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Walking on Potential Energy Surfaces 
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By combining a local quadratic approximation to the potential energy surface with the concept of a trust radius 
within which this quadratic approximation is accurate, and a scaling of one active coordinate, we have developed 
an automated surface walking algorithm. This algorithm allows one to walk from geometries characteristic 
of equilibrium molecular structures, uphill along stream beds, through transition-state geometries, and onward 
to product-molecule equilibrium geometries. The method has been applied to model and ab initio test cases 
with encouraging results. The success of using the algorithm in connection with approximate Hessian matrices 
formed via so-called update techniques, which require only local force information, is especially encouraging 
in light of the high cost of ab initio analytical evaluation of the Hessian. 

Introduction 
State-of-the-art methods in molecular quantum chem- 

istry’ promise to soon permit the efficient determination 
of potential energy surfaces and their associated local 
slopes (gradients) and curvatures (Hessians) for Born- 
Oppenheimer electronic surfaces. The ability to system- 
atically move on such a surface from one stable molecular 
geometry (i.e., local minimum) through one or more 
transition states and, subsequently, on to a product-state 
equilibrium geometry is essential for obtaining both static 
structural data and information relevant to dynamical 
studies. To attempt such a “walking” process using a 
simple grid of geometrical steps in each of the molecule’s 
internal degrees of freedom is not efficient. For example, 
even a molecule as small as HzCO has six internal geo- 
metrical degrees of freedom upon which the electronic 
energy depends. In trying to use a geometry-grid approach 
to find transition states on say an excited singlet surface 
for either the H2C0 - H + HCO or H2C0 - H2 + CO 
reactions, one would require that the molecule’s energy be 
computed a t  of the order of m6 geometries where m is the 
number of grid steps along each of the six coordinates. The 
number of such grid steps could be quite large since one 
has little information about how large a grid step size to 
take along each degree of freedom. If one makes use of 
gradient and Hessian information, more reliable and 
step-length controlled walks may be carried out. For ex- 
ample, a recently developed surface walking algorithm,2 
which makes use of local force and curvature information, 
located the transition state for H2C0 - H2 + CO in a total 
of 11 molecular deformation steps! Clearly, the larger the 
number of “active“ internal degrees of freedom (i.e., those 
upon which the energy depends substantially) a molecule 
has, the more important it is to employ such automated 
surface walking algorithms. Because the cost involved in 
analytically computing the Hessian via ab initio quantum 
chemical methods can be quite high, it is also important 
to explore methods which utilize only local gradient data 
in an efficient manner. 

I t  is the purpose of this paper to describe a walking 
algorithm that uses both gradient and Hessian information. 
I t  is shown how this algorithm may be modified such as 
to require only gradient information. This is done by using 
approximate Hessian matrices determined by so-called 
Hessian update techniques. The success of the stable 
walking algorithm that makes use of only gradient infor- 
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mation is highly encouraging for future applications. 
The essence of the walking algorithm described here is 

to use the gradient and Hessian matrices to construct a 
second-order Taylor series polynomial in the step vector 
X and to then define a trust region for this second-order 
polynomial. The trust region is the region within which 
the second-order Taylor polynomial approximates rea- 
sonably well the true energy surface. The trust region is 
updated in each iteration to ensure that maximum step 
lengths are taken. The update of the trust region is carried 
out by measuring the agreement between the energy 
change predicted by the second-order Taylor series and 
the actual energy change obtained when the predicted step 
is taken. The steps are restricted by the algorithm to 
remain inside the trust region. The direction of the steps 
depends on the characteristics of the stationary point to- 
ward which one is walking. In searching for a potential 
energy minimum the energy is minimized in all directions 
on the energy surface. In uphill walks from one mini- 
mum-energy geometry to a transition state, the energy is 
maximized in one direction and minimized in all orthog- 
onal directions thereby forcing the walk to be in a stream 
bed. In the present paper, stable walking algorithms are 
defined for walking away from one local minimum along 
directions which might not correspond to the lowest-energy 
distortion direction, to a transition state, and onward to 
product equilibrium geometries. Consideration is also 
given to cases where, in the early stages of the walk, mo- 
lecular symmetry artificially restricts the steps along 
certain directions to vanish because the forces along these 
directions vanish. 

The algorithm described here follows an outline similar 
to that used by Cerjan and Miller2 for determining the 
directions of all the steps. However, substantial differences 
appear in the conclusions that are reached about what step 
directions are optimal. The energy minimization aspect 
of the algorithm used here has been discussed by Fletcher3 
in numerical analysis where it ha5 been shown that the 
iterative process is guaranteed to converge to a local 
m i n i m ~ m . ~  An algorithm containing many of the same 
characteristics as the one employed here has successfully 
been used to optimize both ground and excited electronic 
state wave functions within multiconfiguration self-con- 
sistent field theory.* None of the above described al- 
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gorithms, however, thoroughly discussed how transition 
states (saddle points) may be determined by carrying out 
systematic walks from one stable local minimum geometry 
along several possible distortion directions. 

A common feature of the above walking algorithms is 
their use of the information content of the local gradient 
and (perhaps) Hessian. A walking procedure which utilizes 
a somewhat different approach has been suggested by 
Crippen and S ~ h e r a g a . ~  The idea of the Crippen- 
Scheraga walking algorithm is to take a step in one energy 
distortion direction and to subsequently minimize the 
energy (e.g., by line search techniques) in all directions 
orthogonal to this direction. The energy minimization in 
all the orthogonal directions must be carried out in each 
step of the iterative algorithm. The fact that such mini- 
mizations tend to be rather time consuming lends support 
to our attempt to explore walking algorithms that only use 
the information available in the local gradient (and Hes- 
sian) and which do not require finding minima at  each 
iteration. 

In the next section of this paper we develop the theory 
of the walking algorithm. In section I11 the algorithm is 
applied to  the model potential of Cerjan and Miller,2 to 
a model and an ab initio potential for the ground6 and 
excited C’A’ state of HCN,7 respectively, as well as to a 
model potential studied by Crippen and S~heraga .~  The 
last section contains our concluding remarks. 

In addition to the Cerjan-Miller and Crippen-Scheraga 
methods, to which we make further comparison later, a 
number of other techniques have been developed for 
searching for local minima and transition states. Refer- 
ences 12-17 include some of the techniques which are 
relevant to chemical potential energy surface investiga- 
tions. 
11. Definition of the Method 

A .  The Local Quadratic Surface. Let us assume that 
one has the ability to generate, at  any molecular geometry 
XOi (i = 1, 2, ..., n), the potential energy (electronic energy) 
E,, the gradient FOi (i = 1,2,  ..., n) of this energy along any 
of the n internal degrees of freedom being considered, and 
the second derivatives of the energy along each of 
these n directions. For a molecule containing N atoms, 
n can be as large as 3N - 6 (3N - 5 for a linear molecule); 
n can be smaller if one has decided to hold fixed certain 
internal geometrical degrees of freedom. The information 
contained in E,, the forces or gradients Fo,L, and the cur- 
vatures or Hessian matrix elements E;Lojj allows one to write 
a local second-order approximation E to the true potential 
energy surface E(X) in the neighborhood of the point Xo 
= {Xo,L; i = 1, 2, ..., n): 
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&X) = Eo + FOX + l/XHoX (1) 
where the vector X has components equal to the dis- 
placements away from the geometry Xo where Eo, F,, and 
Ho were evaluated.- 

If one knew that E(X) represented the true surface E(X) 
to within a reasonable tolerance within some region of trust 
(ho), then it would be possible to “walk” on the E(X) 
surface to some new geometry X1 at which a new gradient 
F d  Hessian could be evaluated. At the new point a new 
E(X) could be formed, and if ,a new trust radius (h,) could 
be evaluated, a step on the E(X) surface could again be 
safely used to move to a new geometry X2. Such a step- 
by-step surface walking procedure is exactly what this 
paper offers. 

B. The Fletcher Algorithm. An algorithm for com- 
puting the trust radius (h l  based on comparing the ap- 
proximate energy function E(X) to the true E(X) has been 
given by Fletcher.3 Within the Fletcher algorithm the trust 
radius hk appropriate to the kth step in the surface walk 
is defined in terms of the radius hk-’ used in the preceding 
step and the ratio (r) of the actua! energy change E(Xk) 
- E(Xk-,) and the energy change E(Xk) - E(&-’), which 
the quadratic function E predicted for the kth step: Xk-l - xk: 

E(Xk) - E(Xk-1) 
r =  ( 2 )  

The closer r is to unity the more quadratic is the true 
energy surface. When carrying out an energy minimization 
walk (e.g., to find a local minimum) Fletcher suggested3 
the following algorithm for updating the trust region h: (1) 

= hk+ (3) if r > 0.75 then hk = 2hk-1, (4)  if r is smaller than 
zero the step is rejected and a new step is evaluated whose 
trust radius is the new shorter trust radius hk-J4. 

In transition-state saddle point applications, positive and 
negative energy contributions arising from the linear and 
quadratic terms in eq 1 cancel and fortuitously good r 
values may be obtained. For this reason and for others 
as will be discussed below, a slightly more conservative 
update of the trust region has been used in such saddle 
point cases. The algorithm being put forth can be de- 
scribed as follows: (1) If rmin 5 r 5 rgd 
2 - rmin the step Xk-1- Xk is allowed to occur an the trust 
radius (hk) in the next step is taken to be the same as hk-l. 
(2) If rgOd I r I 2 - rgood the step X k - 1 -  Xk is taken and 
the trust radius hk-l is increased, hk = ahk-l. (3 )  If r < rmln 
or r > 2 - rmin, the step Xk-1- Xk is not allowed to occur. 
Instead the trust radius is decreased (hk = (l/cY)hk-l) and 
a new step (whose maximum length is equal to the new 
shorter trust radius) is evaluated. For this new step Xk-l 
4 Xk a new r value is computed and the above process is 
then continued. In the first case described above, the goal 
is to carry out a downhill walk to a local minimum. Steps 
are only rejected when they are in the wrong direction (i.e., 
uphill). Even r values much greater than one can be ac- 
cepted because they indicate only that the true energy 
function has a nonquadratic character; the fact that r is 
positive means that the walk is still progressing downhill 
as desired. In transition-state applications, the energy 
function is being maximized in one direction and mini- 
mized in all other directions. Because the energy changes 
in the various directions are opposite in sign, large step 
sizes cannot be accepted except when justified through a 
high degree of quadratic character (Le., a good r value). 
For this reason, tight constraints have been applied in 
transition-state applications when r is both smaller than 
and greater than unity. 

E(&)- E(Xk-1) 

if r < 0.25 then hk = hk-114, (2) if 0.25 < r < 0.75 then hk 

Or - pod < r < 



Walking on Potential Energy Surfaces 

This Fletcher algorithm thus allows one to update the 
maximum step length during the step-by-step walking 
procedure. Clearly the algorithm contains parameters (r-, 
rgd, a) whose values will determine the number of steps 
needed to walk from the starting geometry to some desired 
final geometry (e.g., local minimum or transition state). 
The algorithm is, however, shown below to be rather in- 
sensitive to their actual choice. 

C. Surface Walking Strategies. Although the Fletcher 
procedure gives valuable information about the maximum 
step length which ca_n safely (within r )  be taken on the 
approximate surface E(X), more information is needed for 
determining the direction in which the step should be 
taken. The best direction to walk depends upon whether 
one is seeking a local minimum (Le., stable molecular ge- 
ometry) or a saddle point (i.e., transition state). In the 
former case, one wants to find a region of the potential 
energy surface in which the Hessian matrix has all positive 
eigenvalues (0 C bl C b2 < b3 C ... C b,,). Within that 
region, one attempts to find the particular geometry Xmin 
where all gradients Fo,L vanish Fo = 0; at  this geometry, 
one has a stable molecular geometry. In seeking transition 
states, one attempts to walk into regions of the surface 
where the Hessian matrix has one negative and n - 1 
positive eigenvalues (b ,  < 0 < b2 < b3 < ... C b,,). 

The step-by-step walking process therefore can be di- 
vided into two phases. In the first phase, one is faced with 
moving away from a starting region in which the structure 
of the Hessian (i.e., the number of negative eigenvalues) 
may not be what is desired. In the second phase of the 
walk process, one has entered a region of geometry space 
in which the Hessian has the proper structure. From this 
step on, the goal is to walk toward the stationary point 
(minimum or transition state) which lies in a neighborhood 
close to the present location. 

In sections 1I.D and 1I.E it is shown how to implement 
a surface walking algorithm which achieves these goals. In 
summary, it should be kept in mind that, a t  each step of 
the walk, one is faced with the following problems: 

(1) One must characterize, via the signs of the Hessian 
eigenvalues a t  the present location, the local surface 
structure and decide whether the structure is consistent 
with that of the region of the desired stationary point (Le., 
local minimum or transition state). 

(2) One must decide, based upon the above Hessian 
analysis, whether to walk toward the stationary point lying 
near to the present location (if the local Hessian structure 
is consistent with the desired structure) or away from the 
stationary point lying near the present location. 

(3) One must decide which direction to take if one plans 
to walk away from the nearby stationary point. If there 
seems to be more than one promising direction (e.g., more 
than one “valley” leading away from a nearby minimum), 
each such direction must be explored. 
(4) One must attempt to remain on the “valley floor” 

which leads along the walking direction. This is done by 
minimizing E along directions perpendicular to the walk 
direction. 

The following section provides the tools needed to im- 
plement such surface walks within the Fletcher-driven 
algorithm utilized here. 

D. The  Optimal Walk Direction. Suppose, as is typical, 
that the Hessian does not have the proper structure 
(number of negative eigenvalues) at the starting point x k .  
This means that nowhere within the current :rust radius 
( h k )  (1x1 < h k )  does the approximate surface E ( X ) ,  which 
adequately represents E ( X ) ,  possess a stationary point (Fk 
= 0) which has the desired Hessian structure. Given that 
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the sought after point does not lie within hk, one is directed 
to examine stationary points which might exist on the 
boundary 1x1 = hk. For example, if all Hessian eigenvalues 
are positive and one is seeking a transition stcte, it is 
inappropriate to move to the local minimum of E within 
hk. Rather one should move “uphill” along some one di- 
rection defining a “valley floor” away from the loca_l min- 
imum. This can be achieved by trying to maximize along 
the one “valley floor” direction while minimizing E along 
the n - 1 other directions, thereby staying in the “stream 
bed” which runs along the direction of uphill movement. 
A search on the boundary (XI = hk for a stationary point 
satisfying the above requirements can be accomplished by 
looking for stationary points of the Lagrangian function3 

(3) 

where X is a Lagrange multiplier whose value will even- 
tually be chosen to guarantee that one is on the boundary 
1x1 = hk and walking uphill in the chosen direction while 
remaining, to as high a degree as possible, in the “stream 
bed .  Setting dL/dX = 0 determines the stationary points 
of the energy function on the boundary and yields a set 
of equations which can be solved for the step length 

X = ( A 1  - H)-’F (4) 
In terms of the eigenvectors vi and eigenvalues bi of the 
Hessian matrix H, this result can be expressed as follows: 

(5) 

The value of X will be chosen to make the length of the 
step equal to hk while keeping the direction of the walk 
within a “stream bed”. 

To better understand how to choose X to fulfill these 
criteria, it helps if one examines both the step-length 
function 

hk2(X) = X X  = C(X - bi)-’ Pi’ (6) 

X 
2 

L(x) E E(x) - -(xx - h k 2 )  

X = x(X - bi)-’(viF)vi = C X i v i  
i i 

i 

and the quadratic energy change E 
E(X) = C(X - bi)-2 Fi2(X - 1/2bi) t 7 )  

which result when a step given by eq 5 is taken. For 
convenience, the component of the force vector F along 
the local eigendirection vi has been denoted Fi = (viF). 
Note that the energy contributions from each eigendirec- 
tion are then uncoupled. Assume now, for example, that 
one has decided to walk uphill along the stream bed 
characterized by the v1 direction corresponding to the 
“softest” local Hessian eigenvalue. Uphill walks along other 
directions and downhill walks in all directions will be 
discussed later. As such a soft-mode uphill walk prog- 
resses, the forces Pi ( i  1 2) should be kept small (i.e., one 
should stay near the “stream b e d )  while the force F1 along 
the walking direction can become large. 

Before stating the criteria for choosing a value or range 
of X values which characterize the above described “stream 
bed” walk, it is helpful to consider the direction and 
quadratic energy changes which result from taking a 
straightforward Newton-Raphson (NR) step (i.e., setting 
X = 0). Clearly, the NR step (see eq 5 with X = 0) is 
directed along the forces whose Hessian eigenvalues are 
negative and in opposite to those forces whose Hessian 
eigenvalues are positive. From eq 7 (with X = 0) it is seen 
that the NR step leads to decreases in E along directjons 
having positive Hessian eigenvalues and increases in E for 
directions with negative eigenvalues. That is, the NR step 
tries to minimize the energy along directions with positive 

1 
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bi (also opposing the forces along these directions) and to 
maximize E along directions with negative bi (also moving 
along thes? pi). Steps which either oppose-or move along 
the force Fi assure that the linear term of E in eq 1 (Fix,)  
becomes positive or negative, respectively. 

With this insight derived from analyzing the NR step, 
it is now possible to make definite statements about how 
to choose X in the step-vector expression of eq 5 .  For 
example, to walk uphill along v1 (corresponding to the 
softest eigenmode having eigenvalue 6,) and remain in the 
“stream bed”, X should be chosen such that following ap- 
plies: 

(1) ( A  - bl)-’ is positive. This guarantees that the walk 
is along the force in this direction and assures that the 
linear term E in the v1 direction is positive. Hence X > 
bl is required. 

(2) The ( A  - bJ-l (i I 2) are negative. This means that 
the steps along other directions oppose the forces Fi an$ 
therefore should give positive linear contributions in E. 
Hence X < b2 < b3 < .... 

( 3 )  (A - l / p b l )  must be positive so that E will increase 
in the v1 direction: X > 1/2bl .  

(4) The ( A  - l I2bj)  0’ 2 2) must be negative so that E 
decreases along the vj 0’ 2 2) directions. 

Condition (4) combined with tha! in (2) permit the walk 
to, within the approximation that E adequately represents 
the true E(X), find the “stream bed”. Conditions (1) and 
(3) dictate that the walk should be energetically uphill 
along v,. Based on the above analysis, it is clear that one 
should choose X in the range b, < X < lI2b2 < ... if one 
desires to walk up the valley along the soft-mode v1 di- 
rection. Modification of this algorithm to permit walks 
up the stiffer-mode v2, v3, etc. valleys will be discussed 
later. 

There is one problem which, however, needs to be dealt 
with now in relation to the soft-mode walk discussed above. 
It is possible that the local Hessian eigenvalues bl and bz 
may not obey b, < lI2b2, as a result of which the range 

b,  < X < Y2b2 (8) 

in which X needs to be chosen may not exist. A simple 
transformation (scaling) of the coordinate along which the 
walk is to occur 
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x,  = nX,’ (9 )  

may, however, be carried out to assure that the condition 
in eq 8 can be met by the Hessian eigenvalues in the new 
transformed (scaled) coordinate system. The stationary 
(critical) points of the true energy function are invariant 
with respect to such a coordinate scaling while the nu- 
merical values (not signs) of the Hessian eigenvalues 
change as such a coordinate transformation is carried out. 
Introducing the transformation in eq 9 into the local 
quadratic energy function in eq 1 gives 

,!? = nFIXl’  + f/zn2b,(X,’)2 + C ( F i X ,  + 1/biX?) (10) 

In terms of the variables X,’, X 2 ,  X 3 ,  ..., this quadratic 
energy expression can be viewed as having a modified force 
F,’ = nFl and Hessian eigenvalue b,’ = n2 b, in the v1 
direction. By choosing the scale factor n properly, it is thus 
possible to make b,’ < ‘I2b2.  In practice, it is found (see 
later) that choosing n such that b,’ = ‘I4b2 works quite well. 
Hence, if one simply scales the active ( X , )  coordinate by 
scaling its force and Hessian eigenvalue, one can perform 
the kind of uphill stream bed walk outlined in the X,’, X 2 ,  
X 3 ,  ... coordinate system by taking in the interval b,’ < 
X < ‘I2b2. Equation 5 (with b,’ and F,’ substituted for bl 
and F,) then gives X1’, X 2 ,  X s ,  ... after which the real step 

i t 2  
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in the v1 direction X1 = nXl’ can be evaluated. 
The above coordinate scaling device is thus useful in the 

soft-mode type walk discussed earlier. It can also be used 
to develop an algorithm for walking up one of the ”stiffer” 
modes (e.g., to walk along v2 keeping the energy along vl, 
v3, ... minimized). By scaling the active mode (Le., the 
mode along which the walk is to occur) X 2  = n X 4  one can 
guarantee that the scaled Hessian n2b2 = b2’ obeys b2’ < 
‘ I2b ,  < bl < b2 < ... . Hence, in the scaled coordinate 
system, the v2 direction is the “soft mode” and the proper 
range for choosing X is b i  C X < l Izbl ,  in this walk along 
v P  After choosing X in this range and using eq 5 (with bz 
and F2 replaced by n2b2 and nFJ to generate X, ,  X2‘, X3, 
... (and X z  = n X i ) ,  one is able to walk up this (v2) stiff- 
mode valley. In carrying out such a stiff-mode iterative 
procedure the eigenvector v2 has to be smoothly followed 
during the iterative procedure. This may be done by 
projecting the eigenvectors of the Hessian matrix in one 
iteration onto the eigenvector v2 of the previous iteration, 
selecting the eigenvector whose overlap is closest to unity 
as the new v2 direction. As the iterative procedure prog- 
resses, the eigenvalue bz corresponding to the new v2 
crosses the eigenvalue bl. From this point on, the iterative 
walking procedure may be continued as a normal soft- 
mode walk, since the direction along which one is walking 
now is the softest mode. A t  or close to the crossing (i.e., 
when bl is very close to b2) the eigenvectors of the Hessian 
matrix contain little directional information (Le., the ei- 
genvectors of a degenerate root can be arbitrarily rotated). 
Directional information has then to be transferred either 
from the previous iteration; alternatively the iterative 
procedure can be forced to jump this region of near de- 
generacy by taking a larger step. Since this region where 
bl is very close to b2 is very small, no serious problem would 
result by simply “jumping” this region via a larger step. 

In summary, the criteria (1)-(4) given above allow one 
to determine a range of X values appropriate for the kind 
of uphill valley walk described early in this section. The 
coordinate scaling device allows one both to guarantee that 
the desirable X range exists and to achieve stiff as well as 
soft-mode walks. There still remains a problem as to ex- 
actly what value of X in the desirable region (e.g., b, < X 
< 1/2b2 or b,’ < X < lI2b2 or 6,’ < X < 1 /2b l )  should be 
employed. Considering, for example, the most straight- 
forward case (i.e., that of an uphill walk along v1 in which 
the region b, < X C 1/2b2 exists), it is clear that neither X 
= bl nor X = 1/2bz are desirable. The former (A = b,) gives 
rise to a step (eq 5)  which is entirely along the v, direction; 
no adjustments along v2, vg, etc. would be allowed. The 
latter choice ( A  = lI2b2) gives rise to no predicted energy 
change along v2 since F2(X v b2)-2(X - 1 / zb2)  vanishes at  X 
= 1/2bP This is clearly not an optimal step unless F2 were 
equal to zero. 

If there exists a value of X within the desirable range 
(e.g., bl < X < ‘ I zb2 )  for which the present radius (hk)  
equals the total step length given in eq 6, it is appropriate 
to choose this value of A (A- of Figure la).  In Figure 1 is 
depicted graphs of hk2(X) from eq 6 vs. X for various values 
of the bi and pi. It can clearly be seen that, in certain 
circumstances (e.g., graph a and c of Figure I), there exists 
a choice of X in bl < X < ‘I2b2 which obeys hk2 = hk2(X). 
In such cases, this is the optimal choice of X since it gen- 
erates a step direction and length which are consistent with 
the stated goals of the walk. However, there are other cases 
(e.g., graphs b and d of Figure 1) for which no solution of 
hk2 = hk2(X) occurs in the proper interval. In such situa- 
tions, it is probably best to choose X within b, < X < f zb, 
(e.g., at  the midpoint A = ‘I2(bl + 1 /2b2) )  so as to guarantee 
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that the direction of the step is correct (Le., uphill along 
vl, downhill along other modes) and to then rescale the 
magnitudes of all step lengths Xi to make the step lie on 
the current step-length perimeter: cix? = hk2. 

Before closing this discussion of how to deal with 
“uphill” stream-bed walks of either the soft- or stiff-mode 
variety it is worth noting that there is one more case in 
which a unique choice of X can be made. If bl is negative 
and b2 is positive (such will always be the case as the walk 
approaches the transition state), the range bl < X < 1/2b2 
certainly exists. Moreover, if the current trust radius hk 
is greater than the hk (A = 0) of eq 6 evaluated a t  X = 0 
(the NR value), then X = 0 is an optimal choice. I t  is 
optimal because it lies in bl < X < ‘ / 2 b 2  and because the 
predicted energy changes along all modes v2, v3, ... are 
minimized at X = 0: 
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Therefore, once X = 0 it is in the acceptable range and hk2 
(A = 0) I hk2, the NR step direction should be taken. 
However, when the NR step is larger than the trust radius 
(hk2 I hk2 (A = 0)) but within the acceptable X interval we 
have chosen to scale the NR step length such as to remain 
on the current step length perimeter. 

Keep in mind that  the above strategy has been devel- 
oped based upon the assumption that one desires to walk 
uphill along some stream bed. This is, of course, the case 
when one is walking away from a local minimum (i.e., 
stable molecular geometry) in search of a transition state 
(where one Hessian eigenvalue is negative). The strategy 
appropriate to walking toward a local minimum is more 
straightforward. The X parameter should be chosen so that 
all of the individual steps X ,  = F,/(X - b,) oppose their 
forces (Le., X < b, (i = 1, 2, 3, ... )) and so that all of the 
predicted energy changes (A - b,)-2F:(X - 1/2b,) are negative 
(i.e., X < 1/2b,). Choosing X < 1/2b, and A < b, means either 
taking h from the left most intersection (A,) of hk2 = hk2(X) 
(see graph b in Figure 1) if the NR step length is too long 

(see graph a of Figure 1). The NR step is optimal in the 
latter case because, as was shown above, all of the indi- 
vidual quadratic energy changes (A - b,)-2F,2(X - 1/2b,) have 
minima a t  X = 0. Hence, in a walk toward a minimum, 
the NR step is appropriate whenever it is acceptable &e., 
when hk2(o) < hk2 and A = 0 is contained in the interval 
X < 1/2bl and X < b,) to cover the case of a downhill walk 
from a transition state. 

The walk strategies described above form the basis of 
the algorithms utilized here to walk from local minima, 
uphill along various (soft- or stiff-mode) stream beds, to 
transition states, and onward toward product-state local 
minima. There is one final point which needs to be ad- 
dressed before this section can be closed. 

Given that one_ begins at a local-minimum geometry 
where all forces F, vanish, it is not possible to form the 
hk2(X) function shown in the graphs of Figure 1. Hence 
it is difficult to know how to start the surface walking 
algorithm. To search for the lowest-energy transition state, 
it is most logical to begin the walking process by taking 
a step of length ho along or opposite the v1 direction. Both 
directions have to be explored when systematically 
searching for transition states. Other transition states 
could be explored by taking the initial step to be of length 
ho and along or opposite v2, v3, v4, etc. After such an initial 
step, the hk2(X) graph as depicted in graphs a-d of Figure 
1 will obtain except if the force F2 (or Fl) remains zero (for 
example, due to molecular symmetry). In such a case, the 

(hk2(o) > hk2) or taking = 0 (the NR step) if hk2(o) 5 hk2 

b, b, b, X+ 

Flgure 1. Plot of the square of the Xdependent step length (eq 6) as 
a function of X for several possible values of the Hessian eigenvalues 
and forces. 

graph will have the structure shown in graph e of Figure 
1 with an actual crossing a t  the b2 (or b,) asymptote. If 
the force in the b2 direction were infinitesimally small the 
step length function of eq 6 would have the structure in- 
dicated with the dashed lines paralleling closely the b2 
asymptote in graph e of Figure 1. Now it is appropriate 
to choose the step of total length ho to have components 
along v1 of 6 and along the residual directions of magni- 
tudes Cht - 62)1/2, respectively. The residual step length 
6 is small and is introduced to ensure that the step has a 
v2 component even though symmetry, for example, would 
keep the force in this direction equal to zero. If no v2 
component were introduced in such a case, the search for 
stationary points could seriously be restricted and the 
desired stationary point may be out of reach. An example 
of such a behavior is given in the transition state walk in 
the model potential of Cerjan and Miller in Figure 2. 

E. Updating the Hessian. The treatment outlined 
above required from the start that the force F and Hessian 
H could be readily evaluated at any geometry &). The 
state-of-the-art in quantum chemical methodology does 
permit efficient calculation of F ,  but analytical formulas 
for H have only recently begun to appear in the literature. 
Even when the optimal expressions for H for a multicon- 
figurational wave function are known and programmed for 
use, it is likely that the cost involved in evaluating H will 
be high. Therefore, it is natural to explore the possibility 
that the Hessian H might be adequately approximated by 
using one of the so-called Hessian update methods which 
appear in the numerical analysis l i t e r a t~ re .~  These tech- 
niques are designed to determine an approximate Hessian 
a t  Xk+l in terms of the Hessian or approximate Hessian 
Hk at Xk,  the force difference F k  - Fk+l ,  and the previous 
step vector X k + l  - Xk. Expanding F k  around F k + ,  gives 
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Figure 2. Walks on the CM potential surfaces: ., soft-mode walk 
using the analytical Hessian matrix (the pure Newton-Raphson step 
is shown at three of the points by an arrow); 0,  soft-mode walk using 
an updated Hessian; A, stiff-mode walk using the analytical Hessian; 
+, stiff mode walk using the updated Hessian. 

which shows that the gradient difference Fk - Fkcl contains 
a component of the finite-difference approximation to the 
exact Hessian Hktl along the direction Xk - This 
finite-difference Hessian information, together with 
structural characteristics of the exact Hessian are used to 
form the Hessian updates described below. 

The so-called BFGS update approach3 is considered in 
the numerical analysis literature to be the most efficient 
update approach to use in finding local minima. For that 
reason it was decided to use the BFGS update in all walks 
whose goal was to find local minima. The BFGS update 
formula reads3 

where 
Pk = F k + l  - Fk (14) 
Kk = X k + l  - Xk (15) 

One important characteristic of the BFGS update is that 
if Hk is positive definite then Hk+l will also be positive 
definite. Such a characteristic is, of course, undesirable 
when one is carrying out a walk toward a transition state 
since the Hessian must be allowed to change structure (i.e., 
number of negative eigenvalues) as the walk progresses. 
For this reason, the updating algorithm given below (the 
so called Powell updateg) has been chosen for use in 
transition-state walks. The Powell update9 procedure does 
not force to have the same structure as Hk yet it 
preserves the Hermitian character of H while assuming 
that the updated Hessian satisfy eq 12. The Powell update 
expression is 

where Kk P Xk+l- Xk and Tk a Fk+l- Fk - Hk(Xk+l- xk). 
Notice that construction of the updated Hessian in both 
eq 13 and 16 involves simple matrix and vector multipli- 
cations of the force and step vectors which are presumed 
to be readily available. 

It should be clear that the Hessian update process has 
to be given some starting Hessian H o  with which to begin 
its recursive updating. In many numerical analysis ap- 

plications it is common to begin with Ho = 1 ,  the identity 
matrix. In the surface walking studies treated here, a 
reasonable starting Hessian to use in moving away from 
a local minimum toward a transition state is that Hessian 
determined in locating the equilibrium geometry (X,) via 
an update walk. In this update walk X,, one can utilize 
the unit matrix as the initial approximation to H. The 
BFGS update method together with the Fletcher walking 
algorithm can then be used to move from the initial ge- 
ometry to X,,. The Hessian matrix which exists upon 
reaching X, can then be used to start the transition-state 
walk. Alternatively, if the force constants characteristic 
of the local minimum energy geometry are known from 
experimental data, they can be used to generate a starting 
Hessian matrix. In walking down from transition states 
toward product-state minima the updated Hessian at  the 
stationary point can be used as an initial Hessian for the 
downhill walk. 

The requirements for the Hessian update approaches 
to be successful in the surface walking algorithm are dif- 
ferent a t  the initial and final stages of the iterative pro- 
cedure. In the initial part of the surface walk where even 
the exact local Hessian is structurally incorrect, it  is im- 
portant that the Hessian update is of sufficient quality to 
correctly locate the lowest few Hessian eigenvalues (and 
eigenvectors) thereby assuring that steps will be taken in 
approximately the desired directions. As our numerical 
examples demonstrate the Hessian update procedures used 
here are able to locate the lowest Hessian eigenvalues 
relatively accurately. As the walk progresses into the re- 
gion where the local Hessian has the proper structure, it 
becomes important that the Hessian update procedure also 
be able to locate accurately the stationary point in rea- 
sonably few iterations. The Hessian update procedures 
employed here certainly are able to do so because they 
have superlinear convergence characteristics.1° 

111. Application to Model and Ab Initio Surfaces 
The above-outlined Fletcher-based surface walking al- 

gorithm has been tested on four potential energy surfaces: 
a model potential used previously by Cerjan and Miller? 
to test their own surface walking method, a surface for the 
C’A state of HCN computed by ab initio quantum chem- 
ical methods,’ a ground-state HCN surface developed by 
Murre11 et a1.,6 and a model potential utilized by Crippen 
and Scherage5 in their polypeptide conformation studies. 
For each of these surfaces, the goal of this work was to 
explore the performance of the walking method by using 
both analytical and updated Hessian matrices and to 
compare with the results of others and of the Newton- 
Raphson method. The primary emphasis of the applica- 
tions has been directed toward walking from local minima 
to transition states and subsequently onward to product 
local minima. 

A .  The  Cerjan-Miller Model Potential. A simple 
two-dimensional (x,y)  model potential energy function 

v,-,(x,y) = (a  - by2)x2e-xi + 2 2 (17) 

was used in Cerjan and Miller’s innovative work on finding 
transition states. A contour representation of V,&,y) is 
given in Figure 2 for a = 1, b = 1.2, and c = 1.0. Although 
this surface may appear to be especially straightforward 
to handle, it has a t  least two difficulties. First, near the 
local minimum at  x = y = 0 the lowest Hessian eigenvalue 
corresponds to motion along the y axis. Hence, the surface 
walking routine employed here, when taking its initial step 
along the soft-mode y axis, does not make a very “wise” 
first step. As a result, it must evolve an efficient path 

e y  
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which allows for motion in the x direction to increase while 
that along y is reduced. The second pathology of the VcM 
surface has to do with its left-right and top-bottom sym- 
metry. Even following the above-discussed initial step 
along the y axis, the force along the x axis remains zero. 
Hence, the device presented in section 1I.E for allowing 
both the v2 and v1 directions to contribute in this sym- 
metry-restricted situation must be employed. 

The quality of the resultant walk path (WP) was not 
found to be very sensitive to the choices made for r ~ n  and 
rgd parameters used in the step-length update process for 
0.50 C rmin C 0.90 and 0.75 < rgd C 0.95. Therefore, to 
be somewhat conservative, values of rgd = 0.85 and rmin 
= 0.70 were used for all other transition-state surface walks 
reported in this paper. The amount (a) by which the step 
length hk is increased or decreased as described in section 
1I.B was taken to be a = 1.50. This choice was made after 
trying several values of a in the range 1.25 < a C 3.00 and 
finding little sensitivity of the walking path to the value 
of a in this range. 

In Figure 2 are shown two types of walking paths 
starting from the local minimum a t  x = y = 0. The first 
starts out by moving along the soft mode (the y direction) 
whereas the second involves initial movement along the 
x axis. Handling the latter case requires the coordinate 
scaling algorithm introduced in section 1I.E. Also included 
in Figure 2, for comparison, are soft- and stiff-mode walks 
in which updated Hessians are used. The initial Hessian 
H o  used in these update walks was obtained by first 
performing a minimum-energy geometry walk in the region 
of (0,O). 

On the basis of the qualitative aspects of the paths 
followed by the various walks mentioned above, it seems 
reasonable to conclude the following: 

(1) The soft-mode Fletcher-type walk in which the 
analytical Hessian is used is of very good quality, although 
it seems to take an unexpected fourth step. However, a 
detailed analysis shows that the third step leads to a 
crossing of the eigenvalues bl and b2. Once the third step 
is taken, the (new) local soft-model eigendirection is pre- 
dominantly of x-motion character; the y direction is now 
essentially the stiff mode. The algorithm therefore moves 
uphill along the new soft mode and attempts to minimize 
E along the new stiff mode ( they  axis). Due to the very 
small size of the force in the x direction, the major part 
of the fourth step is in the current stiff-mode direction 
thereby generating the unusual, but correct, fourth step. 
The size of this “jerky” fourth step would, of course, have 
been much smaller if shorter step sizes had been used. 
However, when the directions along which the maximiza- 
tion is to occur change, a discontinuity has to show up in 
the walking path. 

(2) The soft-mode walk in which an updated Hessian 
is employed is also of good quality when a moderately 
small (0.15) and fixed step length is used. I t  was found 
that the step-length updating algorithm described in sec- 
tion I1.B could not be used with an updated Hessian. The 
updated Hessian is simply not accurate ecough to use in 
predicting the quadratic energy change E(Xk) - E(X,-,) 
which enters into eq 2 where r is computed. For this 
reason, it is felt that fixed step lengths of modest mag- 
nitude should be used in updated Hessian walks even 
though this may result in these Hessian update walks 
requiring more total steps. 

(3) The NR step direction and length (indicated with 
arrows in Figure 2) cannot be trusted until the walk process 
reaches a region close to the desired transition state where 
the surface is quite quadratic. In the early stages of the 
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walk, the NR step is trying to return to the local minimum. 
Once the structure of the Hessian changes, the NR step 
moves away from the local minimum but not in a con- 
trolled manner; its step lengths tend to be too long and 
also its directions are often not toward the stationary point. 
(4) Both the stiff-mode exact- and updated-Hessian 

walks progress rapidly to the transition state. The ana- 
lytical Hessian version, which allows the step length to be 
updated (a = 1.5), takes fewer than the fixed-step length 
(0.15) updated-Hessian version, but both follow the 
stiff-mode stream bed very well. 

(5) The updated-Hessian walks seem to require ap- 
proximately twice as many steps as the analytical-Hessian 
walks. As an implication for implementation of Hessian 
update methods in ab initio quantum chemistry computer 
codes, this is encouraging since the cost of evaluating the 
analytical Hessian is far more than twice the cost of com- 
puting the gradient.’ 

(6) As can be seen from Table I, the eigenvalues of the 
transition-state Hessian obtained from the updated and 
analytical Hessians agree remarkably well. The Hessian 
obtained in the stiff-mode-update walk is not quite in 
agreement with the others. This is probably a result of 
the fact that this stiff-mode walk did not “experience” 
much of the potential energy surface in the direction 
perpendicular to the x axis as a result of which the Hessian 
update formula could not develop data in this direction. 

Cerjan and Miller have previously carried out a soft- 
mode walk on the potential of eq 17 to test their walking 
algorithm. In their procedure the value of the Lagrange 
parameter X is chosen to be the one for which hk(X) is 
minimum in the interval bl < X < b2 (Le., AM of Figure 1). 
Step sizes are also normalized to be of “reasonable“ mag- 
nitude in the Cerjan-Miller algorithm. The AM value often 
falls outside what we consider to be the acceptable interval 
as a result of which the walking path obtained by Cerjan 
and Miller is much less smooth than the walking path 
reported in Figure 2. 

B.  The Crippen-Scheraga Potential. To illustrate our 
walking algorithm’s ability to follow a very curved stream 
bed, it has been applied to the model potential 

V&,y) = l0Ob - x 2 ) 2  + (1 - x ) 2  (18) 
whose stream bed lies along y = x 2  and whose only min- 
imum lies at x = y = 1. The potential in eq 18 has pre- 
viously been used by Crippen and Scheraga to test their 
own walking algorithm. The result of the Crippen- 
Scheraga walk is given in Figure 3 along with the path 
generated by using the soft-mode walking algorithm de- 
scribed in this paper with a fixed step length of 0.10 units. 
The walk in which variable step lengths are employed 
deviates very little from the fixed step length walk path 
(except that it takes steps of 0.100-0.375 units) until the 
region near x = y = 0. Entering the x = y = 0 region, the 
variable step length walk takes too long a step (0.375 units) 
and thereby moves out of the stream bed by about 0.12 
units (to x = 0, y = -0.12). I t  then rejects several steps, 
reduces its step length trust radius appropriately, and 
moves back to the stream bed in an orderly manner (near 
x - -0.12, y - 0.0). From this point on, the variable-step 
length walk proceeds up the y = x2 stream bed increasing 
its trust radius as it moves to more negative x values and 
more positive y values. A fixed-step updated Hessian walk 
with a step length of 0.1 was found to be identical with the 
one reported in eq 6 using the analytical Hessians. 

The CS walk was generated not by the method outlined 
in our paper but by taking steps along one direction 
(usually the direction of smallest curvature) and then 
minimizing the energy along the directions (one direction 



2752 The Journal of Physical Chemistry, Vol. 87, No. 75, 1983 Simons et al. 

s y  
+120 

I 
//! 
/// 

Flgure 3. Walks on the Crippen-Scherage surface: 0, analytical 
Hessian walk: A, Crippen-Scheraga walk (see text). 

Figure 4. Walks on the ground-state HCN surface: 0, stiff-mode 
analytical Hessian walk: 0, stiff-mode updated Hessian walk; *, 
soft-mode analytical Hessian walk; W, soft-mcde updated Hessian walk: 
0, downhill analytical Hessian walk; A, downhill updated Hessian walk. 

for this two-dimensional example) orthogonal to the first 
direction. As is clear from Figure 3, this procedure results 
in a less satisfactory walking path and is likely to be more 
difficult to employ than our approach in higher dimen- 
sional surfaces. 

C. Ground and Excited (CIAq States of HCN. In 
Figures 4-6 several walk paths are presented for walks on 
both the linear XIZ ground state and the bent C'A' excited 

Figure 5. Walks on the Chuljian-Simons ab initio Cstate HCN surface: 
A, soft-mode walk with analytical Hessian; W, downhill walk using 
analytical Hessian: 0, stiff-mode walk using analytical Hessian. 

I /  - 1  

Flgure 6. Walks on the Chuljian-Simons ab initio C-state HCN surface: 
A, soft-mode walk with updated Hessian; W, downhill walk using up- 
dated Hessian but with variable-step length: 0, stiff-mode walk using 
updated Hessian. 

state of HCN. The former potential energy surface is 
given, as a function of the distances between the three 
atoms by Murre11 et  a1.6 In constructing Figure 4 the CN 
bond length has been held fixed at  1.159 A; the surface 
depicted is thus dependent only on the CH bond length 
and the HCN bond angle as is the excited-state surface 
shown in Figures 5 and 6. This latter surface was gener- 
ated by fitting an analytical function to the energies re- 
sulting from more that 150 ab initio configuration inter- 
action calculations. The explicit form of this analytical 
fit is given in ref 7. 

Based upon the data presented in Figures 4-6 we con- 
clude the following: 

(1) The soft-mode analytical Hessian walks and updated 
Hessian walks are both very reliable. The updated Hessian 
walks in which fixed step lengths are used seem to be 
approximately as efficient as the walks which employ 
analytical Hessians. In downhill walks to an energy min- 
imum (see Figure 6) it may be safe to update the trust 
region also in a Hessian-update walk. The observation that 
Hessian update walks work so well paints an optimistic 
picture for using Hessian update techniques in ab initio 
quantum calculations. 

(2) Both analytical and updated Hessian walks from the 
transition states to product-state local minima are reliable 
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TABLE I: Analytical and Updated Hessian Eigenvalues 

The Journal of Physical Chemistty, Vol. 87, No. 15, 1983 2753 

walks are in relatively good agreement although the highest 
mode eigenvalue (corresponding approximately to CN 
stretching) is less consistent. The two lower-energy ei- 
genvalues in each case match reasonably well those found 
in the two-dimensional walk (with the CN bond-length 
frozen). The actual walk path taken, for example, in the 
variable-step length analytical-Hessian walk appears, as 
far as movement of the H atom relative to the C atom is 
concerned, to be very close to the corresponding path 
shown in Figure 4. The CN bond length changed (mon- 
otonically) throughout this same walk from 1.153 to 1.181 
A, its value at the transition state. The fact that the CN 
bond length changed so little and the observation that the 
walking path of the H atom in the two- and three-di- 
mensional walks are nearly identical indicate that the CN 
degree of freedom is relatively weakly coupled to the 
H-atom stretching and bending motion. 

IV. Concluding Remarks 
The results presented in this paper illustrate the utility 

of the algorithm being proposed for use in chemical re- 
action path walks. By combining Fletcher trust-radius 
updating, active coordinate scaling, and the concept of 
stream bed walking, it has been possible to develop this 
practical and highly efficient algorithm. The outlook for 
other ab initio applications of the procedure is further 
brightened by the success of the Hessian update walks. 
The high cost, in terms of computer time and storage space 
needs, involved in the analytical evaluation of the Hessian 
matrix via ab initio quantum chemical methods' makes 
the implementation of efficient Hessian-update methods 
important if not essential. 
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eigenvalues 

surface analytical updated 
CM -1.4635" -1.4485' 

0.11709' 0.1171" 
-1.4636b -1 .3046b 

0.11709 0.1225b 

0.2704' 0.2383' 
0.032gd 0.031gd 
0.2284d 0.2261d 

HCN C state -0.0486' -0.0562' 

HCN ground state - 3.9300e - 3.91 54e 
1 9.4262e 19.5437e 

3-D HCN ground state - 3.930 5e -3.2171e 
17.4763e 19.1557e 
77 .4965e 101.2579e 

" Obtained via soft-mode walk t o  the transition state. 
Obtained via stiff-mode walk to the transition state. 
Obtained via soft-mode walk to the transition state. 
Product Hessian eigenvalues obtained by walking from 

the transition state t o  the product geometry. e Obtained 
via soft-mode walk to  the transition state. 

and efficient, again supporting the use of an updated 
Hessian procedure. 

(3) Both analytical and updated Hessian stiff-mode 
walks lead to correct dissociation, although they differ 
more than do the respective soft-mode walks. 
(4) As Table I shows, the transition-state and product- 

state Hessian eigenvalues obtained via the update method 
are again in good agreement with the analytical values. 

The two-dimensional walks described above have been 
extended to three dimensions in the ground-state HCN 
case. The Murre11 surface6 is given in terms of all three 
internal degrees of freedom of HCN, so it permits a full 
geometry optimization. 

As can be seen from Table I, the three Hessian eigen- 
values obtained via the analytical- and updated-Hessian 


