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TABLE 11: Summary of N,O, Cross SectionsRb 
no. of 1019u/ no. of 1 0 1 9 ~ /  

h/nm runs cmz h/nm runs cm2 
280 53 1.17 240 27 6.2 
275 50 1.30 235 24 7.7 
270 48  1.61 230 1 7  9.9 
265 42  2.0 225 10 14.4 
260 40 2.6 220 10 22 
255 28 3.2 215 10 37 
250 3 3  4.0 210 8 56 
245 29 5.2 205 4 82 

200 4 92 

h = 380-285 nm. T = 225-300 K. Number of runs = 
660. In ( 1 0 1 9 ~ / c m z )  = 0.432537 + (4.72848 - 
0.0171269A)(1000/T). h = 280-200 nm. Little or no  
temperature dependence, and all data at  one temperature 
averaged together. 

Although there is some hint of temperature effect on the 
Nz05 cross section below 280 nm, Figure 2, the trend is so 
slight that all data points from 223 to 300 K of both series 
one and series two were averaged every 5 nm between 200 
and 280 nm, and these data are given in Table 11. Below 
230 nm these results are exclusively from the second series, 
and they are based on the kinetic method, which tends to 
eliminate the perturbing effect of HNOB on the results. 

Previous mea~urementsl-~ of the N20s cross sections 
were done at  298 or 300 K. The line in Figure 4 is based 
on the average observed points (Table 11) from 200 to 280 
nm and the points calculated (25) from 285 to 380 at  300 
K. The circles represent Graham's3 values and the trian- 
gles represent the results of Jones and Wulf.' The present 
results are fairly well parallel to those of Graham between 
210 and 310 nm but are about 10% higher. The present 
results are not strictly parallel to and average about 30% 
higher than those of Jones and Wulf between 290 and 380 
nm. In view of the difficulty in handling N205 and its 
decomposition products, Figure 4 shows reasonably good 
agreement between these and other results a t  300 K. 
Discussion 

The explanation for the increase with temperature in 
cross section at long wavelengths is that thermal excitation 
of vibrational and rotational states in the ground electronic 
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Figure 4. Comparison of N,Os cross sections at 298 K as found by 
this study (the line) and as f o w l  by Graham and Johnston (circles) and 
by Jones and Wulf (triangles). 

state of the molecule makes available low-energy, long- 
wavelength transitions. The population of such states is 
expected to parallel the Boltzmann factor, exp(-e/kT), and 
the linear relation shown in Figure 3 is reasonable. Such 
an effect may be expected on the long-wavelength side of 
an absorption peak, but regions near the maximum of the 
absorption peak usually show little or no effect of modest 
temperature changes. 

The decrease of cross section with decrease of temper- 
ature largely occurs above 300 nm. For considerations of 
atmospheric photochemistry, this is the wavelength region 
where solar radiation penetrates to the troposphere and 
to the ground. Thus the temperature dependence of the 
N2O5 cross section may be of some importance to the 
low-temperature upper troposphere and lower strato- 
sphere. 
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In this paper, we consider, within a first-order perturbation treatment, the photon-induced electronic transition 
process as it appears in the quantum, classical, and partly classical points of view. Advantages and limitations 
of each approach are stressed, and their relevance to time-resolved and frequency-resolved experiments involving 
small, large, and predissociating molecules is discussed. We also show how each point of view can be used to 
generate coordinates and momenta which serve as initial conditions for classical trajectory studies of the fate 
(e.g., predissociation) of the electronically excited molecules formed in the photon absorption. The emphasis 
of this paper is twofold. It attempts to shed light on how the effects of photon absorption can be viewed in 
the classical or quantum frameworks. It also shows how the various points of view differ in their practical utility 
with respect to the computation of absorption intensities or the evaluation of initial coordinates and momenta 
for use in classical dynamics work. 

I. Photon Absorption Rate 
The conventional electric dipole expression for the rate 

of photon-induced transitions between initial and final 

David P. Gardner Fellow; Camille and Henry Dreyfus Fellow. 

Born-Oppenheimer (BO) states +&" and +fXuf, respec- 
tively, is given 

21r 
woiso = 7 I(+dri0Fr7+fXuf)12 S [ W  - (c,f - ci'')/hI 8-l (1) 

0022-3654/82/2088-3615$01.25/0 0 1982 American Chemical Soclety 



3010 The Journal of physlcal Chemistry, Vol. 86, No. 18, 1982 Simons 

Here e/’ and cuf are the total BO energies (electronic plus 
vibration/rotation) of the initial and final states, h w  is the 
energy of the incident photon, and 2.i is the electric dipole 
interaction potential. We have denoted by h Planck’s 
constant divided by 27r. $ J ~  and cpf are the BO electronic 
wave functions which obey2 he40 = E04,, and h,df = E&. 
The total Hamiltonian H consists of the electronic part 
he (containing electron kinetic energy, electron-electron 
and nuclear-nuclear repulsion, and electron-nucleus at- 
traction) plus the nuclear kinetic energy operator T. The 
vibration-rotation eigenstates, which obey (T + Ef)X,f = 
tufXuf, are functions of all of the molecule’s internal and 
orientational degrees of freedom. 

A convenient expression for the total rate of absorption 
of light of energy h w  due to molecules initially in &Xi0 
can be obtained by summing eq 1 over all final states and 
using the well known integral expression for the Dirac 6 
function: 6(w - ( E / h ) )  = (1/27r $--” exp[i(w - E/h)t]  dt 

w = 1 s_, exp(iwt)($&?I exp(iHt/h)f. 
f,u h 

r‘ exp(-iHt/h)l$fXuf) ( $fXuflz.fl&,Xp) dt (2) 

The exp(&iHt/ h )  factors arise from exp(icpt/ h )  and 
exp(-ic$/h), respectively. 

To understand why this form for W is especially con- 
venient, let us examine what happens if we now treat the 
nuclear motion (vibration-rotation) classically. In this 
case, the quantum mechanical operator T (which does not 
commute with he) is assumed to commute with he. We 
designate this approximation by placing the subscript c 
on the nuclear kinetic energy operator T N T,. Under this 
approximation, the term exp(iHt/ h ) G  exp(-iHt/ h )  re- 
duces to exp(ih,,t/h)&? exp(-ih,t/ h) ,  since T, commutes3 
with he and Z-7. By then using the fact that 4o and 4f are 
eigenfunctions of he, we can rewrite W, within this classical 
treatment of the nuclear kinetic energy, as 

I$fX,f) (4fX,flz.r’l$OXP) dt (3) 
Recall that do, 4f, X,O, Xuf, Eo, and Ef_are all functions of 
the molecule’s internal coordinates (RJ. Because the vi- 
bration-rotation eigenfunctions (Xu!) form a complete set 
for any state 4f, we can use CulXuf) (X,4 = 1 to simplify 
eq 3. Introducing the electronic transition dipole matrix 
element4 pM = (4017.fl$f), W, can be written as 

(1) R. G. Gordon, Adu. Mag. Reson., 3 , l  (1968). 
(2) Eo and E f  are the initial- and final-state adiabatic electronic po- 

tential energy surfaces. 
(3) It is indeed M b l e  to develop a sequence of approximations which 

treat the noncommutation of he and T to higher order. For example, to 
first order in the commutator [h,,n 

The commutator [ h e , q  involves the force exerted between the electronic 
and nuclear degrees of freedom. We have not pursued such extensions 
here becuase we feel that the purely classical treatment of T gives rise 
to most of the interesting behavior which we wish to treat. One of the 
earliest developments along these lines was made by M. Lax, J. Chem. 
Phys., 30,1752 (1952). More recent work includes J. M. Schulman and 
W. S. Lee, ibid., 74,4930 (1981); S-Y. Lee, ibid., 76,3064 (1982); C. Noda 
and R. N. Zare, J.  Mol. Spectrosc., in press; M. Tamir, U. Halavee, and 
R. D. Levine, Chem. Phys. Lett.,  25, 38 (1974). 

which represents our partly classical approximation to the 
photon absorption rate. 

11. Comparison of Quantum and Classical 
Expressions 

It should not be surprising that the fully quantum ex- 
pression (eq 1 or 2) for W is not identical with the partly 
classical (the electronic degrees of freedom are still treated 
quantum mechanically) expression given in eq 4. However, 
it is fruitful to explore the similarities and differences in 
Wand W,. In particular, let us examine the w dependence 
of each expression as well as the intensity distribution of 
the respective absorption rates. 

A. The Classical Picture. W, tells us that a photon o,f 
energy hw will be absor_bed at  molecular geometries (RJ 
where h w  = Ef(R) - Eo(R). This, of course, simply states 
that the photon absorption causes a purely electronic 
transition5 (from c $ ~  to 4f) giying riss to a change in the 
electronic energy equal to EAR) - Eo(R). Equation 4 shows 
that the intensity (value of W,at this h-w) of the absorption 
corresppnding 40 h w  = Ef(R) - Eo(R) is equal to (27/ 
h)lXp(R)121pw(R)12. This can be interpreted as th_e prob- 
ability density IX/’c for finding the molecule a t  R times 
the rate (27r/ h)Jh(R)I2  of the electronic transition at that 
R value. It follows from this interpretation of W, that a 
purely classical treatment of vibration and rotation leads 
to the prediction of a “smooth” absorption spectrum whose 
intensity a t  h w  is given as thejntegral_over all molecular 
geometries obeying ho = Ef(R) - Eo(R) of t_he intensity 
factor IXi012(27r/h)1p0f12. For example, if E,@) and Eo(R) 
were one-dimensional harmonic oscillator potentials cor- 
responding to different geometries but with identical fre- 
quencies (Eo = ax2, Ef = A + a(x - and if Xi0 were 
the ground-state harmonic oscillator function of Eo, Xi0 
= A exp(-ax2), then the w dependence of the absorption 
would involve A2 exp[-2a(hw - A - axo2)2/4a2x~] since h w  
= Ef - Eo gives x 2  = ( h w  - A - axo2)2/4a2x02. If the x 
dependence of 1pd2 is neglected, this would then give rise 
to a Gaussian absorption line shape which is the w space 
image of lX:l2. The Gaussian is centered at h w  = A + ax?, 
which corresponds to the “vertical” transition occurring 
at the maximum of lXp12 (at x = 0). Although this example 
is very simplified, it illustrates the qore general relation- 
ship between the “shape” of lXi0I2 in R space and the shape 
of W, in w space in this purely classical absorption model. 
Helle@ has obtained a similar result which he refers to 
as the reflection approximation.6c 

B. The Quantum Picture. In contrast, the quantum 
mechanical expression for W tells us4 that transitions will 
occur when h w  = t,f - E: with intensity (27r/ 
h)l(Xi01pol,dXuf)12. That is, the photon energy must match 
the rovibronic energy difference tuf - E:, upon which the 
intensity is given by the usual4 (Franck-Condon like) ex- 
pression involving the square of the transition dipole’s 
matrix element between Xi0 and X,f. Notice that this 
quantum viewpoint involves knowledge of the final-state 
vibration rotation functions Xuf, whereas the W, picture 
involves knowledge of Ef - Eo at  geometries where IXi0I2 
is large. 

(4) G. Herzberg, ‘Molecular Spectra and Molecular Structure”, Vol. 
111, Van Nostrand-Reinhold, New York, 1966, Chapter 11. 

(5) L. D. Landau and E. M. Lifshitz, “Quantum Mechanics”, Perga- 
mon Press, Oxford, 1965, Chapter XI, pp 322-4. 

(6) E. Heller has for several years been exploring connections between 
classical and quantum mechanical phenomena using the kind of w-de- 
pendent correlation function employed here. See, for example, (a) E. J. 
Heller, J. Chem. Phys., 68, 2066 (1978); (b) ibid., 68, 3891 (1978), and 
references therein. (c) 6. Henberg, ‘Spectra of Diatomic Molecules”, 2nd 
ed, Van Nostrand, Princeton, 1950, pp 391-4. 
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trajectory studies of the time evolution of the molecule 
following photon absorption. 
As mentioned earlier, any lack of precision in the light 

source’s frequency should be incorporated into this forced 
correspondence by allowing w to vary over the spectr4line 
shape. As w varies, a range of critical geometries (R,) is 
sampled via eq 5 (with an additional multiplicative 
weighting factor equal to the spqctral line shape function). 
Each member of this range of (RJ values then contributes 
to the absorption intensity according to eq 6 but with the 
factor in eq 6 multiplied by the spectral line shape factor 
appropriate to each specific w. 

If there exists an uncertainty in the transition energies 
euf - e,O caused, for example, by a decay process involving 
the state e;, eq 5 and 6 must again be modified. The finite 
lifetime (7u9 of the state euf gives rise to a Lorentzian ab- 
sorption profile for transitions into e t .  The Lorentzian’s 
width (r,’ = (~“9-l h)  is determined by the inverse of the 
decay lifetime. In such cases, o must be allowed to vary 
over an interval h-’(e,f - I?,? 5 w 5 h-’_(e,f + I’,? which, 
through eq 5, again yields a range of (R,] values each of 
which is used in eq 6 (multiplied by the Lorentzian in- 
tensity factor) to determine the absorption intensity. 

D. Relevance to Specific Experimental Situations. 
Having considered the content of the quantal Wand the 
classical W, as well as the mechanism for simulating W 
by W, near the quantum state energy differences, we can 
POW addresa under what circumstances the quantal picture 
is preferable and when the partly or purely classical models 
are adequate or even more relevant. The various exper- 
imental situations considered will differ either in the 
characteristics of the light source (e.g., time resolution, 
frequency resolution) or in those of the energy levels of the 
absorbing molecules (e.g., metastable nature or vibrational 
state density). 

1. Small and Large Molecule Limits. For small mole- 
cules in which the spacings between the levels e,f can be 
resolved with the available light sources, the quantum 
state-specific formulation is certainly better; the entirely 
classical model does not even recognize the quantization 
of the levels e;. However, use of the quantum formulas 
in ab initio calculations requires knowledge of the final- 
state wave functions (Xu?. In contrast, the partly classical 
method, which employs state-specific energy differences 
t,f - tp, requires knowledge of the potential energy surfaces 
Ef - Eo only where IXp12 is substantial. Hence, in sitptions 
where the (Xu?, which may span large regions of R space, 
are unknown, the partly classical picture is probably more 
useful for acutal calculations. In most absorption exper- 
iments, the molecule is initially in a low-energy vibrational 
state. Hense X: has most of its amplitude localized in 
regips  of R space near the equilibrium geometry of the 
Eo(R) surface. 

For large molecules in which the spacings in (e , l  are small 
compared to the light source’s band width (which can still 
be quite narrow), fully state-specific quantal expressions 
become essentially useless. In many such cases, one wishes 
to focus attention on a sm$l number of “active” internal 
degrees of freedom which are thought to play a central role 
in some dynamical process which follows absorption. For 
example, in the nr*  photochemical decompostion of 
H3CCOH to produce H&CO, the C-H “stretch” mode is 
certainly active; it is a dominant part of the reaction co- 
ordinate. The CL) stretch coordinate is also probably active 
since the nr*  electronic transition is likely to excite this 
vibration. On the other hand, the methyl group’s vibra- 
tions and internal rotations are probably passive in the 
sense that they are not strongly involved in the reaction 
coordinate. In such cases, it is fruitful to treat the passive 

Both of the above interpretations have assumed the use 
of a monochromatic light source. In the event that the 
light source has “finite” frequency resolution (e.g., for a 
picosecond pulse, the Heisenberg frequency spread is - 
10l2 s-l or -30 cm-l), the ideas expressed above must be 
modified. In particular, the w dependence of W or W, 
must be multiplied by the w-dependent experimental line 
shape function to obtain more proper interpretatiops. 
There are two other circumstances in which such finite 
frequency ranges need to be addressed when the energy 
levels t,f are broadened by “lifetime effects” (e.g., predis- 
sociation or intramolecular energy redistribution) and 
when the spacing between the euf (tuf - tdl? is small com- 
pared to the resolution (Aw) of the light source (e.g., in 
large molecules with many internal degrees of freedom). 
We will say more about these cases later. 

C. Forced Correspondence between Wand W,. Clearly, 
the above interpretation of W is different from that of W,. 
However, let us see what insight can be gained by con- 
sidering situationse under which W is accurately approx- 
imated by W, in the neighborhoods of the true quantum 
transition energies tuf - E:. That is, “to what extent can 
the intensity pattern of W be adequately replicated by that 
of W, near hw = euf - e:?” From the quantum mechanical 
w dependence of W we know the photon frequencies a t  
which absorption will occur: hw = tuf - e:, In small- 
molecule spectroscopy and photochemistry these transition 
energies are often available from experiment. We can then 
ask at  what (if any) molecular geometries this hw is q u a l  
to the partly classical electronic energy splitting, EAR) - 
Eo(R). That is, equating the quantum and partly classical 
expressions for the photon energy 

(5) 
allows us to determine those molecular geometries (if any) 
a t  which the electronic energy difference equals the true 
quantum energy difference. Let us denote geometries 
which satisfy this criterion by (2,). It is, of course, possible 
that eq 5 is satisfied at  no molecular geometry. In such 
casea, the partly classical rate expreasion predicta that light 
of that energy would not be absorbed. As we wil l  see later, 
this amounts to saying that such events should haye low 
(zero) intensity. 

By also equating the partly classical intensity (at the 
above hw) to the fully quantal intensity, we obtain what 
can be called the partly classical approximation to the 
Franck-Condon like intensit9 

euf - e: = Ef(2) - Eo(& 

where the sum (or integral, if the set d, is continuous) is 
over all molecular geometries which satisfy eq 5 for the 
given hw. Equations 5 and 6 provide us with an approa- 
imate connectione between the quantum and partly clas- 
sical expressions for the rates of photon absorption. 
Equation 6 is, of course, not exact. The lgft-hand side of 
eq 6 can vary rapidly with v (and hence ha), and it is by 
no means obvious that the right-hand sige will vary in 
exactly the same way with hw (through R,). The range 
of approximate validity of eq 6 can prchably best be de- 
termined from experience. 

Molecular geometries which satisfy eq 5 are special be- 
cause they allow the classical (electronic) energy difference 
Ef  - Eo to equal the quantum (total) energy difference 
- e:. They are also special because, as we see from eq 5, 
the classical vibration-rotation_ kinetic energy is unchanged 
by the photon absorption at  R,: cuf - EAR,) = e: - Eo(R,). 
This fact will, as we show later, prove useful when we 
address how to use these partly classical ideas in classical 
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modes as an energy reservoir characterized by a density 
of quantum states p(e), and to assume that the coordinates 
of the reservoir degrees of freedom do not appear in pw 
The only role of the reservoir then is to provide a mech- 
anism for the internal (vibration-rotation) excitation en- 
ergy of the active modes to be redistributed into the modes 
of the reservoir. In effect, the reservoir allows each ac- 
tive-mode state euf to have a finite decay rate I'uf which is 
assumed to be proportional to the number p of reservoir 
vibration-rotation states which have energy equal to e: - 
egf (the amount of internal energy above the zero point of 
the Ef surface): I'uf - p(euf - 61. Because of the presence 
of this energy redistribution decay process, light of fre- 
quencies w lying in the range h-l(e,f - I',? 5 w 5 h-'(t,f + 
I',? (which may even overlap) can be absorbed, where the 
widths I',f increase with e; sjnce p(evf - 69 increases with 
e,,! As w varies, a range of (R,J values are %ampled (in the 
partly classical approach) via eq 5. These @,) values, when 
used in eq 6, weighted by the sum of the Lorentzian factors 
arising from each (euf,I',? line, generate the partly classical 
approximation W, appropriate to such large-molecule 
cases. 

For small molecules whose final state energies t,f are 
broadened by predissociative effects, the partly classical 
analysis outlined above for large molecules can still be 
applied. The primary difference in the two cases is that 
the intramolecular energy decay provides the width (r,q 
in the large-molecule limit whereas predissociation causes 
the width in the other situation. 

2. Dissociative States. There is one other reason for 
which w must be allowed to vary continuously rather than 
to match a specified tvf - e t .  In the event that the final 
state 4,Xvf corresponds to dissociative motion along some 
direction, euf is certainly not quantized and X , f  does not 
describe bound motion along this direction. In such cases 
(e.g., in direct photodissociation), the purely classical point 
of view, in-which liiht of energy h w  is absorbed whenever 
f iw  = Ef(R) - Eo(R), is very relevant. In this picture, 
absorption occurs at all molecular geometries; the energy 
of the absorbed photon is determined from f iw = Et - Eo 
and $he intensity of the absorption is proportional to 
l&R)I2. Th_e probability density for finding the molecule 
at R is IXt(R>J2. This then leads to the image relationship 
between the R dependence of Id21X/'12 and the w depen- 
dence of W,. For example, if Eo(R) were well represented 
as a harmonic potential in one dimension (R) ,  Eo = '/&R2, 
and if EXR) were, in regions where lXt12 is large, accurately 
represented by an inverted and shifted (in energy by A )  
parabola, E f  = A - l/&R2, then the condition hw = E f  - 
Eo leads to R,2 = 2(A - h w ) / ( k  + k). If Xi0 is taken to be 
of the form of the lowest energy harmonic oscillator 
function along R,  Xi0 = A-exp(-cYR2), then IX:12(Rc) = A' 
exp[-4a(hw - A ) / ( k  + k ) ] ,  which presents the above- 
mentioned image relationship. 

111. Relevance to Classical Trajectory Studies of 
Time Evolution 

In addition to the insight into the nature of electronic 
transitions provided by the forced correspondence, we can 
make other uses of eq 5 and 6. Moreover, the fully 
quantum point of view and the classical point of view, both 
of which were shown above to have their own advantages, 
can be employed for more than understanding the ab- 
sorption event. For example, we might wish to follow, by 
classical or semiclassical trajectory methods, the time 
development6 of the state which is prepared by the ab- 
sorption of a photon of energy hw.  To do so would be 
especially relevant if the state so prepared were subject 
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to predisso~iation~ (either by tunneling or by intramolec- 
ular energy transfer followed by bond rupture). We now 
turn our attention to the relevance of the above analysis 
of photon absorption intensities to such time evolution 
studies. 

A. Time-Domuin and Frequency-Domain Experiments. 
We first need to address how experimental measurements 
in either time or frequency space give information about 
the decay rates of molecules. Time-domain experiments 
use pulsed light sources, whose pulse duration is less than 
the lifetime 7 of the decaying state. In this manner, one 
prepares the system in a nonstationary state which un- 
dergoes decay. The rate of decay can be monitored, for 
example, by monitoring the subsequent (after the initial 
pulse) fluorescence (direct or laser induced) of the products 
of the decay process. Such an approach forms the basis 
of swalled pump and probe techniques. It should be kept 
in mind that, in any such time-domain experiment, there 
exists a finite limiting frequency resolution caused by the 
Heisenberg uncertainty relation Au At 1 1. In experiments 
with short time pulses (At - s), the corresponding 
spread in photon frequency (Aw - 10l2 &)e can be rather 
large. To prepare the final state "before" it has time to 
decay, one must use a light source having a pulse duration 
leas than the lifetime of the state. Hence the light source's 
frequency spread times h will be at  least as large as the 
Heisenberg uncertainty in the final state's energy. The 
implications of such low-frequency resolution were dis- 
cussed in sections 1I.B and 1I.C. 

Within the domain of frequency-resolved spectroscopy, 
one can also infer these same decay rates. In producing 
a visible or UV light source of high-frequency resolution 
(Aw - log s-l), one gives up the chance to use extremely 
short light pulses (since a pulse duration of At - s 
is considerably larger than isolated-molecule vibrational 
times). However, such light sources can still be used to 
probe processes which occur on short (-1O-l2 s) time 
scales. A decay process which occurs in 7 s will cause a 
broadening (uncertainty) in the energy of the decaying 
state given by AI3 = h7-l. Thus, as the (precisely known) 
frequency (w) of the light source is scanned in a neigh- 
borhood (Aw - 7-l) of the decaying state, the state will 
be populated and undergo subsequent decay (on a time 
scale which may be much faster than the light source's 
duration). The decay rate of the final state can be inferred 
by measuring the frequency range Aw (which can be done 
because the light source's frequency is precisely known) 
over which absorption takes place. The lifetime is then 
given by 7 = Au-l .  Of course, this inference is only possible 
in the case where the dominant contribution to the ab- 
sorption line width is the above decay process or where 
contributions from other sources can be removed. 

B. Requirements of Classical Trajectory Investigations. 
To employ classical or semiclassical dynamics techniques 
to study such decaying states, one proceeds as folloys: 

(1) An ensemble of starting molecylar geometries (R,) 
and their qorresppding momenta (Po} are chosen. The 
ranges of Ro and Po as well as the relative probabilities of 

(7) If the state $f X: is predissociative, the energy splitting8 ef - e? 
are not rigorowly defined because the state dr X,' has a finite lifetime 
14 which gives rise to a width (l': = h/r ,q  in ita energy. However, for 
reasonably long-lived states (i.e., where r: is less than the spacing be- 
tween neighboring t: levels), the experimental absorption spectrum re- 
taine sufficient structure to permit one to reasonably accurately estimate 
e,' - c p  (and even rv9. If the state & X: is dissociative, then X,' will 
involve, along one of the molecule's internal degrees of freedom, an un- 
bound or continuum wave function. The contribution to e,' arising from 
this degree of freedom wi l l  not be quantized. In such cam, it is proba-bly 
best to treat hw as varying continuously, and then use hw = EAR) - 
&(R) and eq 6 to fmd the 'critical" geometries R, and their corresponding 
(eq 6) intensities. 
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each such starting condition are determined so as to rep- 
licate the experimentally prepared state. More is said 
below about how this is achieved. 

(2) For each starting geometry and momentum, the 
classical equations of motion (or their semiclassical gen- 
eralizations) are integrated as functions of time. 

(3) The eventual fate (e.g., dissociation into various in- 
ternal states of the fragments) of each trajectory is re- 
corded as is the time it takes the decay (e.g., dissociation) 
to occur. After the ensemble of trajectories has been so 
propagated, the distribution of decay times, product- 
species internal-state populations, etc. can be used to 
compute the averages of these properties. In this way, one 
can compute the average decay rate of the ensemble which 
is designed to replicate some experimentally prepared 
system. 

C. Choosing Starting Coordinates and Momenta. The 
connection between our analysis of the photon-absorption 
process and such trajectory studies can now be made 
clearer. The distribution (range and probability) of 
starting geometries for the dynamics study of the decaying 
state is determined by the distribution of geometries a t  
which photons are absorbed. Withis the partly classical 
point of view outlined earlier, the R, values are the ap- 
propriate starting geometzies and lA21X:l2 is the proba- 
bility weighting for each R,. Within the purely quantum 
picture, I ( @JfXuf1&fl@J&") I21X,'(R)l2 gives the relative 
probability of each R value; I(XVqpot(Xt)l2 giving the 
relative probability for p iv ing  in X,' and lX,'12 giving the 
probability of being at R given that the molecule is in Xuf. 

(1) The Quantum Picture. To utilize the fully quantum 
state-resolved formula (eq 1) to determine starting mo- 
menta, we need to know the discrete energy level differ- 
ences e,' - e: as well as the excited-state vibration-rotation 
wave functions X , f .  The former ( e t  - e?) we can usually 
estimate from the molecule's absorption spectrum; the X, f  
are, however, often very difficult to estimate. Of course, 
in both the quantum and partly classical mod@, we need 
to know the electronic transition dipole4 pM(R). Qiven a 
value or range of values of euf - e: = ha, IXufI2(R) then 
determines the probability density governing the mole- 
cule's nuclear coordinates. The 2olecule) momenta are 
then constrained to obey e,f - EAR) = T,(R). This simply 
s t a tp  that the total energy e; minus the po$ntial energy 
Ef(R) equals the nuclear kinetic energy T,(R).  For situa- 
tions where there is some range of w values absorbed, it 
is more useful to express (using hw + e/-' = e u 3  this result 
as T, = hw + E: - EP As w varies, this then gives the 
corresponding range of T, values, Classical trajectories 
which correspond to such initial R and T,(R) values can 
then be run and weighted by the probability 
(1 ( X , f i d X / ' )  12) for producing @JfX,f times the probability 
IX,f(R)I2 of observing an initial R value given that the 
vibration-rotation wave function is X , f .  

(2) The Partly Classical and Classical Perspectives. In 
contrast, the partly classical treatment of the trajectory 
problem fequires knowledge of E ;  - e: lfrom which (eq 5) 
possLble R, valuesg can evaluated), IX/'(R,)I2, and, of course, 
Ipof(Rc)12. In comparison with the full quantal treatment, 
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knowledge of X t ( R )  is replaced by knowledge of X:(R,). 
This represents a potential computational advantage of 
the partly classical approach because, as mentioned above, 
the excited-state vibration-rotation functions X i  are often 
difficult to approximate. Given the positions of the peaks 
in a molecular absorption spectrum (i.e., values of E,' - e/'>, 
classical traje@ries can be propagated by fmt de@mining 
the valuess R,  at which e t  - 6: = EAR,) - EoLR,). The 
probability Weighting [actor for such an initial R, _value is 
taken-as IX/'(R,)121110r(Rc)12. Noticing that euf - EAR,) = e: 
- Eo(R,) = T, states that the classipl kinetic energy re- 
mains unchanged at  these special (R,) g$ometries, alloys 
one to con@min the initial momenta at  R, to obey T,(R,) 
= e? - Eo(R,). If h w  is uncertain, due to finite w resolution 
or the pulse time of the light sour? or to lifetime width 
in the e,f energy level, a range of (R,) q d  (T,(R,)lvalues 
results from allowing w to vary. Each R, and TJR,) rep- 
resents a valid point for starting classical of semiclassical 
trajectories. 

The purely classical analysis goes through very much as 
above except that hw is no longer restricted to equal euf 
- E:. Rather any photon ezergy is acceptable; hw = Ef - 
Eo then determinzs the R,, eq 6 gives the probability 
weighting of this R,, and T, = E: - Eo(R,) constrains the 
momenta. 

(3) More on Starting Momenta. The_ conservation-of 
kinetic energy condition T, = e? - Eo(R,) = euf - Ef(R,) 
which arises in the partly classical picture needs to be 
clarified. For molecules with only one internal degree of 
freedom (or only one active mode), the above identity is 
eno-ugh to determine the momentum values corresponding 
to R,. For example, if Eo(R) is a one-dimensional diatomic 
potential, T,  = P,2/2p  = e: - Eo(R,) can be solved for the 
two P, values P, = &[2p(e/' - Eo(RC))]l/f  which are con- 
sistent with any R,. However, when Eo(R) depends upon 
more than one internal degree of freedom, the situation 
is more complicated. 

14 in regions where IX:I2 is significant, the "shape" of 
E&R) is such that the molecule's vibration-rotation motion 
is mode separable, then e? reduces to a sum of energies for 
each active mode: e: = C,ein0. Consistent with this sep- 
arability-is the local Lwhere IX:I2 is large) separability of 
Eo: Eo(R) = C,Eo,(R,). In such cases, the molecule vi- 
brates indeependently along each mode direction and 
hence it i s  possible to say $hat, along _each mode direction 
R,, -Tcn(R,) = ei2 - Eon0(Rcn) where R,, is the coordinate 
of R, along this nth mode. Hence, we can actually de- 
termine the momentum Lto within a sign along each mode 
(i.e., Pm2/2p, = emo - E,,JR&) in this separable-case. These 
momenta can then be used, together with the R,, as initial 
values for trajectories. 

For systems in which the modes are so strongly coupled 
that such a separation is impossible, one has a more dif- 
ficult task. It is possible, for a given total energy e?, to 
follow a huge number of classic.1 trajectories whose 
starting sp_atial distribution is lX:(R)I2 and to tabulate the 
values of P (+long all internal coordkates) which occur a t  
geometries R, obeying ~ , f  - E: = _Ef(R,) - E'(R,). In this 
way, we could associate with any R, a set of P values which 
are consistent with the condition T,(fi,) = e t  - Eo&). 

Alternatively,-one can compute the Wiper  phase space 
func$ion 1°I'(R,P) belonging to the spatial wave function 
X:(R). This function gives the probability density for 
OpseFving an initial coordinate R and an initial _momentum 
P, given that the system's wave function is X:(R). Because 
of the kinetic energy conservation condition discussed 

(8) The single constraint does not, of course, determine the molecule's 
nuclear momenta except wJen there is only one nuclear motion degree 
of freedom (when e, 2 ) Fol a molecule with N intemal 
degrees of freedom, : ~ ~ % ~ i ~ ~ e ~ ~ E ~ R )  = T, provides a constraint 
that allowe one to choose N - 1 intemal momenta (as initial conditions) 
from which the Nth momentum can be evaluated. 

@) For mdtidimemional potential energy surfaces, the condition 
&(RE) - E&) = e: - e: = ho can be obeyed at an infinite number of 
R, values. Each of these I?, values represents an acceptable initial con- 
dition for use in a Classical trajectory calculation. (10) R. C. Brown and E. J. Heller, J.  Chem. Phys., 76,186,1048 (1981). 
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above, one can use these same Wigner momentum den- 
sities together with the Wigner R space densities a t  the 
critical R, values to describe initial conditions for propa- 
gating trajectories on the excited surface. 

To implement the Wigner distribution method for 
computing probability weighting factors for initial mo- 
menta, we could proceed as follows. Given a value of h_w 
which obeys ho = eJf - e:, one searches for geometriss ec 
at  which hw = E f  - Eo. At each such geopepy I'(R,,P) 
gives the probability weighting to assign to R,,P. However, 
not all of the momenta {PI are independent. They must 
be constraineg to obey the kinetic energy cqnservation 
condition T(R,) = &1N(Pf/2pi) = ti0 - Eo(R,). Hence, 
in sampling the momentum space, one need only choose 
N - 1 initial momenta; the Nth momentum is determined. 

For example, if one is dealing with a triatomic molecule 
in which only the two stretching degrees of freedom (x,y) 
are "active" the Wigner function I?(x,y,p,,py) is (in a har- 
monic approximation) 
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r =  

Simons 

w to the transition e: - tdf for which hw 5 tdf - e: is most 
closely obeyed). 

In utilizing the fully quantum approachll for computing 
initial coordinates and momenta, one is faced with a 
somewhat more severe difficulty. As discussed above, the 
I (X:l(offX,f) l2 values give the relative prqbabilitiea of being 
in the $,X,f states. IX,f12 then gives the R space probability 
density for any f state $fXu:. Th_e momenta y e  then 
constrained to-obey (for any R )  Tc(R) = t,f - EAR). Even 
if t,f an! Ef(R) are mode separable (e: = C,t,,f, Ef = 
&Efn(R,)), one has to know E f  and X,' for all regions of 
R space where IX,f12 is substantial. Moreover, it is less 
likely that Ef (and-thus e,3 will be mode separable for such 
wide regions of R space. Of course, this discussion is 
predicated upon the assumption that Xi0 is a low-energy 
state of Eo whereas the X , f  span low-, intermediate-, and 
high-energy states of E p  Such is, however, usually the case 
in experiments which start in the stable molecule at room 
temperature (for which Xi0 is a low-energy vibrational- 
rotation1 function) and produce an electronically excited 
species. Although the quantum approach suffers from the 
above difficulty, it has been successfully employed by 
ourselves12 as a device for selecting starting coordinates 
and momenta for use in classical trajectory computations. 
IV. Summary 

In this paper we attempted to explore relationships 
among the quantum, classical, and partly classical views 
of photon-induced electronic transitions in molecules. We 
also discussed effects in the electronic absorption spectrum 
caused by finite frequency or time resolution of the exciting 
light source or by lifetime (intramolecular or predissocia- 
tive) broadening of the molecule's excited states. The 
special relevance of the quantal and partly classical ap- 
proaches to each of these situations was also explored. 
Finally, we demonstrated the relevance of our analysis of 
the photon absorption event to the problem of choosing 
starting molecular coordinates and momenta for use in 
classical trajectory studies of the molecule's behavior after 
photon absorption. Throughout the paper, emphasis was 
placed on conceptual matters as well as those dealing with 
the computational implementation of the working equa- 
tions. 
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Here pxyr wXy,  and uXy are the reduced masaes, vibrational 
frequencies, and quantum numbers of the two degrees of 
freedom. L,O is the uth Laguerre polynom+. The kinetic 
energy conservation statement E/' - Eo(R,) = p?/2px + 
p,2/2pu allows eitherp, or py to be eliminated. As a result, 
I' depends only on R,-= x,,y, a_"d one of px and py. For 
any choke of ho, EAR,) - Eo(R,) = hw then determines 
a set of R, values, the weighting of each is being obtained 
from I?. Choosing, for example, p,, determining py from 
the kinetic energy condition, and obtaining the weighting 
of px,py from I? then completes the determination of the 
initial conditions and the corresponding probabilities. 

Operationally, there is a more efficient way to implement 
the above outlined procedures. By first sampling (via a 
grid chosen to span regions of x y  space where &"(x,y)js 
significant) values of x and y one can use Ef(R)  - Eo(R) 
= hw to infer the value of w at  which this geometry will 
absorb light. Choosing, for example, p, and determining 
py from kinetic energy conservation allows one to assign 
a probability weighting to this specific (xy,p,,p,,w) starting 
condition, Propagation of this trajectory leads to some 
outcome (e.g., dissociation after some time 7). This out- 
come (7) therfore can be associated with absorption of light 
of energy hw determined as described above. If desired, 
each such w value can be asssigned to a state-specific 
quantum transition e: - E,! by standard histogram 
techniques (Le., by assigning the lifetime T and frequency 

(11) By fully quantum we do not, of course, refer to how the postab- 
sorption dynamics is treated. We simply mean that quantum energies 
e,' and wave functions X,' are used. 

(12) D. T. Chuljian, J. Ozment, and J. Simons, Int .  J. Quantum 
Chem., in press. 


