedtwo-eonfiguration MCSCF caleulation that used thellu2)
and 11u2u)eonfigurations.

2.7 Consider n HeH+ moleeular ions, whieh do not interaet because
they are infinitelyfar from one another.

1. Write the eleetronie Hamiltonian for ibis system in a basis eonsisting
of orthonormai orbitais that are localized on eaeh of the HeH + moleeules.
Retain only those eontributions that are nonzero. In so doing, describe
each HeH + molecule with a bonding and antibonding SCF orbital pair.

2. Show that a CI calculation that includes the HF ground-state wave-
funetion eonsisting of the antisymmetrized produet of orbitais localized on
the n ions having 1u2oecupaney,and all doubly excitedeonfigurations leads
to the followingCI matrix of dimension n + 1:

c = E~F- EHF+ "EUF, B = (11122)= (lu2IHI2u2)
EUF= 2h11 + (11111) = (lu2IHI1u2),

E~F = 2ltu + (22122) = (2u2IHI2u2)

As in other problems, 1 and 2 denote the bonding and antibonding SCF
moleeular orbitais, respeetively, for an isolated HeH+ molecule.

3. Show that the correlation energy for n infinitely separated HeH +
moleeules is

Ecorr= - EHF + E~F2 ]
1/2

[<-EHF: E~F)2 + n(11122)2

4. Use the HeH + SCF orbitais and results from Problems 2.1 and 2.3
to evaluate for n = 2, 4, 10, 100, and 1000 the correlation energy obtained
for n infinitelyseparated HeH + moleeules.Show that the eorrelation energy
inereases as 1l112when Il becomes large. How would the eorrelation energy
increase in a size-consistent model?

nEHF B B B ... B
B C O O
B O C O
B O O C

B C

where
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Bartlett and Purvis (1981) have found that for H2 and He the percentage
errors caused by size inconsistency in double-excitation CIcalculation vary
as follows:

5. Argue why the two-basis function HeH + problem is likely to under-
estimate the non-size-consistent contributions when compared with resuIts
obtained in more accurate calculations on HeH +.

SOLUTlONS

2.1

l. V;j= ~)2(il'ljl') - (il'll'j»
y

Let

4Yi=IC/liX/l'
/l

4Yy= I CvyX,.,.

Then

V;j=.. I (CVyCv'y)(C/liC/l'j)(2(JlvIJl'v')- (JlV IV'Jl'»
"b/l'/lVV'

= I C/liC/l'jV/l/l'
/lI"

where

V/l/l' = I Pvv.(2(JlVIJl'v')- (JlVIV'Jl'»,
vv'

Pn' = I CVJ'C"'y
y

Likewise

(4Yil- tv2 - I(ZA/lr - RA!)I4Yj)==hij= I C/liC/l'jh"/l'

A /l/l'

h"/l' = (X/lI-!V2 - I(ZA/lr - RADIX/l')
A

As a result F4Yi= Ei4YicaD, by expanding 4Yias above, be expressed as

hij + V;j = (;ijEi = I C/li C/l,i/I/l/l , + v,'/l')
/l/l'

" Error H2(%) Error He c{,)

2 1.5 0.8
4 4.8 2.4

10 12.3 6.5
100 48.0 34.8

1000 79.1 70.8
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Then using

(41il41j) = oij = L C",S"",C"'j
",,'

we have

L C"' [l:jS"", - h"", - V"",]C"'j = O,
,,/l'

for all i, j

This caD only be true if

L(h"", + V""' - I:jS"",)C"'j= O
/l'

This is FC = SCa.
2. The Slater-Condon rules tell us that the Hamiltonian expectation

value for a single Stater determinant in which spin orbitais 41h . . . , 41N are
occupied is

N 1

E = k~l (41kl- !VZ - ~(ZA/lr - RAI>I41k)+ 2 t,[(kilkl) - (kl\lk)]

For a closed-shell system the orbitais are doubly occupied and therefore
411= iPt(X,41z= iPdJ,413= iPz(X,414= iPzp,etc., where iP.. ipz, etc. labet the
occupied orbitais (not spin-orbitals). Hence by carrying out the spin inte-
grafion in the above energy expression and using the fact that each orbital
is doubly occupied, we obtain

occ occ

E = 2 L (41k\hl41k) + L {2(kllkl) - (kl/lk)}
k ki

where labeis now refer to orbital index. The term L,,>. (Z"Z./R/l.) must then
be added on to obtain the total energy (including nuclear repulsion).

3. Ifthe occupied orbitais 41k'obeyF41I<= 61<411<then the above expression
for E caD be rearranged to give

occ occ occ

E = L {(41I<I/tl41k) + L [2(kl\kl) - (kl/lk)]} + L (41I<lhl41I<)
k I k

The fiest two terms in this expression caD be recognized as (41kIFI41k),where
F is the closed-shell Fock operator whose potential is defined in Eq. (2.92).
Hence

occ occ

E = L (41I<IFIl/JI<) + L (41I<lhl41I<)
k I<

(
1.0 0.0

)4. P = 0.0 0.0'
F = (

-1.5895 -1.0369

)- 1.0369 - 0.8342
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5. 8. = - 1.6048, 8z = -0.2348, 4>1 = 0.9194 IsMe+ 0.1296 ls"
6. ESCF= - 2.8005. The twa expressions will agree anty opon conver-

gence of the SCF when F4>i= 8i4>i,which was assumed in writing the ex-
pression for E containing the orbital energies.

7 = (
0.8453 0.1192

) F = (
-1.6246 -1.0836

). p 0.1192 0.0168 ' -1.0836 -0.8772

8. 8. = -1.6469, 8z = -0.2289, 0/1 = 0.9032 Isne + 0.1537 IsM
9. ESCF = -2.8356

10. Esu - E~o;,v (EsCF - E~~.o;,v)2

0.001274
0.000204

0.000032

0.000005

0.00000o

0.000002

0.000000

Second-order convergence requires that the error in the (II + 1)th iteration
is the square of the error in the 11thiteration, In the first iteration above the
error is 0.001274; thus in the next iteration the error should be (0.001274)2 =
0.0000016 ifwe used a second-order procedure. Since the second iteralion's
error is 0.000204, the convergency of the above SCF procedure is linem
rather than quadratic. .

11. The collve,.gedSCF total energy calclllated from Eq. (C) is an upper
bound to the ground-state energy, whereas the SCF total energy from Eq. (C)
during the iterative procedure is not a bound. His anty at convergence that
the expectation value of the Hamiltonian for the HF determinant is given
by Eq. (C).

12. The SCF orbital energies are determined to be

8k = <'<I"lk)+ I{2<kllkl) - <kilIk)}
I

from which the orbital energies follow straightforwardly.
13. Yes, the luz configuration does dissociate properly because at R -> 00,

the lowest-energy stale is He + H +, which algo bas a 1U2orbital occupancy.
2.2

l. Since 4>rand 4>.are either occupied ar unoccupied I" <°l": s"IO)van-
ishes unless both 4>rand 4>.are in l°). Hence I" <°l,.: s"IO) = c5rs2vr.Likewise,
in I"". <°l,.: s:. t".u"IO) all four spin-orbitals most be in 1°). Then.

<OI,.:s:'t",u"IO)= c5.,<O\":u,,IO)- <OI,.:t",s:'u"IO)

= c5.A..- <5...<5"".<°1":t".IO) + <°l,.: (".11,,5;.10)
= (5.,c5r"- <5."c5rt<5t7tf'
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where all orbitais are occupied. Clearly L.,.,' (Olr':-s':-.t.,.u.,IO)vanishes when
one or moce or the rour orbitais are unoccupied, and its equals 4~.,~ru-
2~.uJrt when all rour orbitais are occupied.

2. Equation (2.42), when combined with the results or question 1, give

(A 11)"p.m~= 2J~phnm + O - ~nm2h~p- O - O- ~"mL [«XY I{Jy)4 - 2«xy Iy{J>]
y

- O - O - L (nylym)~~p2 + 4(n<xI{Jm)
y

+ ~afl L (nylmy)4 - 2(n<xlm{J) + O + O
y

(Bu)nP.m~ = O + O - O - O - O - O - O - 4(mn I<xp> + 2(mnlp<x)

+0+0+0+0

Using Eq. (2.41)we find

~m = 2hm~ - O- O+ L [4(myl<xy)- 2(myly<x)]
y

3. <Pl= lsHe

<Pz = lsH - (lsH IlsHe>lsHe= lsH - 0.5784 lsHe

Normalizing <Pzrequires that wedivide by thesquare root or1 + (lsHI1sHe)z
-2(lsHl1sHe)Z to obtain

<Pz = 1.2259 lsH - 0.7091 lsHe

The coefficient matrix C whose elements C,.A:are the orbital expansion coef-
ficients then becomes

C = (1.~ -0.7091 )0.0 1.2259

4. -2.8050
5. The excitation erom moIecular orbitalito 2 is nonredundant. The

relevant matrices thus become one dimensional:

Au = 1.8713, Bll = -0.1530, W = -0.2880

(
0.0 0.1423

) (
0.9899 -0.1418

)6. K = -0.1423 0.0 ' X= 0.1418 0.9899

7 C = (
0.8893 -0.8437

). 0.1739 1.2135
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8. ESCF- Es~'F (ESCF - Es~'F)2

0.03838013

0.00038952

0.00000001

The error in the (/1+ l)th iteration is the square of the error in the 11th
iteration.

2.3

1. <la2IHlla2) = 2/111+ (lIlii), <2a2IHI2a2) = 2/122

+ <22122), (la2IHI2a2) = (l 1122)

2. (la2IHlla2) = (-2.6158)2 + 0.9596 = -4.2720

<2a2IHI2a2) = (-1.3154)2 + 0.6159 = -2.0149

(la2IHI2a2) = 0.1261

3. E- = -4.2790, E+ = -2.0079,
C + = (0.0556,0.9984)

4. HI(al/2<pl+ bl/2<p2)a(alI2<pl- blI2<p2)PI

+ l(alI2<pl - blI2<p2)!J.(a1l2<pl + bI12<p2)PI]

= ~ [(al/2A-. + bl/2A-.)(al/2A-. - bll2A-.)
2J]. 'Vi 'P2 'Pl 'P2

+ (al/2<pl - bI12<p2)(al/2<p1 + blI2<p2)](ap- pa)

= (a<Pl<Pl- b<p2<p2)(ap- pa)/J].

= al<pla<P1PI- bl<p2a<P2PI

0.00147303
0.00000015

C- = (0.9984,-0.0556),

2.4

1. The singlet function with la2a occupancy is
1

J].[11a2PI-1I p2aIJ

2.
1

<1a2aIHlla2) = J].[2/112+ 2<11121)] = J2[0.1954 - 0.1954]= O
1

<1a2a1H12a2) = - [2/112 + 2<22121)]
J].

= J2[0.1954 - 0.0045] = 0.2699

(la2aIHI1a2a) = 1111+ /122 + (l2112) + (l2121)
= -2.6158-1.3154+0.6063+0.1261 = -3.1988

The other matrix eIements are derived in Problem 2.3.
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3. The 3 x 3 CI matrix

C4.2720

0.1261

-2.0149
0.000

)
0.2699

- 3.1988

then has as its eigenvalues El = -4.2792,E2 = -3.2567,andE3 = -1.9497.
The corresponding eigenvectors have, as coefficients of 110"21,120"21,and
110"20"1,(0.9982, -0.0573,0.0143), (-0.0261, -0.2098,0.9772), and (0.0530,
0.9761, -0.2109), respectively. The ground-state to tal energy, including
nuclear repulsion, is - 4.2792 + (2/1.4) = - 2.8506.

2.5 First iteration:

EO- E = _(CO)TVCO= O

and so we use E = -4.2720 in the fiest iteration to calculate C(1):

C(1) = (E - Ho)-IVCo,

(

O O O

)
(E1 - HO)-l = O -0.4430 O

O O -0.9318

(Actually, the 1,1 element of this matrix is iII defined. However, this does
not cause trouble hece since VCObas zero as its fiest entry. In general, how-
ever, this trouble arises wherever Eo is taken to a diagonal element of HO):

(

0.0

)
VCO= 0.1261

0.0

Therefore,

(

0.0

)
CO) = -0.0559

0.0

A problem now arises: C(1)does not obey intermediate normalization, which
was assumed in deriving Eq. (2.110) for E. Hence we most damp the itera-
tion process by averaging C(1) and CO to obtain a better C(1) (which most
then be intermediate normalized):

1

(

1.0000

)

1

(

0.0

) (

1.0000

)
CO) ="2 0.0 +"2 -0.0559 -+ -0.0559

0.0 0.0 0.0

One finds that by not damping, the successive C<n)computed (using E =
-4.2790) are wildly oscillating.
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Cln) = [(0.9989,0,0.0140),(0.0,-0.0573, -0.0035), (1.0000,0.0004,0.0139),
(1.000,0.0797,0.000 I), (1.0000,0.0386,0.0138)]

However, once the damping is introduced, we caD proceed to find c(n) values
in a slabie manner.

(

1.0000

)
Eo - E = -(Co)+VC = -(0,0.1261,0) -0.0559 = 0.0070

0.0000

and so E = Eo - 0.0070 = -4.2790. Now compute C(2):

(

- 142.9 O O

)
(E1 - HO)-l = O -0.4417 O

O O -0.9258

and

(

-142.9 O O

) (

O 0.1261 O

) (

1.0000

)
C(2)= O -0.4417 O 0.1261 O 0.2699 -0.0559

O O - 0.9258 O 0.2699 O 0.0000

Then

(

1.0003

)
C(2) = - 0.0557

0.0140

which upon intermediate normalization becomes

(

1.0000

)
C(2) = - 0.0557

0.0140

For the third iteration,

(

1.0000

)
Eo - E = -(0,0.1261,0) -0.0557 = 0.0070

0.0140

Therefore, E = - 4.2790 and so (E1 - HO)- 1 is unchanged:

(

O 0.1261 O

) (

1.0000

) (

1.0003

)
C13) = (E1 - HO)-I 0.1261 O 0.2699 -0.0557 = --0.0574

O 0.2699 O 0.0140 0.0139
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which when renormalized becomes

(

1.0000

)
-0.0574

0.0139

To compare these results with those of the CI Problem 2.4, we "musi nor-
malize C(3)so that 1 = (Cm)T(C(3)).This procedure gives

(

0.9983

)
C(3) = -0.0573

0.0139

which is to be compared with the CI eigenvector

(

0.9982

)
CCI = -0.0573

0.0143

The CI energy -4.2792 compares wen with our third iterate E = -4.2790.
2.6
1. Let 1and 2 denote the 10"and 20"orbitais, respectively:

(ii = (°l (ii = <11

(iii; 1.1°)
(iI2;2.1O)
(iii; 1;1,1.10)
(ill.+1;2,2.10)
(iI2;2;t,I.10)
(iI2; 2; 2,2.10)

0.9970

0.0031

0.9970

-0.0555

-0.0555

0.0031

0.0555

-0.0555

0.0555

-0.0031

0.9970

-0.0555

Since the states 1°), 11) have singlet symmetry, interchange of IXand p
spin gives the same matrix elements, e.g., (iii: 1; 1/11..10)= (iii; 1: 1..1/11°).
Change of the sequence of the creation (or the annihilation) operators does,
of course, change the sigo of the matrix elements.

2. ~l) = (lIHIO) = O, since \1) and l°) are determined erom a CI
calculation:

W12 = (°1[1:2..+ 1;2/1,H]10) = 2[h12(011:1..- 2:2..1°)
+ (22121) (0\2; 2: 2p2..+ 1: liJ2p2..10)

+ (11121)(°11: 1; lpl,,+ 1; 1:2p2,,10)]
= -0.0224



Solulions 63

A21,21 =<°1[1:-2«+ 1;2//,H,2:-1«+2;I/1]IO)

= 2[(hn - hll)<OII:- 1«- 2:-2«1°)- <22122)<°12;2:-2«2//\0)

- <11111)<°11:-1; 1/11«10)- 2<11122)<°11;1:-2«2/110)

- <21112)<°11; 1:- 1/11«+ 2;2:-2/12«1°)

+ <21121)<°11;1:-1«1//+ 2:-2;2//2«1°)]
= 2.1606

821.21= <°1[1:-2«+1;2//,H, 1:-2«+ 1;2//]1°)
= 2[(2<22111)+ 2<21121)- (11111) - (22122»)<°11:- 1;2//2«1°)

- <22111)<°12:2;2//2«+ l: 1; 1/11«10)]
= -0.2400

(A21)11>.21= (11[H, 2:- 1«+ 2; 1//]10)= 2[hl2(111:- 1«- 2:-2«1°)

- <11112)<111; 1:-1/11«+ 2:-2; 1/11«10)

- <22112)<112;2:- 1//1«+ 2:-2;2/12«1°)]
= 0.4020

(821)!1>.21= <11[H,1:-2«+ 1;2/1]1°)
= 2[1112(112:-2«-1:- 1«1°)- <22121)<112;2:-2//2«+ 1:-1;2/12«1°)

- <11121)<111:- 1; 1/11«+ 1; 1:-2/12«10)]
= -0.0198

(An)11 >,11>= - 2.0079 + 4.2790 = 2.2711, (8n)'I>.II> =0

3. Since A - 8 is a 2 x 2matrix, we invert it easily and obtain the
numerical value of K21 and PlO through (;) = (A - 8)-1(~). Hence the K
and P matrices are

(
0.0 0.0097'

)K = -0.0097 0.0 ' (
0.0 -0.0018

)p = 0.0018 0.0

4. By applying exp( - K) as shown in Problem 1.5 to the HF orbitaIs,
we obtain

CPt= 0.8919 lsH. + O.l701lsu, CP2= -0.8410 lsH. + 1.2140lsu

Likewise, transformation of the two CI eigenstates through exp( - P) gives
rise to two new MC stale vectors whose expansion coefficients are given by

c = (
0.9984 0.0574

)-0.0574 0.9984
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5. Since we used the states of a CI calculation as the initial guess for the
reference stale in the one-step MCSCF procedure, the orbitais of the one-
and two-step MCSCF approach become identical when the first iteration
is carried out. The states obtained in the next iteration of the two-step
MCSCF approach would, however, be determined erom a new CI calculation
(which requires transformed integrals) and would thus differ erom the states
obtained in the one-step MCSCF procedure.

6. EMCSCF - Ef.t~CF (EMCSCF - Ef.t~F)2

2.1494 X 10-4

l X 10-8

4.6 X 10-8
l X 10-16

The error in the (n + l)th iteration is the square of the error in the nth
iteration.

7. The MCSCF and the fuli CI calculation have the same number and
kind of variational parameters; hence the total energiesobtained in the two
calculations shou!d become identical. The 110'20')configuration included in
the CI wavefunction is treated in the two-configuration MCSCF function
through the 2+l K21orbital optimization parameter.

8. In an MCSCF calculation that uses 10'2,20'2,and 10'120'1,the 20'+10'
excitation operator becomesa redundant excitation operator and hence the
orbita! optimization step oecd not be included. The three-configuration
MCSCF calcu!ation thus becomes identical to the three-configuration CI
ca!cu!ation.

9. Again, Iwo configurations plus one degree of orbital optimization
freedom spaD all of the configuration space needed to generale the fuli CI
wavefunction. Hence the converged MCSCF energy would equal the fuli
CI energy herc.

2.7
l. In the one- and two-electron integrals appearing in the second-

quantized form of H, we neglect all integrals involving orbitais on different
HeH + ions. Hence

"

(

l

)

"

H = L L hiji+j +"2 L (ijlkl)i+j+lk = L HAA=l i.j=la,2a ijk/=la,2a A=l
eA eA

where A labeis the n HeH + ions.
2. Let us denote the reference HF determinant by HF. Then doub!y

excited configurations involving excitation of the A th HeH + jon caD be
represented as (2;2; lpl")AIHF) ==lA). Doubly excited configurations in
which one orbita! is excited on each of IWOHeH + ions will not give rise to
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nonvanishing CI matrix elements since the one- and two-electron integrals
that arise in evaluating such CI elements would vanish because of the large
separation between the twa ions.

The CI matrix elements arising erom the functions IHF) and {lA)} are
n

<HFIHIHF) = L <HFIHAIHF) = IIOa21Hlla2) ==IIEHF
A= I

(This result follows since IHF) = n~=I (lp 1:)Alvac»);

<HFIHIA) = <la2\HI2a2) (the same for all A)

<AIHIA') = c5AA.[<2a2IHI2a2)+ (11- I)EHFJ (the same for all A)

3. The components of the eigenvalue problem (HC = EC) for the matrix
shown in question 2 can be written as

n

I1EHFCHF + L BC A = E<!HF'
A=I

BCHF+ CCA, = ECA" A' = 1,. . .,11

Solving for CA' in terms of CHFand substituting joto the first equation gives
n

IIEHFCHF + L B[E - C]-I BCHF= ECIIF
A=l

This equatiol1 wil1 have a l1ontrivial solution for CHF anty if

I1EHF+ B211(E - q-l = E

This quadratic equation can be written as'

(E - C)(IIEHF- q + IIB2 = (E - q2

the solutions of which are

E - C = HIIEHF - C:1::[(IIEHF- q2 + 4I1B2]1/2}

Using the definitions of C and B, the ground-state energy becomes

E= IIEHF+H -(E~F- EHF)- [(E~F-EHF)2 +4110 1122)2JI/2} + E~F- EllF

The correlation energy then becomes

Ecorr = E - IIEHF= HE~F- EHF- [(E~F- EHF)2+ 411(11122)2]1/2}

4. From Problem 2.1 we find (11122) = 0.1261 and from Problem 2.3,
(1a2IHlla2) = EHF = -4.2720 and <2a2IHI2a2)= E~F= -2.0149. There-
fore (E~F - EHF= 2.2571),

- 2.2571
[(

2.2571

)2 2

J

I/2

Ecorr - ~ - ~ + 11(0.1261)
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Evaluating Ecorrfor n = 2, 4, 10, 100, and 1000, and eomparing it to n limes
the eorrelation energy of 1 HeH + jon, we find

For large n, the analytieal expression of question 3 cIearly varies as n1/2.
Comparing our resuIts for n = 100 and n = 1000, we find a ratio of 3.0156/
0.5637 = 5.35, which is not (1000/100)1/2 = 3.16. Thus n = 100 is not yet
in the large-n range. The ratio for n = 10 and n = 100 is 0.5637/0.0684 = 8.24,
whieh is even further from (100/10)112 = 3.16. Henee one must go beyond
n = 100 before this large-n behavior is reaIized.

5. Within our smalI basis the HeH + is undereorrelated beeause the 2<T
orbital is much higher in energy than would be expeeted for the lowest
excited <Torbital of HeH +. Therefore, our eorrelation energy, which arises
from the 1<T2-+ 2<T2exeitation is smalIer (because (11122) is smalIer and
21>2- 21>1.islarger) than one would obtain if one were to use a better atomie
orbital basis on HeH +. As a result the (11122) appearing in the above
expression for Ecorr is "too smalI" and (E~F - EHF) is "too large." This leads
to an underestimate of Ecorr.
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