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ical reaction is intro-

duced and solved exactly. The exact results ale cQmpared to those of the Chapman-E skog, Hilbert, multiple-time-
scale, and Kapral-Hudson-Ross theories. Non-equilibrium contributions to the chemi al fale coefficient, diffusion
coefficient, and Rayleigh structure factor arf obtained for the exact solution and for e ch of the above approxima-

tions. These non-equilibrium terms ale calculated explicitly.in t1e case of a hard-sPher.5.treactive cross section.

, tl)
.1. Introduction

The theoretical study of bimolecular gas-phasereaction kinetics [l - 10]usuallY;begins with a Boltzmann equa-

[:"lian for the distribution functio~ of a reacting species. T~is equation is t~en appro~~matelYsolved.by making.use
, of one of severalcommon analyttcal methods, e.g., the Hllbert perturbatlOn expanslbn. The resultmg (approXlmate)

,<.distributionfunction then allows the calculation of the averagevalues of the hYdrodj~rnamicvariabiesof the reacting
species, e.g., the local temperature, velocity, and number density. However, the use ~f a distribution function which

'js!Only an approximate solution of the Boltzmann equation raises questions concernipg the validity of the resultant
" predictions.' \
~.", The purpose of the research reported in this paper is to investigate the accuracy a~d range of validity of several
Lapproximate solutions of a Boltzmann-like equation for which an exact solution is avaiIable.Specifically, we choose
. to study a single irreversible t, bimolecular, gas-phasechemical reaction with one oft&e reactants in large excess.

I
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,

' OUTattention is fu!ther restricted to a Boltzmann equation in which the non-reactiveJ
,

o

.

llis10noperator is given in
i terms of a singlevelocity relaxation time tt. . \

In section 3, the exact solution of this model problem is obtained in terms of the parameters of the system and a

'.

,

'

,

s~nglequadrat~re. The ~ong-t!me beh~vio~ of the number densit.y of the
,

d~lute .rea ctant

~
's extrac t~d by [irst asympt?-

: tIcally expa
,

ndmg the dIspersIOnrelatlOnmpowers of the veloclty relaxahon hme and t en keepmg only the contn-

I bution erom the pole whose real part is least negative.This long-time number densityi [mediately determines the

t chemical rate coefficient, the diffusion coefficient of the diIute reactant, and the Raylefh light scattering spectrum,
all as rower series in the velocity relaxation time. i"'-~

Section 4 contains the approximate solutions of the Boltzmann equation which ariSe[
,

rom the Chapman-Enskog

I (CE) and HiIbert theories. Weexamine the accuracy of the Hilbert and CE results by maling comparisons to the
asymptotic expansions of the exact resuItsderived in section 3. A simiIaranalysis of the predictions of the multiple-
time-scale l (MTS)and Kapral-Hudson-Ross (KHR) [12] theories is presented in sectigtn5.n

* Alfred P. SloanFoundation Fenow. '" ~\

t The reverse reaction was not included because we were not able to solve the Boltzmann equation eractly in this case.
tt Much of the ana1ysis used in this papcI was inspired by a series of lec.tures given at MoLT. by Visiti~g Professor E.P. Gross of

BrandeisUnivcrsity. . \
l aur treatment of the MTS procedure is based largely on the wark ol' Cukier and Deutch [II I.

f
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In section 6, the equilibriun1and non-equilibrium contributions to the chemical rate coefficient and to nie
diffusion coefficient of the dilute reactant are explicitly calculated for an assumed hard-sphere reactive cross sec-
tion. Section 7 contains aur concluding remarks.

Let us naw brief1ydiscuss'some of the assumptions and conditions involved in the single-relaxation-time
Boltzmann equation considered in ibis research.

2. The model problem

We begin by considering an irreversible, bimolecular gas-phase reaction in which each species possesses a single
internal quantum state: '

A+B~C+D. (1)
. .

Neglect of the reverse reaction is justified by assumingthat the concentration of one reactant (say B) is so large
that we need onIy consider A-B and B-B collisions.

The'time dependence of the distribution function of reactant A is naw asst'1medto be governed by the following
equation:

ofA (r, lJ, t)/ot + 1)' VfA (r, 1),t) = f {JA (r,I/,t) iB(r, V, t) - fA (r,l), t) IB (r,v,t)} W(I),V,1)',V) d 1)'d V d V

ffA (r,lJ, t) f B (r, V, t)R (I), V,I)', V) d 1)'d V d V, (2)

where the velocity relaxation kernel (H!)and the reaction kernel (R) are taken to be independent of r and t. In
subsequent expressions, the r- and t-dependence of fA (r, lJ, t) and f B (r,tJ, t) wilIbe suppressed when no confusion
can arise. It is consistent to further assume that the initial (the reaction is initiated at t = O) distribution function
of species B (taken to be homogeneous in srace and maxwellian in velocity) persists* throughout the course of the
reaction:

f B (r,tJ, t) = nB cl>B (v) (3)

independent of r for all time, where

cl>B(v) ==(MB/2rrk1)t exp [-MBv2/2kT]. (4)

Eqs._(3)and (4), together with the statement of conservation of energy for non-reactive coIlisions

l m v2 + l m Vi =l m '2 + l m v22 A 2 B ,.2 A V 2 B (5)

allow us to rewrite eq. (2) in the form

ofA/ot+1)' V fA = f {JA (lJ') ci>A (v) - fA (lJ) ci>A (v')} S (lJllJ')d~' - fA (I)) T (1)), (6)

where the kernel S (lJllJ') 1sdefined as

IS(lJl(J') = n Bf(cI>B (V) cl>B(V)fcp A (v) ci>A (v')] l W (1),v,lJ', V) d V' dV,
(7)

,. For any desired order ofaccuracy in the ca1culation of fA' the number density of species B can be chosen to be sa large that nB
remains essentially unchanged tltroughou t the CDU!Se.of the reaction.
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and the reaction function T is givenbyj. ~. ~ ~

~

J (
' V' I

V"
I"~

T(IJ)=nB CPB V)R(IJ,V,IJ, )dIJd dV. ; ;.:, (8)
, / ',o-o

,'~'

'Themodel equation to which we restrict OUTattention for the remainder ofthis paper is obtained erom eq. (6) by

- taking S (bib') to be a constant: , ,,;~" '\
',j

.;f-:,,'

which is the reciprocal of the velocity relaxation time * for species A. OUTmod~l problem i3therefore stated in
terms of the following Boltzmann-likeequation ~.;,

-"

29

S (blb') = K, (9)

afA/"iJt+lJ'V fA =-:k[K+T(lJ)] fA +KCPA(v) nA (r,t),

where the local number density of speciesA is

(10)
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nA (r,t) = ffA (r,~, t) dIJ.
-'..,..-:;

3. Exact solution of model problem

The exact solution of eq. (lO) is most readily accomplished by i!1troducingthe Fourier-Laplace transform of

fA (r,lJ,t): ' . 'f\ . '\
...

f (k, IJ,z)= f dr f dtfA (r,b, t) exp [-ik' r - zt].
, O

,/
" \

'./,
(11)

, " - ,

S,ubstitutingthe transfo~minto eq~(lO) yiel~s the following equation for f (k.:lJ,z) )
[z + ik' lJ+ K+ T] f(k, lJ,z) = f (k,lJ, t = O)+ KCPA(v) n (k,z),

~\-

(12)

where

f (k,lJ, t = O) = f drfA (r,IJ,t=O) exp [- ik' r] ii 1
(13)

and

Ii (k,z) = f dIJ! (k,lJ, z).

l\
l' (14)

Eq. (12) givesthe distribution functionl in terms of the unknówn number density n. To obtain a cIosed
algebraic equation for n,we multiply eq. (12) by ~".,

, r~

A( klJZK ) = [Z+ K + T +ik 'IJ ]-l ":'~";"
, " (~

and integrate over velocity. This givesan equation for fi whose solution is ~~'J.
, ~:~1

*'K depends on temperature and number density as Collows: K = K (kT/p.)1/2 nB' where ~ isthe reduc~~JJtass oCan A-B pair, and
;Cis the velocity relaxation cross section. f ~. >,~

~ h

L \:
""- ~
" l..

(15)
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n (k, z) = [1 - " JA (k, z, tJ,,,) 1>A (v) dtJ] -l JA (k, tJ,z, ,,) 1 (k ,tJ, t = O) d(). (16)

This is an exact formaI result for n(k, z) in terms of the initiat distribution funetion, the parameters of the prob-
lem, and the quadratures involvingA. Thus, the exact distribution funetion is given erom eq. (12) by

1 (k, tJ,z) = A [( (k,(), t = O) +" I/JA (v) n (k,z)]. J17)

From the theory of Laplace transform~,we know that the time behaviors of fA (r, (),t) and IIA (r, t) are deter-
mined by the funetional dependences of f and n, respeetivety, on the eomplex variable z.:...Forexample, a simple
pole at z.= z impIies a time dependence given by exp [id. From eq. (17) it is elear that f possesses the same
z-behavior as n exeept for an additional simple pole whose location in the z-pIane is given by

\

zs(",k,(»=-,,-T«(»-ik'(). l . (1,8)

Becausewe have in mind a situation for which the veloeity relaxation fale is larger than the ehemical reaetion fale

,,> T «(», but not neeessarily" ~ T «(»,

the pole given in eq. (18) eontributes to the short-time behavior * of fA (r, tJ,t),
The long-time dependenee of f A and 11A is what we 'are probing when we make experimental observations eon-

cerning the time behavior of the average values of the hydrodynamical variabIes of the reacting system. This long-
time behavior is governed by the pole of nwhose real part is least negative. To loeate this pole, we fiest asymptoti-
cally expand ** the dispersion relation

(19)

1- JI/JA(V){l +,,-1 [z+T+ik' ()]}-l dlJ=O (20)

in powers of ,,-l. The resulting expansion, when truneated at jth order in ,,-1, givesa jth-order polynomial eqtia-
lian in z to be solved for the poles of n, Taking t j = 2, we find only one pole whieh does not violate the original
condition

IKI>IRezl (21)

on the asymptotie expansion. This long-time pole is given as foIIows

zo(k) = -(T) + ,,-1 (8 T2) - ,,-2 (8 T3) - k2 [t ,,-1 (u2) - ,,-2 (u2 8 D], (22)

where

uóT«(»= T (v) - m' (23)

and the bracket m.eans an average over I/JA(v),e.g.,

{T} = JdlJI/JA (v) T «(». (24)

., Exponentially decaying time dependence whose time constant is of the same order of magnitude as " is called short-time be-
havior. Jf the exponential decay constant is smaller in magnitude than ". we cefer to this as long-time behavior.

** The coefficients in this asymptotic expansion. which are obtained by expanding the integral in eq. (20) in powers of ,,-1, are
given by (_l)n f <I>A (U) [z + T + ik' tJIn dtJ. The remainder term in the expansion will be smali if " obeys
1"13» 1«z + n3> - k2 1JJ2(z + n> I.Considering " as given. this inequality restricts the values of z and k for which the lo~g-
time pole given in eq. (22) exists.

t In the research reported herc we obtain all results to second order in ,,-l. This choice was madebecause the interesting featllres
arise already in this order,
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The residue of n (k, z) at the pole Zo is found to be

RO (k) =n(k, t = O){t - ,,-2 [ (c5T2)- ~ k2 (v2}]) ,

..",

't \'
..!< "\

~.. --- t

l.

" (25)

where fi (k, t = O)is the spatial Fourier transform of the initial number density of species A. The short-time poles
of n, whose residues are of order ,,-2 or smaIler,will not be discussedfurthe~dn this papee. In arrivingat the re-
suit given in eq. (25), we have taken the initial distribution function to be ;~

\
:.- .~
T ,fA(r,lJ,t=O)=nA (r,t=O)tPA (v), (26)

with nA (r, t = O)arbitrary. This initial condition is assumed for the remainder'oCthe papce.
Knowing th~long-time pole Zo and its associated residue RO (k), we caDnaW write the long-time components

ofn (k, t) andf (k,b,t) as '" ~

nLT (k, t) =Ro (k) exp [zo(k) tI 'ol, \ (27)

jLT (k,b, t) = Ro (k) tPA (v)exp [zo(k) tI{ t - ,,-I [c5T+ ik. hl - ,,-2 [Q)7f}- l k2 <v2}- (c5T+ik' lJ)2]},
. ~ ~

with Zo(k) and Ro (k) given in eqs. (22) and (25), respectively.The effective ch~mical fale.:oefficient kratefor
the reaction described in eq. (1) caDbe extracted erom the exponential time coe!icient of n LT(k, z) as foIIows

. \
nB k t =-lim Zo(k) =(T) - ,,-I (c5T2)+ ,,-2 (c5T3). '

rac t-O 'i

Also, the diffu_sioncoefficient of species A i;identified as the coe:ficient of -k2 ~he pole Zo(k)

DA =i- ,,-I (v2) - ,,-2 (V2c5T}~--f \ .

«c'

The non-equilibrium terms *'"in krateand DA arise because of the coupling betwfen the velocity relaxation and
the chemical reaction. IfT(b) weceindependent ofvelocity, the fluctuation c5T(lJtwould be zero and the non-
equilibrium corrections would vanish identicaIly. r'~

A generalized frequency-dependent rate coefficient krate(z) may be introduced b~ Laplace transforming the
generaIized rate equation f'

(29)

(30)

t

dii (k -+O, t)/dt = - Jdt' nB krate (t-t') n (k -+ O, t')o ~ \\ (3ta)

to give

nB krate(z):;: lim [n (k, t = O)/ii (k, z) - zI.
k-+O ~ .

(3tb)

Substituting the general expression t for fi (k, z)
00

fi (k, z) = L; Ri (k) [z - Zi (k)rl
1=0

(I ,
.\ !

(32)

!
;1

'" Notice that, eyen to flrst order in K-I, the long-time distribution function is not or the local-equilibrium form.
*'" By non-equilibrium terms we mean those terms inyolving the t1uctuation ó T (v). .'

t This expression musI be modified if fi bas poles which art not simple, but the argument presente,d ~elow is stm valid, In Ibis
argument we do assume that fi bas no cuts in the z-piane. This assumption is justifiedby the fact tllat the expansion of the
dispersion relation in powers of K-I , when truncated at a finite order, gives a flnite-order polynomial in z to be solved for
thepolesoffi. ~

""'"
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into eq. (31 b) yields an expression for k rate (z) in terms of the poles and residues of il:

n B k t (Z):lim
{.

il(k,t:O)
[
L;R.(k)

.
(
. Z-Zifl

]
~I -z

}

.
. ra e k-+O i I .

'~
'(33) "

Notice that the zero-frequency limit of nB krate(z) does not agree with the effective rate coefficient nB kratefound
in eq. (29). On the other hand, it is elear that the following limit

lim . nB krate(z) =nB krate
z-+- nBkrate

does give the correct long-time chemical rate coefficient. This example indicates the care that musi be taken in
using zero-frequency transport coefficients in.hydrodynarnic th:ories; the zero-frequency limit is plainly not al-
ways appropriate. :,.

Knowledge of the exact long-time number density also allowsus to calculate the generalized structure factor
S (k, w) for law frequency Rayleigh light scattering. Assuming that the polarizability of species A is much larger
than that of species B, and that oniy Ouctuations in the local number density contribute to Ouctuations in the local
dielectric coefficient, we find *

S (k, w) ==(2/V) Re <ii(k, z: - iw) n(-k»: (2/0 <ii (k) n(-k» 'h - ,,-2 [(oT2)-lk2 (u2)])[- zo/(w2 +z6)].
(35)

(34)

The half width at half height r of this lorentzian line is given as follows

r (k) : nB krate + k2 D A'
(36)

The short-time poles of il (k, z) will contribute to S (k, w) in the form of broad high-frequency lines whose ampli-
tudes are of order ,,-2 or smaller. By extrapolating the experimentallow-frequency Rayleigh width to zero scatter-
ingangle(correspondingto k ~ O),one caDmeasurethe chemicalratecoefficientnBkrate'Also,the angulardepen-
dence (k-dependence) of r (k) caDbe used to extract the diffusion coefficient DA' Finally, the density dependence **
of the !inewidth caD,in principle, yield the non-equilibrium contributions to nB k ateand DA' .

Havingobtained asymptotic expansions of the exact nB krate'DA' S (k, w), ild (k, t) andlLT (k, tJ, t), lei us
naw tum to investigate the results of several theories which yield only approximate solutions of the model Boltz-
mann equation. Mathematically, emphasis is placed on the difference between using an ansatz expansion of
1 (k, IJ,z) in solving the Boltzmann equation and asymptotically expanding the exact 1 (k, tJ,z), ance it has been
found. Physically, we are interested in determining under what conditions (on the reactive and non-reactive colli-
sjen cross sections) the approximate distribution functions caDdeviatesignificantly erom the exact 1 (k, tJ, t),

.' especially for long times.

4. The Hilbert andChapman-Enskog theories

In the Hilbert approximation method t, we assume that the distribution functionl (k, tJ,z) caDbe expanded
in rewers of ,,-I

[(k,tJ,z): L; i (k, tJ,z) ,,-m.
m=O m

...

(37)

*' The brackets he re indicate an average over the equilibrium ensembles of the system.

u See footnote *' on page 29.
t Much of aur treatment of the Hilbert and Chapman-Enskog methods folIows the excellent papci by Hauge [13]. We refer the

interested leader to this papci for mathematical dctails. . .
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The coefficients[ en in this ex~ansicn ale det~rmi~ed by substitut~ngthe ,abovea~satz joto eq.,(I~) and equatingeach power of K- ,The resultmg set of equatlOnsIScompactly wntten wlth the ald of the proJectton operator P
defined by

Pg(V)=t/>A (v)Jg(I)') dv (38)

as fo11ows

{l-p)Io (k,l),z)=O,

{l-p)Im+l (k,u,z)=lm (k,u,t=O)-(z+ik.u + 1) 1m(k,u,z),

(39a)

(39b)

pl =[z+(T>r1{pl (k,u,t=O)-P[(z+T+ik.u)(1-p)l ]} ,m m m m~O. (39c)

The complete lis, of course, the sum of Pt and (I -p)I. The initial distribution function bas algobeen expanded
in powers of K~l .

...

!(k,u,t=O)= 6!m(k,l),t=0)K-m.
m=O

To solve the above system of equations recursively,we oecd onty know the projected_components
PIm (k, 1),t = O)of the initial distribution function; the orthogonal components (1:::P)t m (k, u, t.:: O) ale deter-
mined by eqs, (39a) and (39b), Moreover, we see erom eq, (39c) that the complete t (k, li, z) and n (k, z) will in-
volve the sum ~ :=0 K-m pl m (k, u, t =_0) [ = pl (k, u, t = O)]. There.!:.ore,the on/y initia/ intormation required
in the Hilbert scheme is the projectionPt (k, u, t = O); the individua/Pi (k, u, t = O)ale not required. Il is a. m -
general feature of the Hilbert theory that only the hydrodynarnic moments [Pi (k, u, t = O)in OUTcase] of the
initial distribution ale necessary as input data,

Before presenting and analyzing the results of the Hilbert formalism, we will brief1ysketch the philosophy and
mathematics of the CE theory. The identica/ resu/ts of the Hilbert and CE approximations will then be treated
simultaneously. .

In the CE theory we assume that the z-dependence of the distribution function! (k, u, z) caDbe attributed
completely to a functional dependence on fi (k, z):

(40)

1 (k,u,z)=! (k,u, Ii (k,z». (41)

BecauseOUTmodel Boltzmann equation is linear inI, the distribution function must be a linearftmctiona/ of
li (k, z). This relationshi{>,can be expressed as fo11ows

I (k, 1),z) = t/>A (v) Ii (k, z) [l + F (k, 1)] ,
(42a)

The form of I in eq. (42a) bas been chosen so that F (k, 1) represents the deviation of I erom local equilibrium.
From eq. (42a) it fo11owsthat F(k, 1) must ober

0= Jt/>A(v)F(k, 1) du, (42b)

which in tum implies that

(l-P)! (k,l),z) =F(k, 1)pl (k,u,z), (42c)

Thus, in the CE approx.imation, the (I-P) I component of the distribution function is related to the pl compo-
nent by the proportionality factor F (k, 1) which is independent ot z.
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Premultiplying the model Boltzmann equation by P and then by (l-P) givesa pair of equations * for the twa
components pl and (l-P) l of the distribution function. The resultant solution for (l-P) l (in terms orF (k, o)
and the parameters of the problem) is then set equal to F (k, u) times the solution for pl (according to eq. (42c».
This step results in a closed integral equation for F (k, o) \.

l +F(k,o)= {l +K-I [ik'o + T- <T>-g(k)]}-I (43a)

where

1= f</JA (v) {l +K-I [ik'o +0 T-g(k)]} -I do, (43c)

Expanding the above integral asymptotically to order K-2 yields an equation for g (k) whose solution is

g (k) =- Zo(k) + < T>, (43d)

which, when substituted into eq. (43a), givesthe function F (k, o) to order K-2.
The distribution functions and number densities resulting erom the Hilbert and CE theories are identical as

rower series in K-I , and are given as follows

{

2 1. 2 2 3 2 2 [ 2) l k2 <
2
)]

'2

}
lI(kz)=n(kt=O)[z+<T)]-1 l+K-I<oT)-3k <v)-K-2<oT)-k <voT>+K-2 <oT -3V

, , z+<T) z+<T> [z+<T)]2
(44a)

and

1 (k,o,z)=n (~,z)</JA(v) {1-K-~[oT+ik'v] -K-2 [<oT2)-tk2<v2)] +K-2 [oT+ikov]2}.

By expanding the exact long-time results of eqs. (27) and (28) in powers of K-I, we find agreement with the
~ove Hilbert-CE results except for the replacement of the exact residue Ro (k) by the initial nvmber density *
n (k, t =O).This replacement caDbe scen erom eqo(25) to give rise to errors of order K-2. Wenotice that the ex-
pansion of 11(k, z) in powers of K-I given in eq. (44a) is equivalent to order K-2 to the following

(44b)

li (k, z) = 11(k, t = O){z + <T>- K-I [<oT2)- t k2 <v2}]+ K-2 [<oT3)- k2 <v20T>]}-I, (44c)

which P2ssessesthe exact long-time pole defined in eq. (22). Thus the chemical rate coefficient and diffusion
coefficient contained in the Hilbert-CE number density are exact; only the amplitude (residue) of the number
density is in error.

From eqso(3Ib), (35): and (44a) we easily calculate the frequency-dependent rate coefficient and Rayleigh
structure factor for the Hilbert-CE number density

nB k te (z) =- lim Zo (k) =n B k tm t-O me (45)

and

S (k, v;) = (2/V><li(k) 11(-k» [-zO/(v;2 + z5)] o
(46)

See footnote t on page 32.

** This point is discussedin more detali by Hauge[13) for the non-reactivecasco

<.
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The Hilbert-CE frequency dependent cale coefficient is equal to the exact effective rate coefficient, independent
of z; whereas the above structure factor is in error as a consequence of the replacement of the exact residueRo (k)
by fi (k, t = O).The angle-dependent erraTin S (k, w) is, according to eq. (25), of second order in ,,-1.

From the discussionor this section, we see thatneither the Hilbert nor the CE theory is capable of producing
the correct long-time behavior of 1 (k, u, tJ and fi (k, t). Assuming that the prescriptions of the Hilbert and CE
methods have been correctly applied to the model problem, we most therefore conclude that the basic assump-
tions expressed in eqs. (37) and (42a) are not entirety valid. The z-dependence of the exact 1 cannot be attributed
to a functional dependence on fi (k, z), and the exactl cannot be analytically expanded in powers of ,,-l. This
last statement does not mean that the exact distribution function, ODcecalculated, cannot be asymptotically ex-
panded in powers of ,,-l, as was clonein section 3.

Although OUTstated conclusions are based on results of a specific model calculation, they are certainly valid
because they are of a negative nature. AIso, OUTstatements regardingthe zero-frequency limit of nBkrate(z) are
easily scen to be valid, independent of the model considered in this papce.

Let us now tum to investigate two altemative approaches to approximately solvingOUTBoltzmann equation.
These theories begin by assuminga different type of expansion of / A (r, u, t) than that assumed in the Hilbert
method. .' .

S. The muItiple-time-scaleand Kapral-Hudson-Ross theories '- c'

To hegiRthe MTSanalysis [1I] we introduce an ordering parameter Ainto"the Boltzmann equation

a/A/at+u,v/A ="I/>A (v) nA (r,t)-"/A -AT(u)/A(r,u,t). (47)

. The value of Awill eventuaIly be allowed to approach unity through positive numbers. The next step is to replace
the single time variable t by a set of variabies{to, t l' t2' . . .} , each of which is considered to be independent.
The distribution function and number density, treatedas functions of this set ofvariables, are then expanded in
powers of A .~ .

/A (r, u, to,tI' ...) = 6' AmlAm) (r,u, to' tI'" ,),
m=O

(48)

OD

nA(r,to,tI"") = 6 Amnrz) (r, to' tl'" .).
m=O

(49)

The time derivative is algo formaIly expanded in po..yers of A

a/at= 6 Amalarm .
m=O

Substituting eqs. (48-50) joto eq. (47) and equating coefficients of each rower of Agenerates a set of equa-
tions to be solved for the unknowns/A (m)(r, u, t) and nA(m)(r, t). For example, the fiest two equations are
written as

(50)

a/ (O)lat + u' V / (0) =- /( / (0) + "A. n(O)
A O A A 'l'AA' (51)

a/ (1)lat +a/ (O)/at + u' V / (1) =- /( / (l) + /( A. n(l) - T/ (O)
A o A l A A 'l'AA A'

The set or MTSequations are to be solvedsubject to the initial conditions

(52)
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I~) (r,u,O,O, . ,,)=<PA (v) nA (r,t=O),

rt) (r, u, O,O,. . . ) =O

. '(53a)

form > 1, '" (5'3b)

where the initial number density nA (r, t = O)isgiven as input to the calculation. The additional freedom gained
by introducing multiple time variabIesis used to eliminate secular behavior whenever it arises in solvingthe MTS
equations. The resulting MTSdistribution function and number density are functions of the time variabIes

(to' t l' . . :). To returnto the single-time-variablelanguage,wereplacetmby xmt and allowthe parameterXto
approach unity through positive numbers.

Before discussingthe results of the MTStheory, we will develop an extension (to higher orders in X)of the pro-
cedure proposed by Kapral et al. [12]. Weca~ then simultaneously analyze the identical results of the MTS and
KHR formalisms.

,Theoriginal KHR theory was restricted to a spatially homogeneous reacting system. For ease of presentation,
we maintain this restriction in aur development, while givingfinal results for the spatially inhomogeneous case.

The startingpoint 01'the KHR procedure is the assumption thatfA (r, u, t) cali be written as follows

lA =11E (r,u,t) [1 +Xx(l)(r,u,t)+X2x(2)(r,u,t)+...], (54)

where fAE is a local-equilibriumdistribution function .

f~E (r,u,t)=nA (r,t) [mA/2nk T(r, t)] 3/2exp [-mAv2/2kT(r, t)]. (55)

and thex(m) (r, u, t) are to be calculated by folIowing the procedure out1inedhelowoBecauseof the assumed large
excess of species B, the local temperature T (r, t) will not deviate appreciably from the temperature T appearing
in <PA (v).Hence,for aur specjalconditions,the local-equilibriumdistributionfunctionisequalto the localnum-
ber density nA multiplied by <PA(v).

The second step of the KHR method is to use eqs. (54) and (55) to write

d/A/d t =<P A [1 + XX(l) + . . . ] dnA/dr + n A <P A [X dX(l)/dt + X2 dX(2)/dt + . . . ]. (56)

Integrating eq. (47) over velocity gives, in the spatially homogeneous case,

dn A/d t = - Xn A (n - X2 n A J<P A (v) il) (r, v, t) T (u) d u , (57)

which, when substituted into eq. (56), Yleldsthe fiest of twa expressions for dh/dt. The second expression is ob-
tained directly from eq. (47): .

dlA/dr =-" <PA :/~}X x(l) + X2i2) + .. . ] - XT <PA nA [1 + Xx(l) + . . . ]. .

Wecali naw ob{~ina set of equations forthe X(m)(r, u, t) by fiest setting dh/dt as given in eq. (47') equal to
the resultof substitutingeq. (57) into eq. (56), and then equatingthe coefficientsof eachpowerof X.For ex- '

ample, the fiest twa equations in this set are

. (47')

dX(l)(r, u, t)/dt = -" X(l) - o T(u)

and

dX(2)/dt + "X(2) =- o T (u) X(l) +J<P A (u) X(l) (u) T (u) dlJ ,

whose solutions, subject to the initial condition



-'
li Simon:;,An exactly soluble kinetic equationfor a chemical reaction 37

l;' (r, t>, t =0) = nA (r, t = O)1>A(v) (59a)

ale given (stm for the spatially homogeneous case) by

. X(l) (t>,t) = - ,,-15 T(t»[1 - exp (-" t)]

X(2)(t>,t) = ,,-2[5 T2 (t» - (5T2)] [" t exp(- d)-+ 1- exp(- "t)]-

(59b)

and

(59c)

The distribution functions and number densities resulting erom the MTS and KHR theories ale identical as
power series in ,,-1 and ale given, for the spatially inhomogeneous case, as follows

!(k,t>,t)=n(k,t=O)1>A exp(zot) {1-,,-1 [5T+ik'v] (1-exp(- "t»

f ,,-2 [(5T2 - 2 (5T2) + j k2(v2)+(ik' t»2 + 2 5T ik -t»(l - exp (- "t»

+ (5T2 - (5T2) + t k2 (J) + (ik' v )2) "t exp (-" t)]} (60)

and

n(k,t)=n (k,t=O)exp(zot) {1- ,,-2 [(5T2)--i k2(v2)] (1- exp(-" t»}, (6I)

where Zo (k)is the exact long-time pole of eq. (22).
By expanding the exact long-time resuIts of eqs. (27) and (28) in powers of ,,-1, we find complete agreement

with the long-time limits of eqs. (60) and (61). Although the long-time components of the MTS-KHRdistribu-
lian function and number density ale correct, the short-time contributions ale characterized by a time constant"
which is not il solution of the dispersion relation [eq. (20)]. Thus, the MTS-KHRresuIts ale vaIidfor long times
on1y.

The effective chemical cale coefficient and diffusion coefficient contained in the long-time limit oTthe MTS-
KHR number density ale exact, as ale the frequency-dependent cale coefficient and Rayleigh structure factor
caIculated using eqs. (31b), (35) and (61).

From the discussion of this section, we see that the MIS and KHR theories yield identicaI distribution functions
which agree with the exact result for Iong time. However, the short-time componeht of the MTS-KHR distribution
function is not exact. Assumingthat the prescriptions of the MIS and KHR procedures have been carried out
~orrectIy, we therefore concIude that the expansions of !A (r, t>,t) assumed in eqs. (48) and (54) ale not valid. The
exact distribution function cannot be analytically expanded in powers OfA, as cali be scen erom eqs. (22) and (27).

6. Calculations for an assumed reactive cross section

For the hard-sphere reactive cross section a (li) defined by

o (u) = O

= 0(1 - li2ju2),

if u E;;;Ii,
(62)

ifu~li,

we can calculate the equiIibrium and non-equiIibrium contributions to the chemical cale coefficient nBkrateand
to the diffusioncoefficientof speciesA (DA)' ThiscaIculationiscarriedout so that wecaligailisameinsight
regarding the conditions under which the non-equiIibriumcorrections become significant.

The reaction function T (li) which appears in OUTexpressions for nBkmte and D A is related to the cross section

o (u) in the followingmanner
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T(v)=IIB !€/JB (V)R(v, V,v', V')dv'dV'dV,

where the reaction kernel R (v, V, u', V') is given by '--

R (v, V, v', V') = Ó(w - w') ó (1 P u2 - t P u'2 - M) [u a (U)/U'2],

The notation in the above equations is as follows

Before reactive collision

velocity of A molecule
velocity of B molecule
reduced mass
center-of-massvelocity
relative velocity

v
V

Jl
w
u

and !!.Eis the change in internal energy for the reaction: t:.E= Ec + Eo - EA - EB' -
The equilibrium contribution to D A is independent\..of any assumption about the reactive cross section, and is

given by

l K-I (u2) =(kT/Jl) l 12Wm A) (IIB iC)-I,

wherethe velocityrelaxationtimebasbeenexpressedin termsof a velocityrelaxationcrosssectionKas

K=(kT/p)1/2I1BK,

Theequilibriumcontnbutionto IIBkrateiseasilycalculatedusingeqs,(62)- (64)

(T) =!€/JA(u) T(IJ) dIJ =8 CiIIB (2 rrkT/p)1/2 exp [- p il2/2 kT],

This is of the familiar Arrhenius form with frequency factor A givenin terms of the reaction amplitude Ci

A =8 IIB Ci(2 rrkT/Jl)1/2

and the activation energy expressed in terms of the threshold speed il

- 1 -2
Eact - '2P u ,

(63)

(64)

(65)

(66)

(67)

(68a)

(68b)

The non-equilibrium corrections to D A and nBkrate ale given for the hard-sphere cross section, respectively, as
follows...---

,~

-K-2(U2óT>=- 80 (
2rrkT

)
1/2

( mB-p
)~l +JlU2) [

_J1ii2
)-2 Jl m +m 2kT exp l 2kT '

nBK A B

and
'~

(69)

-2 2
-I' 2 _J28rro IIB (

kT
)

1/2 mA [ J.Lil2

]K (oT)- - - - /2 F (p, mA' mB' 1)exp - kT 'K .Jl m Jl
3

, B

where F (p, mA' mB' 1} is a very complicated function which is bounded by zero and unity, Becausewe are inter-

(70)

~-

,
After reactive collision

velocity of C molecule
'

v

velocity of D molecule V'

reduced mass
I

Jl

center-oC-mass velocity
I

w

relative velocity
Iu



J. Simons, An exactly soluhle kinetic equationfor a chemical reaction 39

ested herc orny in determining under what conditions the above non-equilibnum corrections bccome significant,
the prccise value of Fis unimportant and will not be discusscdfurthcr.

By forming the ratios of eq. (69) to eq. (65) and of eq. (70) to cq. (67), we sec that the non-cquilibrium terms
caDamount to a significant fraction of the equilibrium contributions, if twa conditions ale fulfilIcd. First, thc
ratio of the rcaction amplitude Cito the vel~city relaxation cross section K musi be non-negligible.Secondly, the

,. Talioofthe threshold energyt pii2 to the thermal energy kT must be ofthe order ofunity or smalIer,Le.,
exp [_pii2/2kT] must be nón-negligible.Many ion-molecule reactions are pnme candidates for satisfying these
twa conditions.

These conclusions regarding the relative magnitudes of the equilibrium and non-equilibrium terms in no war
involve the'dominant number density nB' Only the threshold energy and cross section for reaction and velocity
relaxation are involved.

7. Concluding remarks

For the'single-velocity-relaxation-timeBoltzmann equation introduced in section 2, we have obtained expres-
sions for the exact number densityand distribution function in terms of the parameters of the problem and a single
quadrature. By ~xpanding the quadrature in powers of K-I, and truncating at second order, asymptotic expansions
of fi (k, z) and I (k, li, z) wecederived. The long-time limits of fi and? weceextracted erom these asymptotic ex- '

pansions by calculating the pole Zoand the residueRo (k) (also to second order in K-I).Finally, the exact long-
time number density wasused to predict the frequency-dependent cale coeffiCientnBkrate(z) and the Rayleigh
structure factor S (k, UJ).

The results of applying the Chapman-Enskog and HiIbert approximation schemes to the model Boltzmann
equation indicate that the exact distribution function cannot be analytically expanded in rewers of K-I and that
the assumed fun~tional dependence of 1 on fi does not hold. The CE-HiIbert distribution function agreed with the
exact long-timeI, except for the replacement of the residue Ro (k) by fi (k, t = O),which causes an error of order
,,-2. ThenumberdensityandRayleighstructurefactorwecealsoin errat due to the differencebetweenRo (k) and
fi (k, t =O)~The frequency-dependent fale coefficient in the CE-HiIbert approximation was found to be equal to
the exact chemical cale coefficient, independent of frequency. The main conclusion 'to be drawn herc is that the
CE and Hilbert theories caDbe used to caIculate the long-time number densityand distribution function if one is
satisfied with accuracy to fiestorder in K-I.

The MTSand KHR formalismswece found to givethe exact long-time distribution function for OUtmodel prob-
lem. Of course, the long-time number density, Rayleigh structure factor, and frequency-dependent cale coefficient
wecealso exact. However, the short-time components of the MTS-KHR results possessa time constant Kwhich is
not ~ solution of the dispersion relation in eq. (20). This implies tha~the analytic expansion of lA (r, b, t) in
powers of 'X,which is assumed in both the MTS and KHR theories, cannot be carried out for the exact distribution
function. The MTSand KHR procedures seem to offer the possibiIity of going beyond the CE-HiIbert results in
calculating the long-time behavior of a chemically reacting system. They do not, however, allow prediction of the
exact short-time dependence of lA (r, b, t).

The results presented in section 6 giveus same indication of the magnitude of the non-equilibrium terms which
arise in the expansion of I A' nA' nBkrate' and D A in rewers of K-l. For the hard-sphere model reactive cross sec-
tion, it was found that these non-equilibrium corrections caDbe significant if iwo conditiolls are met. First, the
threshold energy t pii2 of the reaction must be smali with respect to the thermal energy kTo Secolldly, the ampli-
tude of the reactive cross section a 1l1ustbe of the same order of magnitude as the velocity-relaxation cross section
i. Prime candidates for displayingsuch non-equiIibrium effects ale very fast ion-1l1olecule reactions.

Although it is difficult to generalize erom results of a specific model problem, we caDbe certain that OUTllegative
conclusions regardingthe Hilbert-CE and MTS-KHR theories ale valid. Moreover, we feel that the model caIcula-
tions presented herc caDbe of same intuitive use in understandinghow non-eqlliIibrill1l1corrections to "Bkrateand

DAcan arise a11d~nder what cirCll1l1stancesthey become non.negIigible.
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