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The rates of dissociation of several vibrational states of n7* excited (C-'4’) DCN have been determined via
quantum dynamical means in which only the CD stretching and DCN bending motions are treated. The ab
initio configuration interaction potential energy surface used in our earlier classical trajectory study of these
same dissociation rates was employed in the present study. The results of this quantal study tend to support
our earlier prediction that »,—v, (bending-to-stretching) energy transfer plays an important role in
determining the dissociation rates of these vibronic states. Surprisingly, the absolute rates obtained via the
quantum method are in quite close agreement with a certain component of the classically determined rates.

. INTRODUCTION

The low lying electronic states of HCN and DCN, in
particular the singlet states of A’ symmetry, have been
investigated by Herzberg1 and others, 2 more recently by
MacPherson and Simons® (hereafter referred to as MS).
The B and C states have been identified as 'A’ (the mole-
cule has a bent equilibrium position in both states) and
lie about 6.8 and 8.2 eV above the ground state X(1=*).
The C state is especially interesting in that it disso-
ciates to a S H atom and an excited (X =*) CN radical.
The latter, upon returning to its ground state, emits
fluorescence as a result of which the production of CN
from photodissociated HCN or DCN molecules can be
monitored.

The recent experiments of MS, in addition to measur-
ing the absorption spectrum (X - C) for HCN and DCN,
also included measurements of the photofragment excita-
tion spectrum (PFES) and the polarization of the CN
fluorescence, The PFES, as indicated above, monitors
the dissociation of the metastable molecules as a func-
tion of exciting wavelength, i.e., as various vibrational
levels of the C state are populated. The absorption line-
widths give information about the lifetimes of the various
vibrational states. The fluorescence polarization mea-
surements indicate whether the metastable states decay
on a time scale that is short or long with respect to the
rotational period of the molecule (low polarization re-
tention indicates a relatively long-lived vibronic state).

MS assigned® vibrational quantum numbers to the
peaks in the PFES of HCN and DCN. The v; mode is
the NC--H stretch, while v, corresponds to a bending
of the molecule. The HC--N stretching quantum num-
ber v; is ignored both in our earlier classical dynamics
study and in our quantum analysis because we are at-
tempting to investigate only those spectral features for
which the v; mode remains in its ground state.* This
allows us to consider a two-dimensional potential energy
surface in which the CN bond is passive. MS concluded
that the C state of HCN supports a v, (bending) progres-
sion only for a stretching quantum number (v,) of zero;
for v;>0, no v, progression was observed, although a
contribution from an underlying continuum was inferred,
implying that HCN dissociates extremely rapidly if the
NC--H stretch is excited. For DCN, v, progressions
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were observed for v; =0, 1; also a v, series for v; =2
was inferred® on the basis of unusual intensity patterns
in the spectrum. For both isotopes, the fluorescence
polarization retention generally decreased as the wave-
length of the exciting light increased, although the de-
crease was not monotonic.

MS interpreted their spectrum as indicating the pres-
ence of two dissociation mechanisms for HCN. The
first was assumed active for v; =0 HCN (v, =0, 1, 2 for
DCN), but with further excitation of the stretching mode,
a “competing mechanism” increased in rate and led to
rapid dissociation of the molecule. MS did not describe
the competing mechanism, nor why it is apparently
operative for v; =1 HCN (which has less NC--H
stretching energy than »; =2 DCN, for which the com-
peting mechanism is not operative).

Our first efforts® at interpreting the MS experimental
data were directed at obtaining a good quality configura-
tion interaction (CI) description of the HCN energy sur-
faces for the B and C states. These CI calculations
were carried out for a wide variety of geometries (at
fixed C--N bond length) and the resultant electronic
energies were interpolated by using the method® of
Downing ef al. Examination of this giobal energy sur-
face (see Fig. 1) led us to conclude that a tunneling
mechanism could adequately explain all the data. Ex-
amination of Fig. 1 shows that no barrier to dissociation
exists for angles near the equilibrium configuration
(157°), but for distorted molecular geometries (9 >164°
or 6 <140°), a barrier suitable for tunneling exists. We
hypothesized® that for low v, (0 for HCN, 0, 1, 2 for
DCN) only when the molecule contains sufficient bending
(v,) energy does it sample regions of the energy surface
at which predissociation can take place, via tunneling
through the barrier; as v, is increased, the H (or D)
atom possesses sufficient energy to directly escape the
potential well thus leading to continuum behavior. A
simple model, based on separable harmonic oscillator
modes for vy and v, and crude tunneling estimates, lent
support to this hypothesis. In summary, the model®
predicted the general trends (onset of predissociation as
vy increases and switch to continuum behavior as v, in-
creases) very well, except that it predicted no v, pro-
gression for v; =2 for DCN. As the experimental as-
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157°

FIG. 1. The ab initio potential energy surface for C-state HCN
or DCN. The energy (vertical scale) ranges from — 96,600 to
— 92, 645 hartrees, The C and N atoms are held fixed, so the
energy is a function only of the position of the H atom. The
HCN equilibrium bond angle occurs at § =157 and there is a
saddle point at # =180°, A radial barrier todissociationbegins
to appear at § >164° and 6 <140,

signment of that series was somewhat tentative, the dis-
agreement was not considered a major failure of the
model.

We next performed classical trajectory calculations’
on distributions of initial coordinates and momenta which
mimicked the various (vy, v,) states of DCN, utilizing a
polynomial fit of the same C state CI energy surface
(again, fixing the length of the C~-N bond). To deter-
mine initial momenta appropriate to each of the vy, v,
states, we used the MS experimental energy spacings
for all v, values and for v;=0,1, and we used a har-
monic extrapolation of the same for »;=2,3. MS did
not report anharmonicity in v;, so unambiguous assign-
ment of their results was restricted to v =0,1. These
dynamical simulations included approximate tunneling
rate estimates. The results of our classical study in-
dicated that tunneling is nof important in the predisso-
ciation mechanism, but that v,— v; energy transfer leads
to the H (or D) atom’s classical escape. We saw that
increasing the excitation in the v; mode caused an in-
crease in the rate of fragmentation. Once again, the
correct trends (onset of predissociation and switch to
purely dissociative behavior) were reproduced.

Although these earlier classical investigations were
quite successful, we had one important motivation to
carry out the quantum dynamical study of DCN described
here. A quantum study on this same potential energy
surface would allow a direct comparison of the results
of quantum and classical studies of such unstable mole-
cules. Considerable work has been done using classical
mechanics on molecular scale systems, but the ability
of such studies to simulate the true quantum behavior of
such systems should be questioned. Such a direct com-
parison as this, on a problem closely approximating a

real molecular system, therefore provides insight as
to how one should interpret classical results on quantum
systems (see Sec. V).

We turn first to a discussion of the quantum mechani-
cal methods used in our study (Sec. II) and of the spe-
cific potential energy surface and vibrational basis sets
(Sec. III). Then, in Sec. IV, we will analyze our re-
sults and make comparisons with those of our earlier
classical mechanical work.

Il. REVIEW OF THE COORDINATE ROTATION
METHOD

The coordinate rotation (CR) or complex coordinate
method® has proven useful in determining state energies
and lifetimes of autoionizing atoms, molecules, and
anions., More recently, its use has been extended to
metastable heavy particle systems by Chu, *®’ Christof-
fel and Bowman, ) Hedges and Reinhardt, %) and Bacic
et al.!® The underlying foundations of the CR method as
well as its connections with such scattering techniques
as the Siegert method!! are treated in numerous
places®!? in the literature. Here we simply review
how the CR method is implemented for systems involv-
ing distinguishable heavy particles such as DCN.

13

The Hamiltonian H describing the motion of the DCN
nuclei on the C-state potential energy surface involves
kinetic energy along three internal coordinates and three
orientational angles. One of these coordinates (the
radial distance » of the D atom to the center of mass of
the CN moiety) is singled out for special attention be-
cause it is the coordinate which asymptotically describes
relative translation of the D + CN fragments. The CN
bond-length coordinate and all orientational and bond-
angle coordinates remain intact in the DCN- D+ CN
event; only » undergoes a qualitative change from quasi-
bound vibration-like motion to unbound translational
motion.

For energies which lie above the dissociation thresh-
old of C-state DCN, the various v;, v, levels being stud-
ied here are not bound states; they are only metastable.
For this reason, conventional basis-set diagonalization
of H cannot straightforwardly be used to locate their
energies or compute their widths; the Ritz variational
principle is not useful for states which lie in the con-
tinuum, Use of the CR method allows one to extract
from the (complex) eigenvalues® E, -iI'/2 of the so-
called complex scaled Hamiltonian H(n) the energies E,
and lifetimes 7=7%/T of the metastable states. Con-
struction of the rotated Hamiltonian H(n) is carried out
by replacing the asymptotic radial coordinate 7 dis-
cussed above by n¥ everywhere r appears in H. The
complex scale parameter n has magnitude o and phase
8: n=aexp(iB). Because 7 appears in the kinetic en-
ergy as %, the complex scaled kinetic energy is simply
7% times the unscaled kinetic energy. Scaling the »
dependence of the potential energy V in H is more dif-
ficult because V is not a simple homogeneous function
of . The secaling of V(r) in the particular case at hand
is treated in Sec. IIIE.

Given that the operator H(n) can be constructed, the

J. Chem. Phys., Vol. 80, No. 1, 1 January 1984

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



178 Chuljian, Ozment, and Simons: Dissociation of DCN

CR method instructs us to form the matrix representa-
tive of H(n) in a basis and then to find the (complex)
eigenvalues E,(n) of this matrix. By following each of
these eigenvalues as @ and @ are varied, one attempts
to identify those eigenvalues which display stability
(i.e., small sensitivity to changes in & or 8) over some
range of a and 6 values. This searching is often ac-
complished by plotting the eigenvalues as functions of

8 for fixed a. Such a graph is called a 6 -trajectory.
According to the CR theory,® a resonance state’s com-
plex energy should vary with 6 until 6 exceeds some
critical value 6,, beyond which the energy should be un-
changed as 6 further varies. In practice, one usually
experiences a considerable reduction in the 6 dependence
of E, once 8>6_, but perfect 6§ independence is hardly
ever seen.

With this brief overview of the CR method in hand,
let us now move on to explore its implementation in the
DCN predissociation under study in this work.

Il. DESCRIPTION OF THE PRESENT STUDY
A. Definition of the problem

In this study, a fixed DC--N bond length (1.300 A)
was employed for computational tractability as well as
to allow comparison with our earlier classical studies.’
The existence of the CN--D isomer’s potential well was
essentially ignored because C state DCN is known'! to
not isomerize appreciably to CND. At the total energies
which we consider, the DCN cannot access the CND re-
gion, and thus our use of a surface which ignores (by
being quite repulsive) the CND geometry is justified.

All of our calculations were designed to locate meta-
stable states (resonances) with energies less than
~1100 em™ above the dissociation threshold. Our clas-
sical trajectory calculations had indicated’ that, even in
this energy range, states with long, medium, and short
lifetimes should be found. Thus, our aspirations were
not to generate quantal energies and lifetimes for all 30
vibrational states which we examined classically; we
were attempting to compare quantum and classical pre-
dictions only for a selected subset of these states. At
energies well above 1100 cm™, the density of states be-
comes so high that the identification (i.e., labeling with
v; and v, quantum numbers) of resonance states is much
more difficult.

B. Form of the potential energy surface

In order to utilize angular momentum coupling to
simplify the quantal computation arising in this prob-
lem, we decided to fit our C-state potential surface to
the following functional form!?:13;

Lmax

Vir, 6) = Z; V,(r)P,[cos(8)], 1)
L=

where P, is the Ilth order Legendre polynomial. This
potential energy function was constructed in three steps:
{(a) the energy of HCN was calculated by configuration
interaction® (b) the 150 different CI energies were fit

to a polynomial expression V(r, 8) in » and cos(), within
an accuracy (average deviation of input points from the

FIG. 2. The lab-fixed co-
ordinate system used in
this work.

interpolated function) of about 50 cm™; and (c) for nu-
merous values of 7, the coordinate which represents the
distance from the center of mass of the CN moiety to the
H or D atom, numerical values of the V. (»)’s of Eq. (1)
were calculated by numerically projecting out the vari-
ous P;[cos(8)] components of the above polynomial ex-
pression for V{7, 8).

The final compromise (Ly, =4 or 5) between accuracy
of the potential (compared to the polynomial expression
for E) and computational expense (too many L values)
was arrived at after much trial and error. The final
V. P potential of Eq. (1) is about 400 cm™! too deep at
its minimum relative to the V(r, 8) potential used in our
earlier classical trajectory calculations. This devia-
tion should be kept in mind since it might influence our
quantum/classical comparison given in Sec. V. How-
ever, viewing plots of the two energy surfaces shows
that the shapes of the polynomial and V; P, potentials
are sufficiently similar that we feel this should not
cause qualitative changes in the predicted energies and
lifetimes. Further, as we show later, the bound-state
energies obtained in our quantum calculations on the
V. P surface are in reasonable agreement with the ex-
perimental results® of MS (see Sec. VA).

C. Dynamical equations

The coordinate system which we use to describe the
motion of DCN is illustrated in Fig. (2). The six-
dimension Hamiltonian of the system is

ﬁZ

2pp,on
where Lj, oy is the reduced mass of D relative to the
CN diatom, and V is the atom-diatom interaction po-
tential of Eq. (1). The CN rotational kinetic energy in-
volves the CN angular momentum j, the HC-N bond
length R, and reduced mass pu.y. There is no ¢ depen-
dence in V because of the axial symmetry of the prob-
lem. We now proceed as in Ref. 10 to introduce eigen-
functions of the total angular momentum J* and gt

w}lluzza’M_m;j’ mlJ’M>

K
2 J
H vi+Vir,6) + P (2)

X Y,-,m(ﬁ, a) Yl,M-m(907 do) - (3

These eigenfunctions can be used as basis functions in
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terms of which to expand the eigenstates of H corre-
sponding to a fixed value of J, M as

\I/JM(B’ a,7, 90: ¢)0) = ngtM(b‘]’lM('r) ’ (4)
1j

where the ¢7“(r) describe the radial motion of H (D)
relative to the CN. Substitution into (H — E) ¥ =0, fol-
lowed by the usual premultiplication and integration,
gives coupled differential equations for the ¢7}:

n 1df,d\ 1i+1) )J .
61,'61'1[_2#1)@1«(7’2617’(7 d?'>— 7 Tei=E)| 4

+ Zywm [Vir, 0) |4y ¢4 =0, (5)
J

where €; is the rotational energy of the CN fragment.
Notice that the V(», 8) in Eq. (1) is expressed in terms
of molecule-fixed coordinates » and 8, but the integra-
tion is over the lab-fixed angles «, B, 8,, ¢, of the
@7, By the introduction of rotation matrices and the
use of standard identities, the above V matrix element
can be expressed as:

V.J{'A{"jl:(_l)joj’-l-l' (2j+1)1/2 (2j1+1)1/2

xzj’ U JN\ (i

A\ TR TY A\ TR !
xVir,6)Y,, (6, ¢)sin(6)do d¢ , (6)

b7 [ri.6.9

where the (§ ! ) are the well known 3-j symbols'® of

angular momentum coupling theory. We can now take
advantage of the form of V [see Eq. (1)] to separate the
radial and angular part of the integration in Eq. (6).
After additional use of standard identities involving in-
tegrals of products of three spherical harmonics, we
arrive finally at

Lmu

ViM = Z; FLGLIT, DV () (1)
L=

where the f; are the well-known Percival-Seaton coef-
ficients'®

fL(jl,j,l’,J) — (_ 1)]&!' =1-1* []']1/2[]-/]1/2[”1/2 [ll]1/2

)3>3 i’ JINfi 1 J
X

Z w \0 u -pf\0 o o-p
1 i L\f1 I L

el o o), (®)

and[j]=2j+1.

We now restrict our consideration to the case J =M
=0. The justification for this restriction is the ob-
served lack of significant J dependence’ in the decay
kinetics obtained in our classical trajectory calcula-
tions (in which various values of J were explored). For
this J =0 case, Eq. (5) reads

A RN PO

+ xZZL:fL(”’ 11 0)V ()6, (r) =0 . (9)

This set of coupled differential equations was solved,
using the basis set expansion method discussed below
and the coordinate rotation method outlined earlier, to
generate our quantum state energies and lifetimes.

D. Basis considerations

The eigenfunctions of J° and J, introduced in Eq. (3)
as angular basis functions can be simplified in light of
the restrictions placed on J and M:

W0, ¢, 8, ¢o) =N, 8, Pi[cos(8)], (10)

where P, is the Ith order Legendre polynomial and N,
is a normalizing constant, Test calculations using this
basis set indicated that at least 20 Legendre polynomials
had to be included to achieve results which were stable
with respect to the inclusion of more (i.e., higher or-
der) polynomials. Since the radial functions ¢7¥(r) of
Eq. (4) also need to be described as linear combinations
of approximately 20 basis functions (see below), on the
order of 20X20 or 400 terms, would arise in our wave
functions. It would be fairly time consuming to diago-~
nalize the resulting 400x 400 Hamiltonian matrix for
many values of the complex scaling factor n. There-
fore, to reduce the size of the angular basis and to
simplify the interpretation (i.e., make connection with
the bending states of DCN) of the Hamiltonian matrix
eigenvectors, the original {P,[cos(6)]} basis functions
were contracted to yield a new {x,,[cos(6)]} basis as
detailed in the Appendix. This contraction, when ap-
plied to the matrix representation of the Hamiltonian
appearing in Eq. (9), resulted in about a threefold re-
duction in the size of the matrices involved, with no
significant decrease in accuracy for the low-energy vi-
brational states (low values of v,). We thus view the
Xu,[c0s(6)] basis as the optimal angular basis functions
to use in the calculations on DCN described below.

The radial functions ¢]¥(r) of Eq. (4) were expanded
in terms of evenly spaced radial Gaussian basis func-
tions { g;(»)}. This same basis proved to be useful in
our earlier work!"!? on rotational predissociation of
atom~diatom van der Waals complexes. We write the
expansion as follows (using J=M =0, j=1I):

03 0= 0N =22Clg ), (11)
where
g(r)=N;expl-v,(r -7,)?] . (12)

Here, N, is a normalization constant, and the y; and 7,
are the exponents and centers of these Gaussians, re-

spectively. The exponents y; were chosen to be identi-
cal {y; =v,) and the 7; were evenly spaced according to

7, =7+ (i -1ar . (13)

To be able to describe vibrational states of DCN with
a given radial nodal character (e.g., corresponding to
various values of vy, the D--CN stretching quantum
number), ¥, and Ar must be chosen such that successive
Gaussians have significant overlap and are spaced at
least as closely as are the nodes in the v; direction of
the vibrational wave function. Achieving an accurate
description of states with energy ~1100 cm™ above dis-
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sociation (see Sec. III A) dictates the maximum spacing
Ar which is acceptable. In the region of the potential
well, whose depth is ~4500 em™, these states have
~5600 cm™! of vibrational kinetic energy which corre-
sponds to a local de Broglie wavelength of ~0.5 a.u,,
which would imply that a 0,25 a.u. (or less) spacing of
the basis functions is needed. The optimal choice of

v is not as obvious. If the Gaussian functions are too
narrow, they cannot be combined as in Eq. (11) to rep-
resent a smoothly varying wave function. Through trial
and error, we found that to obtain a good description of
the bound vibrational states of DCN, an overlap between
neighboring Gaussian functions of about 0.5 was needed;
this is achieved when y(=34.7. Giveny, and A7, the
total number of Gaussian basis functions still needs to
be specified to complete the basis description. Previous
CR calculations carried out by our research group!®!?
indicated that the radial basis must extend one full
asymptotic de Broglie wavelength beyond the point where
the potential is essentially zero. The potential described
in Sec. III B becomes small for v~4.0-4.5 a.u. so we
centered the last Gaussian at ¥ =6.5 a.u. We note,
though, that if the last basis function is centered at
r=6.5 a.u., then states with asymptotic de Broglie
wavelengths of ~2.5 a.u. or energies S 200 cm™ above
dissociation, may not be well described in the asymp-
totic region. Finally a choice of 7, the location of the
innermost radial basis function, must be made. The
value of 7, should be chosen such that the potential

V(ry, 8), is much greater than the energy of the states
under study (about 1100 ¢m™ here) for all values of the
angle 6. Test calculations on the bound states indicated
that »;=2.5 a.u. was a reasonable choice. This com-
pletes the specification of the radial basis used in this
work.

E. Implementation of the coordinate rotation technique

To proceed with the CR approach, the complex Hamil-
tonian matrix H obtained by using Eq. (11) in Eq. {9),
premuliiplying by g,(r) and integrating over v must be
constructed. Then the generalized eigenvalue problem

HC=ESC (14)

must be solved. Here

o (1d(,d
e[ arso -5 (5 ()

D) o+ St 0 vielae) a5
L

and

S'lil’lizélll Tzdrg‘,(r)g‘(r) . (16)
This can be rewritten using standard techniques

HC=EC, (1
where

A=s2y gl (18)
and

é — 51/2 C. (19)

350

325

300

275

Energy (ecm —1)

~J
(84}

150

125

100 1 I { -
0.90 0.94 0.98 1.02 1.06 1.10

o

FIG, 3. A typical stabilization plot showing the stabilization
resonances at 124 and 225 cm™!,

Since the application of the CR method involves scaling
the radial coordinate in the Hamiltonian, the S matrix
is unaffected; it is a real symmetric matrix whose con-
struction is straightforward. Because it is real valued,
its construction need not be repeated as the CR scale
parameter 7 is varied. In contrast, the kinetic energy
terms in Eq. (15) must be premultiplied by 5% the ¢,
term remains unscaled because it has no r dependence.
The n-scaled contributions from the V,{r) term

vhe= [ Pargvime) (20)

"min

can be reexpressed in terms of integrals over Gaussian
functions whose coordinates have been complex scaled,
- f 7 dr g ™V L(Ngiln™y) (21)
"min
These integrals must be evaluated [numerically, since
V,(r) is only known in digital form] for every value of
7n, unlike the other terms in Eq. (15) which require only
one numerical integration for a given basis. Though this
adds somewhat to the expense of the calculation, the
greatest expense is found to be the diagonalization of the
Hamiltonian matrix, not its construction.

Vii~n

Another important consideration which arises in the
CR approach is locating the optimal scale factor 7
(i.e., the values of 7 at which stable behavior is ob-
served in the CR @ trajectories). Since n=a ‘%, this
gives rise to a two-dimensional search for the a and ¢
at which a given complex energy is stable with respect
to small variations. One search technique which has
proven useful for obtaining reasonable estimates of the
best @ value is the so-called stabilization method'" in
which 6 is set to zero and the eigenvalues of H are moni-
tored as a is varied. A typical stabilization plot of
these eigenvalues as functions of o is shown in Fig. 3
(only a narrow energy range involving a few of the H
eigenvalues is shown). In this approach, one looks for
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Im(Energy) (cm —1)

13t b ]
14| b

5 1 ) 1 1 ¥, i 1 1
150 175 200 225 250 275 300 325 350 375 400
Re(Energy) (cm —1)

FIG. 4, A typical coordinate rotation 0-trajectory plot at «
=1.045 and 0 =6 =0, 004 rad, the real and imaginary values of
the eigenenergies are plotted as points on the graph. By plot-
ting several of these points from different values of9, resonance
behavior is seen when the points start to cluster. Resonance is
seen at energies at 175 and 220 cm™ (@), The other eigen-
energies (0) do not show signs of resonance since their energy
variation with 8 dE/d8 is actually rather constant (N.B., the
real and imaginary energy scales are vastly different, This
makes the root near 320 cm™ seem to be stable; however, it

is not).

avoided crossings between pairs of eigenvalues and uses
a value of a near the avoided crossing as a starting
value for use in subsequent optimization of the phase (6)
of 1.

Given such an initial approximation to the optimal «,
6 is varied and the (complex) eigenvalues of H are moni-
tored to see whether one or more eigenvalues become
relatively insensitive to variations in f above some
critical value of 6 (8,). If such critical-8 behavior® is
established, one presumably has located a resonance.
In practice, perfect insensitivy to 6 is never achieved.
Therefore several such ¢ trajectories (plots of eigen-
values of A as 6 varies) for nearby a values are usually
examined. By plotting these 6 trajectories (see Fig. 4),
one can usually identify the resonance energies by locat-
ing regions of relative insensitivity of the complex en-
ergy to variations in both @ and #. The complex energy
of the resonance is then taken to lie in this region.

IV. RESULTS OF THE CALCULATIONS
A. Extrapolation of bound-state energies for DCN

Diagonalization of the H matrix of Eq. (18) gave rise
to 12 (v, v,) energy levels which were bound. The en-
ergy spacings of these states were not sufficiently close
to those observed by MS to permit straightforward
identification (labeling by »; and v,). Hence the eigen-
functions of our bound states (for n =1) were plotted as
functions of the coordinates » and cos® and their nodal
patterns and average radial and angular displacements
were examined. By this analysis, reliable assignments
of v; and v, quantum numbers to our energy levels were
possible. Our final assignments of the energies of all

12 bound states are shown in Table I.

The energy spacings of our bound states were used to
extrapolate into the dissociative region (to ~1100 cm™
above dissociation) to give an idea of which metastable
states we should expect to find in the energy range
studied. In carrying out this extrapolation, the v,v,

- vy, v, +1 energy spacings beyond the dissociation
threshold were chosen to be within ~14% of the nearest
vy, Uy —~ vy, vy — 1 spacing and to give vy, v;~vy +1, v,
spacings of nearly constant size. This was done to
mimic the weak v, dependence of the experimental spac-
ings in various vy lines. Obviously, the energies thus
predicted are very approximate. Nevertheless, assign-
ing a value of v; to the metastable states is useful since
we expect from our earlier classical dynamics work'
that increasing the excitation of the v; (NC--D stretch-
ing) mode can be reasonably expected to correlate with
shortening the lifetimes of these states. The resultant
estimates shown in Table I indicate that we should be
able to locate a number of resonances within ~1100 cm™
of the dissociation threshold and that these states should
have v;, v, quantum numbers (and hence lifetimes) which
vary substantially.

By examining our bound-state energy differences
(shown in Table I), we saw that energy progressions in
the v mode [e.g., (0,0), (1,0), (2,0)] exhibited marked
anharmonicity. This fact prompted us to repeat our
earlier classical trajectory calculations (which ignored
v; anharmonicity) using more appropriate state energies
obtained by including similar anharmonicity in the v,
mode. The resultant state energies used in these tra-
jectory calculations are referred to as extrapolation

TABLE I. DCN state energies and spacings,
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TABLE II. Stabilization graph predictions.

Energy (cm™)

Vi, Uy Optimal ¢ values

1, 3 124 1,06

0, 6 225 0,92, 1,03, 0,98, 1,11
3, 1 390 0,98, 1,04

2, 2 525, 550 1,08, 1,03

1, 4 700 0,98

0, 7 830 0.93

3, 2 1000 0,99-1.03

estimates in Table IV. The decay kinetics of these new
classical dynamics calculations are summarized in
Table V, and comparisons to the corresponding CR re-
sults are discussed in detail in Sec. VC.

B. Stabilization and 0-trajectory results

Our stabilization plots indicated that resonances
should lie at the energies listed in Table II, where ten-
tative quantum number assignments are also given.
Some eigenvalues of H undergo more than one avoided
crossing as « is varied (see Fig. 3). Thus in Table II
some of the resonance-state candidates can be labeled
by more than one optimal a. Most of these stabiliza-
tion-predicted energies do indeed lie within the energy
ranges predicted by extrapolation of the bound-state
energies (Table I). The stabilization plots were also
used to obtain estimates of the best a values to use in
computing CR 6 trajectories, These values of a are
those given in Table II.

Given the above estimates of the optimal « values
corresponding to each resonance state, 8 trajectories
were carried out for nearby values of a. After examin-
ing numerous 8 trajectories (e.g., see Fig. 4), a num-
ber of candidates for resonances (see Table III) were
located, some of which appeared to be stable for more
than one value of @, because their stabilization graphs
showed avoided-crossing behavior at more than one o
value. A totally unambiguous assignment (v; and v,
labeling) of all the roots exhibiting resonance behavior
was very difficult partially due to the fact that any finite
basis shows imperfect behavior with respect to varia-
tions in . Nevertheless, we feel that the results shown
in Table III represent our best effort at identifying the

TABLE I, Coordinate rotation (8 trajectory) assignments,

V1, Vs Energy* (cm™) Width? (cm™) a

1,3 175 20 1.045

0,6 220 5 1.045

3,1 385 30 1.06

2,2 505 100 1,04

1,4 608 80 0,96

0,7 716 30 0.97

3,2 890, 895 100 0.95, 1,055

2The real part of the complex energy eigenvalue,
®The width I'= - 2Im (complex energy eigenvalue).

quantum resonance states of DCN which lie within
~1000 cm™ of dissociation.

V. INTERPRETATION OF RESULTS AND QUANTAL-
CLASSICAL COMPARISON

A. Technical differences

At this stage, we stop to recall that technical differ-
ences exist which complicate the comparison of the
classical and quantal results. We used the VP, fit
[Eq. (1)] of the CI-calculated potential energies in the
present CR study, whereas our earlier classical analy-
sis used a polynomial fit of the same CI energies. This
difference introduces a quantitative (but not qualitative)
difference in the potential energy. Second, the ab
initio CR analysis achieved its own energetic informa-
tion about the vibrational energy levels of the molecule,
whereas the classical analysis required this knowledge
as input. So, the CR dynamical behavior is linked un-
ambiguously to its energetic information (e.g., no har-
monic or anharmonic extrapolations of the v, energies
are required). As discussed earlier, we have used all
of the concrete information available about the ener-
getics of the DCN vibrational states in order to counter-
act the variability of the classical method and thereby
make the quantal-classical comparison as objective as
possible. Lastly, both our classical and quantum me-
chanical analyses neglect the vibrational contribution of
the DC--N bond. Though there is supportive evidence
that motion in this mode should not be a major influence,
its exclusion affects the comparison of our theoretical
results to the experimental interpretation. With these
differences in mind, we proceed now to the actual com-
parison of both energies and lifetimes obtained in our
quantal investigations to the classical results and to
those inferred from the experimental absorption and
PFES spectra.

B. Comparison of metastable-state energies

The extrapolation, stabilization, and CR estimates
of the resonance-state energies are shown in Table IV
to permit direct comparisons. We see that the stabil-
ization-based energies varied less than 115 ecm™ from
the CR energies. The resonance energies based upon
extrapolation of the bound-state CR energies also differ

TABLE IV. Energies of selected metastable states of DCN (in
-1
cm™),

Experimental®

v1, v; Extrapolated® Stabilization CR +135

1, 3 4 124 175 —140

0, 6 188 225 220 340
3,1 415 390 385 v

2, 2 491 525, 550 505 (660)

1, 4 584 700 608 540

0, 7 748 830 716 1040

3, 2 1105 1000 890, 895 so

Energies used for classical dynamical study whose results are
given in Table V (see Sec. IV A).

®Obtained from MS line spacings; the number in parentheses is
based on a tentative assignment (see Sec. IV A).
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by no more than 120 ¢cm™ from the stabilization-based
energies. The fact that the extrapolation and stabiliza-
tion estimates are remarkably close to the CR values
supports the use of these cruder methods to help locate
the CR energy levels and to characterize the quantum
numbers of those states.

Table IV also shows a list of what we refer to as ex-
perimental vibrational state energies. We estimated
the zero-point energies and determined subsequent en-
ergy increases from MS’s interpretation of their ab-
sorption spectrum. The uncertainty of 135 cm™ esti-
mated for these energies is partially due to experimental
uncertainty in absorption peak positions but mostly due
to uncertainty in the dissociation threshold. The state
energies corresponding to vy =3 were not available in
the MS manuscript and the v, =2 assignment was some-
what tentative (see Sec. I A).

The (1, 3) state is expected to be bound according to
the available experimental data. However, all our cal-
culations predicted the (1, 3) state to be unbound and to
have a resonance energy at the critically low energy
(<200 cm™, discussed at the end of Sec. III D}, where
we expect our radial basis [g;(»)] to be deficient. Thus,
it is likely that CR substantially overestimates the en-
ergy of the (1, 3) state. The fact that we predict (1, 3)
to be unbound whereas experimentally it is expected to
be barely bound is probably a result of our potential sur-
face not being entirely correct in this energy range.
There are other noticeable differences between the esti-
mated experimental state energies and our CR energies.
All comparisons directly to energies determined from
the MS data are within 321 em™, which is not always
within the estimated uncertainty in the experimentally
based numbers. These theoretical-experimental energy
differences are not large, however, and may also be
attributed to differences incurred in our description of
the potential energy surface (see Secs. III B and V A).

C. Comparison of lifetimes

We have listed in Table V the lifetimes calculated by
both CR and our earlier classical trajectory method.
The lifetime (7) is defined as the time necessary for the
population to decrease to e™ (i.e., N/Ny=¢™¥"). We
recall that the state’s width (I) is inversely proportional
to its lifetime (I'=#%/7). The remainder of this dis-
cussion will focus on state lifetimes, although analogous
comparisons can be made with the widths.

Direct comparison of the CR lifetimes to experimental
lifetimes is difficult. MS reported® only rough esti-
mates of lifetimes based upon absorption linewidths and
polarization retention. Lifetimes of 0,1<7<0.7 ps are
congistent with the linewidths 0.4 > AXx = 0.1 nm of the
MS absorption and photofragment excitation spectra
(near 143 nm). These lifetimes are certainly qualita-
tively comparable to the majority of our CR and classi~
cal lifetimes reported in Table V, which we now proceed
to compare in detail.

The classical lifetimes shown in Table V were deter-
mined by fitting the results of an ensemble of trajec-
tories to an exponential decay profile. For v, >1 we

TABLE V. Lifetimes of selected metastable
states of DCN (in ps).

V1, Uy CR?* Classical®

1, 3 0.26 0.52 (90%)

0, 6 1.0 0.85 (100%)
3,1 0.18 0,35 (34%)

2, 2 0,053 0.14 (55%)

1, 4 0.066 0.18 (89%)

0, 7 0.18 0.21 (100%)

3, 2 0. 053 0,14 32%)

aCalculated by 7 =% /I.
YParentheses give percentage of slow—
channel classical trajectories,

found that we needed to use a double exponential fit be-
cause there was strong evidence of two competing decay
processes. Excellent fits are achieved in all cases.
These two kinetic processes had rates which were dis-
tinctly different. We distinguish them here as a fast,
short-lived decay channel and a slow, long-lived decay
channel. Because the classical decay kinetics required
double-exponential fitting, Table V lists the slow-
channel lifetime and the percentage of trajectories which
decayed via this slow channel. The remaining percent-
age decayed via the fast channel with a lifetime of 0. 007
ps. We observed this fast lifetime to be independent of
the specific quantum state (v4, v,) and that most of the
trajectories in this channel decay before one vibrational
period. The percentage of trajectories in the fast chan-
nel increases with an increase in vy; for v, =0 there was
no evidence of the presence of this channel.

To compare the quantal CR and classical lifetimes,
we first recall that the CR method identifies resonance
energy states which are imbedded in the continuum.

The fast classical channel discussed above appears to
describe a direct dissociation component whose rate is
independent of the quantum state. This part of the
classical trajectory results should therefore be consid-
ered to be related to a2 nonresonant direct dissociation
mechanism, The fast classical lifetime is much shorter
than any of the CR lifetimes. We therefore conclude
that the subpopulation of short-lived classical trajec-
tories should not be related to the resonance behavior
of the system. It is also important to note, even though
the fraction of trajectories in the fast channel is only
dependent on vy, that the slow-channel lifetime is not
directly related only to v,; both quantum numbers play
roles in determining the slow-channel classical decay
kinetics.

Let us now proceed to a direct comparison of CR and
the slow-channel classical lifetimes. For v;=0 only
the slow channel is operative and hence a single-expo-
nential decay process appeared in our classical data.
As Table V shows, the classical lifetimes for v, =0
differ from the CR lifetimes by no more than a factor
of 1.2. For vy=1-3 we also compare in Table V our
quantal CR lifetimes to the slow classical lifetimes de-
termined by a double exponential fit of the classical de-
cay kinetics. The slow-channel classical lifetimes do
vary from one quantum state to the next and their trend
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is exactly the same as displayed in the CR lifetimes.
The CR lifetimes are all shorter than the slow-channel
classical lifetimes by a factor of 2 to 2. 5.

These results tend to suggest that not only do we ob-
tain a reasonable comparison of ab initio CR lifetimes
with the available experimental values, but we also see
a surprising correlation between the quantum mechani-
cal dynamics and the slow-channel component of an in-
dependent classical analysis. Certainly the results of
these two methods compare more closely than we had
anticipated, considering the differences discussed in
Sec. VA, and the commonly raised questions about the
appropriateness of using classical mechanics on tradi-
tionally quantum mechanical systems (see Secs. IC and
VI). Recent CR dynamics and classical trajectory cal-
culations performed in our laboratory on the rotational
predissociation of triatomic van der Waals molecules
have also indicated that lifetimes predicted classically
might be within a factor of 2 of the CR lifetimes. Both
the van der Waals systems and the present DCN mole-
cule have low reduced masses and internal energies,
and de Broglie wavelengths which one would not expect
to allow such close classical-quantum agreement.

VI. SUMMARY

Our quantal CR calculations on the predissociation
rates of (vy, v,) vibronic states of C'A’ DCN are consis-
tent with the experimental data on absorption line broad-
ening and fluorescence polarization. The state energies
obtained by extrapolating our bound-state energies and
via our stabilization calculations support the (v, v,)
assignments which we have made in our CR study.

The decay rates obtained in our quantal CR calcula-
tions are in reasonable agreement with our classical
trajectory simulations and have been useful in providing
insight into the interpretation of the classical results.
Since the classical trajectory simulations give rise to
pairs of competing decay processes, the classical decay
kinetics provide lifetimes for both a fast and a slow de-
cay channel. The fast-channel kinetics seem to describe
direct decay and have no dynamical features which can
be related to the resonance states found in the CR analy-
sis. In short, the fast-channel classical trajectories
do not appear to be part of the quantum mechanical
resonance states; they describe the background (non-
resonant) component in the language of scattering theory.
The classical trajectories belonging to the slow channel
do undergo v, - v, energy transfer over a time scale
(see Table V) of 0.14-0,85 ps which is considerably
longer than the time needed for a DCN bending vibration
(~0,05 ps). The slow-channel classical lifetimes con-
sistently follow the same trend as the CR lifetimes.
Therefore, the slow-channel trajectories are consid-
ered to contain the resonance information that is also
embodied in the quantal CR analysis. So, although the
distribution of classical initial conditions was designed
to mimic a (v, v,) resonance state of DCN, some of the
resulting trajectories appear to better describe a con-
tinuum state with the same energy. In a general sense,
this indicates that groups of trajectories with the same
energy may not relate to the same component of the

quantum state involved. An analogous effect was seen
in DeLeon and Heller’s work!® on color quantization of
bound states in coupled Morse oscillators. They found
that they obtained different portions of the true quantum
eigenfunction when using trajectories that had the same
energy but which were chosen either from within or out-
side of their (classical) resonance zones. That is,
certain initial conditions gave classical trajectories
which spanned only a limited region of the available co-
ordinate space and therefore limited the space over
which their color quantization method could develop
proper phase interference patterns. We speculate that
our slow-channel trajectories, which spend reasonably
long times in regions of geometry space where the po-
tential of Fig. 1 is nonvanishing, could be used to gen-
erate color quantized versions of (v, v,) wave functions.
On the other hand, the fast-channel trajectories spend
so little time in the region where the potential energy
is nonzero that attempts to generate color-quantized
wave functions from them could yield only approxima-
tions to the asymptotic (large #) components of the wave
function. We are currently examining this hypothesis
in our laboratory.

The facts that our quantal and classical results seem
to agree well with one another and to be consistent with
the experimental data is somewhat satisfying. However,
it remains a puzzle to us that the classical dynamics
simulations perform as well (when compared to our
quantal CR predictions as well as experiment). For the
vibronic states studied here, the local deBroglie wave-
lengths in the vy mode are all longer than 0.5 a.u. The
DCN potential energy surface is certainly not relatively
constant over this (0.5 a.u.) distance scale. Therefore,
from this point of view we should not have expected a
classical treatment of the DCN dynamics to provide such
a close representation of the, presumably more correct,
quantal (CR) dynamics. Viewed from another perspec-
tive, quantum states contain long-time information about
the system. Thus, one would expect that classical tra-
jectories which remained in the region of the interaction
potential for long times (7) might be able to describe a
quantum state but only within an energy range AE~7/7
and only if phase information were attached to the tra-
jectory. No such phase information was utilized in our
work; nevertheless, the classical trajectories worked
very well. As mentioned earlier, we are now investi-
gating this puzzle by looking at the color quantized wave
functions generated by trajectories belonging to the
slow-channel components.
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APPENDIX: ANGULAR BASIS CONSTRUCTION

The main objective of contracting the Legendre poly-
nomial basis functions P; to form the functions x‘,2(9)
was to obtain a bending wave function basis set appro-
priate for a strongly bound molecule. The P,{cos(8)]
functions are acceptable basis functions for an atom
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which is only weakly bound to a rigid rotor. The D
atom in DCN, however, spends most of its time near
the equilibrium angle (157°) and hence to describe even
the zero point bending vibrational wave function requires
several P,’s.

In line with our assumption of approximate separabil -
ity of modes, the D--CN bond length was fixed during
generation of the x,,z’s. The locus of points describing
the minimum energy V(r, 6) along 7 for each 8 was char-
acterized. This locus of points, when used to evaluate
the potential energy V(r, 8), generates an effective bend-
ing potential function V(6) which was then fitted to a
power series in (§ —6,,,). This one-dimensional poten-
tial, when combined with the bending kinetic energy at
fixed 7, gives rise to a one-dimensional Schrodinger
equation which was then solved in the basis of Legendre
polynomials P,[cos(9)]. The dimension of the Hamilto-
nian matrix diagonalized was varied from 6 to 26 and the
resulting energy level spectra were compared (for sta-
bility with respect to adding more P,’s). With I, =25,
the lowest several eigenvalues were quite stable.

The eigenvectors {a,,z} of the above problem were then
used to define the new X», contracted basis functions

Imu
Xo,(8) = 2 @y, Pyc0s(6)] . (A1)
1=0
The Hamiltonian matrix of the full two-dimensional po-
tential [Eq. (15)] was constructed in the P, basis and
subsequently projected onto the Xvy basis

H"”é'h’Z:S‘”z;(— 1)141' a,.vzH‘,,.’”a,,,z . (AZa)
Similarly,
Sirutying = 602,,:2(8112)/72 dr g, (g, (») . (A2p)

For each value of  and I’, the contributions to all of the
Hy., 10, Wwere calculated, hence the largest matrix stored
was of dimension (number of x,,’s x number of radial
Gaussian functions). Typically approximately 10 xu2’s
were included (each containing elements of 26 P, func-
tions) thus decreasing storage needs by about 85% and
decreasing diagonalization times by >94%. Test calcu-
lations showed that including more Xy, S did not ap-
preciably affect the energies of the 12 bound states of
the two-dimensional problem, which probably implies
that for states with v, <7, one can trust our angular
basis set.

As mentioned in Sec. IIID, one other advantage of
using the functions x,,[cos(6)] as the basis is that it is
easier to interpret the eigenvectors of the full problem.
This can be useful when the assignment of a resonance
is ambiguous; the dominant basis functions in a given
resonance wave function indicate whether v, should be
large or small, whereas directly examining the uncon-
tracted P, eigenvector is not particularly useful.
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