Chapter 2 | Energy and Wavefunction
Optimization Methods

A. INTRODUCTION

The total electronic energy of a system described by a state |0) is given as
E = {0|H|0), <0j0y =1 (2.1)

In approximations commonly used to describe the true state function, |0)
may depend on variational parameters C,, C,, . . ., C;, which may be expan-
sion coefficients describing either the linear combination of configurations
in |0) or the orbitals [ Eq. (1.18)] appearing in these configurations. The total
energy forms an energy hypersurface in these parameters E(C,,C,, ..., C).
We wish to determine stationary points or extrema of the energy hypersurface
that, of course, occur when

LG L OB =B, =12 2.2)

In this chapter, the problem of making E(C,,C,, ..., C) stationary will be
treated for both linear and nonlinear parameters that arise in treating the
most common quantum-chemical energy expressions. The first derivatives
of the total energy determine the slope-at a given point of the energy hyper-
surface, while the second derivatives of the total energy
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determine the curvature of the energy hypersurface and thus may be used
to characterize the stationary point as a local minimum, a saddle point, or
a local maximum. In attempting to find excited states of a given symmetry,
one must use care to guarantee that the procedure does not permit a collapse
to the lowest state of that symmetry. Procedures such as constraining the
class of wavefunctions given by {C;} to be orthogonal to the ground state
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or monitoring the dominant components (largest C;) of each wavefunction
are commonly used to avoid this difficulty.

In the first optimization procedures we examine below, the parameters
C; characterize a unitary transformation of the wavefunction within the
space of both orbital and configuration variations. To determine a stationary
point (SP) on the energy hypersurface in this case, we derive an iterative
scheme that is quadratically convergent both for ground and excited states.
We use knowledge of the first and second derivatives of the total energy to
determine the iterative step lengths that we have to take to reach the SP. If
the energy hypersurface were parabolic in all of the parameters considered,
we would reach the SP in one step. The iterative nature of the solution
originates from the nonparabolic terms in the true energy hypersurface,
whose description we truncate after quadratic terms.

To be more explicit about the kinds of variational parameters that com-
monly arise, we write the wavefunction |0) as a linear combination of the
orthonormal basis states {|¢,>} that may originate from several electronic
configurations:

0> =} |6>Cho (2.4)

Each of the states l¢’e> is formed from a single electronic configuration and
is defined as

|¢,> =1 r*|vac) (2.5)
reg

where the product l—],Eilr r* refers to an ordered set of creation operators.
The coeflicients C,, are the expansion coefficients for the considered state
|0> within this configuration basis {|¢,>}. Variations of the spin-orbitals
{#,} are commonly expressed in terms of variations in the linear expansion

coefficients describing the {¢,} within an atomic orbital basis. [ Eq. (1.18)].
In a multiconfigurational self-consistent field (MCSCF) calculation (Dal-
gaard and Jergensen, 1978; Schaefer and Miller, 1977, Chapters 3 and 4),
we consider both the configuration expansion coefficients and the orbitals
as variational parameters. The optimization techniques required to determine

~ an MCSCF wavefunction are discussed in Section B. In a configuration

interaction (CI) calculation, the coefficients C,, are determined from Eq. (2.2)
under the assumption that the orbitals are fixed. We discuss various ap-
proaches to the CI problem in more detail in Section D. The Hartree-Fock
(HF) approximation assumes that the reference state refers to a single
configuration but the orbitals (or creation operators) are allowed to vary
and are determined from Eq. (2.2). Several techniques that have been put
forth to generate optimal HF orbitals are considered in more detail in
Section C.
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B. MULTICONFIGURATIONAL SELF-CONSISTENT FIELD

1. Unitary Transformation of the Wavefunction

Let us now describe how one determines SPs on the energy hypersurface
when the wavefunction has the form given in Eq. (2.4). We allow variations
to occur in both the orbitals and the configuration expansion coefficients.
In Egs. (1.52) and (1.57) we have described how the orbital variations may
be carried out by performing a unitary transformation among the orbitals.
The variations in the expansion coefficients may be described in a similar
manner (Dalgaard, 1980). The expansion coeflicients for the state |0) form
one column of a unitary matrix in which the remaining columns are the
expansion coefficients for the orthogonal complement states within the
configuration space being considered:

|"> = Z ‘¢'a>cw (2.6)
a

The states {|0), |n>} and {|¢,>} thus are related through a unitary transfor-
mation matrix C. Variations in the expansion coefficients C,, may be achieved
either by a direct variation of these linear parameters or alternatively in
terms of parameters S,, describing a unitary transformation among the
states {|I>}. The operator

S=Y Sill><m| @7
i,m

when applied on the set of states {|k)} results in a general transformation
among the states {|k>}. The operator exp(iS) therefore may be used to
describe a general unitary transformation among the states {|k)>}.

This unitary transformation shows great resemblance .to the unitary
transformation exp(id) in Eq. (1.36). The operator S is hermitian and the
parameters S,,, form a hermitian matrix that determines the unitary trans-
formation to be performed. Since we consider only real orbitals here, it
becomes sufficient to use only the imaginary part of the variational param-
eters S,,,, denoted iP,,, [analogous to using only the ix,, part of A in Eq. (1.54)],
and the S operator then takes the form

S=i T Pull><r| = |m><i) (28)

Further, because our interest is in optimizing the total energy for the state
|0, we need only include the m = 0 parameter P, in Eq. (2.8), which then
limits the operator S to be of the form

S=i T Puln><0] = [0)<r) < gy
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where the elements P,, are real. The matrix P is a real antisymmetric matrix
that, in its lower triangle, has all zero elements except for the elements P ,:

0 =Py —~Bgy i =l
P 0 0
P= o 0 (2.10)
0

The nonlinear variational parameters P,, are one less in number than the
linear expansion coeflicients C,,. This is due to the fact that a normalization
condition has to be imposed on the linear expansion coefficients {C o} if
they are used as variational parameters, whereas variations described by the
parameters P,, automatically preserve the orthonormality of the states.

Let us now carry out the above unitary transformation. We obtain by
expanding the exponential

exp{iS)|m> = [l + iS +%{i5]2 + 313 (iSP? + - -:||m>. (2.11)

The second term in the expansion may be written as

iSimy =i Y, Po(|n><0] — [0><n))|m) = =3 |ID P, (2.12)
n#0 1

The last identity follows by the definition of the (sparse) P matrix in Eq. {2.10).
The third term in the expansion in Eq. (2.11) may be determined through
successive applications of Eq. (2.12) to be

+ 3iSiS|m) = —3iS Y |IDPim =3 Y |PDP piPim (2.13)
1 p.l

Successive terms in the expansion of the exponential in Eq. (2.11) are deter-
mined in a similar manner, after which it becomes obvious that the terms
may be summed to give an exponential matrix

exp(iS)|m) = ¥ [I>[exp(—P)]im- (2.14)

The actual evaluation of the exponential matrix in terms of the unitary
transformation that diagonalizes iP may be carried out in a manner analo-
gous to that described in Eq. (1.57) for exp(id).

Because of the especially simple nature of the above P matrix, the unitary
transformation in Eq. (2.14) may be carried out analytically. We obtain by
collecting together the terms arising in the (1/n!)(iS)"|m) factors as sine and
cosine components:

exp(iS)|0) = cos x|0) — { sinx ) P,oln> (2.15)
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exp(iS)|m) =|m) + P, :_c sin x|0) +% (cosx—1)Ppo Y. |n)P,  (2.16)

where

X2 =Y P2 @.17)

A unitary transformation of the reference state may now be described as
[0> = exp(id) exp(iS)|0) (2.18)

Using the technique of Eq. (1.40) to transform all of the creation operators
appearing in ]0) and in exp(iS) (i.e,, those in ]I)), we can write

[0> = exp(iS)[0) (2.19)

where § and [0) are defined as in Eqs. (2.9) and (2.4), respectively, with
creation operators 7" referring to the transformed set of orbitals. The unitary
transformation of the state |0) can thus be thought of as first carrying out a
unitary transformation among the orbitals in [0 and S and then performing
a unitary transformation in the configuration space [Eq. (2.19)]. This same
transformation can be viewed in a somewhat different manner. One may
interpret it as first performing the configuration transformation involving
all untransformed orbitals (or creation operators)

exp(iS)[0)> = ;[exp(—P)]mU) (2.20)

as given by Eq. (2.14) and then transforming the orbitals in the functions
|n) to give

exp(i2)[exp(iS)[0>] = Y. [exp(—P)]io| T (221
[}
where

|T> = exp(id)|i) (2.22)

Of course, both of these interpretations of Eq. (2.18) amount to nothing
more than two ways of working at the same configuration and orbital
transformation,

An alternative description of a unitary transformation of the reference
state involves using the exponentials in Eq. (2.18) in the opposite order. This
form implies that the reference state may be rewritten as

10> = exp(is)[0) (2.23)

where the creation operators in [0) refer to the set of transformed orbitals,
while the creation operators in § correspond to the nontransformed set.
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The subsequent evaluation of exp(iS)[0) would be very difficult because it
would involve the computation of overlaps between states (n|[0) involving
both transformed and nontransformed orbitals. This would complicate tre-
mendously the determination of the transformed state |0>; we therefore
consider in the following only the unitary transformation of the reference
state given in Eq. (2.18).

2. Variation of the Total Energy

The total energy corresponding to the transformed reference state is given
as

E(4,5) = {Olexp(—iS)exp(—il)H exp(il) e_xp(iS)|0>
= (O|H|0> — iCO|[S + 4, H]|0> + 3<0|[S,[H, S]]|0>
+ 3<0|[A,[H, A110> + <O|[S,[H,A]]|0> + - - - (2.24)

By introducing a matrix notation in which the variational parameters «,,
and P,, form row and column vectors, we can rewrite Eq. (2.24) as

E(4,5) = E(0,0) — 2[KP}(?) + (kP)(A — B) (:) - Pl (2.25)

We have introduced in Eq. (2.25) the short-hand notation for the operators
Q' =Ir'sife>5, R'={n>®©}} (2.26)

and defined the matrices
W = <0|[Q, H]|0> (2.27)
V = (0|[R,H]|0> (2.28)

A=(A“ Alz):(<01[Q,H,Q*]|0><01[[Q.H].R*.]|0>) 5
Az Az)  \COI[R.[H,Q*TJ0X<O|[R. H.R*Jj0> )~

g _ (B Biz)_ (<Ol[Q.H.Q1|0><0|[[Q. H]. R]J0>
B,y B/ \CO|[R,[H,Q]/05<0|[R, H,R][0)

For convenience, we have introduced the double commutator, defined as

[0.H,0"]=4{[Q.[H.0* 1] + [[Q,H].0"]} (2.31)

which arises naturally in A,,, A,,, B,,, and B,, because
<O|[4,[H,A]]|0> — <O|[[A, H],A]|0) = <O|[[A,A),H]|0) =0 (2.32)

and an analogous result for S. The matrices W, V determine the first-order

(2.30)

B8z variations of the energy function, which at a SP on the energy hypersurface
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are zero. The condition that V and W are zero at a SP is often referred to as
the generalized Brillouin theorem (GBT).

The matrix A — B defines the second-order variation of the energy func-
tion and is often referred to as the Hessian matrix. The double-commutator

form of the Hessian matrix allows these second-order terms to be expressed
as a quadratic form.

3. One-Step Second-Order Procedure

As stated previously, a SP on the energy hypersurface is obtained when
dE(4,S) = 0. Neglecting third- and higher-order terms in the energy function
[which rigorously no longer makes E(4,S) a true expectation value] we
obtain from Eq. (2.25), by differentiating with respect to x and P,

W K
_(v) +(A - B)(P)= 0 (2.33)
K (W
(P) =(A-B) l(v) (2.34)

as the conditions for a SP. The matrices x and P may then be determined
from Eq. (2.34) and a set of transformed orbitals and states obtained from
Egs. (1.52) and (2.14), respectively. If the energy hypersurface contained no
higher than quadratic terms, we would reach a SP in one iteration of the
above procedure. The third- and higher-order terms in the energy function
do, however, require that an iterative scheme be applied to determine a SP.
The iterative scheme may be described as follows: From an initial guess of
orbitals and a choice of the configuration space, we determine a set of ap-
proximate eigenstates |n) (e.g, by performing a configuration interaction
calculation). The matrices V, W, A, and B are then determined and Eq. (2.34)
is solved to give the matrices k and P. A transformed set of orbitals and
states may then be obtained from Egs. (1.52) and (2.14) and the procedure
repeated until the numerical values of W and V are smaller than a specific
tolerance. The above described approach has included all terms in the energy
function through second order and is therefore quadratically convergent.

We therefore denote this scheme the one-step second-order approach (Yeager
and Jergensen, 1979).

or equivalently

4. Two-Step Procedure

Another approach, which differs slightly in its realization of the iterative
procedure, has also been used and is referred to here as the two-step second-
order scheme. It may be described as follows: After an initial guess of orbitals,
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a configuration interaction calculation (see Section D) is carried out to deter-
mine the starting set of CI eigenstates |[>. We then have

(m|H|I) = EJ,, (2.39)
: and the V matrix
‘ V, = (O|[R,, H]|0) = <O|[|0><n|, H]|0) = 0 (2.36)

becomes equal to zero. Equation (2.34) may then be partitioned (Lowdin,
1968) to give (using B,, = 0)

k=[A;; =By —(A;; — Bp)A (A — Byy)]™'W (2.37)

and the k matrix can be determined from this set of linear equations.

A transformed set of orbitals may now be obtained using this k in Eq.
(1.52) and a new CI calculation (diagonalization of (I|H|m)) carried out.
This process is then continued until convergence is reached. In the two-step
second-order procedure, Eq. (2.34) is thus always applied in a basis where
the states are determined from a Cl calculation. The matrix P is never ex-
plicitly calculated. In contrast, in the one-step procedure the configuration
expansion coefficients of |0) and |n) are determined from the unitary trans-
formation given in Eq. (2.14), where P is obtained from Eq. (2.34) rather
than from a CI calculation.

The terms A, — B,, coupling the configuration and orbital space vari-
ation have been neglected in many calculations. In many cases, these terms
show little effect on the convergence rate of the procedure. It should, however,
be pointed out that a quadratically convergent scheme is only obtained when
these coupling terms are included.

5. Explicit Hessian and Generalized Brillouin
Matrix Elements

Let us now consider the evaluation of some of the matrix elements appear-
ing above. In the one-step procedure we have to calculate

(A0 = ((}}[R,,,, H, R:]|0> = (ml!ﬂn) - 5,,,,,<U|H|(}> (2.38)
. and

V, = CO|[R,, H]|0)> = (n|H|0> (2.39)

The elements A,, and V thus contain all matrix elements contained in a
configuration interaction calculation within the considered configuration
space. When the iterative MCSCF procedure has converged, all elements of
V are zero and the interactions between the reference state ]0} and the residual

states are thus eliminated. The diagonal and off-diagonal matrix elements
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of the Hamiltonian in the residual space {|n)} may, however, all be non-
vanishing.

In the two-step second-order approach, the CI calculation that is carried
out in each step prior to the evaluation of the matrices simplifies the evalua-
tion of V and A,,. The V matrix becomes, as stated earlier, zero and the
A,, matrix :

(A22)mn = Ol Em — Eo) (2.40)

becomes diagonal. These simplifications remain in each step of the iterative
process because a CI calculation is performed in each iteration.

Except for A,, and V, the form of the matrix element in the one- and
two-step procedures are the same. The matrix elements of W, A, ,, and B,
may be derived from Egs. (2.41) and (2.42) by index substitution. The excita-
tion operators in these equations have singlet spin symmetry, since they
arise in the operator A, which must preserve the symmetry of |0) in forming
exp(i1)|0). These matrices can be expressed in terms of one- and two-electron
integrals and the one- and two-electron density matrices as given below.
" Note that no more than two-electron density matrices appear in W, A,
and By,:

QO|[t} uy + t5 ug, H]|0) = 3 b, <0Jt7 p,|0)> — 3 1y <Ol p7 1,0)
ap ap ;

3 (pa| e + X < ]rsHPr (241)
pgr ) grs 5
(frizft)ewr, (w Ge.. .
(O|[I:k, + lg kg, [H,tu, + rﬁ'uﬂ]]lﬂ) e

= Iy 3 COl1 0 + by 3 <Ot Kgl0> — G4 Y hup<O|ly P[0
] a pa

By Z "N(U|P; k,lO) — Oy Z <P4|”>qukr — Oy Z (“Q|”3>P:w :
P par

grs

Th E(Pﬂ“)ﬂmn = Z(“H"S)Pusr = Z(kplrt>plpur
rq pr

rs

+ Z <kp| Ir)ﬁplur - z <“‘I| ls).prqslc + Z (uQISI )pqrsk (2'42)
pr qs qs
where €01
Piju = ;}KOli:j:—k;J,lO) (243)

and ¢ and ¢’ run over the electron spin indices « and .
The elements of A,, and B,, reduce as follows:

CO|[[0> <l [H, t uy + t71,]10> = n|[H, t u, + tug]|0>  (244)
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and an explicit final formula for Eq. (2.44) may be obtained from Eq. (2.41)
by replacing the one- and two-electron density matrices with the correspond-
ing transition density matrix elements.

6. Mode Damping

The GBT matrix and the Hessian matrix arising in the one-step second-
order procedure determine the energy slope and curvature, respectively,
for a given point on the hypersurface. When a SP point has been reached, the
eigenvalues of the Hessian matrix thus can be used to characterize this point.
We have reached a local minimum if all eigenvalues are positive. Mixed
positive and negative eigenvalues correspond to a saddle point on the energy

: hypersurface. In employing the two-step procedure outlined above, one no
& longer has the opportunity to characterize the state by its Hessian eigen-
values, because the full Hessian matrix is not employed and the partitioned
Hessian of Eq. (2.37) does not have the same eigenvalues as the full Hessian.

Some insight into the step lengths (x, P) that should be taken in second-
order procedures may be obtained by transforming the second-order equa-
tion to a form in which the Hessian matrix is diagonal. Let us consider initially
the diagonalization (by the unitary matrix U) of the full A — B matrix ap-
pearing in the one-step second-order equation

A—-B=UsU* (2.45)

Equation (2.34) then becomes
K w
(lf s_l(v) (2.46)

K
):u (P) (2.47)
W (W
()-v (%) 28

Each normal mode on the energy hypersurface is decoupled and hence may
be described independently. This is particularly useful in the initial iterations
of an MCSCF calculation, where third- and higher-order terms may be
important and even dominate as a result of the poor initial guess of the
. orbitals. The second-order scheme may, in such cases, be forced to take step
lengths (&, P) that are too large. The normal mode analysis of Eq.(2.46), which
3 displays the slopes (W, V) and curvature (g) of each mode independently,
g then becomes a convenient tool to use for changing the step length for those

b BRI
Il

where
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modes that take very large steps. This is done by restricting the allowed size
of the & and P matrix elements. In ground-state calculations where the
Hessian matrix has to be positive definite, we may even change the direction
of the step (i.e., change the sign of &) if small negative eigenvalues g; appear.
This situation occurs frequently in the initial iterations of actual calculations.
If the matrix elements that couple the orbital and coefficient optimization
(the A,, — B,, matrix) are very small, K then predominantly refers to the
orbital optimization while P refers to the coefficient optimization. In these
cases, it is reasonable to impose some different limits upon the size of the
maximum elements of the step length vectors & and P. At present, there is
little experience on how to optimally make these restrictions although results
of initial calculations indicate that the basic philosophy is correct. When
strong coupling occurs between the configuration and the orbital space,
more refined damping schemes may need to be introduced (Yeager et al.,
1980).

In the two-step second-order procedure, damping may only be performed
in the space that is dominated by the orbital space. From applying the unitary
transformation to Eq. (2.37) we get

K=¢'W (2.49)
where
At — By — (A — B1a)A3; (Ayy — Byy) = UeU? (2.50)
K=U"x (2.51)
W=U*W (2.52)

Because the reference state [0) and its orthogonal complement states |n)
are determined from a CI calculation, it is not generally possible to impose
constraints on the step lengths in the configuration space. Further, the CI
steps are not necessarily taken along the normal modes. In particular, when
strong coupling elements exist between the configuration and orbital spaces,
large fluctuations in the amplitude of the dominant configuration may be
encountered, which may lead to difficulties in converging to the state under
consideration.

7. Elimination of Redundant Operators

Having now given a general discussion of quadratically convergent second-
order MCSCF methods together with some analysis of how such techniques
might best be implemented, we can move on to describe other MCSCF
methods, as well as to give more detail about the numerical requirements
of such calculations. Before doing so, however, it is important that we
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address a technical point that must be understood if one is to be successful
.. in carrying out such MCSCF calculations.

. . The unitary transformation of the reference state given in Eq. (2.18) has
* as generators the operators r*s of A and |n){0| of S. It is possible that the
- operators r*s and |n)(0| span the same space. That is, the effects of the
~ operators r* s may be expressed in terms of those of the state projections in
: the configuration space. To determine whether the effects of a given operator
- r*s can be expressed in terms of the kets {|m)}, we examine the following
i difference ket:

[>=rts|) = Y mdmlrt sl (2.53)

.. If the norm of | /) vanishes, then |f) itself vanishes and hence r*s|I» can be
- exactly represented as a sum of the {|m>} functions. The norm of | /> vanishes
when

S =0=ls rrts|ly = Y st rlm)d Cmlr *s| > (2.54)
:".'.or, in other words, when

Y |[Kmlrt s = st et sty (2.55)

When both the operators r*s and s*r fulfill Eq. (2.55), for any state |I> the
variations described by the parameters A,, will be denoted as redundant.

" The search for redundant variables may, of course, alternatively be per-
¢ formed in the configuration space { {|#,>} since this space is reldted to the
aspaoe {I!) through a unitary transformation. Because the states {r*s|¢$,>)
& are normalized to unity, the search for redundant variables may be .u:hle\ ed
by investigating whether the sum

LKl sléol’ (2.56)

is equal to zero or one for any state |¢,).

-~ We now show how orbital changes caused by redundant variables can
£ be represented as configuration changes caused by S and can thus be elimi-
‘nated from the energy optimization procedure. The redundant set of oper-
ators form a hermitian operator

2,1" *s (2.57)

e The operator 1, which contains all of the r*s that are not redundant also
forms a hermitian operator

= ¥ Ar's (2.58)
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Since the operators in Eq. (2.57) are generators of a subgroup of the unitary
group, exp(il) may be factorized to give

exp(il) = exp(il’) exp(il”) (2.59)

Equation (2.59) is thus a representation of an arbitrary group element ex-
pressed as a left coset of this subgroup. Expressed in other words, the unitary
transformation that is described by exp(il) may alternatively be described
by the unitary transformation exp(id’) exp(iA”). It should be pointed out that
there exist no simple relations between the A,, parameters and the A, and
Ay, parameters. With the above factorization of the “redundant” part (1),
the unitary transformation of the reference state may be written as

[0> = exp(ir’) exp(ir”) exp(iS)|0)
Since |f) in Eq. (2.53) is zero for any product of redundant operators,
exp(id”)|I> =Y |p> < p|exp(iA”)|I> (2.60)
r

Using this relation together with Eq. (2.14) gives
[0> = exp(i2')exp(i2”) . |1 > [exp(— P)]io
I

== exp(il') Y |p> {p| exp(id”)|I> [exp(— P)]io (2.61)
.l

The matrix {{p|exp(id”)|l>} is unitary since the scalar product of Eq. (2.60)
with {g| exp(—i1") gives

T <alexp(—i2")|p><plexp(+id")|I> = &,
r
Therefore, the product matrix
2. <plexplid”)|1> - [exp(— P))io (2.62)
1

must consequently also be unitary. Because a single unitary transformation
of the form given in Egs. (2.10) and (2.14) is sufficient for optimizing the total
energy, the redundant variables may be left out when optimizing the energy.
That is, the A" factors can do nothing more, in a wavefunction optimization,
than can be done by the exp(iS) operator.

8. Practical Considerations

So far, no attention has been given to the spatial and spin symmetry
features of the reference state. The theory we have outlined thus far may
hence be described as unrestricted multiconfigurational HF. In most appli-
cations (Eyring et al., 1967), we require the reference state to have a certain
symmetry (i.e., the reference state should transform according to an irreduc-
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ible representation of the Hamiltonian’s point group). For the wavefunction
symmetry to be conserved under a sequence of unitary transformations, the
operators A and S have to be tensor operators belonging to the totally sym-
metric irreducible representation. In this way, the symmetry of the wave-
function would be conserved during the iteration procedure.

Calculations of the matrix elements that are used to define the above
procedures requires knowledge of the one- and two-electron integrals in the
MCSCF spin-orbital basis. Therefore, a two-electron integral transformation
(Schaefer and Miller, 1977, Chapt. 6) has to be performed in each step of
the iterative procedure. MCSCF approaches, in general, require such re-
peated two-electron integral transformations to be performed. Since these
transformations may, in many cases, be the computationally most demanding
step of the calculation, it becomes very important to use MCSCF procedures
that converge reliably in a minimum number of iterations. We have chosen
to emphasize here the one- and two-step second-order procedures because
they are quadratically convergent and because they allow a controlled
(damped) “walk” to be performed on the energy hypersurface when cubic
and higher-order terms and/or coupling between orbitals and configuration
optimizations are important.

9. Generalized Brillouin-Theorem-Based Procedures

So far we have used the condition that the energy function be stationary to
define MCSCF schemes. The existence of a stationary point on the energy
hypersurface requires that the GBT be fulfilled at this point. Hence, iterative
MCSCF procedures may alternatively be developed by insisting that the
GBT be satisfied as the iterative procedure converges. A quadratically con-
vergent scheme may be obtained by further insisting that the error in the
GBT matrix in the (n + 1)th iteration should be the square of the error in
the nth iteration. Denoting the operators and states in the (n + 1)th iteration
with a tilde and those of the n'th with no tilde, using Egs. (2.18) and (1.38)
we obtain

W, = <0|[Q, H]|0) = <0|[Q, H]|0) + iKO|[Q, [H,2]]0)

+iC0|[[Q, H],5]|0) + O(x2, P?) (2.63)
V.1 = O|[R,H]0Y = <O|[R,H]|0) + iCO|[R,[H, A]]|0)
+ iCO|[R,[H,51]|0> + 0(<2, P?) (2.64)

since, for example,

<0|[Q,[H,2]]]0y — <O|[[Q, H],4]|0> = <O|[[Q, ], H]|0)
= x(0|[[Q,Q — 0* ], H][0>
= 0(x?}) (2.65)
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The last identity arises because the GBT is not fulfilled until convergence is
reached, and thus <O|[[Q,Q — Q*], H]|0> is of order  itsell. The double
commutator may be introduced in Eq. (2.63), and Egs. (2.63) and (2.64) may
then be combined to give

(:’v)awl B (\“;)" = - B}"(;) + 0(x*, P?) | (2.66)

where we have used Egs. (2.27)-(2.30). A quadratically convergent scheme
is thus obtained when the k and P matrices are determined from

W K
(V )n =(A — B),,(P) (2.67)

which is identical to the one-step second-order equation [Eq. (2.33)]. Hence
the one-step second-order procedure described earlier can also be viewed
as arising from the GBT.

Most MCSCF procedures that have been employed to date (Schaefer and
Miller, 1977, Chapters 3 and 4) have concentrated on deriving iterative
schemes based upon only insisting that

(O|[H,r*s]0) =0 (2.68)

in each step of the iterative procedure. As successive sets of MCSCEF orbitals
are determined in each step of the iterative procedure, the configuration space
equivalent of the GBT (0|[ H, |n)><0|]|0> = 0is achieved through performing
a CI calculation within the limited configuration space.
To see how Eq. (2.68) can be used to define an iterative process, let us con-
sider the first two terms in the expansion of exp(id)[0):
0> = Y Kk, (r*s—s*n)|0) (2.69)
This first-order approximation to the true exp(i4)|0)> then leads us to consider
the variational wavefunction
0> ~ Xo|0> + Y X,.(r*s — s*n)|0) (2.70)
containing the linear variational parameters X, and {X,,}. The optimal
values of these parameters may then be determined from the superconfigura-
tion interaction (SCI) secular problem (Banerjee and Grein, 1976)

HX = ESX (2.71)
The SCI Hamiltonian matrix elements are defined as

Hq,s = O|H(r*s — s*n)|0) 2.72)
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which for real orbitals reduces to Eq. (2.68):

Ho s = CO|[H,r*s]|0> = H,y (2.73)

The other matrix elements of H are
Hoo = <O|H|0) (2.74)
H = Or*s —s*N*H(t u — u*0)|0> (2.75)

The scalar product matrix S is defined in a similar fashion (e.g., Sy, =
{Or*s — s*r|0> = 0) and the eigenvector X has the components X =
{X o, X,.}. The GBT therefore states that in the so-called SCI secular problem
[Eq. (2.71)], the state |0> should be noninteracting with its single excitations
(r*s — s*1)[0)>. Once this occurs, Eq. (2.71) will have, as one of its eigenvalues,
the MCSCF energy {0|H|0>. The other eigenvalues, as in all variational
secular problems, represent upper bounds to other true energy levels.

The eigenvector X obtained from the SCI secular problem can be used to
define a transformation of the orbital appearing in [0). To see how this
transformation arises, we rewrite Eq. (2.70) as

|0 = X},'”[X’g + Y X' X {rts— s*r}]z Coldy  (276)
r>s g
The effect of Z,,x(r‘”s — s*r)X,, on each configuration lr,f)s> results in two

new configurations in which spin orbital ¢, is replaced by ¢, and vice versa.
For example, the effect on 1*2* - - - N*|vac) is to give

N
¥ [Z X P25 - i=D*r*i+ 1)*---N*
i=1r>i

- Y X dt2r i Drra+ Dt - N*] vac) (2.77)

r<i

If the spin-orbitals occupied in any configuration |¢,> are denoted by ¢,,
then the above SCI wavefunction in Eq. (2:76) can be expressed as

0y =X %Y Cull [X0f+ +) Xt =) X, ] [vacy + O(X}) (2.78)
g teg r>t r=t

That is, the wavefunction used in the SCI calculation (Eq. (2.70)) is identical,
through first order in the X, parameters, to a new linear combination of
configurations with the same C,, coefficients but with orbitals ¢, that can be
expressed in terms of the original orbitals as

Fi=Xob + Y. Xpb,— Y X, 0, (2.79)

r>t r<t
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Because this orbital transformation is not properly unitary (the {@,} are
normalized and orthogonal only through first order in the X,,), the set {{,}
must, in each iteration, be orthonormalized (by, for example, the Schmidt or
Loéwdin procedure).

The SCI iterative procedure thus consists of guessing a starting set of
orbitalsand generating the {C,,} expansion coefficients from a CI calculation.
The SCI secular problem is then constructed and solved (to give X) after
which the new orbitals {,} are computed as in Eq. (2.79) and subsequently
orthonormalized. These new orbitals are then used to perform a new CI
calculation to generate new {C,,} coefficients and hence a new SCI secular
problem. This iterative procedure is continued until convergence is achieved
at which time the GBT is fulfilled. A significant drawback of most SCI
procedures as now implemented is that they do not treat the coupling between
orbital and configuration optimization. SCI methods that treat both optimi-
zations on equal footing represent a significant improvement. In situations
for which strong coupling exists between the orbital and configuration space,
the above-described two-step SCI process might thus be expected to converge
slowly. As we mentioned above, the quadratically convergent one-step second
order procedure discussed in the preceding section could also be viewed as
being defined, through Eq. (2.66), to make the GBT obeyed. It is then impor-
tant to explore how the two iterative methods, both of which can be stated
through the GBT, differ. The difference arises from terms in

(0| exp(—iS) exp(— iA)H exp(iA) exp(iS)[0)

that are quadratic in S or A and that arise from the second-order components
of the individual exponential operators. For example, (0|HiZi2|0) and
<0|iSiSH|0) arise in the exponential formulation but do not arise in the
expectation value of the SCI wavefunction given in Eq. (2.69). The neglect of
second-order terms and the requisite reorthogonalization of the MCSCF
orbitals differentiate between the two methods and render the SCI approach
not quadratically convergent.

Because SCI approaches to the MCSCF problem are not based upon
extremizing the full second-order energy expression described above, their
convergence ralte is linear rather than quadratic, although in practice such
SCI methods may sometimes demonstrate approximate quadratic con-
vergence. Because the SCI energies result from solutions of an eigenvalue
problem, each SCI energy is an upper bound to the respective true energies
(ground and excited). The values of X;;obtained from the SCl secular problem
[Eq.(2.71)] when used to carry out orbital modifications [ through Eq. (2.79)]
yield a new multiconfigurational wavefunction whose Hamiltonian expecta-
tion value is, because of the subsequent orthonormalization needed, no
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longer identical to the eigenvalue E that was obtained from the SCI secular
problem.

In the unitary second-order method, the energy expression E(A, S) given in
Eq. (2.25), when truncated after terms linear and quadratic in 4 and S, is no
longer an expectation value of H and thus no longer bounds the ground-state—
total energy. Thus, the stationary points of E(4,S) do not form rigorous
upper bounds to the respective true ground- and excited-state energies. Of
course, there are good reasons to believe that, in the neighborhood of an
eigenstate, E(4, S) can be well approximated by this quadratic hypersurface.
Moreover, the values of P and x obtained from making E(A, §) stationary,
when used in Egs. [l.SZ}_vanq' (2.14) to obtain |6>, do give a proper upper-
bound energy through (0|H|0).

Having now discussed how one can go about optimizing the electronic
energy of an MCSCF wavefunction, we turn our attention to two special
subclasses of this procedure; the single-configuration SCF problem and the
frozen-orbital CI problem. Because we choose to view these situations as
special cases of the above MCSCF problem, we obtain a specialized view of
SCF and CI theory. There already exist in the literature extensive and clear
treatments of SCF and CI as they are more commonly treated within the
linear variational framework. Hence we have not attempted to cover the more
conventional aspects of these topics here.

C. SINGLE-CONFIGURATION SELF-CONSISTENT
FIELD METHODS

1. Quadratically Convergent Scheme

Let us consider a situation in which we choose to work with a one-con-
figuration wavefunction for which the orbitals are allowed to vary. This
single configuration |0) may still consist of a linear combination of deter-
minants whose (fixed) coefficients are determined by the space and spin
symmetry imposed on [0). The orbital variations may be described by exp(i2)
and an optimal set of orbitals determined as in the previous secticn [by
simply neglecting terms involving exp(iS)]. The second-order Eq. (2.33) then
reads

W=(A, -8B« (2.80)

where A,, and B,, are defined in Egs. (2.29) and (2.30). A quadratically
convergent scheme for optimizing orbitals may be described as follows. Given
an initial guess for the “occupied” orbitals, we use Eq. (2.80) to determine
k, and then we use Eq. (1.52) to generate a transformed set of orbitals. This
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process is repeated until convergence is reached. This process requires, even
in the one-configuration case, a partial two-electron integral transformation
in each step of the iterative procedure. For a single-configuration case, a
more restricted two-electron integral transformation can be used in each
step if, instead of the above quadratic procedure, one uses an approach that
is based on the Brillouin condition alone. These so-called first-order BT-
based self-consistent-field (SCF) procedures are, however, not quadratically
convergent, much as the SCI method treated earlier is only a linearly con-
vergent MCSCF method.

2. Brillouin-Theorem-Based Methods
The HF or SCF approaches based upon the BT itself,
(0|[H,r+s]|0) =0 (2.81)

introduce a decomposition of the Hamiltonian into a Fock operator (which
the spin-orbital basis is chosen to diagonalize) .

F=Yh,+VJr's=Y er'r (2.82)

where h,, is the one-electron part of the Hamiltonian. A Fock potential

Ve vor's (2.83)

and the electron repulsion term W combine with F so that
H=F-V+ W (2.84)

The one-electron Fock potential V is thus far arbitrary. Different choices
for V correspond to different choices of the spin-orbitals {¢,} and their
corresponding orbital energies {¢,}, since we require the ¢, and ¢, to obey

hrx =+ Ks 5 'SH‘EI' {285}

The BT [Eq. (2.81)] can now be used to determine V and hence to determine
the spin-orbitals ¢,. By inserting the H of Eq. (2.84) into Eq. (2.81) we obtain

0 = <O|[r*s, H]|0) = (&, — £)<0|r*s|0> + Y. (¥;,<0]j* 50> — V,,<0*j[0)
i
+ *Z (<sk| i1 <O k110> + <k |jr> <O|1* k* js|0D) (2.86)
Jd.J

where

Cif] |kty = Cijlkty = Cijlik> (2.87)



C.  Single-Configuration Self-Consistent Field Methods 37

Since the one-electron density matrix is diagonal for the single-configuration
case considered here, we have

Olr*s|0) = 6,4, (2.88)

where v, denotes the occupation number for orbital ¢, in |0>. Because ]0)
may consist of a linear combination of determinants, the v, are not neces-
sarily zero or unity. The Fock potential determined from Eq. (2.86) is then

Vov, — v = Y (<sk| | <O K]0 + CIk||iry <OJIt Kk js|0)) (2.89)
kIj

which is only defined from the Brillouin condition when v, — v, is nonzero.
Notice that the symmetry of the Fock operator defined in Eq. (2.82) is deter-
mined by the symmetry of the above Fock potential. This in turn depends
upon the symmetry of the density matrices appearing in Eq. (2.89). As a
result, the Fock operator may not have the same symmetry as the full elec-
tronic Hamiltonian for specific choice of the reference state [0).

Before discussing various possibilities for how to choose the part of the
Fock potential that is not determined from the BT, let us describe the itera-
tive procedure that can be used for obtaining a set of optimized orbitals
given any final choice for the form of the full Fock potential. From an initial
guess of orbtials, we use Eq. (2.89) together with one of many choices of
the remainder of the V to determine a Fock potential. The Fock matrix
F = h + V(which is hermitian) is then diagonalized, and a new set of orbitals
is determined, which are then used to set up a new Fock potential. This
(first-order) process is continued until convergence. The above HF iteration
process is nothing but a variant of the commonly used Roothaan SCF pro-
cedure (Roothaan, 1951, 1960).

3. Choices of the Nondefined Blocks of the
Fock Potential

The part of the Fock potential not defined through the Brillouin condition
is often chosen on physical ground [e.g., to have the resultant orbital energies
represent ionization potentials and electron affinities (via Koopmans’ theo-
rem) ] (McWeeney and Sutcliffe, 1976). For a reference state containing a set
of occupied spin-orbitals that we denote by o, f§, y, 6 and a set of unoccupied
spin-orbitals denoted m, n, p, g, the Fock potential in Eq. (2.89) is defined by
the BT only between occupied and unoccupied orbitals. From Eq. (2.89) we
get

Vi = 3, <my| |y (2.90)
:
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One commonly used choice of the remaining blocks of V results in a Fock
potential that can be expressed as

V=73 (nyllsydrts (291)

TiFsS

where r and s run over all spin-orbitals. With this choice, the orbital energies
represent (through Koopmans’ theorem) the ionization potentials and elec-
tron affinities of |0>. Of course, other choices of the nondetermined part of
V have been made in the literature. For example, the (unoccupied—unoccu-
pied) part of the Fock potential (V,,,) has been chosen to correspond to a
so-called VV~! potential (Kelly, 1964), thereby making the virtual orbitals
more suitable for use in the calculation of excitation energies.

Calculations such as the one discussed above do not involve imposed
symmetry restrictions on the reference wavefunction. Hence this approach
is referred to as the unrestricted Hartree-Fock (UHF) method. When sym-
metry restrictions are imposed upon the reference wavefunction the resulting
calculation is denoted a restricted Hartree—Fock (RHF) calculation. When
the simplest RHF type calculation is carried out for a closed-shell reference
state (i.e., one having doubly occupied orbitals), the nondefined part of the
Fock potential (the occupied—occupied) and (empty—empty) part is often
chosen to have the same form as the (occupied—empty) part defined from
the BT. We then would obtain for the entire Fock potential

V=3 @2¢ry|sy> — <ry|ysd)rd s, + 1 sp) (292)

r.s

where the indices r, s, and y refer to orbital indices and the subscripts «, 8
denote the electron spin m, component. The orbital energies ¢, then corre-
spond to approximate ionization energies. For a state that has some doubly
occupied and some partially filled orbitals, the choice of the nondefined
blocks of the Fock potential is less obvious. The BT defines the blocks that
connect(occupied-partly occupied), (occupied—empty),and (partly occupied—
empty) orbitals. The (occupied—occupied), (partly occupied-partly occupied),
and (empty—empty) blocks of the Fock potential are not defined through
the BT and many choices have been suggested. One common feature of any
of these choices is that the sets of orbitals one obtains in a converged calcu-
lation using any arbitrary choice of the nondefined Fock matrix blocks would
represent the same SP on the energy hypersurface. The physical interpre-
tations of the orbital energies do, of course, depend on the actual choices
made for these “diagonal blocks” of V. For this reason, much work has been
devoted to finding particular choices of diagonal blocks that are optimal for
particular physical situations. It is not our intention to provide a lengthy
discussion of the merits and weaknesses of numerous such methods. Rather,
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we merely wish to stress that the undetermined blocks of V represent a certain
freedom or flexibility that can be exploited to generate orbitals whose orbital
energies have some approximate physical meaning.

4. Practical Considerations

Although it is not obvious from Eq (2.89) that a two-electron integral
transformation is not required to set up the Fock potential matrix for a
general reference state, it becomes clear upon actually working out the
matrix elements for a particular case. For example, for either a spin-
unrestricted reference state or a closed-shell reference state, the Fock po-
tentials of Egs. (2.91) and (2.92), respectively, are seen to involve only a
two-index transformation [e.g., sum over y in Eq. (2.92)].

From the above discussion it should be clear that the first-order procedures
based upon using the Brillouin condition to define V suffer from some draw-
backs. They involve arbitrary choices of certain elements of V (this is related
to the invariance of |0) under certain orbital rotations). They are not qua-
dratically convergent and may thus suffer from convergency difficulties. On
the other hand, the freedom in choosing elements of V (including the diagonal
blocks) is useful when one wishes to cause the resultant orbital energies to
have certain physical interpretations (e.g., Koopmans’ theorem of ionization
energies or excitation energies). The exp(il) approach to HF orbital opti-
mization is quadratically convergent but contains no orbital energies for
use in physical interpretation. It avoids the problems related to arbitrary
choices by simply eliminating from the orbital optimization operator space
those operators (r*s — s*r) that are redundant and that therefore have no
effect on the energy to be extremized.

D. CONFIGURATION INTERACTION METHOD

1. Connection with Second-Order MCSCF Theory

Next we consider the optimization of the total energy when orbital relax-
ation is not explicitly accounted for in the calculation. The optimization of
the total energy may then be carried out either in terms of the configuration
expansion coeflicients C,, of Eq. (2.4) or in terms of the parameters P of
Eq (2.9). Let us consider initially the optimization of the total energy when
the configuration expansion coeflicients of Eq. (2.4) are used as linear vari-
ational parameters. The total energy then becomes

E(Cy0,Ci0,...)= Z Cg'ncg(}<¢’g'|H|¢’g>/ZIC_.;012 (2.93)
.9’ q
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where we have assumed that the configuration basis states |¢,) are ortho-
normal. Because the energy function contains no higher than quadratic
terms in the C,, determination of stationary points of the energy function

BEIC 5. Chaiia 50 (2.94)

leads to a set of eigenvalue equations in the configuration expansion coef-
ficients

HC, = EC, (2.95)
where H is the matrix representative of the Hamiltonian
Hg, = <¢9|H|¢o'> (2.96)
and the eigenvector
Co = {C10C20 """ Cpo} 297

determines the values of the set of parameters at the SP, where the value of
E is E,. In fact, the same eigenvalue equation, Eq. (2.95), can be used to
determine all extrema of the energy within a given configuration space be-
cause the energy function contains no more than quadratic terms in C.
Equation (2.95) is referred to as the CI eigenvalue equation.

The optimization of the total energy might alternatively be expressed in
terms of the variation parameters P [in exp(iS)]. The energy function E(S)
would not be quadratic in these parameters P but would contain cubic,
quartic, etc. terms in P. An explicit solution from which to determine a SP
of the energy function when this unitary exp(iS) operator is used is very
difficult to establish; hence an iterative procedure is required to determine
SPs of the energy hypersurface. One iterative scheme that is quadratically
convergent is obtained if the terms that refer to the orbital optimization
[exp(id)] are neglected in the MCSCF derivation performed in Section B.
The second-order Eq. (2.33) then would read

V=A,P (2.98)
where A, , is defined in Eq. (2.29) as

(A22)mn = <m|H|n) — 8,,.CO|H|0) (2.99)

V. = <O|[R,,H]|0> = {n|H|0) (2.100)

and the indices n, m are different from 0. The iterative procedure may be
described as follows. For an initial set of configurations (|0), |n)) the matrices
A, and V can be formed. The matrix P then is determined from Eq. (2.98),
and Eq. (2.14) is used to obtain a transformed set of states [one can use
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alternatively Egs. (2.15) and (2.16)], and the whole process is repeated until
convergence is obtained. The state [0> that would be determined in this
iterative procedure would, of course, be the same as that obtained by solving
the CI eigenvalue problem.

In the derivation of Section B we considered the energy function to depend
on both orbital variation parameters and the configuration expansion coef-
ficients. By freezing the orbital variation parameters, we prohibit orbital
relaxation effects from being considered explicitly. To obtain with a Cl
calculation, which does not permit such orbital relaxation, the same quality
as in an MCSCF calculation would require the inclusion of many more
configurations, whose purpose would be to compensate for the neglect of
explicit orbital relaxation. These additional functions would include a large
number of singly excited configurations, but some double, triple, etc. excited
configurations would also be needed to fully compensate. If all configurations
arising from a given orbital basis were included in a CI calculation (full CT),
the need for considering orbital relaxation effects explicitly would, of course,
not be present because all orbital variation parameters (1) would then be
redundant variables. However, the number of configurations required to
perform a full CI calculation is usually prohibitively large even for systems
of modest size. Because CI expansions converge very slowly (as a function
of the dimension of the CI secular problem) and the requisite computer
time increases very rapidly as more and more configurations are included,
efforts must be made to optimize the convergence of a CI calculation by
facing two major problems. First, we must make a reasonable choice of
orbitals to use in the calculation, and second, the configurations that are to
be included in the calculation must be picked by some physically motivated
procedure.

2. Choice of Orbitals for Use in Cl

The most commonly used set of spin-orbitals for setting up a CI matrix
eigenvalue problem is the set of orbitals obtained in a RHF calculation.
These orbitals form a particularly convenient set in the sense that they ful-
fill the BT (i.e., there are no matrix elements connecting the HF ground
state and singly excited configurations). However, these orbitals are not
especially well suited for use in the CI problem if one desires a reasonably
short CI expansion to give high precision. One major problem with the
HF orbitals comes from the fact that the electrons in the virtual canonical
HF orbitals “feel” an N-electron potential and not an N — 1 electron poten-
tial, as would be physically more proper.

One partial solution to this problem is to use a set of orbitals obtained
in a MCSCEF calculation for setting up a ClI matrix problem whose dimension
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is much larger than that of the MCSCEF calculation. The orbitals would then
be relaxed with respect to the configurations included in the MCSCEF calcu-
lation. Since this MCSCF function normally would include the dominant
configurations, a very large fraction of the orbital relaxation effects would
would thus explictly be accounted for in the following CI calculations.
Another set of orbitals that has been used as a basis for CI calculations
is the so-called iterative natural orbitals (INO) (Bender and Davidson, 1967),
which are obtained in the [ollowing manner: From a limited number of
configurations (the same in all iterations) a reference state |0) is determined
by the CI procedure. This reference state is then used to set up the one-
electron density matrix (O|r*s|0)>, which upon diagonalization gives a set
of “natural orbitals.” These orbitals are then used for setting up a new CI
problem, a new reference state |[0) is then determined, and the procedure
is continued until a self-consistent set of natural orbitals is determined.
Clearly, the INOs are not identical to the MCSCEF orbitals discussed earlier.
The former are obtained by diagonalizing the first-order density matrix,
whereas the MCSCEF orbitals are determined by minimizing the electronic
energy. The use of INOs in CI calculations is motivated by Lowdin’s (Lowdin,
1955) analysis, which showed that such orbitals result in the most compact
configuration expansion of |0 (i.e., the fewest configurations being required
to generate a wavefunction of a given overlap with the true wavefunction).
The choice of configurations to include in an INO calculation requires
particular attention. If the configuration list only includes configurations
that are doubly excited with respect to each other, any set of orbitals would
be natural orbitals. To make the natural orbital concept useful, the list of
configurations has to contain configurations that are singly excited with
respect to each other. For example, for the ground state of the beryllium
atom, a natural choice of configurations in an MCSCF calculation would
be 1522s? and 15?2p®. In the INO calculation, the configuration list would
further have to include 1s?2sns and 1s22pnp,n = 3,4, 5, ... . These configu-
rations would then, to a certain degree, simulate the orbital optimization
paramelters K,,,, and k,,,, contained in the MCSCF calculation.

3. Selection of Configurations

Let us now move on to discuss some basic ideas (Schaefer and Miller,
1977, Chapter 6) behind selecting the number of configurations to be included
in the CI calculation. With a well-chosen set of orbitals, it is thought that a
very small fraction of all possible configurations gives the most important
contributions to the total energy. Estimates of the importance of the indi-
vidual configurations may be obtained from a perturbation theory analysis
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of the CI secular problem [Eq. (2.95)). An order analysis based upon
Rayleigh—Schrodinger perturbation theory (RSPT) shows immediately the
order in which any particular class of configurations enters into the wave-
function. For example, for a set of HF orbitals of a closed-shell system, only
the doubly excited configurations contribute to the first-order wavefunction
(see Section 3.F). Estimation of the coefficients of the individual configura-
tions through perturbation theory may then be used to select the important
configurations by specifying a certain tolerance for the coefficient (or the
energy contribution) below which the configurations are not included. For
cases in which several configurations are very important to the description
of the system, these configurations may be used to form a so-called reference
space whose coupling with other configurations can then be estimated
through perturbation theory. Another approach is based on performing a
series of (n + 1)-dimensional CI calculations among the n-dimensional refer-
ence space and a sequence of configurations that are obtained as low-order
excitations out of these reference functions. The criterion for rejecting con-
figurations tested in this manner usually has to do with the energy lowering
of one or more of the n reference-state energies caused by the “added con-
figuration” (Buenker and Peyerimhofl, 1974).

4. Treating Large Cl1 Matrices—Direct Methods

When any such preselection of configurations has been performed, one is
often faced with the problem that 10-300,000 configurations have to be
included in the final CI calculation. Conventional matrix diagonalization
routines such as the one used in the Householder algorithm, which modifies
the elements of the matrix as it proceeds, cannot be used to determine the
eigenvalues and eigenvectors of the CI matrix. For this reason, specialized
approaches have been developed (Schaefer and Miller, 1977, Chapters 7 and
8) to determine a few selected roots (usually the lowest) of such very large
CI matrices. One very important feature of these methods is that they do
not entail modification of the CI matrix while determining a particular root.
To clarify this point, we describe two such techniques, which are referred
to as the power method and the perturbation theory method. Although
much more efficient approaches have become available, we have chosen to
discuss these techniques because they stress, in a simple manner, the basic
principles underlying the direct determination of particular eigenstates. In
the power method one considers a sequence of operations of the Hamiltonian
matrix on an, in principle, arbitrary initial guess of the state vector C°:

£ O | Sl | S SRR (2.101)
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The information content of the converged vector lim,_, ., H"C® can be under-
stood by expanding the vector C° in terms of the (unknown) exact eigen-
vectors C; of the Hamiltonian matrix

HCI = E1C‘ (2'102)
C? =3 ak,, a,— e (2.103)

By assuming that the eigenvalues of H are ordered such that
|Eo| = |E\| = |Es) =20 (2.104)

we obtain the formal result
E- n
HnCU = EB aoco + Z aj " Cj {2.105)
j=1 ED

which, because |E;/E,| < 1, reduces for large n to
H"C® = a,E3C, (2.106)

Of course, to arrange the energy ordering assumed above, one might have
to subtract from all diagonal elements of H a constant that depends on the
largest positive diagonal H;; element. This constant would then be added
back onto the resultant E,, value to obtain the true lowest desired eigenvalue.
Hence we see that, for large enough n, the vectors H"*'C° and H"C® should
be proportional, with their proportionality constant equal to E,, and C,
should be the eigenvector of the Hamiltonian matrix having the largest
eigenvalue E,. Notice from Eq. (2.106) that the norm of H"C® grows with
n; therefore, normalization of the eigenvector C° may be required during
the above iterative scheme. E, and C, are obtained without ever modifying
the elements of matrix H; only simple row-by-row multiplication of H with
a vector is involved. In fact, as we show below, one can even circumvent
the explicit reference to elements of H by using integral-driven matrix multi-
plication techniques. Such steps become advantageous when one must avoid
having to read through the integrals many times. The convergency rate of
the power method is governed by the ratio E,/E, and by the choice of C°.
An inappropriate choice of the initial state vector C° may lead to slow
convergence (e.g., if a, vanishes, the power method, in principle, cannot
converge to C,). Once one has obtained the desired E, and C,, the next
eigenvalue of H can be found by employing H + |Eg||C,)>(C,| instead of H
in the next application of the power method. The lowest root of this

(H+ iEol |Co> (Coi)
matrix should then be E,.
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The power method as outlined above is not very widely used in large-scale
CI calculations because it is not usually very rapidly convergent. In contrast.
variants of the perturbation method described below do constitute viable
approaches to finding eigenvalues of large CI matrices. In the basic pertur-

bation method one introduces a decomposition of the full CI Hamiltonian
matrix

H=H"+V (2.107)

In what follows, we make the simplest possible choice of H?; we take it to
be the diagonal part of H. Another choice of H? that has been widely used.
(Davidson, 1975) involves taking H® to be a certain small subblock of H
(with H,, elements filling the remaining diagonal entries of H®), which
involves the Hamiltonian matrix elements of the most dominant configura-

tions in the desired eigenvector. Given a choice of H’, the CI secular problem
becomes

(H° - E)C= -VC (2.108)
By iterating on this equation according to the prescription
CH=(E W) e 8 (2.109)

one generates successively higher approximations to the desired C vector.
Corrections to the eigenvalue E are achieved at each iteration by premulti-
plying Eq. (2.108) on the left by the transpose of C° to yield

(E° — E)C%'C = —(CY'VC (2.110)

Initial estimates C° and E° must, of course, be made consistent with the
choice of H°. For the diagonal choice of H?, C° would correspond to a unit
vector C° = (1,0,0,. .., 0) and E° to the diagonal element of H (E° = H ).
If H® were taken to be a small subblock of a very large H matrix, Eq. (2.108)
could still be solved perturbatively since the dimension of the matrix (H® — F)
to be inverted would not be large. The iterative scheme contained in Eqs.
(2.109) and (2.110) generates successively higher-order corrections to the
desired energy and eigenvector.

To demonstrate how such perturbative methods lead to so-called direct
CI techniques, let us consider a simple application of Egs. (2.109) and (2.110)
to a CI wavefunction consisting of a dominant HF configuration |y > plus
all pair excitations of the form |p2> = m;) my pyp|dye>. The elements of
the V matrix can be easily written in terms of two-electron integrals

Vitb.mu = {ppt|mm) (2.111)
Vigens = Oalv¥| > + 8, {mm|nny (2.112)
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whereas

(¢’HF|HOI¢HF> = Ey (2.113)

and (#}|H®|$7' > is the Hamiltonian expectation value for the doubly excited
configuration r(,b;' >. The matrix product VC*"~ ! appearing in Eq. (2.109) can
be written as follows:

2 VaewCh Y = Y (wvlkkyCp (2.114)
kv kv

2 VoD =Y (v pupdCO V) + Y (mm|kkdCE ™ (2.115)
kv v k

Using theseresultsin Eq.(2.109) we obtain an explicit formula for the elements
of C™:

Clik =Y (E — Eyg) ™ '{wv|kk)C,™ Y (2.116)
kv 3
= (E—<gp|HOpy>) ! (2 |y 0+ 3 Cmm| Kk Cly “) (2.117)
¥ k

By writing out the elements of V and H? in terms of the integrals, we see that
the iterative scheme for the evaluation of C and E can be written entirely in
terms of sums over integrals and C”"~" and E values from the preceding
iteration. This fact allows this perturbation scheme to be programmed on a
computer in an integral-driven manner. That is, as the two-electron integrals
Cij|kly are brought into the core memory of the computer, all contributions
of each successive integral to all of the sums appearing in Egs. (2.116) and
(2.117) can be evaluated, multiplied by appropriate factors, and added to the
appropriate expansion coefficients. In this way, the computer is required to
read through the (presumably long) list of two-electron integrals only once
for each iteration. In this way, one avoids the explicit construction and storage
of the Hamiltonian matrix, which may be very large and much larger than
the number of two-electron integrals.

Techniques that permit the working numerical equations [e.g., Eqgs. (2.116)
and (2.117)] to be expressed as sums over explicit two-electron integrals are
referred to as integral-driven direct CI methods. The perturbation solution
described above is only a simple example of such methods. For more general
classes of CI wavefunctions, the expressions for the V matrix elements are
more involved. However, the basic structure and philosophy of the direct CI
techniques remain as outlined. These techniques have proven to be quite
useful in carrying out large-scale CI calculations, and such integral-driven
strategies have been used to efficiently implement the graphical unitary group
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approach (GUGA) for electronic structure calculations (Paldus and Boyle,
1980; Shavitt, 1978; Brooks and Schaefer, 1979).

5. Size Consistency

Thus far, we have concentrated on describing how the CI procedure is used
in practical applications and how it can be viewed as relating to the MCSCF
method. It is important to realize that even though difficulties having to do
with large CI matrices may be overcome, a serious problem remains inherent
in nearly all of the above methods. To understand the difficulty, consider how
one might perform a calculation of a potential-energy curve for the diatomic
Be,. Assume that a prior calculation on a single beryllium atom indicated
that the 252 and 2p? 'S configuration should be included in order to describe
the electron correlation in beryllium. Then to describe the correlation in Be,
in a balanced manner (i.e., such as to yield a 2s* + 2p?* level description of
both beryllium atoms upon dissociation), one must include the 2s32s2,
2522pd, 2p22sk, and 2pi2p3 configurations, where A and B label the two
beryllium nuclei. Hence, although a double-excitation CI or MCSCF could
be employed for Be, one needs to include (certain) quadruple excitation
(relative to 2s%2s3) for Be,. Clearly, for more complex molecular clusters
one would need to include even higher level excitations (e.g., eightfold for
Be,) to achieve a qualitatively balanced description of the complex and its
fragments. This is, of course, essential if one is trying to compute energy
changes (bond energies and energies of formation) for chemical reactions.
Then one must use a method that yields the same value for the molecular
complex energy (e.g., Be,) when evaluated at large interfragment separation
as the sum of the fragment (e.g., two beryllium atoms) energies evaluated
separately within the same method. Such methods are said to be size con-
sistent (Pople et al., 1977). The use of a restricted CI or MCSCF wavefunction
(e.g., doubly excited for Be,) could indeed yield a smooth potential-energy
curve free of obvious pathological behavior. However, such a wavefunction
would preferentially describe the electron correlation in the complex (Be,)
near its equilibrium geometry and would dissociate to yield fragments that
are described to a lower correlation level (e.g., the 2s32s3 configuration
would dominate).

The size consistency problem may be less significant if an appropriate
configuration selection is performed at each geometry on the molecular
potential surface, but the problem still remains as to how to efficiently choose
configurations that describe equally well an entire potential energy surface.
It may in fact be more straightforward to achieve this goal using an MCSCF
wavefunction, since the orbital optimization thereby included can make the
configuration expansion length short enough to be physically understood
and hence correctly chosen. As we discuss in more detail in Chapter 3, this
question relating to achieving a balanced description of a molecule and its
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fragments is important and not easily addressed within a variational frame-
work.

6. Discussion

Because the CI technique has been the most widely used approach to
treating electron correlation problems, many advances have been made in
matrix storage techniques, two-electron integral transformations, the use of
unitary group tools, matrix eigenvalue and eigenvector determinations, and
configuration selection processes. We by no means intend to treat these
advances here; many of them are reviewed well in Chapters 6-8 of Schaefer
and Miller (1977). It is essential that one realize that the monumental develop-
ment of exactly these same data management methods is what makes it
possible to implement not only efficient CI computer programs but also
highly efficient MCSCF, HF, coupled-cluster, and Green'’s function routines.
To implement any of the above quantum-chemical methods in a state-of-the-
art manner,one must make extensive use of many of the advances in numerical
methods and data handling that the scientists who have been instrumental in
developing efficient CI programs have made.

PROBLEMS

2.1 Using the one- and two-electron integrals given below, carry out an
SCF calculation for the 16?HeH * ground state using a first-order procedure.

1. By expanding the molecular orbitals {¢,} as linear combinations of
atomic orbitals {y,,},

¢k = Z anx;l
I

and using the definition of the closed-shell Fock operator given in Eq. (2.92),
show that the Fock eigenvalue equation can be written in terms of the atomic
orbital basis as

Fc = Sce
where the overlap matrix is
S = <u|v>
the elements of the Fock matrix are

Fuw = Cullvy + 3 P,y (2K p| vy — Cuplovy) (A)
po

h is the one-electron operator in the Hamiltonian, and the charge bond
order matrix P is defined as

I *
Ppa s z Cpkcok
k
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2. Show that the HF total energy for a closed-shell system may be writ-
ten in terms of integrals over the orthonormal HF orbitals as

oce occ

E(SCF) =2 Y < Jhld> + §{2<kf|k1> — Ckl|IkY} + Y (Z,Z,/R,)  (B)

v

3. Show that the HF total energy may alternatively be expressed as

oce

E(SCF} = {sk e <¢I¢|h|djk>} s Z(zltZ\'/Rur) ‘C}

'EX

where the {g,} refer to the HF orbital energies.

To carry out an SCF calculation on the ground state of HeH"* at R =
1.4 a.u., the following information is to be used. The orbital exponents of
the Is, Slater orbitals of the He and H are 1.6875 and 1.0, respectively. The
atomic integrals required to carry out the HF calculation are (in a.u.)

O S e

hyy = —26442,  hy=—17201, hy,=—1513, (b= Glhld),
|11y = 10547,  (11]21) = 04744,  (12]12) = 0.5664,
22|11y = 02469,  (22]21> =03504,  (22|22) = 0.6250

where 1 refers to ls,,. and 2 to lsy. In this and the following problems we
shall employ the indices 1 and 2 to label either the molecular orbitals or the
atomic orbitals whenever doing so is not confusing. We shall reserve the
notation 1o and 2¢ primarily for describing the orbital occupancies arising
in the wavefunctions. As an initial guess for the occupied molecular orbital
use ¢y ~ lsy,.

4. Form, with this initial guess of the occupied molecular orbital, a
2 x 2 Fock matrix, using Eq. (A) for F,.

5. Solve the Fock matrix eigenvalue equations given above to obtain
the orbital energies and an improved occupied molecular orbital. In so
doing, note that the normalization condition {¢,|¢,> = 1 = C[SC, gives
the needed normalization condition for the expansion coeflicients of the ¢,
in the atomic orbital basis.

6. Determine the total SCF energy using Eq. (C) at this step of the
iterative procedure. When will this energy agree with that obtained by using
the alternative expression for E(SCF) given in Eq. (B)?

7. Use the ¢, molecular orbital from question 5 to determine a new
Fock matrix.

8. Determine a new set of orbital energies and an improved occupied
molecular orbital.
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L 9. Determine from Eq. (C) the SCF total energy at this step of the
iterative procedure.

The iterative process may be continued until convergence. As a conver-
&enoe criterion, assume that the difference between the SCF total energy
n two successive iterations must be less than 10~° a.u. Listed below are
the HF total energies (in a.u.) obtained during the iterative procedure beyond
the two iterations performed above:

—2.842151, -—2.843221, —2.843393,
—2.843420, —2.843425, —2.843425

10. Show, by comparing the difference between the SCF total energy at
bne iteration and the converged SCF total energy, that the convergence of
he above SCF approach is linear or first order.

11. Is the SCF total energy listed above in each iteration of the SCF
brocedure an upper bound to the exact ground-state total energy?

The converged self-consistent set of molecular orbitals ¢, and ¢, is

@1 = 09000 15, + 0.1584 sy, ¢ = —0.8324 Lsyy, + 1.2156 sy,

12. Show, using the one- and two-electron integrals in the molecular
prbital basis,

Ry = —2.6158,  (1|h|2) = 0.1954, 2y = —1.3154
(11|11 = 0.9596, 121y = —0.1954,  (12[12) = 0.6063,
{12]21) = 0.1261, (22[21) = —0.0045,  (22|22) = 0.6159

hat the converged values of the orbital energies are
g = —16562, g, = —0.2289

13. Does this SCF wavefunction give rise (at R — oo) to proper dissocia-
on products?
2.2 Now carry out an SCF calculation for the same closed-shell HeH*

ystem using a second-order SCF procedure. Some of the integrals used in
roblem 2.1 will be useful again here.

1. Show that the one- and two-electron density matrices decouple as
bllows for a closed-shell reference state:

YO s,J0> = 6,2v,, T <Ol s t,1,J0> = (46,8, — 26,8V,

here v, is the occupation of orbital ¢,. That is, if ¢, is an occupied orbital
= 1, and if ¢, is unoccupied v, = 0.
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2. Show that the A,,, B,;, and W matrices of Egs. (2.29), (2.30), and
(2.27), respectively, may be written for a closed-shell system as

(As apma = CO\UBE s + B3 o H,m o, + my 2,[0>
= 2| b + iy + 1y 5 (201> = )
~ 6mn§{2<arlﬂy> — Lay|vB>}
+ 2nor| fmy — <nrx!mﬁ>]

(BI l)nﬂ,ma e <0![ﬁ: L o ﬁ; ﬂ,g,H,iI: m, i+ a; "'.B]|0>
= 2[(mn|Pa) — 2(mn|op)]

Wi = <O| [0 m, + oy mp, H]|0D = Z[hm

+ Y {2<my|oyy — <m}’|ya>}:|

Again use as the initial guess of the occupied molecular orbital Isy,.

3. Given this guess for ¢, , determine the virtual or unoccupied molecular
orbital ¢, using a Schmidt orthogonalization procedure. The atomic
integrals required are given in Problem 2.1.

The second-order SCF procedure requires knowledge of the integrals in
the basis of the set of initial orthonormal molecular orbitals (¢, and ¢,
obtained above). The one- and two-electron integrals in this basis are given
below (in a.u.):

by = —26442, hys = —1.2870, hy, = 00223
(L1 = 1.0547, (11]21y = —0.1663,  <12]12) = 0.5567,
22|11y = 0.0765, 22|21y = 00171, (22]22) = 0.6200

where, as before, 1 denotes the occupied and 2 the unoccupied molecular
orbital.

4. Determine the SCF total energy that corresponds to this initial guess
of molecular orbitals.

5. Determine the 4,,, B,,, and W matrix elements.

6. Determine the k matrix and the unitary matrix X = ¢~

7. Determine the new improved set of orthonomal molecular orbitals
resulting from applying X to ¢, and ¢,.

The one- and two-electron integrals may now be evaluated in the set of
improved molecular orbitals and the iterative procedure thus may be con-
tinued until convergence is obtained. The HF total energies obtained during



52 2 Energy and Wavefunction Optimization Methods

the iterative procedure become
—2.80504513, —2.84303574, —2.84342526, —2.84342527

8. Show by comparing the difference between the SCF total energies at
successive iterations and the converged SCF total energy that the con-
vergence of the above SCF approach is quadratic or second order.

2.3 Given the one- and two-electron integrals in the SCF orbital basis
found in Problem 2.1, carry out a two-configuration CI calculation on HeH *
using the 162 and 202 configurations.

1. First obtain expressions for the CI matrix elements H;; (i, j = 162,20?%)
in terms of one- and two-electron integrals.

2. Show that the resultant CI matrix is (ignoring the nuclear repulsion
term)

—4.2720 0.1261
0.1261 —2.0149

3. Obtain the two CI energies and eigenvectors for the above matrix.
4. Show that the lowest-energy Cl wavefunction is equivalent to the
following two-determinant (single configuration) wavefunction:

i@ ¢, + b'2¢p )a(a'*dp, — b'2¢,)p|
+ |(@' ¢, — b' 2P )a(a'*P, + b'2¢,)p|]

involving the polarized orbitals a'’?¢, + b'/?¢,, where a = 0.9984 and
b = 0.0556.

24 Using the same information as in Problem 2.3, carry out a three-
configuration CI calculation on HeH* at R = 1.4 a.u. using the l¢2, 202,
and 1020 electronic configurations.

1. First express the proper singlet spin-coupled 1620 configuration as
a combination of Slater determinants.

2. Compute all elements of the 3 x 3 CI matrix.

3. Obtain the eigenenergies and corresponding normalized eigenvectors
for this problem.

2.5 Use the perturbative method described in Section D4 on the CI
matrix eigenvalue problem of Problem 2.4 to find the lowest eigenenergy and

its corresponding eigenvalues. Use as the initial guess for the eigenvector
C° = (1.0000,0.0,0.0) and take

—4.2720 0 0
W= —2.0149 0
0 0 —3.1988

and E° = —4.2720 for the first iteration. Use the energy computed using
Eq. (2.110) to start the second iteration, but notice that the C'!? vector you
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then obtain is so much different from C® that convergence of the process
is not likely. Therefore, average these C'® and C'" to obtain a new damped
C'" for use in determining C'2).

2.6 Perform a one-step second-order multiconfiguration HF calculation
on HeH™*, using the minimum Slater basis of Problem 2.1. The multicon-
figuration reference state will include the two configurations 16 and 202
As an initial guess of orbitals use the set of single-configuration HF orbitals
of the principal configuration 162 The HF orbitals were determined in
Problem 2.1, and the one- and two-electron integrals in the HF basis are
given there. The initial guess of the configuration state functions (denoted
|0> and |1)) will be the ones determined in the two-configuration CI calcu-
lation given in Problem 2.3.

1. Determine all of the nonvanishing one- and two-electron density
matrix elements

C0}r's|0), COfr's"tu|0)

and the nonvanishing one- and two-electron transition density matrix
elements

(1rts|oy, (1|rts'tu]0)

2. Determine the V, W, A, and B matrix elements,

3. Determine the k and the P matrix elements via the one-step second-
order MCSCF method.

4. Determine the transformed set of orbitals and states (|0) and |I>}.

5. Discuss whether the orbitals and states obtained after the first iteration
of the one-step second-order MCSCF procedure (question 4) differ from
the orbitals and states that would be obtained after the first iteration of the
two-step second order MCSCF procedure. If they differ, describe how they
would be obtained in the two-step procedure.

From the orbitals and states obtained in question 4 new one- and two-
electron integrals and one- and two-electron density and transition density
matrix elements may now be evaluated, and the iterative procedure thus
continued. The multiconfigurational HF total energies obtained during this
iterative procedure are

—2.85044942, —2.85066435 —2.85066436

6. Show by comparing the difference between the MCSCF total energies
ateach iteration and the converged MCSCF total energy that the convergence
rate of the used MCSCF approach is second order.

7. How must the converged MCSCF ground-state total energy compare
with the ground-state total energy obtained in the full CI calculation?
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8. Write a priori the ground-state total energy that would be obtained
if we used the three configurations 102, 262, and lo'2¢' in an MCSCF
calculation.

9. Write a priori the ground-state total energy that would be obtained
from a converged two-configuration MCSCF calculation that used the|lo?)
and |1620) configurations.

2.7 Consider n HeH* molecular ions, which do not interact because
they are infinitely far from one another.

1. Write the electronic Hamiltonian for this system in a basis consisting
of orthonormal orbitals that are localized on each of the HeH* molecules.
Retain only those contributions that are nonzero. In so doing, describe
each HeH* molecule with a bonding and antibonding SCF orbital pair.

2. Show that a CI calculation that includes the HF ground-state wave-
function consisting of the antisymmetrized product of orbitals localized on
the n ions having 1¢? occupancy, and all doubly excited configurations leads
to the following CI matrix of dimension n + 1:

nEHF BB B Ol
BaC ' 9 0
B0 C 0
B 0 O C
B e

where

C = E}s — Eyr + nEy, B = (11|22) = (1¢?|H|20?)
Eye = 2hy, + (11|11) = (1d?|H|lo?),
EdXe = 2hy; + (22|22) = (20*|H|20%)
As in other problems, 1 and 2 denote the bonding and antibonding SCF
molecular orbitals, respectively, for an isolated HeH* molecule.

3. Show that the correlation energy for n infinitely separated HeH*
molecules is

E

_ —Eur + Efir [(— Eyr + Efe)’
corr 2 4

+n<11[22>2]”2

4. Use the HeH™* SCF orbitals and results from Problems 2.1 and 2.3
to evaluate for n = 2, 4, 10, 100, and 1000 the correlation energy obtained
for n infinitely separated HeH* molecules. Show that the correlation energy
increases as n'/> when n becomes large. How would the correlation energy
increase in a size-consistent model ?
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Bartlett and Purvis (1981) have found that for H, and He the percentage
errors caused by size inconsistency in double-excitation CI calculation vary
as follows:

n Error H, (%) Error He ()
2 1.5 0.8
4 48 24
10 12.3 6.5
100 480 348
1000 79.1 708

5. Argue why the two-basis function HeH* problem is likely to under-
estimate the non-size-consistent contributions when compared with results
obtained in more accurate calculations on HeH*.

SOLUTIONS
2.1
L V= \;(2<f}'ln> = <iv|wd)
Let
$i= ‘é Cuidpr b, = Z i
Then
=,hzwr(C‘-,,C.,r,,){CueC,.g)(Z'(u\’lﬂ'V') = {pv|vp'))
= Z CoiCu iV
where

Vaw = X, Po 2o | vy = Cpv|v)), Py =Y C,\C

¥

Likewise

<¢‘| =3 %Vz o ;:(deir i RA|)|¢f> =2 h‘J z Cm uJ L

(T

Ry = <xn| il it g(z:lflr = R;ID'X;J'>

As a result F¢; = g;¢; can, by expanding ¢; as above, be expressed as

hiJ‘ + I/:J z CllfC j{hﬂﬂ uu}
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Then using
(élld’;) e 6:1 Z C,ul j.tjl

we have

Y CulesSeu — hyp — VauJCuj =0, forall i j
np'

This can only be true if
2y + Vi — ;8,,)Cpiy =0
s

This is FC = SCe.

2. The Slater-Condon rules tell us that the Hamiltonian expectation
value for a single Slater determinant in which spin orbitals ¢,, ..., ¢y are
occupied is

y |
B E; (il — 4V - ;(ZA/lf Rl + 5;[(*”“) — <kl|Ik>]

For a closed-shell system the orbitals are doubly occupied and therefore

1=, ¢y =B, b3 = ¢, by = 1P, etc, where ¢y, §,, etc. label the
occupied orbitals (not spin-orbitals). Hence by carrying out the spin inte-
gration in the above energy expression and using the fact that each orbital
is doubly occupied, we obtain

occ

E=2 Z AL ES Z {2<kl|kly — Ckl|lky)

where labels now refer to orbital index. The term ¥, ,(Z,Z,/R,,,) must then
be added on to obtain the total energy (including nuclear repulsion).

3. [Ifthe occupied orbitals ¢, obey F¢, = &,¢, then the above expression
for E can be rearranged to give

occ occ occ

E= g {{hulhldr> + g [2¢kI|kly — Ckl|IkY]} + ij<¢,lh£¢.,>

The first two terms in this expression can be recognized as (¢|F|¢$,>, where
F is the closed-shell Fock operator whose potential is defined in Eq. (2.92).
Hence

ocC

E= Z {Du|F|r> + Z (ulhlbi>

5 al 10 00 s —1.5895 —1.0369
LA Bar T\ —-1.0369 —0.8342
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5. g, = —16048, g, = —02348, ¢, = 09194 Is,. + 0.1296 Is,,

6. Egor = —2.8005. The two expressions will agree only upon conver-
gence of the SCF when F¢; = g;¢);, which was assumed in writing the ex-
pression for E containing the orbital energies.

7 p= 0.8453 0.1192 . —1.6246 —1.0836
0 \0.1192 00168/ 10836 08712

8. & = —1.6469, &, = —0.2289, ¢y = 09032 1y + 0.1537 sy

10. Escr — EY  (Escr — ESY)
0.001274 0.000002
0.000204 0.000000
0.000032
0.000005
0.000000

Second-order convergence requires that the error in the (n + 1)th iteration
is the square of the error in the nth iteration, In the first iteration above the
error is 0.001274; thus in the next iteration the error should be (0.001274)% =
0.0000016 if we used a second-order procedure. Since the second iteration’s
error is 0.000204, the convergency of the above SCF procedure is linear
rather than quadratic.

11. The converged SCF total energy calculated from Eq. (C) is an upper
bound to the ground-state energy, whereas the SCF total energy from Eq. (C)
during the iterative procedure is not a bound. It is only at convergence that
the expectation value of the Hamiltonian for the HF determinant is given
by Eq. (C).

12. The SCF orbital energies are determined to be

e = C|IkY + Y {2¢kI|kIy — <k Ik}
1

from which the orbital energies follow straightforwardly.
13.  Yes, the 162 configuration does dissociate properly because at R — oo,
the lowest-energy state is He + H*, which also has a 162 orbital occupancy.
22

1. Since ¢, and ¢, are either occupied or unoccupied ), (0|} s,|0> van-
ishes unless both ¢, and ¢, arein [0). Hence ) , (O0|r, 5,|0> = 9, 2v,. Likewise,
in Y ,, <Olry s7.t,u,|0) all four spin-orbitals must be in [0>. Then

Ol st 10> = 6,0 u,|0> — OJr, 1,5, u,]0>
= 050y — 03050 t,:0> + <O 1, ,52]0)

= (Ss:‘Srn R (ssu(srléan’
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where all orbitals are occupied. Clearly ) ,,- {O|r. s}t 4,|0) vanishes when
one or more of the four orbitals are unoccupied, and its equals 46,4, —
26,,9,, when all four orbitals are occupied.

2. Equation (2.42), when combined with the results of question 1, give

(A1 npma = 204phpm + 0 — 8,205 — 0 — 0 = §,,, z?:[(aﬂﬁ}!)ﬁl — 2{ay|yB>]
—0—0—3 {ny|ym)é,52 + 4<na| fm)
¥
+ 045 3, <ny|my>4 — 2{na|mp) + 0 + 0
¥
By )pme=0+0-0-0-0-0-0- 4(mn|0t,8) + 2(mn|ﬁa)
+0+0+0+0
Using Eq. (2.41) we find
Wom = 2hpe — 0 — 0 + 3" [4<my|ay) — 2{my|ya)]
¥

3. ¢y = lsy
¢2 = lS“ e <ls“| 13“&) ISH' = lSH — 0.5784 1811,

Normalizing ¢, requires that we divide by the square root of 1 + (1sy| 15>
— 2{1sy| Lsy>? to obtain

¢, = 1.2259 15, — 0.7091 15,4,

The coefficient matrix C whose elements C,, are the orbital expansion coef-
ficients then becomes
e 1.0 -0.7091
Thel LW
4, —2.8050

5. The excitation from molecular orbital 1 to 2 is nonredundant. The
relevant matrices thus become one dimensional:

Ay, = 18713, B, = —0.1530, W = —0.2880

Mt 0.0 0.1423 o 09899 —0.1418
: -\ -0.1423 00 2 ~\0.1418 0.9899

o i 0.8893 —0.8437
SR T 1.2135
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8. Escr — ESY  (Escp — ESY)
0.038380113 0.00147303
0.00038952 0.0000001 5
0.00000001

The error in the (7 + I)th iteration is the square of the error in the nth
iteration.
2.3
1. <la?|H|1a?) = 2hyy + <1 1|1 1), {20%|H|26?) = 2h,,
+ (22|22, (1e?|H|26%) = {11]22)
2. (lo?|H|le?) = (—2.6158)2 + 0.9596 = —4.2720
{26%|H|20%) = (—1.3154)2 + 0.6159 = —2.0149
(16?|H|26%) = 0.1261
3. E_ = —42790, E, = —20079, C_ = (09984, —0.0556),
C, =(0.0556,0.9984)
4. 5[l@'?¢, + b'2P,)ala' ¢, — b2 )
+ |(a“2¢ — b )a(a' 2, + b )]
— (@', + b'$,)a'"2p, — b''2¢,)
\/_
+(a'py — b'2p)a'Pd, + b2 h,)](af — P)
= (a b, — b, (@f — B)/y/2
= ald’lwf’lﬁl s bld’zaﬁbzﬁl

1. The singlet function with 162¢ occupancy is

1
— [1a2p| -1 B2
ﬁ[l Bl =1 p24(]
2. (1020|H}102)=‘/L§[2h,2+2(11|2]>]=ﬁ[0‘l954-0.!954]=0
1
lo20|H|26%Y = —[2h,, + 2(22|21>
(lo20|H[20%) ﬁ[ 2 121)]
= /2[0.1954 — 0.0045] = 0.2699
1620|H|1626) = hyy + hyy + (12|12) + (1221)
= —2.6158 — 1.3154 + 0.6063 + 0.1261 = —3.1988

The other matrix elements are derived in Problem 2.3.
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3. The 3 x 3 CI matrix

—4.2720  0.1261 0.000

—2.0149 0.2699

—3.1988
then has as its eigenvalues E; = —4.2792,E, = —3.2567,and E; = — 1.9497.
The corresponding eigenvectors have, as coefficients of |lo?|, [2¢?|, and
|lt720|, (0.9982, —0.0573,0.0143), (—0.0261, —0.2098,0.9772), and (0.0530,
0.9761, —0.2109), respectively. The ground-state total energy, including

nuclear repulsion, is —4.2792 + (2/1.4) = —2.8506.
2.5 First iteration:

E°—E=—(C%)VC°=0

and so we use E = —4.2720 in the first iteration to calculate C'V:
0 0 0
CM = (E - Ho)‘ l\!’C”, (E1 — HO)_1 =0 —0.4430 0

0 0 —0.9318

(Actually, the 1,1 element of this matrix is ill defined. However, this does
not cause trouble here since VC® has zero as its first entry. In general, how-
ever, this trouble arises wherever E° is taken to a diagonal element of H%):
0.0
VvC° = 0.1261
0.0

Therefore,

0.0
Ch = | —0.0559
0.0

A problem now arises: C'") does not obey intermediate normalization, which
was assumed in deriving Eq. (2.110) for E. Hence we must damp the itera-
tion process by averaging C'" and C° to obtain a better C'" (which must
then be intermediate normalized):

i 1.0000 0.0 1.0000
CH = 3 0.0 + 3 —0.0559] —» [ —0.0559
0.0 0.0 0.0

One finds that by not damping, the successive C™ computed (using E =
—4.2790) are wildly oscillating.
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C™ = [(0.9989,0,0.0140), (0.0, —0.0573, —0.0035), (1.0000,0.0004,0.0139),
(1.000,0.0797,0.0001), (1.0000, 0.0386,0.0138) ]

However, once the damping is introduced, we can proceed to find C* values
in a stable manner.

1.0000
E°— E=—(C%*VC = —(0,0.1261,0) { —0.0559 | = 0.0070
0.0000

and so E = E° — 0.0070 = —4.2790. Now compute C'?:

— 1429 0 0
(E1 —H%) ' = 0 -04417 O
0 0 —0.9258
and
— 1429 0 0 0 0.1261 0 1.0000
C? = 0 —0.4417 0 0.1261 0 0.2699 | | —0.0559
0 0 —0.9258/ \0 0.2699 0 0.0000
Then
- 1.0003
C? = [ —0.0557
0.0140

which upon intermediate normalization becomes

1.0000
C? = | —0.0557
0.0140

For the third iteration,

1.0000
E° — E = —(0,0.1261,0) | —0.0557 | = 0.0070
0.0140

Therefore, E = —4.2790 and so (E1 — H%) ™! is unchanged:

0 0.1261 0 1.0000 1.0003
C® = (E1-HY)" {01261 0 0.2699 | | —0.0557 | = | —0.0574
0 0.2699 0 0.0140 0.0139
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which when renormalized becomes

1.0000
—-0.0574
0.0139

To compare these results with those of the CI Problem 2.4, we must nor-
malize C** so that 1 = (C*)T(C®). This procedure gives

0.9983
C? = | -0.0573
0.0139

which is to be compared with the CI eigenvector

0.9982
Ca = [-00573
0.0143

The CI energy —4.2792 compares well with our third iterate E = —4.2790.
26

1. Let 1 and 2 denote the 1¢ and 2¢ orbitals, respectively:

il=<0  <il =]
<ilt}1,]0) 0.9970 0.0555
<il2) 2,j0> 00031  —00555
i1} 15 1,1,00> 0.9970 0.0555
CijIF15242,)0>  —-00555  —0.0031
Cij25271,1,00>  —00555 0.9970
<225 2,2,)0> 00031  —0.0555

Since the states |0), |I) have singlet symmetry, interchange of « and
spin gives the same matrix elements, e.g., Ci|1. 15 1,41,]0> = Ci|17 1. 1,1,0).
Change of the sequence of the creation (or the annihilation) operators does,
of course, change the sign of the matrix elements.
2. Wy, = (1|H|0> =0, since |1) and |[0) are determined from a CI
calculation:
Wi =<0|[152,+ 1525, H]|0> = 2[h,,<0|15 1, — 2, 2,{0)>
+<{22|21)<0J25 21 252, + 1} 15 2,2,]0>
+ I 21)<0|1 15 151, 4 15152,2,0>]
= —0.0224
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Azy 20 =CO|[1S 2, + 1525, H,27 1,+ 25 15][0)
= 2[(hys — hy DCO[1F 1, — 25205 — €22|22)<0[2; 2 2,2,/0)
— LU0 17 1,1,005 — 2¢11|225€0]1; 17 2,2,/0
— CU12)C0[1} 12 1,1, + 27 21 2,2,]0)
+ Q1205 €0|1} 17 1,1, + 212§ 2,2,)0]
=2.1606

=2[(2¢22] 11> +2¢21 |21 — (11| 11> — (22{22)<0)1 1 2,2,]0)
— (21134012 25 2,2, + 1213 1,1,]0>]
= —0.2400
(A21)|1>.21 =(l|[H,2: 1¢+2;13:”0):2[h12<1|1:1ﬂ—2:25|0>
— U 1 0,4 2223 1,100
— (22' lZ)(llZ;Z: 1, 42020 2ﬂ2¢|0>]
=0.4020
(B21)y1y.21 = CI|[H, 1,2, + 15 2,]|0>
= 2y 12 20— 110> — <220 203 |23 2 2,20 + 1 15 2,2,J0)
— (11 IZl)(lll: Iplgl + 15 15242,05]
= —0.0198

3. Since A — B is a 2 x 2 matrix, we invert it easily and obtain the
numerical value of k,, and P,, through (§) = (A — B)"'(¥). Hence the x
and P matrices are

_( 00 0007\ (00  —00018
*=\-00097 00 ) ~\oo0o18 00

4. By applying exp(—x) as shown in Problem 1.5 to the HF orbitals,
we obtain

¢, = 08919 Isye + 0.1701 Isy, ¢, = —0.8410 Lsy, + 1.2140 15,

Likewise, transformation of the two CI eigenstates through exp(—P) gives
rise to two new MC state vectors whose expansion coefficients are given by

ok 0.9984 00574
~\ —00574 09984
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5. Since we used the states of a CI calculation as the initial guess for the
reference state in the one-step MCSCF procedure, the orbitals of the one-
and two-step MCSCF approach become identical when the first iteration
is carried out. The states obtained in the next iteration of the two-step
MCSCF approach would, however, be determined from a new CI calculation
(which requires transformed integrals) and would thus differ from the states
obtained in the one-step MCSCF procedure.

6. Eucscr — ER3%  (Emcscr — ERSS)?
21494 x 1074 46 x 1078
1x10°® 1 x 107'¢

The error in the (n + 1)th iteration is the square of the error in the nth
iteration.

7. The MCSCF and the full CI calculation have the same number and
kind of variational parameters; hence the total energies obtained in the two
calculations should become identical. The |162¢) configuration included in
the CI wavefunction is treated in the two-configuration MCSCF function
through the 2*1 k,, orbital optimization parameter.

8. In an MCSCEF calculation that uses 12, 262, and 1¢'2¢", the 26* 10
excitation operator becomes a redundant excitation operator and hence the
orbital optimization step need not be included. The three-configuration
MCSCF calculation thus becomes identical to the three-configuration CI
calculation.

9. Again, two configurations plus one degree of orbital optimization
freedom span all of the configuration space needed to generate the full CI
wavefunction. Hence the converged MCSCF energy would equal the full
CI energy here.

2.7

I. In the one- and two-electron integrals appearing in the second-
quantized form of H, we neglect all integrals involving orbitals on different
HeH™* ions. Hence .

n l n
A=1\11i,j=1a20 ijkl=1e,20 A=1
€A €A
where A labels the n HeH* ions.

2. Let us denote the reference HF determinant by HF. Then doubly
excited configurations involving excitation of the Ath HeH" ion can be
represented as (2,2, 1,1,),/HF) = |4). Doubly excited configurations in
which one orbital is excited on each of two HeH"* ions will not give rise to
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nonvanishing CI matrix elements since the one- and two-electron integrals
that arise in evaluating such CI elements would vanish because of the large
separation between the two ions.

The CI matrix elements arising from the functions |HF » and {|4)} are
(HF|H|HFY = Y (HF|H JHF) = n{10?|H|10%) = nEys
A=1

(This result follows since [HF ) = []%-, (1, 1,})|vac));

(HF|H|A) = (16*|H|20?) (the same for all A4)
CAH|A") = 6,,[20%|H|26%) + (n — 1)Eyyz]  (the same for all A)

3. The components of the eigenvalue problem (HC = EC) for the matrix

shown in question 2 can be written as

nEueCyr + ). BC4=ECyr, BCyr+CC,p=EC,, A'=1,...,n
A=1
Solving for C 4. in terms of Cy and substituting into the first equation gives

”E"FC“F e Z B[E S C]_ lBCl—IF — EC"F
A=1

This equation will have a nontrivial solution for Cy; only if
nEye + B’n(E -~ C) ' = E
This quadratic equation can be written as
(E = C)nEyg — C) + nB? = (E — C)?
the solutions of which are
E — C = }{nEyp — C + [(nEyr — C)* + 4nB?]'7?}
Using the definitions of C and B, the ground-state energy becomes
E=nEyp+3{ —(Efir— Enp)— [(Efir — Eug)® +4n{11]22)2)V2} + Efyp— Eyp
The correlation energy then becomes
Ecoe = E — nEyg = ${Efir— Enp — [(Efir — Eqg)® + 4n(11]22)2]'72)

4. From Problem 2.1 we find (11]22) = 0.1261 and from Problem 2.3,
(lo‘sz|laz> = Eyr = —4.2720 and (2JZ[H]202) = Efir = —2.0149. There-
fore (Efs — Eye = 2.2571),

: 2257 2 1/2
E..= 2—25?1 - I:(—Z;—H-{) + n(0. 126]]2—|
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Evaluating E_,,, for n = 2, 4, 10, 100, and 1000, and comparing it to n times
the correlation energy of 1 HeH* ion, we find

n ' D nE .. (n=1) Error (%)
1 —-0.0070 —-0.0070 0.0
2 —0.0140 -0.0140 0.0*
4 —0.0278 -0.0280 0.7
10 —0.0684 —-0.0700 23
100 —-0.5637 —0.7000 19.5
1000 —-3.0156 —7.0000 56.9

* If one were to carry more significant figures,
this result would be 0.3%,. 2

For large n, the analytical expression of question 3 clearly varies as n'/2,
Comparing our results for n = 100 and n = 1000, we find a ratio of 3.0156/
0.5637 = 5.35, which is not (1000/100)!/2 = 3.16. Thus n = 100 is not yet
in the large-n range. The ratio for n = 10 and n = 100 is 0.5637/0.0684 = 8.24,
which is even further from (100/10)!/% = 3.16. Hence one must go beyond
n = 100 before this large-n behavior is realized.

5. Within our small basis the HeH™* is undercorrelated because the 2¢
orbital is much higher in energy than would be expected for the lowest
excited ¢ orbital of HeH™*. Therefore, our correlation energy, which arises
from the 1o? — 207 excitation is smaller (because (11|22) is smaller and
2¢, — 2¢, is larger) than one would obtain if one were to use a better atomic
orbital basis on HeH*. As a result the (11]|22) appearing in the above
expression for E,,,, is “too small” and (Efjz — Eyg) is “too large.” This leads
to an underestimate of E_,,,.
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