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In an earlier paper1 we demonstrated how to obtain
analytical expressions for potential energy forces (gra-
dients) and curvatures (Hessians) relevant to a wide
range of ab initio electronic wave functions. In this
Note we extend our earlier development to obtain ex-
pressions for third and fourth order energy derivatives
with respect to nuclear displacement for a multicon-
figurational self-consistent field (MCSCF) wave func-
tion. These higher derivatives relate to the anharmon-
icities of potential energy surfaces and are therefore
of direct relevance to the interpretation of vibrational
spectra. We restrict our attention to the MCSCF case
because it is for this situation that one obtains the most
compact and tractable working equations.

The development of analytical expressions for energy
derivatives involves three steps. First, one must have
available expressions for the geometry dependence of the
electronic Hamiltonian?

2 3

H(u)=H0+uH1+% H2+g_l Hy+---
Here p represents the, in general 3N-6 component,
vector describing the displacements of the molecule’s
nuclei., Explicit formulas for the derivatives H, and H,
of H are given in Eqs. (13)-(16) of Ref. 1; H; can be ob-
tained straightforwardly in a similar manner by differ-
entiating H once more with respect to the components of
. Hy, H,, and H; are nothing but the electronic Hamil-
tonian in which all one and two electron integrals are
differentiated once, twice, or three times. The second
necessary ingredient is the implicit 1 dependence of the
electronic wave function 10). By variationally optimizing
the wave function with a Hamiltonian which contains an
infinitesimal nuclear displacement [Eq. (1)], one ob-
tains a set of equations to be solved for the variational
parameters appearing in 10). For example, the re-
sponse of the MCSCF wave function being considered
here can be described! in terms of orbital (x,s) and con-
figuration (S,,) variational parameters appearing in the
unitary operators exp(ik) and exp(i8) which act on {0)
to describe the wave function’s response, By making

1)
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E ={0| exp(~ i8) exp(~ ik) H() exp(iR) exp(iS) | 0) (2)

stationary with respect to variations in the «,, and S,,
parameters, one obtains a set of equations for these
parameters which depend upon p and which can be
solved in an order-by-order fashion.! One thereby ob-
tains the p dependence of «,, and S,,

(KTS)SM)EO‘i):ZO )\gk) U'k . (3)
£=
Expressions for the parameters A" and A are given

in Eqs. (46) and (47) of Ref. 1, an extension of the re-
sult for A, as contained in Eq. (32) of Ref. 3, is shown
below to be unnecessary for the present treatment. All
of these low-order A{¥’ parameters are expressed™® in
terms of generalized Brillouin (F{*’) and Hessian (G{’)
matrices and the supercurvature matrix K{%, in which
either H,, H,, or H, (corresponding to k=0, 1, 2) is used.
These matrices are fully defined in Ref. 1.

Given the explicit u dependence of |0)=exp(ir)
X exp(iS)10), the third and final step involves computing

B)=0|a#w)[0)=2 u*E® 4)

as a power series in pu. The gradient, Hessian, and
higher derivatives can then be identified from this pow-
er series:

dE 1 ,d*E 1 &E
E =E —— —_ —_ 3 eeo
(L)=E(0) + 1 itk aEteals W (5)

Expressions for dE/du and d%E/dp? are given for this
MCSCF case and for other cases in Ref. 1.

In the notation of Ref. 1, the terms in Eq. (4) which
are third order in ¢ are as follows (Einstein summation
notation is used for repeated indices):

1 1 1
E® =3 (0| Hy|0)+ 3 FO AP + 3 FP AP
1 1
+IAPGIAL LA GNP
Ly Aty 1 1) 5 (D (1)
+3 AV GHI A +F K AP AL | (6)

Substituting Eqs. (46) and (47) of Ref. 1 for A" and A%®
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allows E® to be rewritten as

3
LEE g 0|10+ PP AD

L A1)y (1)4(1) 1 (13 4y (1) 4 (1)
+2 G AP L g K A (7

The second anharmonicity can be obtained in like fash-
ion;

1 &*E o 1 1 _a
i =B =27 OH,[0)+ 37 F{"al

. 1 ag@ym, _lexmxu)xm

2121 % TNy T g TRt Ay T
1

s 7 L?m x}“x;” AL AW - SToT] AP G?, Agm , (8)
where from Ref. 1

A'sl) = - (GO);} Fj(l) (9)
and

AP = (G°) PP — 2603 G A

= (G K M AT (10

Equations (7) and (8) thus represent our working equa-
tions for the first and second anharmonicities. Their
evaluation requires generalized Brillouin F*, i=1,2,3
Hessian G'*’, 1=0,1,2, and generalized Hessian L°, K°
K matrices"® as well as the derivatives of one- and
two-~electron integrals which appear in the H,;, {=0,1,2,
3,4. In Refs. 1 and 3 it is shown how to efficiently
evaluate matrix products such as those appearing in E®
and E®,

Admittedly, the fully ab initio evaluation of E®’ and
E™ will require large amounts of computer time and
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storage primarily because of the third and fourth de-
rivatives of the integrals appearing in H; and H,. Al-

though analytical expressions for the third and fourth

energy derivative of the other wave functions treated in
Ref. 1 may also be obtained, far less simplification oc-
curs in these cases. Only for the MCSCF wave function,

whose orbital and configuration amplitudes have been
variationally optimized in a fully coupled manner, do the

generalized Brillouin theorem (F{”’ =0) and Eqs. (9)

and (10) hold. It is thus our opinion that attempts to
implement these new third and fourth derivative results
should first be directed towards the MCSCF case.
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!p, Jorgensen and J. Simons, J. Chem. Phys. 79, 334 (1983).
This paper also contains a good survey of the literature on
ab initio molecular gradients and Hessians, so we will not
reproduce that here.

*We should point out that only by using (symmetrically) orthog-
onalized atomic orbitals as a basis in terms of which to eval-
uate H and its ¢ derivatives are we able to isolate all of the
explicit # dependence in H, Density matrices which arise in
evaluating the MCSCF energy are only 4 dependent through the
implicit # dependence contained in the variational parameters
of the MCSCF function.

p, Jergensen, P. Swanstrem, and D. Yeager, Int. J. Quantum
Chem. XIII, 959 (1983), Contributions originating from the
K supermatrix may be efficiently evaluated as described by
P. Jorgensen, J. Olsen, and D. L, Yeager, J. Chem. Phys.
75, 5802 (1981).
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Huzinaga! has published GTO basis sets for the sec-
ond transition row elements (Y-Cd). These basis sets
are comparable in quality to the basis sets for the first
transition row elements developed by Wachters? and
Huzinaga.! For molecular calculations, these basis
sets need to be augmented by (i) 5p functions to de-
scribe the 5s —~5p near degeneracy; (ii) by a diffuse 44
function to provide for a balanced description of the
55244, 5s'44™!, and 44™? states of the atom; and (iii)
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by a set of 4f functions to correlate the 44 functions.
The diffuse 44 function here is similar in function to
the diffuse 3d function for the first transition row ele-
ments recommended by Hay.®

Table I gives the optimized values for the diffuse 4d,
the 5p, and 4f (STO exponent) functions. The diffuse 44
function and the 5p functions were optimized at the SCF
level based on the 5s!44™! state (except for Pd which
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