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An implementation of a conceptual scheme for performing a finite-cluster electronic structure calculation so
as to simulate, within the finite cluster, an extended periodic continuation of the cluster is reported. The
implementation extends a scheme used previously at a single-determinant wave function level of

approximation to a multiconfiguration self-consistent-field (MCSCF) level. The total wave function has the
form of McWeeny’s group functions. The MCSCF working equations are cast in the exponential-i-lambda
language (EIL) and the energy expressions are cast in notation of the graphical unitary group approach
(GUGA). The modifications to the MCSCF working equations necessary to do group function calculations
are also developed in the GUGA-EIL notation. A procedure for wave function transfer from one unit of the
cluster to another is described. All of this conceptual scheme has been put together in working computer
algorithms and applied to two informative, illustrative systems, Be,, and finite hydrogen chains. The results of
our computations, while not being definitive, are interesting in being among the first correlated calculations

for extended periodic problems.

. INTRODUCTION

Problems of electronic structure calculation for sys-
tems involving extended and periodic or nearly periodic
potentials have represented a difficult and continuing
challenge to theoreticians, Conventional quantum chem-
ical methods, while they have been capable of achieving
highly accurate results including electron correlation
effects for small molecules, have thus far had to neglect
or severely approximate long range interactions when
applied to problems involving extended or periodic po-
tentials. These conventional approaches are also prone
to cluster termination effects. Alternatively, conven-
tional solid state methods, while they have been enor-
mously successful in describing properties of bulk solids,
because of the assumption of translational invariance,
have reduced ability to handle problems where interrup-
tion of the translational invariance is an essential fea-
ture of the problem. Moreover, to date little ab initio
work has been done at a correlated level using explicit
treatment of translational symmetry. The work pre-
sented here proceeds from a conventional quantum
chemistry approach utilizing a finite cluster, but modi-
fies the conventional formalism and procedures so as to
admit, within the finite cluster, the possibility of achiev-
ing a representation of the extended system.

The dominant influence of cluster termination (or edge)
effects is the first important deficiency that a finite clus-
ter, conventional quantum chemistry approach has in
simulating an extended system. It is primarily this de-
ficiency that we seek to address and thus it is worthwhile
recapitulating how other workers have addressed it. The
most obvious solution is to make the cluster sufficiently
large that the number of terminal sites is small com-
pared with the number of sites experiencing a continued
potential. Because computational effort scales nonlin-
early with the number of sites included in the computa-
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tion, this approach has been successful only for methods
that require a very small amount of computation per site
such as semiempirical methods'™® or the MSXa meth-
ods.®"* There have been a few ab initio calculations
that have attempted this solution to reduce edge ef-
fects!®!8 the computational labor involved in ab initio
calculations is too great for frequent application to in-
creasingly large clusters. Some workers have used
high-spin unrestricted Hartree—Fock calculations on
clusters to reduce edge effects, ** % thereby simulating
the presence of half an electron pair bond around the
periphery of the cluster. Surrounding the cluster with
hydrogen atoms to saturate “dangling bonds’?'~% has
also been used to offset cluster termination effects.
Kunz®=?" has exploited the Adams—Gilbert theorem, 2~
which casts the Hartree—-Fock problem into a localized
set of equations, in order to reduce the infinite problem
to a localized cluster. All of these approaches recognize
the serious disturbances of electronic structure intro-
duced by cluster termination and have sought to diminish
them.

One of us (WHF) has exploited an iterative definition
of frozen peripheral clusters (analogous to a frozen core)
at the single-configuration wave function level of approx-
imation®'™** in order to simulate extended systems with
finite clusters. The present work represents the first
extension of the method to admit a correlated wave func-
tion treatment. The underlying concept for the approach
may be seen by considering a hypothetical problem of
determining the electronic structure of a two-dimensional
array tiled with identical triangles as depicted in Fig. 1.
Each triangle could represent, for example, three atoms
in the (111) plane of a close-packed solid, although in
that case the specific tiling pattern of Fig. 1 would not
apply directly. The successively distant triangles from
the representative central unit (4) are lettered (B),
then (C), etec. If the true potential experienced by the
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FIG. 1. A schematic representation of a two-dimensional elec-
tronic structure problem. (a) An infinite plane tiled with tri-
angles. (b) A portion cut from (a) retaining neighbor inter-
actions. (c) A local disturbance affecting the central repre-
sentative triangle.

electrons within (A) were known, a single solution for
the electronic structure of (4) (e.g. orbitals and con-
figuration mixing amplitudes) would suffice because the
solution could then be repeated by translation to all other
triangles in the plane. Regrettably, the true potential

is not known for (A) so that some approximation for it
also becomes essential for any method of solution.

One successive approximation scheme that simulta-
neously solves for both the potential and the electronic
wave function within (A) can be described by reference
to Fig. 1(b). Figure 1(b) represents a minimal slice
from the infinite plane that still retains an essential fea-
ture of the continuing potential, interactions among
neighboring triangles. Consider now a solution proce-
dure in which the electronic characteristics of the peri-
pheral triangles are frozen in the form obtained from
an energy optimization on the central triangle in a pre-
vious iteration. Reoptimization of the electronic wave
function and energy of this central triangle in the pres-
ence of the frozen periphery then generates new orbitals
and configuration mixing coefficients for the central tri-

angle which can be used to define a new frozen periphery.

When the electronic characteristics of both the central
and the peripheral units obtained via this iterative pro-
cess do not change from one iteration to the next, a
solution approximating that for the entire infinite plane
will have been reached. Notice that because the elec-
tronic characteristics of the peripheral triangles are
determined by those of the solution for the central one,
which includes interactions with the surrounding tri-
angles, the peripheral triangles will bear electronic
characteristics as if they too had a full complement of
surrounding structures. Hence, the iterative process
described here is not merely a calculation on a cluster
with four triangular units, rather it is designed to simu-
late the local electronic characteristics of the entire
infinite plane. While this discussion has proceeded as
if the peripheral units contained only a single structure
mimicking that of the central unit, it would also be pos-
sible to have the peripheral units composed of several
structures like that of the central unit if multiple layers
of periphery were desired or required.

Furthermore, local disturbances (e.g., chemisorp-
tion, defect structure, color center) to a triangle in the
infinite plane may be treated as in Fig. 1(c) by fixing
the electronic characteristics of the peripheral units
with the characteristics of the solution obtained from the
iterative process described for Fig. 1(b) in the absence
of any disturbances, and then solving for the electronic
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wave function of the central triangle, now in the presence
of the local disturbance.

Implementation of these concepts within the approxi-
mation of a single-determinant wave function has met
with reasonable success®'™* suggesting that the itera-
tive cycles can be effective in reducing cluster termina-
tion effects., However, the same deficiencies that the
single-determinant approximation has for molecular
systems are also deficiencies for modeling extended
systems. The most serious deficiencies are frequent
failure to describe the energetics at large values of
internuclear separations and the omission of electron
correlation effects. The latter may be of particular
importance for treating problems of local aberrations
such as chemisorption.

We report here an extension of these cluster concepts
involving the implementation of a many-body wave func-
tion treatment within the framework of the graphical
unitary group, which provides for spin adaptation of the
wave function. As will be made clearer in Sec. II, ex-
pressing the problem in the graphical unitary group
representation serves both to emphasize the nature of
the interactions included in the treatment and to provide
a formulation suggesting an efficient computational
scheme. Because the systems to which application is
ultimately foreseen are large, we have chosen a multi-
configuration self-consistent-field formulation of the
problem; MCSCF being, in our opinion, the most com-
pact correlated wave function form which removes the
essential deficiencies of the single-determinant SCF
wave function, while still retaining a simplicity amen-
able to intuitive understanding.

In implementing the above outlined iterative cluster
method at the SCF or MCSCF level, one is faced with
an additional problem which requires clarification and
elaboration, When the MCSCF wave function for triangle
(A) is obtained at the end of a given cycle, some physi-
cally meaningful and computationally feasible means of
transferring the electronic characteristics of this solu-
tion to the peripheral triangles must be available to be-
gin the next cycle. Figure 2 symbolically represents
the orbital-transfer component of this wave function
transfer process. The schematic depiction of Fig. 2(a)
represents an orbital optimized for the electronic wave
function of the central triangle (A) in the presence of the
peripheral triangles. The optimization for the orbital
may or may not have explicitly included basis functions
centered on nuclei in the peripheral triangles, however
the orbital orthogonality requirement at least will have
introduced small contributions from basis functions on
nuclei outside the central triangle. Because the periph-
eral triangles do not have still other triangles outside
them, these contributions must be removed before the
orbitals can be transferred. Reference 32 defines an
orbital projection procedure which achieves this removal
by retaining maximum overlap with the original orbital
under a reduction of the expansion set to include only
basis functions centered on nuclei within the central tri-
angle. Once these outside contributions have been re-
moved, the projected orbital may be translocated to
each of the peripheral units as in Fig. 2(c); the trans-
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FIG. 2. A schematic representation of the orbital transfer

process from central to peripheral units. (a) The central unit
optimized orbital has tails in the peripheral units, (b) The
tails of (a) have been removed by projection onto the basis
functions centered on nuclei in the central unit. (¢) The or-
bital of {b) has been translocated to the peripheral units. (d)
The orbitals of (¢) have been symmetrically orthogonalized.

located orbitals may then be symmetrically orthogo-
nalized as in Fig. 2(d), and finally, the central unit’s
variational space may be Gramm-Schmidt orthogonalized
to the orbitals on the peripheral triangles so that they
are unchanged and frozen through the next cycle. In

the single-determinant wave function implementation

of these concepts, orbitals are the only electronic char-
acteristics that need be transferred. For the MCSCF
implementation, there are configuration mixing coeffi-
cients as well. We have adopted the simple direct trans-
fer of the coefficients obtained in the central unit to the
analogous configurations in the periphery. While more
sophisticated considerations of possible simultaneous
readjustment of both orbitals and configuration mixing
coefficients can be entertained, we have felt that such
considerations introduce more technical complication
than is justified at this time since the configuration
mixing coefficients are not explicit functions of coor-
dinates whereas the orbitals are.

The concepts described above are very similar to the
imbedded cluster approach®® but we do not use a Green’s
function formalism for this implementation. By utilizing
these concepts within an MCSCF formalism, we hope to
exploit the accumulated experience obtained from such
calculations on molecular systems. Very closely allied
to the present approach is that of Whitten, and Whitten
and Pakkanen®® who imbed a local correlated function in
a substrate potential arising from an RHF or UHF cal-
culation for the substrate. Kirtman and deMelo®” have
also presented a closely allied treatment in a density
matrix formalism. We turn now to give a detailed ex-
position of the formal development we have made to
permit this first implementation of a correlated
(MCSCF) iterative cluster technique. In so doing we
also point out the relationship of our work to other re-
cent developments.

il. DEVELOPMENT OF WORKING MCSCF-CLUSTER
EQUATIONS

A. The ansatz wave function

We consider a wave function of a generalized anti-
symmetrized product form
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¥=1] Vo > (1)

where the product runs over each unit (e.g., the triangles
of Sec. I) in the total cluster. The wave function for
each unit @ is given as a superposition of configurations

{1y}
Vo= ;21 IAY (2)

The configurations consist of products of orthogonal
spin orbitals generated by {a';a} that are localized on
unit « in a sense to be described later.

(] ) Iveo, ®)

<§Da |¢B>:6a8 . (4)

There are n, electrons identified with unit a; m, con-
figurations are included in the wave function for unit «
and therefore I'%_, m, configurations for the total sys-
tem). The configurations {l[,,,)} are localized on unit «
in the sense that the creation operators defining the con-
figurations for unit a select one particle functions only
from the subset associated with unit @, and no other
unit uses any of the one-particle functions associated
with unit o in defining its configurations. McWeeny3® 3
has called the individual terms of Eq. (3) appearing in
the product function of Eq. (1) group functions. We note
that because the antisymmetry of Eq. (1) is carried by
the anticommutation relations of the creation operators,
no explicit notation to indicate antisymmetrization among
the group functions is necessary.

There are a number of remarks about a wave function
as in Eq. (1) which should be made. It is, first of all,
not designed for achieving an exact solution for any sys-
tem to which it is applied because the entire class of
configurations involving excitations out of one unit and
into another has been excluded by construction. How-
ever, in implementing the conceptual scheme discussed
in Sec. I, we do not seek an exact solution for the cluster
under consideration but rather to use that cluster to rep-
resent an extended system. Consideration must be given
to choosing the units of the calculation not only so that
they represent by continuation the extended system, but
also so that this neglected class of interunit-excitation
configurations may be expected to contribute little. In
a somewhat different vein, the description of the regional
division given above is somewhat more general than is
needed to implement the conceptual solution procedure
described in Sec. I. If all regions are identical the »n,
and m, will be the same numbers for each «. Further,
when the self-consistent cluster wave function is found,
the {C,_} will be independent of a and the {a}_} for all
peripheral a will be identical and will differ from those
of the central region only as required by the transfer
and orthogonalization procedure described in Sec, I.

B. Equations for MCSCF optimization

Let us now write the Hamiltonian in its usual second-
quantization form*°

+ 1 .. + _+
H=; h;;aia; + EZ E (3| k1) ajayaza; (5)

i0d Ryl
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Here Mulliken notation has been used for the two-elec-
tron integrals, and the %;; integrals contain the usual
kinetic and nuclear attraction terms. Thus far the in-
dices 7, j, k, and [ can label any of the spin orbitals
from any of the cluster regions. If we now proceed to
evaluate the expectation value of this Hamiltonian over
the product form of Eq. (1), we find that a separation

of terms into intraregional interactions and interregional
interactions is possible. Further, the interregional in-
teractions occur only as products of interactions of pairs
within one region with pairs in other regions. Spin
adaptation of the wave function of Eq. (1) using the graph-
ical unitary group approach (GUGA), 7% and restricting
the wave function to contain only one nonsinglet unit per-
mits the energy to be written in the form

HY=D <1:L,,>—RZ§1 Bfl > kZ; (7| k1) = = (31| )]

= "
ot elra) eUg)

slerdseipas (6)

where

<Ht!)= Z (hij+ Vij)<ei]>a

iy

e{rql}
1 ..
vy 2o (i keynda )
i.{.k.l
el{rg)
Vi=gy 2 L1~ 3Gt )]eads (8)
e clrg)
(ekl>tx =Z Z CIaCJa <Imleu|Ja> b (9)
Id "ot
Cinri =€ —Opyeq (10)
and
€y =11/ /2+ 1172872 - (11)

All indices in Egs. (6)-(10) now refer only to spatial
orbitals as the spin index has been summed over in Eq.
(11),

The total energy expression of Eq. (6) consists of a
part that is variationally active for region A plus a part
that is constant as far as the variation procedure is con-
cerned. This latter part expresses the “bare” energies
of all the surrounding sites as well as the energies of
interactions among these peripheral sites (but not in-
cluding interactions with the variationally active site).
Notice that the only true two-electron density matrix
elements appearing in Eq. (6) involve all indices ex-
clusively within the active region; interactions of the
active region with the others involve products of one
electron density matrices for the two separate regions.

In evaluating the final converged MCSCF total energy,
one is faced with one difficulty which merits mention.
Because of the truncation process (Sec. I) which is used
in translocating the MCSCF orbitals of unit A to the
peripheral units, the final charge density character of
the peripheral units is not identical to that of the central
unit. As a result, the “base” energies Eq. (7) and the
interaction energies among the peripheral units will
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not be the same as the base energy of the central unit
and the central unit to peripheral unit interaction energy,
respectively. At present we do not know of a reasonable,
computationally tractable alternative to simply choosing
to accept this charge asymmetry as a slightly disturbing
agpect of the proposed procedure.

The equations for the MCSCF wave function of the one
active region {involving the H, of Eq. (7)] can be effi-
ciently written using the exponential-; -lambda (EIL)
method**~*" for wave function optimization and the graph-
ical unitary group approach*~* for the one- and two-
particle density matrix elements* (UEIL). The addi-
tional terms due to interaction with the peripheral units
in the UEIL equations enter only through addition of the
effective one-electron potential of Eq. (8). That this
effective operator will contribute the only additional
terms in the commutators of the UEIL equations*! fol-
lows because the excitation operators involved in these
commutators will retain the basic wave function form
shown in Eq. (1); i.e., the orbital rotation excitation
operators will involve indices only from the variational
region and therefore the only nonvanishing density ma-
trix elements for interregional interactions appearing
in the commutator expressions will involve only pairs
of indices between interacting regions.

The economy of effort in determining an MCSCF wave
function of the type in Eq. (1) compared with a com-
pletely general MCSCF solution for the system may
most easily be appreciated by considering the number
of electron repulsion integrals required in Eq. (7) com-
pared with the total integral list length. In making this
comparison it should be kept in mind that these inte-
grals refer to the MCSCF molecular orbitals (MO)
rather than to the atomic basis orbitals. As is well
known, the step of computing such MO integrals in
terms of atomic-orbital integrals is the slow step in
most ab initio computations including electron correla-
tion, Therefore it is important to minimize the need
for such MO integrals. To illustrate the magnitude of
labor that can be saved, consider a calculation for a
system divided into two equal units containing n MO’s
per unit. The number of integrals in the full list of all
interactions between the MO’s is given by

NTz%[zn(zznu)] [271(22n+1) +1] ,

1
Np=2n*+2n+ 30+ 30 .

If 4, j, k, and [ denote indices from one region while
a, b, ¢, and d denote indices from the other region,
the partial list required for calculation of the energy
expression of Eq. (6) includes integrals only of the type
(é | 1), (abled), (ijlab), (ialjb). The number of inte-
grals in this partial list is given by
Ny=n*+n’+3n’+3n .
The ratio of the leading term in N, to the leading term
in Ny is 3. As the size of the problem increases one-
half the labor is required for integral processing when
a wave function of the form of Eq, (1) is used, and this

ratio will decrease with the number of regions. While
rigorous implementation of the group-function UEIL ap-
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proach still requires calculation of a full integral list
over the atomic orbital basis functions, the smaller
number of integrals which must be transformed in each
iterative cycle reduces thetime and space needs in con-
struction of the MCSCF working equations. Further,
optimization only within region @ in a given step does
not require integrals of type (ab lcd) (with all indices

in one or more different regions). These more general
integrals are only required for a calculation of the total
cluster energy and can be delayed until convergence is
achieved.

tIl. ILLUSTRATIVE CALCULATIONS

The development described above has been imple-
mented and applied to calculations on a homonuclear di-
atomic molecule, Be,, and to finite chains of hydrogen
atoms. We omit a detailed report of the Be, in the in-
terest of brevity and because the calculations served
more a pedagogical function than a contribution to the
imbedding problem which was the main motivation for
us.

A homonuclear diatomic molecule is the simplest ex-
ample of a system that contains a repeated electronic
structure. In the case of Be, one Be atom may be
treated variationally while the other simply presents a
potential as an image atom. Both atoms may be treated
as single wave functions to produce the 3 ground state.
Calculations for both a simple single configuration
formed as a product of single configuration atomic wave
functions and a 25 configuration formed as a product of
five configuration atomic wave functions were performed
as a function of internuclear separation. The 25 con-
figuration calculation represents a full atomic valence
CI. Satisfactory results were obtained, total energies
were comparable to the analogous fully variational cal-
culations and as one would expect, the calculations
yielded the same total energies at large values of inter-
nuclear separation as the fully variational ones. No
van der Waals minima were found in these calculations
for Be,.

Treatment of chains of hydrogen atoms of both finite
length*~%* and infinite length®*~® have a rich ab initio
theory literature. Their importance as simple model
solids, as model aromatic compounds, and as a possi-
ble component of the geometry of metallic hydrogen is
sufficient alone for the interest displayed in them. For
our purposes they are ideal as simple, controlled dem-~
onstration systems on which to exercise the MCSCF
group function approach. Most of the previous litera-
ture, with the exception of the CI calculation of
Mattheis*®* a single-geometry calculation by Liskow
et al.,™ and the recently reported CI calculations of
Seel, Bagus, and Ladik® has concerned itself with either
restricted-Hartree—Fock (RHF) or unrestricted-Har-
tree—Fock (UHF) treatments. The interest and novelty
which the MCSCF group function approach can bring to
the literature is a more general pure spin state treat-
ment which allows the inclusion of electron correlation,
and therefore the attendant ability to separate upon geo-
metrical deformation to proper asymptotic states for
both spin and space variables. All calculations reported
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used the MOLECULE integral program® for atomic or-
bital integrals and the GRNFNC program® for Hartree—
Fock SCF molecular orbitals and energies.

To treat the linear hydrogen chain with the MCSCF
group function techniques, one central variational re-
gion is chosen and two peripheral frozen regions, one
on either end of the central region, are included in the
finite cluster. The peripheral regions, by having their
electronic structure frozen in the form obtained from
the previous iteration, will simulate connection of the
central region to a continuous infinite chain. Since the
formalism of the UEIL group function method within
which we are working permits only the central region to
be nonsinglet, and all three regions must be similar,
we are obliged to consider multiples of even numbers
of hydrogen atoms for our regions. We report results
here for two different basis sets on the simplest such
cluster system consisting of two hydrogen atoms per
region, as well as a preliminary result for the system
involving four hydrogen atoms per region. In describing
the wave function forms employed, we use orbital and
term symbol notation strictly appropriate only for the
central region, which contains the center of inversion.
Of course when these forms are translocated to the pe-
riphery, the (u,g) designation serves only as a local
label.

The specific wave function forms used in the group
function must now be described. The single configura-
tion description of each two-hydrogen-atom region is
10, whereas that for the four-hydrogen-atom region is
102102, Note that in this latter case, both 1o, and 1g,
are bonding orbitals of the H; moiety. The group func-
tion formalism itself assures proper energetic behavior
as the individual regions are separated (e.g., Hg~ 3Hp).
However, for arbitrary kinds of separations that destroy
the integrity of the group (e.g., Hg~ 6H), a careful se-
lection of multiconfiguration wave functions within each
region or group is required to guarantee proper ener-
getic behavior at the asymptotes of the separation. For
the two-hydrogen-atom region the two configurations
lof and 10,2, are required to permit proper separation to
individual ground state atoms. These then are the three
types of group function calculations we have undertaken:
A one-configuration, six-hydrogen atom calculation; a
one-configuration, 12-hydrogen atom calculation; and
a two-configuration, six-hydrogen atom calculation. In
all of these calculations, the step in our MCSCF proce-
dure in which the molecular orbitals (MO’s) of the active
unit are optimized involves orbital rotations which in-
clude the virtual orbitals of the peripheral units. That
is, modification of the MO’s of the active unit can involve
mixing in virtual orbitals on the periphery. In the ear-
lier Be, calculations, we restricted the orbital optimiza-
tion of the central unit to involve only MO’s belonging
to that unit.

In order to compare our results directly with those
of crystal orbital calculations for the infinite chain,
for some of our calculations, we used the same minimal
basis set, the STO 4G function, * as Kertesz, Koller,
and Azman. 7% Because of the known sensitivity of
optimum nuclear geometry to the choice of minimal-
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FIG. 3. Calculated energies of Hg as a function of an equidis-
tant internuclear separation. (A) Two-configurations in each
regional wave function. (b) One-configuration in each regional
wave function., Energies are in Hartree and distances are in
bohr.

basis scale factor,®™* a double-zeta type 4-31G basis
with standard hydrogen parameters®” was also used.

Most of the calculations were performed for nuclear
geometries in the neighborhood of the metastable point
of the potential energy surface involving equidistant
hydrogen atoms. Kertesz, Koller, and Azman®® (for the
infinite hydrogen chain) and Benard and Paldus® (for
finite hydrogen rings) have shown the equidistant geom-
etry to be unstable with respect to dissociation to iso-
lated hydrogen molecules. By way of checking the
asymptotes of our group function calculations we were
able to verify this for the one configuration two hydro-
gen atoms per region case using the STO 4-31G basis.
The energy for a nuclear geometry of 10 a.u. between
region centers and 1.88 a.u. between hydrogen atoms
within each region is — 3,278 356. Three times the en-
ergy of an H, molecule with 1,88 a.u. between hydrogen
atoms and using the same basis set gives —3.278 313.
The difference between these two energies is of no phys-
ical importance, thereby verifying the group function’s
ability to properly describe this dissociation. This en-
ergy is 0.1 Hartree lower than the energy calculated
for the equilibrium geometry of the equidistant chain
(which has a separation of 1.88 a.u. between neighbor-
ing H atoms). Of course, the energy of three H, mole-
cules each 10 a.u. from one another and each with a
H-H distance of 1.4 a.u, would be even lower.

Figure 3 displays energy calculated with the STO 4-
31G basis for the six hydrogen chain as a function of
equidistant internuclear separation for both the one-
and two-configuration wave functions, Several aspects
of these results are worth noting. First, although the
vertical grid spacing is the same for both curves, a
break in the vertical axis has been introduced in order
to present both curves in the same figure. There is
also a break in the horizontal axis in order that the cal-
culated asymptotic point at 15 a.u. can be displayed for
the two-configuration ealculation.

Table I presents a summary of our results for nuclear
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geometry optimization and force constants from the in-
terpolating polynomials. Also included are selected
values for the same parameters that were obtained from
calculations by other workers on the equidistant hydro-
gen chain. The data for the group function calculations
presented in Table I were obtained by calculating the
energy at five points closely surrounding the equilibrium
geometry and fitting a polynomial of degree three or four
in the internuclear separation to these points. The val-
ues of the internuclear separation (R,) and the second
derivative (2) at the minimum of these polynomials are
presented in Table I.

Referring first to Fig. 3, we note that the asymptote
to which the two-configuration calculation tends as the
equidistant internuclear separation is increased, is the
energy of six hydrogen atoms in this basis (- 2.986 876
Hartree at 15.0 a.u.). Our one-configuration calcula-
tion at an equidistant internuclear separation of 15.0
a.u. gives an energy of —2.183 273 hartree, so far
above the correct asymptote that even with the break in
the vertical scale, it cannot be depicted in Fig. 3. Prop-
er inclusion of electron correlation by the two-configura-
tion group function calculation has cured this serious de-
ficiency of the one-configuration calculation.

The correct asymptotic behavior of the two-configura-
tion calculation is gratifying and some of the changes
seen in passing from the one- to the two-~configuration
calculation are similar to effects of correlation seen in
molecular systems generally, a move to larger values
of internuclear separation and a softening of the mo-
lecular potential curvature at the equilibrium position.
However, the differences between the uncorrelated and
correlated results are more dramatic than commonly
observed in molecular systems,

Further, that the one-configuration result lies at a
lower absolute energy than the two-configuration result
at first thought is startling. The possibility of basis set
superposition error artificially lowering the one-con-

TABLE 1. Equilibrium internuclear separations and harmonic
force constants for an equidistant linear hydrogen chain.

No. of atoms Basis Calculation RS2 k®
6 4G 1 ¢f GF® 1.79 17
6 4-31G 1 ¢f GF® 2.03 12
12 4G 1 ¢f GF® 1.87 46
) 4G RHF?! 1.88
w 4G UHF! 1.95
w extended RHF* 1.839 2.48
6 4-31G 2 ¢f GFY 2.82 0.8

*Bohr =52, 9177 pm.

bm dyn/A =Hn/m.

®This work, one configuration (o2) for each of the three regions
containing two hydrogen atoms per region.

%This work, two configurations (of,of,) for each of the three re-
glons containing two hydrogen atoms per region.

®This work, one configuration (020%,) for each of the three re-
gions containing four hydrogen atoms per region,

fReference 59.

fReference 63.
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figuration calculation can be dismissed. Calculation

of an H, unit at 1.88 a.u. with phantom functions on
either side of the hydrogens gives a lower energy than
without the phantom functions by only 0. 0038 hartree.
Thus, an overestimate of basis set superposition error
is only 0.01 hartree. Rather, the major reason for the
two-configuration calculation to lie at a higher absolute
energy is that it simply has a smaller variational space
available to it. With two basis functions per atom and
six hydrogen atoms in the cluster, there are a total of
12 basis functions. In the one-configuration calcula-
tion, two of these degrees of freedom are removed to
fix the 1, orbital on either side of the central unit
leaving a ten parameter variational problem. In the
two-configuration calculation, four of the orbitals are
removed to fix both 1o, and 1¢, on either side of the cen-
tral unit leaving an eight parameter variational prob-
lem. With fewer variational parameters, the two-con-
figuration calculation yields a higher absolute energy
than does the one-configuration calculation. A conven-
tional (one configuration and 12 orbital parameters)
restricted Hartree—Fock calculation on the full six hy-
drogen chain would give a curve still lower in absolute
energy, but that would not represent the ends of the Hy
chain in a manner similar to the continuing infinite
chain., It is precisely these termination influences that
we are attempting to remove and one consequence is
that the absolute energy is no longer an infallible guide
to wave function quality.

The overdramatic changes in the potential curve
shapes between the uncorrelated and correlated calcu-
lations, however, are of greater importance and may be
related to the discussion in Sec. I regarding the charge
asymmetry introduced as a requirement of orbital or-
thogonality. The energies for both curves in Fig. 3 and
all the data presented in Table I were obtained from the
energy expression of Eq. (6). As was pointed out in
Sec. I, the requirement of orbital orthogonality, at
least, results in orbitals on the two ends of the six hy-
drogen chain being different from the final variational
orbitals of the central hydrogens. This constraint of
the formalism will be more severe the more complex
the wave functions within each region become, and will
possibly produce the result that the wave function for
the system as a whole becomes more asymmetric. It
is possible that some of the dramatic differences be-
tween the correlated and uncorrelated results of Fig, 3
and Table I have their origin in these asymmetries. We
have considered possibilities for a total energy more
representative of the full symmetry of the system, but
have not yet found anything more satisfactory than Eq.
(6). However, it is also worth pointing out in this con-
nection as McWeeny®®% has previously, that Eq. (6)
does admit the major class of interunit correlations that
are responsible for van der Waals interactions, namely
configurations involving simultaneous single excitations
within the individual interacting regions.

IV. CONCLUSIONS

We have presented a formal development of a con-
ceptual scheme for solution of the electronic structure

problem for systems involving repeating potentials.
This development admits the inclusion of general, cor-
related electron, many-body wave functions and ex-
ploits the group function approximation first suggested
by McWeeny”’39 and previously used by one of us (WHF)
in a single-determinant approximation. The addition

of an external iterative cycle to the group function pro-
cedure seeks to minimize edge effects for a given clus-
ter size simulation of an extended chain, surface, or
three-dimensional solid. The equations for the addi-
tional terms to be included in an MCSCF implementa-
tion of the scheme have been presented in the notation
of the graphical unitary group approach. This notation
aids in the design of efficient algorithms for carrying
out the computations. Results of calculations on finite
chains of hydrogen atoms have explored the capabilities,
disadvantages, and highlights of the scheme.
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