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AN EXACTLY SOLUBLE KINETIC EQUATION FOR A CHEMICAL REACTION:
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A single-velocity-relaxation time Boltzmann equation for an irreversible bimolecular chemical reaction is intro-
duced and solved exactly. The exact results are campared to those of the Chapman—Enskog, Hilbert, multiple-time-
scale, and Kapral ~Hudson—Ross theories. Non-equilibrium contributions to the chemical rate coefficient, diffusion
coefficient, and Rayleigh structure factor are obtained for the exact solution and for each of the above approxima-
tions. These non-equilibrium terms are calculated explicitly in the case of a hard-sphere reactive cross section.

1. Introduction

The theoretical study of bimolecular gas-phase reaction kinetics [1 — 10] usually begins with a Boltzmann equa-
tion for the distribution function of a reacting species. This equation is then approximately solved by making use
of one of several common analytical methods, e.g., the Hilbert perturbation expansion. The resulting (approximate)
distribution function then allows the calculation of the average values of the hydrodynamic variables of the reacting
species, e.g., the local temperature, velocity, and number density. However, the use of a distribution function which
/isronly an approximate solution of the Boltzmann equation raises questions concerning the validity of the resultant
predictions. :

The purpose of the research reported in this paper is to investigate the accuracy and range of validity of several
approximate solutions of a Boltzmann-like equation for which an exact solution is available. Specifically, we choose
to study a single irreversible T, bimolecular, gas-phase chemical reaction with one of the reactants in large excess.
Our attention is further restricted to a Boltzmann equation in which the non-reactive collision operator is given in
terms of a single velocity relaxation time 1.

In section 3, the exact solution of this model problem is obtained in terms of the parameters of the system and a
single quadrature. The long-time behavior of the number density of the dilute reactant is extracted by first asympto-

tically expanding the dispersion relation in powers of the velocity relaxation time and then keeping only the contri-
bution from the pole whose real part is least negative. This long-time number density immediately determines the
chemical rate coefficient, the diffusion coefficient of the dilute reactant, and the Rayleigh light scattering spectrum,
all as power series in the velocity relaxation time. ;

Section 4 contains the approximate solutions of the Boltzmann equation which arise from the Chapman—Enskog
(CE) and Hilbert theories. We examine the accuracy of the Hilbert and CE results by making comparisons to the
asymptotic expansions of the exact results derived in section 3. A similar analysis of the predictions of the multiple-
time-scale * (MTS) and Kapral-Hudson—Ross (KHR) [12] theories is presented in section 5.

* Alfred P. Sloan Foundation Fellow.
1 The reverse reaction was not included because we were not able to solve the Boltzmann equation exactly in this case.
Tt Much of the analysis used in this paper was inspired by a series of lectures given at M.LT. by Visiting Professor E.P. Gross of
Brandeis University.
¥ Qur treatment of the MTS procedure is based largely on the work of Cukier and Deutch [11].



23 J. Simons, An exactly soluble kinetic equation for a chemical reaction

In section 6, the equilibrium and non-equilibrium contributions to the chemical rate coefficient and to the
diffusion coefficient of the dilute reactant are explicitly calculated for an assumed hard-sphere reactive cross sec-
tion. Section 7 contains our concluding remarks.

Let us now briefly discuss some of the assumptions and conditions involved in the single-relaxation-time
Boltzmann equation considered in this research.

2. The model problem

We begin by considering an irreversible, bimolecular gas-phase reaction in which each species possesses a single
internal quantum state:

A+B——C+D. ' ' )

Neglect of the reverse reaction is justified by assuming that the concentration of one reactant (say B) is so large
that we need only consider A—B and B—B collisions.

The'time dependence of the distribution function of reactant A is now assumed to be governed by the following
equation: : :

3fy (v, Dfot+v-Vf, (r,v,0)= f{fA 0, ) [V, 0)=f, (10,0 fg VD } W, Vv, V) dv' dV'dV

— [ f . VDRG0, VY, VYAV dV AV, [0))

where the velocity relaxation kernel (W) and the reaction kernel (R) are taken to be independent of r and ¢. In
subsequent expressions, the r- and r-dependence offA (r, v, 1) and fg (r,0, 1) will be suppressed when no confusion
can arise. It is consistent to further assume that the initial (the reaction is initiated at 7 = 0) distribution function
of species B (taken to be homogeneous in space and maxwellian in velocity) persists * throughout the course of the
reaction:

fg (0,0 =1y 65 (V) | ©)
independent of r for all time, where
¢ (V) = (MB}ZKkT)% exp [-MBUZ;’ZICT] ; ; 4
Egs. (3) and (4), together with the statement of conservation of energy for non-reactive collisions
2

tmyv?4img V2=lm, v'2+4my v? o ' (5)

allow us to rewrite eq. (2) in the form
3,0t +u V1= [ ()9, @) ~Fy ® 9, ()} SOW) dV — £, @) T (), ©
where the kernel S (vlv') is defined as

S 1) = ng 165 (N 85 (V)85 () 6, @IF W@V, V) aV'av, )

# For any desired order of accuracy in the calculation of f,, the number density of specics B can be chosen to be so large that ng
remains essentially unchanged throughout the course of the reaction.
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and the reaction function 7 is given by
T =ng [65 (MR @, V,0', V) dv V' V. | @®)

The model equation to which we restrict our attention for the remainder of this paper is obtained from eq. (6) by
taking S (v|¢') to be a constant: - .

S (ulv) =k, A 9)

which is the reciprocal of the velocity relaxation time * for species A. Our model problem is therefore stated in
terms of the following Boltzmann-like equation

fplot+v-V [y, =—[k+T )] fytr ¢, ©)n, ¢, 0, (10)

where the local number density of species A is

ny 0= [f, o0 dv.

3. Exact solution of model problem

The exact solution of eq. (10) is most readlly accomplished by introducing the Fourier—Laplace transform of

fa (0,0

Fhovo)= [a [ def, (o0 exp [ik-r—zr]. ] an
0

Substituting the transform into eq. (10) yields the following equation for f (k,v0,2)

[z +ik-v+k+T] fkv,2)=f (ko,t=0)+k ¢, (V) 7 (k,2), (12)
where '

fkor=0)= [darf, (v,0=0)exp [~ ik-r] - (13)
and

A= [dof k2. (14)

Eq. (12) gives the distribution function f in terms of the unknown number density n. To obtain a closed
algebralc equation for i, we multiply eq. (12) by ;

A(k,b,z,x)=[2+g+T+lk.v]—l .

and integrate over velocity. This gives an equation for n whose solution is

*« depends on temperature and number density as follows: k = K (.i’cl"';l";-l)”.2 ng, where u is the reduced mass of an A—B pair, and
i is the velocity relaxation cross section.
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i) = (1= [AGK,2,0,6) 6, @) dv] =1 [A (k,0,2,6)  (k,0,1=0) dv. (16)

This is an exact formal result for i (k, z) in terms of the initial distribution function, the parameters of the prob-
lem, and the quadratures involving A. Thus, the exact distribution function is given from eq. (12) by

fkv,2)=Af (ko,t=0)+k ¢, V)7 (k2)]. : an

From the theory of Laplace transforms, we know that the time behaviors of f (7,V, 7) and 1, (, f) are deter-
mined by the functional dependences of'f and n, respectwely, on the complex variable z. For example, a simple
poleatz =2 lmphes a time dependence given by exp [z¢]. From eq. (17) it is clear that T possesses the same
z-behavior as n except for an additional simple pole whose location in the z-plane is given by

2, (k,k,0) = —k — T (b) — ik - . ’ - (18)
Because we have in mind a situation for which the velocity relaxation rate is larger than the chemical reaction rate
k > T (v), but not necessarily x > T (v), (19)

the pole given in eq. (18) contributes to the short-time behavior * of f (r,0, ).

The long-time dependence of f,, and n, is what we ‘are probing when we make experimental observations con-
cerning the time behavior of the average values of the hydrodynamical variables of the reacting system. This long-
time behavior is governed by the pole of # whose real part is least negative. To locate this pole, we first asymptoti-
cally expand ** the dispersion relation

1— [6, @) 0 +x~1[z+T+ik-v]}~ dv=0 (20)

in powers of k1. The resulting expansion, when truncated at jth order in k1, gives a jth-order polynomial equa-
tion in z to be solved for the poles of 7. Taking T j = 2, we find only one pole which does not violate the original
condition

k| >[Rez| . 21

on the asymptotic expansion. This long-time pole is given as follows

2ok) =D +x 1@ T2 — k2 T3 - k2 [L k71 2y — k2 28T, (22)
where
8T () =T () - D : (23

and the bracket means an average over ¢, (v), e.g.,
= [dvs, T @) | @4

* Exponentially dccaying time dependence whose time constant is of the same order of magnitude as « is called short-time be-

havior. If the exponential decay constant is smaller in magnitude than «, we refer to this as long-time behavior.
** The coefficients in this asymptotic expansion, which are obtained by expanding the integral in eq. (20) in powers of ", are

given by (-1)" J’¢A (IJ) Iz + T + ik * 0] dv. The remainder term in the expansion will be small if x obeys
kP> 1+ DH -k @? (z + Tyl Considering « as given, this inequality restricts the values of z and k for which the long-
time pole given in eq. (22) exists.

¥ In the research reported here we obtain all results to second order in x~". This choice was made because the interesting features
arise already in this order. '
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The residue of 71 (k, z) at the pole z is found to be
Ry®)=n (k,1=0) {1 k"2 [6TH - L k* W]}, : (25)

where n (k, ¢t = 0) is the spatial Fourier transform of the initial number density of species A. The short-time poles
of 77, whose residues are of order k ~2 or smaller, will not be discussed further in this paper In arriving at the re-
sult given in eq. (25), we have taken the initial distribution function to be

falv,t=0)=1, (r,1=0) 6, (), (26)

with n, (r, t = 0) arbitrary. This initial condition is assumed for the remainder of the paper.
Knowing the long-time poIe 2( and its associated residue R (k), we can now write the long-time components
ofn (k,)and f (k,v,t)as”

n Tk, =Ry (k) exp [z,(K) 1] , _ @7

FYTk,0,0)=Ry (k) 9, () exp [z2y(K) {1 — k"1 [6T +ik- o] —k 2 [6TD)~ § k> @) — (6T +ik-v)?]},
(28)

with z, (k) and R, (k) given in eqs. (22) and (25), respectively. The effective chemical rate coefficient k ., for
the reaction descrlbed in eq. (1) can be extracted from the exponential time coefficient of 7 LT (&, z) as follows

np ke =—lim zo (k) =M — k1 6TH + k26T, 29

B ke == lim 2 (B) =)~ 29)
Also, the diffusion coefficient of species A is identified as the coefficient of —k2 in the pole z ) (k)

D, =4k ' @) - k2% (30)

The non-equilibrium terms **in Kk a1e and D, arise because of the coupling between the velocity relaxation and
the chemical reaction. If T (v) were independent of velocity, the fluctuation 8§ T () would be zero and the non-
equilibrium corrections would vanish identically. -

A generalized frequency-dependent rate coefficient k., (z) may be introduced by Laplace transforming the
generalized rate equation

t
din (k= 0,0/dt=— [ dr' ny k. ()71 (k>0,1) (31a)
0
to give -
ng Ko (z) = hm [n (k,t=0)n (k,2) - z]. (31b)

Substituting the general expression T for 1 (k, z)

7 2= 2 R [z -z R | )
i=0

* Notice that, even to first order in k", the long-time distribution function is not of the local-equiltbrium form.
ol By non-equilibrium terms we mean those terms involving the fluctuation 8§ T (v).

T This expression must be modified if # has poles which are not simple, but the argument presented below is still valid. In this
argument we do assume that 7 has no cuts in the z-plane. This assumption is justified by the fact that the expansion of the
dispersion relation in powers of x~!, when truncated at a finite order, gives a finite-order polynomial in 2 to be solved for
the poles of .
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into eq. (31b) yields an expression for k., (2) in terms of the poles and residues of 7':

2 Sl
ngk .. (@ = Limo [n (k,t=0) [Z}Ri ®)(z-z) 1] —z ] : (33)
= f -
Notice that the zero-frequency limit of ng k(. (2) does not agree with the effective rate coefficient ng k., found
in eq. (29). On the other hand, it is clear that the following limit

lim  np ke (2)= np Ky : (34

2= —ngkiate
does give the correct long-time chemical rate coefficient. This example indicates the care that must be taken in
using zero-frequency transport coefficients in hydrodynamic theories; the zero-frequency limit is plainly not al-
ways appropriate. :

Knowledge of the exact long-time number density also allows us to calculate the generalized structure factor
S (k, w) for low frequency Rayleigh light scattering. Assuming that the polarizability of species A is much larger
than that of species B, and that only fluctuations in the local number density contribute to fluctuations in the local
dielectric coefficient, we find *

S (k, @) =(2/V) Re G (k, 2 = — i) 7T (=K = QI V) G2 (k) 71 (—k {1 — k=2 [6TD-Lk2 0D} [ zg/(w? + 2)].
' (35)
The half width at half height " of this lorentzian line is given as follows
(k) =ngk_, +tk2D,. ‘ (36)

The short-time poles of i (k, z) will contribute to S (k, w) in the form of broad high-frequency lines whose ampli-
tudes are of order k2 or smaller. By extrapolating the experimental low-frequency Rayleigh width to zero scatter-
ing angle (corresponding to k > 0), one can measure the chemical rate coefficient ngk ... Also, the angular depen-
dence (k-dependence) of I" (k) can be used to extract the diffusion coefficient D ,. Finally, the density dependence
of the line width can, in principle, yield the non-equilibrium contributions to ng k ;.. and D 5.

Having obtained asymptotic expansions of the exact ng ke, Dy, S (k, w), ﬁLfa(k, N and f LT (k, v, £), let us
now turn to investigate the results of several theories which yield only approximate solutions of the model Boltz-
mann equation. Mathematically, emphasis is placed on the difference between using an ansatz expansion of
f (k, v, 2) in solving the Boltzmann equation and asymptotically expanding the exact f (k, v, z), once it has been
found. Physically, we are interested in determining under what conditions (on the reactive and non-reactive colli-
sion cross sections) the approximate distribution functions can deviate significantly from the exact f (k, v, 1),
especially for long times.

4. The Hilbert and Chapman—Enskog theories

In the Hilbert approximation method T, we assume that the distribution function f (k, v, z) can be expanded
in powers of k1

Fko,2)= 25 f,, (o, 2) k™ - @7
m=0

* The brackets here indicate an average over the equilibrium ensembles of the system.

** See footnote + on page 29.
t Much of our treatment of the Hilbert and Chapman—Enskog methods follows the excellent paper by Hauge [13]. We refer the

interested reader to this paper for mathematical details.



J. Simons, An exactly soluble kinetic equation for a chemical reaction 33

The coefficients f{n in this expansicn are determined by substituting the above ansatz into eq. (12) and equating
each power of k~!. The resulting set of equations is compactly written with the aid of the projection operator P
defined by

Pe)=0, ©) [¢ (V) & (38)
as follows |

(1-P) [ (k,v,2) =0, (39a)

(A-P)f 4 K0, 2)=f, (kv,t=0)—(+ik-v+T)f, (kv,2), (39b)

Pf, =[z+M1{Pf, (k,v,t=0)~P[(z+T+ikv)(1-P)[, 1}, m=>O0. (39c)

The complete f is, of course, the sum ofRf and (1—P)f . The initial distribution function has also been expanded
in powers of k™!

fkv,t=0)= 25 f (kv,t=0)x"". (40)
m=0

To solve the above system of equations recursively, we need only know the projected components
R(' (k,v, t = 0) of the initial distribution function; the orthogonal components (1—P) % (k,v, = 0) are deter-
mmed by egs. (39a) and (39b). Moreover, we see from eq. (39¢) that the complete f (k,v, z) and n (k, z) will in-
volve the sum T % m=0 K ”’me (k,v,2=0) [ =Pf (k,v, t =0)]. Therefore, the only initial information required
in the Hilbert scheme is the projection Pf (k,v, t=0); the mdmdua!f? (k,v, t =0) are not required. It is a
general feature of the Hilbert theory that only the hydrodynamic moments [Pf (k,v,t=0)in our case] of the
initial distribution are necessary as input data,

Before presenting and analyzing the results of the Hilbert formalism, we will briefly sketch the philosophy and
mathematics of the CE theory. The identical results of the Hilbert and CE approximations will then be treated
simultaneously.

In the CE theory we assume that the z-dependence of the distribution function f (k, v, z) can be attributed
completely to a functional dependence on n (k, z):

f (k,v,2)=f (k,v,n (k,2)). 41)

Because our model Boltzmann equation is linear in £, the distribution function must be a linear functional of
n (k, z). This relationship can be expressed as follows

f (k,v,2)=¢, )7 (k,2) [1 +F (k)] (42a)

The form of f in eq. (42a) has been chosen so that F (k,v) represents the deviation of f from local equilibrium.
From eq. (42a) it follows that F (k, v) must obey

0= [, @ F (k,v) dv, - (42b)
which in turn implies that
(1-P)f (k,v,z)=F (k,v) Pf (k,u,2). : (42¢)

Thus, in the CE approximation, the (1—P) ' component of the distribution function is related to the Pf’ compo
nent by the proportionality factor F (k,v) which is independent of z.
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Premultiplying the model Boltzmann equation by P and then by (1—P) gives a pair of equations * for the two
components Pf and (1—P) f of the distribution function. The resultant solution for (l—P)f (in terms of F (k,v)
and the parameters of the problem) is then set equal to F (&, v) times the solution for Pf’ (accordmg to eq. (421:))
This step results in a closed integral equation for F (k,v)

1+F ko) ={1+x kv +T—(D—g®)]} ! (43a)
where :
g®)= [6, () (-v + T (W) F (k,v) dv. _ (43b)

Using eq. (42b) and eq. (43a) we find an equation which determines the value of g (k) to any order in k1
1= fo, @) {1+x7 [k v +5 T~ g(®)]} "' dv. (43¢0)

Expanding the above integral asymptotically to order k=2 yields an equation for g (k) whose solution is
g (K)=—z, (k) +<(T), (43d)

which, when substituted into eq. (43a), gives the function F (k, v) to order k2
The distribution functions and number densities resulting from the Hilbert and CE theories are identical as
power series in k!, and are given as follows

OTA-3 R0 2 6TH-K20%D | o [6TH- K 0]’

n =0 == -1 g
nk,z)=nk,t=0)[z+()] 1+k i K FER(a) Gt Ol
(44a)
and
fkv,2)=n(k2)¢, ) {1 -k [6T+ik-v] -k 2[6TH— Lk D] +k 2 [T +ik-v]?}. (44b)

By expanding the exact long-time results of egs. (27) and (28) in powers of k~1, we find agreement with the
above Hilbert—CE results except for the replacement of the exact residue R (k) by the initial number density *

n (k, t = 0). This replacement can be seen from eq. (25) to give rise to errors of order k—2. We notice that the ex-
pansion of 71 (k, z) in powers of k1 given in eq. (44a) is equivalent to order k2 to the following

nk,z)=n(k,t=0){z+T -k~ [GTD -1 k% @P)] + k"2 [GT? - k? W26]} ), (44c)
which possesses the exact long-time pole defined in eq. (22). Thus the chemical rate coefficient and diffusion

coefficient contained in the Hilbert—CE number density are exact; only the amplitude (residue) of the number

density is in error.
From egs. (31b), (35), and (44a) we easily calculate the frequency-dependent rate coefficient and Rayleigh

structure factor for the Hilbert—CE number density

Mg Ko @) =~ lim_ 20 (0) =g by, ' @5)
and
S (k,w)= V)G (k) 1 (k) [—zo/(w? +2D)]. - (46)

*
See footnote 1 on page 32.
** This point is discussed in more detail by Hauge [13] for the non-reactive case.
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The Hilbert—CE frequency dependent rate coefficient is equal to the exact effective rate coefficient, independent
of z; whereas the above structure factor is in error as a consequence of the replacement of the exact residue Ry (k)
by n (k, t = 0). The angle-dependent error in S (k, w) is, according to eq. (25), of second order in k~1.

From the discussion of this section, we see that neither the Hilbert nor the CE theory is capable of producing
the correct long-time behavior of f (k,v, #fand n (k, £). Assuming that the prescriptions of the Hilbert and CE
methods have been correctly applied to the model problem, we must therefore conclude that the basic assump-
tions expressed in eqs. (37) and (42a) are not entirely valid. The z-dependence of the exact f cannot be attributed
to a functional dependence on 1 (k, z), and the exact f cannot be analytically expanded in powers of k~!. This
last statement does not mean that the exact distribution function, once calculated, cannot be asymptotically ex-
panded in powers of k1, as was done in section 3.

Although our stated conclusions are based on results of a specific model calculation, they are certainly valid
because they are of a negative nature. Also, our statements regarding the zero-frequency limit of ngk . (z) are
easily seen to be valid, independent of the model considered in this paper.

Let us now turn to investigate two alternative approaches to approximately solving our Boltzmann equation.
These theories begin by assuming a different type of expansion of f, (r, v, r) than that assumed in the Hilbert
method.

5. The multiple-time-scale and Kapral—Hudson—Ross theories

To begin the MTS analysis [11] we introduce an ordering parameter X into-the Boltzmann equation
afAIar'*”'va =K ¢A (U)HA(F',{)—KfA “'RT(U)fA (r,U,f). (47)

The value of A will eventually be allowed to approach unity through positive numbers. The next step is to replace
the single time variable ¢ by a set of variables {¢(, #,, #,, . . .} , each of which is considered to be independent.
The distribution function and number density, treated as functions of this set of variables, are then expanded in
powers of A

L1, ..)= m% W A G, ot ac ) (48)
B Gty ty o) =mza)0 Al Gty i ) “9)

The time derivative is also formally expanded in powers of A

dfor= 25 N"dfor,, . (50)

m=0

Substituting egs. (48—50) into eq. (47) and equating coefficients of each power of A generates a set of equa-
tions to be solved for the unknowns fA(m) (r,v, ) and uA(m) (r, t). For example, the first two equations are
written as

Doty +v-VfO=—kfQ +ko, n, (1)
afW faey +arO%pey +v-V PV =—kfP+ugp, nd -1, (52)

The set of MTS equations are to be solved subject to the initial conditions
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7 ,0,0,0, ...)=¢, @n, (r,t=0), _ (53a)
I (r,v,0,0,...)=0 form=>1, \ (53b)

where the initial number density n, (r, t = 0) is given as input to the calculation. The additional freedom gained
by introducing multiple time variables is used to eliminate secular behavior whenever it arises in solving the MTS
equations. The resulting MTS distribution function and number density are functions of the time variables

(tg: 11> - - - ). To return to the single-time-variable language, we replace 7, by A"t and allow the parameter A to
approach unity through positive numbers.

Before discussing the results of the MTS theory, we will develop an extension (to higher orders in A) of the pro-
cedure proposed by Kapral et al. [12]. We can then simultaneously analyze the identical results of the MTS and
KHR formalisms.

The original KHR theory was restricted to a spatially homogeneous reacting system. For ease of presentation,
we maintain this restriction in our development, while giving final results for the spatially inhomogeneous case.

The starting point of the KHR procedure is the assumption that f, (r, v, ¢) can be written as follows

fa=f8E o 1B 0,0+ XD .0+, (54)
where jkE is a local-equilibrium distribution function -
FEE (o, 0 =n, (r, 1) [my/2mk T (r, 0] exp [ — m 022k T (7, 1)) . G (55)

and the x™) (r, v, 1) are to be calculated by following the procedure outlined below. Because of the assumed large
excess of species B, the local temperature T (r, £) will not deviate appreciably from the temperature T appearing
in ¢4 (v). Hence, for our special conditions, the local-equilibrium distribution function is equal to the local num-
ber density n, multiplied by ¢, (v).

The second step of the KHR method is to use egs. (54) and (55) to write

dffde=o, [1+XxV+ ..V dn,fde+n, ¢, NdXD/de+2% dxPrde+...]. : (56)
Integrating eq. (47) over velocity gives, in the spatially homogeneous case,

dnyfdt=—2n, @ -Nn, [6, XV (0, ) TE)dv, - 7
which, when substituted into eq. (56), yields the first of two expressions for dfy/dt. The second expression is ob-
tained directly from eq. (47):

dffdt=—ko,n, AxP+22xP+ ] AT, n, [1+2xV+...]. (47)

We can now obtain a set of equations for the x(™ (r, v, £) by first setting df, /d as given in eq. (47") equal to
the result of substituting eq. (57) into eq. (56), and then equating the coefficients of each power of \. Forex-
ample, the first two equations in this set are

dx® (r, v, 0/dt =~k XV -8 T (v) (58a)
and
dx@/dr+kx@ = — 5 T (v) xV +f¢A )XV @) T () dv, (58b)

whose solutions, subject to the initial condition



J. 8imons, An exactly soluble kinetic equation for a chemical reaction 37

foro,t=0)=n, (r,t=0)¢, () (59a)
are given (still for the spatially homogeneous case) by
XD, )= k18 T(v) [1 —exp (=« 1) ' ' ~ (59b)
and ; -
x® @,0)=xk"2[6T2 (v) = 6TH] [ktexp(—kt)+1 —exp(—«kD]. - (59¢)

The distribution functions and number densities resulting from the MTS and KHR theories are identical as
power series in k! and are given, for the spatially inhomogeneous case, as follows

fk,v,0)=n(k,t=0) ¢, exp(zy0) {1—k1[T+ik-v] (1 —exp(~ kD)
+x 2 [T = 26T +2 k2 wh+ (k- v)2 + 28T ik -v) (1 — exp (- k1)

+(8T2 — GTH + L k2 (W) + (ik - v)?) kt exp (& D]} (60)

and
Ak, 1) =7 (k,t=0)exp(z40) {1 — k"2 [6TH — 4 K2 D] (1 —exp (- k D)}, (61)

where z; (k) is the exact long-time pole of eq. (22).

By expanding the exact long-time results of egs. (27) and (28) in powers of k~1, we find complete agreement
with the long-time limits of egs. (60) and (61). Although the long-time components of the MTS—KHR distribu-
tion function and number density are correct, the short-time contributions are characterized by a time constant k
which is not a solution of the dispersion relation [eq. (20)]. Thus, the MTS—KHR results are valid for long times
only.

The effective chemical rate coefficient and diffusion coefficient contained in the long-time limit of the MTS—
KHR number density are exact, as are the frequency-dependent rate coefficient and Rayleigh structure factor
calculated using egs. (31b), (35) and (61).

From the discussion of this section, we see that the MTS and KHR theories yield identical distribution functions
which agree with the exact result for long time. However, the short-time component of the MTS—KHR distribution
function is not exact. Assuming that the prescriptions of the MTS and KHR procedures have been carried out
correctly, we therefore conclude that the expansions of f (r, v, ¢) assumed in eqs. (48) and (54) are not valid. The
exact distribution function cannot be analytically expanded in powers of A, as can be seen from egs. (22) and (27).

6. Calculations for an assumed reactive cross section

For the hard-sphere reactive cross section o () defined by

o()=0 , ifu<u,
gl e = (62)
=g (1 -uzluz), ifuzu,
we can calculate the equilibrium and non-equilibrium contributions to the chemical rate coefficient ngk . and
to the diffusion coefficient of species A (D). This calculation is carried out so that we can gain some insight
regarding the conditions under which the non-equilibrium corrections become significant.
The reaction function T (v) which appears in our expressions for ngk . and D is related to the cross section
g (1) in the following manner :
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T()=ny [65 (MR (v, V.0, V) v dV' ¥, (63)
where the reaction kernel R (v, ¥, v, V') is given by -

R, V0, ¥)=8(w-w)s(QEuu?—Luu? - AE) [uo@)u'?). (64)
The notation in the above equations is as follows

Before reactive collision After reactive collision

velocity of C molecule v
velocity of D molecule V'

velocity of A molecule
velocity of B molecule

"R ErE wC

reduced mass reduced mass u
center-of-mass velocity center-of-mass velocity ~ w'
relative velocity relative velocity u

and AE is the change in internal energy for the reaction: AE = E + Ep — E5 — Ej.
The equilibrium contribution to D, is independent.of any assumption about the reactive cross section, and is
given by

LYo = k1) (Wm,) (ng )71, (65)
where the velocity relaxation time has been expressed in terms of a velocity relaxation cross section k as
k=T 2ng k. - (66)

The equilibrium contribution to ngk .. is easily calculated using egs. (62) — (64)

T =f 04 @) T () dv =85 ny @k T/w' 2 exp [~ nit?/2 kT]. (67)
This is of the familiar Arrhenius form with frequency factor 4 given in terms of the reaction amplilude g

A=8ny G (2kT/u)!? (68a)
and the activation energy expressed in terms of the threshold speed u

E =iui’ : ' (68b)

The non-equilibrium corrections to D, and nyk_ are given for the hard-sphere cross section, respectively, as

t
follows 5
- 1/2 f mp—p —2 -2
“3,2.0 . 80 (2 nkT) ( B )( uu ) [ Mt ]
—K “ T =— 1+ exp |1 —-%=1, (69)
et R my+my )\ 2T KT
and
g 128752y pvin m) m:z] -
Lhary - (——) —2 Fu,my, my, ) exp [_Tﬁ*_ : (70)

where F (u,m, , my, T) is a very complicated function which is bounded by zero and unity. Because we are inter-
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ested here only in determining under what conditions the above non-equilibrium corrections become significant,
the precise value of F is unimportant and will not be discussed further.

By forming the ratios of eq. (69) to eq. {65) and of eq. (70) to eq. (67), we see that the non-equilibrium terms
can amount to a significant fraction of the equilibrium contributions, if two conditions are fulfilled. First, the
ratio of the reaction amplitude o to the velocity relaxation cross section K must be non-negligible. Secondly, the
ratio of the threshold energy-% ;.1172 to the thermal energy AT must be of the order of unity or smaller, i.e.,
exp [-—,LuTz,-’ZkT] must be non-negligible. Many ion—molecule reactions are prime candidates for satisfying these
two conditions.

These conclusions regarding the relative magnitudes of the equilibrium and non-equilibrium terms in no way
involve the dominant number density ny. Only the threshold energy and cross section for reaction and velocity
relaxation are involved.

7. Concluding remarks

For the single-velocity-relaxation-time Boltzmann equation introduced in section 2, we have obtained expres-
sions for the exact number density and distribution function in terms of the parameters of the problem and a single
quadrature. By expanding the quadrature in powers of k=1, and truncating at second order, asymptotic expansions
of n (k,z) and f (k,v,z) were derived. The long-time limits of # and f were extracted from these asymptotic ex-
pansions by calculating the pole z; and the residue R, (k) (also to second order in k~1). Finally, the exact long-
time number density was used to predict the frequency-dependent rate coefficient ngk_, .. (z) and the Rayleigh
structure factor S (k, w).

The results of applying the Chapman—Enskog and Hilbert approximation schemes to the model Boltzmann
equation indicate that the exact distribution function cannot be analytically expanded in powers of k~! and that
the assumed functional dependence of f on n does not hold. The CE—Hilbert distribution function agreed with the
exact long-time [, except for the replacement of the residue R, (k) by n (k, t = 0), which causes an error of order
k—2. The number density and Rayleigh structure factor were also in error due to the difference between R (k) and
n (k, t = 0). The frequency-dependent rate coefficient in the CE—Hilbert approximation was found to be equal to
the exact chemical rate coefficient, independent of frequency. The main conclusion to be drawn here is that the
CE and Hilbert theories can be used to calculate the long-time number density and distribution function if one is
satisfied with accuracy to first order in k1.

The MTS and KHR formalisms were found to give the exact long-time distribution function for our model prob-
lem. Of course, the long-time number density, Rayleigh structure factor, and frequency-dependent rate coefficient
were also exact. However, the short-time components of the MTS—KHR results possess a time constant k which is
not a solution of the dispersion relation in eq. (20). This implies that the analytic expansion of f (r, v, £) in
powers of X, which is assumed in both the MTS and KHR theories, cannot be carried out for the exact distribution
function. The MTS and KHR procedures seem to offer the possibility of going beyond the CE—Hilbert results in
calculating the long-time behavior of a chemically reacting system. They do not, however, allow prediction of the
exact short-time dependence of f (r, v, ).

The results presented in section 6 give us some indication of the magnitude of the non-equilibrium terms which
arise in the expansion of f5, n 5, ngk ;... and D, in powers of x~1. For the hard-sphere model reactive cross sec-
tion, it was found that these non-equilibrium corrections can be significant if two conditions are met. First, the
threshold energy } it 2 of the reaction must be small with respect to the thermal energy k7. Secondly, the ampli-
tude of the reactive cross section o must be of the same order of magnitude as the velocity-relaxation cross section
K . Prime candidates for displaying such non-equilibrium effects are very fast ion—molecule reactions.

Although it is difficult to generalize from results of a specific model problem, we can be certain that our negative
conclusions regarding the Hilbert—CE and MTS—KHR theories are valid. Moreover, we feel that the model calcula-
tions presented here can be of some intuitive use in understanding how non-equilibrium corrections to ngk . and
D can arise and under what circumstances they become non-negligible.
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