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TABLE II: Summary of N,O, Cross Sections®?
no. of 10%q/ no. of 10%¢g/

A/nm  runs cm? A/nm  runs cm?
280 53 1.17 240 27 6.2
275 50 1.30 235 24 7.7
270 48 1.61 230 17 9.9
265 42 2.0 225 10 14.4
260 40 2.6 220 10 22
255 28 3.2 215 10 37
250 33 4.0 210 8 56
245 29 5.2 205 4 82

200 4 92

@ X =380-285nm. T=225-300 K. Number of runs =
660. In (10¥¢/cm?)= 0.432537 + (4.72848 —
0.0171269A)(1000/T). ° A = 280-200 nm. Little or no
temperature dependence, and all data at one temperature
averaged together.

Although there is some hint of temperature effect on the
N,O; cross section below 280 nm, Figure 2, the trend is so
slight that all data points from 223 to 300 K of both series
one and series two were averaged every 5 nm between 200
and 280 nm, and these data are given in Table II. Below
230 nm these results are exclusively from the second series,
and they are based on the kinetic method, which tends to
eliminate the perturbing effect of HNO; on the results.

Previous measurements'= of the N,O;5 cross sections
were done at 298 or 300 K. The line in Figure 4 is based
on the average observed points (Table II) from 200 to 280
nm and the points calculated (25) from 285 to 380 at 300
K. The circles represent Graham’s® values and the trian-
gles represent the results of Jones and Wulf.! The present
results are fairly well parallel to those of Graham between
210 and 310 nm but are about 10% higher. The present
results are not strictly parallel to and average about 30%
higher than those of Jones and Wulf between 290 and 380
nm. In view of the difficulty in handling N,O; and its
decomposition products, Figure 4 shows reasonably good
agreement between these and other results at 300 K.

Discussion

The explanation for the increase with temperature in
cross section at long wavelengths is that thermal excitation
of vibrational and rotational states in the ground electronic
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Figure 4. Comparison of N,Og cross sections at 298 K as found by
this study (the line) and as found by Graham and Johnston (circles) and
by Jones and Wulf (triangles).

state of the molecule makes available low-energy, long-
wavelength transitions. The population of such states is
expected to parallel the Boltzmann factor, exp(~¢/kT), and
the linear relation shown in Figure 3 is reasonable. Such
an effect may be expected on the long-wavelength side of
an absorption peak, but regions near the maximum of the
absorption peak usually show little or no effect of modest
temperature changes.

The decrease of cross section with decrease of temper-
ature largely occurs above 300 nm. For considerations of
atmospheric photochemistry, this is the wavelength region
where solar radiation penetrates to the troposphere and
to the ground. Thus the temperature dependence of the
N,O; cross section may be of some importance to the
low-temperature upper troposphere and lower strato-
sphere.
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In this paper, we consider, within a first-order perturbation treatment, the photon-induced electronic transition
process as it appears in the quantum, classical, and partly classical points of view. Advantages and limitations
of each approach are stressed, and their relevance to time-resolved and frequency-resolved experiments involving
small, large, and predissociating molecules is discussed. We also show how each point of view can be used to
generate coordinates and momenta which serve as initial conditions for classical trajectory studies of the fate
(e.g., predissociation) of the electronically excited molecules formed in the photon absorption. The emphasis
of this paper is twofold. It attempts to shed light on how the effects of photon absorption can be viewed in
the classical or quantum frameworks. It also shows how the various points of view differ in their practical utility
with respect to the computation of absorption intensities or the evaluation of initial coordinates and momenta

for use in classical dynamics work.

I. Photon Absorption Rate

The conventional electric dipole expression for the rate
of photon-induced transitions between initial and final

tDavid P. Gardner Fellow; Camille and Henry Dreyfus Fellow.

0022-3654/82/2086-3615$01.25/0

Born—Oppenheimer (BO) states ¢,X,° and ¢.X,f, respec-
tively, is given by!

Wt = 2 oXTFASK 8w = (e = o) /A1 51 (1)

© 1982 American Chemical Society
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Here ¢ and ¢,f are the total BO energies (electronic plus
vibration/rotation) of the initial and final states, Aw is the
energy of the incident photon, and &F is the electric dipole
interaction potential. We have denoted by 4 Planck’s
constant divided by 2. ¢, and ¢; are the BO electronic
wave functions which obey? h ¢y = Eqdp and h,¢¢ = Eepy.
The total Hamiltonian H consists of the electronic part
h, (containing electron kinetic energy, electron—electron
and nuclear-nuclear repulsion, and electron-nucleus at-
traction) plus the nuclear kinetic energy operator 7. The
vibration-rotation eigenstates, which obey (T + EpX f =
¢,fX !, are functions of all of the molecule’s internal and
orientational degrees of freedom.

A convenient expression for the total rate of absorption
of light of energy A« due to molecules initially in ¢X;°
can be obtained by summing eq 1 over all final states and
using the well known integral expression for the Dirac &
function: 8(w - (E/A)) = (1/2r f_.= expli(w - E/h)t] dt

W= % f " explivt)(¢oX ) exp(iHt /h)e
 FexpiHt/h6X ) (X, eF.X0) dt (2)

The exp(xiHt/h) factors arise from exp(ie%/h) and
exp(—ieft/ k), respectively.

To understand why this form for W is especially con-
venient, let us examine what happens if we now treat the
nuclear motion (vibration-rotation) classically. In this
case, the quantum mechanical operator T (which does not
commute with h,) is assumed to commute with h,. We
designate this approximation by placing the subscript ¢
on the nuclear kinetic energy operator T' =~ T,. Under this
approximation, the term exp(iHt/h)e¢7 exp(-iHt/h) re-
duces to exp(iht/h)eF exp(-tht/h), since T, commutes?
with h, and ¢F. By then using the fact that ¢, and ¢; are
eigenfunctions of h,, we can rewrite W, within this classical
treatment of the nuclear kinetic energy, as

W,=% % expliwt)(6,X 67 explit(E - Ep /] X
fu -

|6:X,1) (0 X, f[EF|9p X 0) dt (3)

Recall that ¢, ¢, X%, X.f, E,, and E; are all functions of
the molecule’s internal coordinates {R}. Because the vi-
bration-rotation eigenfunctions {X,J form a complete set
for any state ¢;, we can use 3 ,|X,}) (X, = 1 to simplify
eq 3. Introducing the electronic transition dipole matrix
element* uy = (@o|é-Fl¢¢), W, can be written as

W,=2 1 fwexp(iwt)(XiOIuof*uof explit(Ey -
t h J-
Ef)/h]Xl()) dt =
2
G (X Olluod? 8l — (B¢ = Eo)/RJX) ()

(1) R. G. Gordon, Adv. Mag. Reson., 3, 1 (1968).

(2) E, and E; are the initial- and final-state adiabatic electronic po-
tential energy surfaces.

(3) It is indeed possible to develop a sequence of approximations which
treat the noncommutation of i, and T to higher order. For example, to
first order in the commutator [h,, T

exp[ %(h, + T)] = exp(ith,/ k) exp(iTt/ k) exp(%it[h,,T]/h)

The commutator [k,,T7] involves the force exerted between the electronic
and nuclear degrees of freedom. We have not pursued such extensions
here becuase we feel that the purely classical treatment of T gives rise
to most of the interesting behavior which we wish to treat. One of the
earliest developments along these lines was made by M. Lax, J. Chem.
Phys., 30, 1752 (1952). More recent work includes J. M. Schulman and
W. S. Lee, ibid., 74, 4930 (1981); S-Y. Lee, ibid., 76, 3064 (1982); C. Noda
and R. N. Zare, J. Mol. Spectrosc., in press; M. Tamir, U. Halavee, and
R. D. Levine, Chem. Phys. Lett., 25, 38 (1974).
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which represents our partly classical approximation to the
photon absorption rate.

II. Comparison of Quantum and Classical
Expressions

It should not be surprising that the fully quantum ex-
pression (eq 1 or 2) for W is not identical with the partly
classical (the electronic degrees of freedom are still treated
quantum mechanically) expression given in eq 4. However,
it is fruitful to explore the similarities and differences in
W and W,. In particular, let us examine the « dependence
of each expression as well as the intensity distribution of
the respective absorption rates.

A. The Classical Picture. W, tells us that a photon of
energy hw will be absorbed at molecular geometries (R}
where Aw = Ef(R) EO(R) This, of course, simply states
that the photon absorption causes a purely electronic
transition® (from ¢, to ¢;) giving rise to a change in the
electronic energy equal to E{R) — E((R). Equation 4 shows
that the intensity (value of W at this Aw) of the absorption
corresponding to hw = Ef(R) - E4(R) is equal to (2 /
R)XHR)|uoe(R)[2. This can be interpreted as the prob-
ability density |X,°|2 for finding the molecule at R times
the rate (2m/ h)|ug(R)[? of the electronic transition at that
R value. It follows from this interpretation of W that a
purely classical treatment of vibration and rotation leads
to the prediction of a “smooth” absorption spectrum whose
intensity at hw is given as the integral over all molecular
geometries obeying hw = E{R) - Eo(R) of the intensity
factor | X.%%(2x/ h)|uod® For example, if Ef(R) and Ey(R)
were one-dimensional harmonic oscillator potentials cor-
responding to different geometries but with identical fre-
quencies (Eq = ax?, E; = A + a(x — x()?) and if X,° were
the ground-state harmonic oscillator function of E;, X;
= A exp(-ax?), then the w dependence of the absorption
would involve A? exp[-—2a(hw — A axy?)?/4a’x?] since hw
= E; - E, gives x? = (hw - A - axy?)?/4a’x % > If the x
dependence of Juyd® is neglected this would then give rise
to a Gaussian absorption line shape which is the w space
image of | X%% The Gaussian is centered at Aw = A + ax?,
which corresponds to the “vertical” transition occurring
at the maximum of | X (at x = 0). Although this example
is very simplified, it illustrates the more general relation-
ship between the “shape” of | X2 in R space and the shape
of W, in w space in this purely classical absorption model.
Heller“'1 has obtained a similar result which he refers to
as the reflection approximation.5

B. The Quantum Picture. In contrast, the quantum
mechanical expression for W tells us* that transitions will
occur when hw = ¢f - ¢° with intensity (2«/
A X ud X, D% That is, the photon energy must match
the rovibronic energy difference ¢, — ¢, upon which the
intensity is given by the usual* (Franck-Condon like) ex-
pression involving the square of the transition dipole’s
matrix element between X,° and X,f. Notice that this
quantum viewpoint involves knowledge of the final-state
vibration rotation functions X,f, whereas the W, picture
involves knowledge of E; - E, at geometries where | X,}?
is large.

(4) G. Herzberg, “Molecular Spectra and Molecular Structure”, Vol.
III, Van Nostrand-Reinhold, New York, 1966, Chapter II.

(5) L. D. Landau and E. M. Lifshitz, “Quantum Mechanics”, Perga-
mon Press, Oxford, 1965, Chapter XI, pp 322—4.

(6) E. Heller has for several years been exploring connections between
classical and quantum mechanical phenomena using the kind of w-de-
pendent correlation function employed here. See, for example, (a) E. J.
Heller, J. Chem. Phys., 68, 2066 (1978); (b) ibid., 68, 3891 (1978), and
references therein. (c) G. Herzberg, “Spectra of Diatomic Molecules”, 2nd
ed, Van Nostrand, Princeton, 1950, pp 391-4.
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Both of the above interpretations have assumed the use
of a monochromatic light source. In the event that the
light source has “finite” frequency resolution (e.g., for a
picosecond pulse, the Heisenberg frequency spread is ~
1012 571 or ~30 cm™), the ideas expressed above must be
modified. In particular, the w dependence of W or W,
must be multiplied by the w-dependent experimental line
shape function to obtain more proper interpretations.
There are two other circumstances in which such finite
frequency ranges need to be addressed: when the energy
levels ¢,f are broadened by “lifetime effects” (e.g., predis-
sociation or intramolecular energy redistribution) and
when the spacing between the ¢, (¢, - ¢4, is small com-
pared to the resolution (Aw) of the light source (e.g., in
large molecules with many internal degrees of freedom).
We will say more about these cases later.

C. Forced Correspondence between W and W,. Clearly,
the above interpretation of W is different from that of W..
However, let us see what insight can be gained by con-
sidering situations® under which W is accurately approx-
imated by W, in the neighborhoods of the true quantum
transition energies ¢,f - ¢%. That is, “to what extent can
the intensity pattem of W be adequately replicated by that
of W, near hw = ¢,f - ¢’?” From the quantum mechanical
@ dependence of W we know the photon frequencies at
which absorption will occur: #w = ¢f - ¢% In small-
molecule spectroscopy and photochemistry these transition
energies are often available from experiment. We can then
ask at what (if any) molecular geometries this Aw is equal
to the partly classical electronic energy splitting, E¢(R) -
EO(R) That is, equating the quantum and partly classical
expressions for the photon energy

e - ¢ = E(R) - Eo(R) (5)

allows us to determine those molecular geometries (if any)
at which the electronic energy difference equals the true
quantum energy difference. Let us denote geometnes
which satlsfy this criterion by {BJ. It is, of course, possible
that eq 5 is satisfied at no molecular geometry. In siich
cases, the partly classical rate expression predicts that light
of that energy would not be absorbed. As we will see later,
this amounts to saying that such events should have low
(zero) intensity.

By also equating the partly classical intensity (at the
above Aw) to the fully quantal intensity, we obtain what
can be called the partly classical approximation to the
Franck-Condon like intensity*

(X o X P = §|Xi°<ﬁc)|2|u0f(éc>|2 6)

where the sum (or integral, if the set R, is continuous) is
over all molecular geometries which satisfy eq 5 for the
given hw. Equations 5 and 6 provide us with an approx-
imate connection® between the quantum and partly clas-
sical expressions for the rates of photon absorption.
Equation 6 is, of course, not exact. The left-hand side of
eq 6 can vary rapidly with v (and hence Aw), and it is by
no means obvious that the right-hand side w111 vary in
exactly the same way with Aw (through R ). The range
of approximate vahdlty of eq 6 can probably best be de-
termined from experience.

Molecular geometries which satisfy eq 5 are special be-
cause they allow the classical (electronic)-energy difference
E; - E, to equal the quantum (total) energy difference ¢,
- ¢% They are also special because, as we se€ from eq 5,
the classical vibration-rotation kmetlc energy is unchanged
by the photon absorption at B, e, - Ef(Rc) =¢% - Ey(R)).
This fact will, as we show later, prove useful when we
address how to use these partly classical ideas in classical
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trajectory studies of the time evolution of the molecule
following photon absorption.

As mentioned earlier, any lack of precision in the light
source's frequency should be incorporated into this forced
correspondence by allowing w to vary over the spectral line
shape. As w varies, a range of critical geometries {R }is
sampled via eq 5 (with an additional multiplicative
weighting factor equal to the spectral line shape function).
Each member of this range of (R} values then contributes
to the absorption intensity according to eq 6 but with the
factor in eq 6 multiplied by the spectral line shape factor
appropriate to each specific .

If there exists an uncertainty in the transition energies
&f~ ¢ caused for example, by a decay process involving
the state ¢, eq 5 and 6 must again be modified. The finite
lifetime (7,9 of the state ¢, gives rise to a Lorentzian ab-
sorption profile for transitions into ¢,%. The Lorentzian’s
width (T,f = (7,9 &) is determined by the inverse of the
decay lifetime. In such cases, w must be allowed to vary
over an interval h"l(ev IY) S w3 h'lef + I,9) which,
through eq 5, again yields a range of {R,} values each of
which is used in eq 6 (multiplied by the Lorentzian in-
tensity factor) to determine the absorption intensity.

D. Relevance to Specific Experimental Situations.
Having considered the content of the quantal W and the
classical W, as well as the mechanism for simulating W
by W, near the quantum state energy differences, we can
now address under what circumstances the quantal picture
is preferable and when the partly or purely classical models
are adequate or even more relevant. The various exper-
imental situations considered will differ either in the
characteristics of the light source (e.g., time resolution,
frequency resolution) or in those of the energy levels of the
absorbmg molecules (e.g., metastable nature or vibrational
state density).

1. Small and Large Molecule Limits. For small mole-
cules in which the spacings between the levels ¢,f can be
resolved with the available light sources, the quantum
state-specific formulation is certainly better; the entirely
classical model does not even recognize the quantization
of the levels ¢,f. However, use of the quantum formulas
in ab initio calculations requires knowledge of the final-
state wave functions {X,f}. In contrast, the partly classical
method which employs state-specific energy differences
&f — ¢, requires knowledge of the potential energy surfaces
E;- E, only where | X%” is substantial. Hence, in situations
where the {X,f}, which may span large reglons of R space,
are unknown, the partly classical picture is probably more
useful for acutal calculations. In most absorption exper-
iments, the molecule is initially in a low-energy vibrational
state. Hence X% has most of its amplitude localized in
regions of R space near the equilibrium geometry of the
E(R) surface.

For large molecules in which the spacings in {e,} are small
compared to the light source’s band width (which can still
be quite narrow), fully state-specific quantal expressions
become essentially useless. In many such cases, one wishes
to focus attention on a small number of “active” internal
degrees of freedom which are thought to play a central role
in some dynamical process which follows absorption. For
example, in the n#* photochemical decompostion of
H;CCOH to produce H;CCO, the C-H “stretch” mode is
certainly active; it is a dominant part of the reaction co-
ordinate. The CO stretch coordinate is also probably active
since the nw* electronic transition is likely to excite this
vibration. On the other hand, the methyl group’s vibra-
tions and internal rotations are probably passive in the
sense that they are not strongly involved in the reaction
coordinate. In such cases, it is fruitful to treat the passive
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modes as an energy reservoir characterized by a density
of quantum states p(e), and to assume that the coordinates
of the reservoir degrees of freedom do not appear in ugy.
The only role of the reservoir then is to provide a mech-
anism for the internal (vibration-rotation) excitation en-
ergy of the active modes to be redistributed into the modes
of the reservoir. In effect, the reservoir allows each ac-
tive-mode state ¢, to have a finite decay rate I',f which is
assumed to be proportional to the number p of reservoir
vibration-rotation states which have energy equal to ¢, -
& (the amount of internal energy above the zero point of
the E;surface): T,f ~ p(e,f - ¢f). Because of the presence
of this energy redistribution decay process, light of fre-
quencies w lying in the range h™(¢,!— T',) S w S h'l(e,f +
T',5 (which may even overlap) can be absorbed, where the
widths I,f increase with ¢, since p(e,f - ¢f) increases with
¢, As w varies, a range of {R} values are sampled (in the

partly classical approach) via eq 5. These {R} values, when

used in eq 6, weighted by the sum of the Lorentzian factors
arising from each (¢,f,I',}) line, generate the partly classical
approximation W, appropriate to such large-molecule
cases.

For small molecules whose final state energies ¢, are
broadened by predissociative effects, the partly classical
analysis outlined above for large molecules can still be
applied. The primary difference in the two cases is that
the intramolecular energy decay provides the width (T,
in the large-molecule limit whereas predissociation causes
the width in the other situation.

2. Dissociative States. There is one other reason for
which w must be allowed to vary continuously rather than
to match a specified ¢,f — ¢0. In the event that the final
state ¢:X,f corresponds to dissociative motion along some
direction, ¢, is certainly not quantized and X,f does not
describe bound motion along this direction. In such cases
(e.g., in direct photodissociation), the purely classical point
of view, in which light of energy #w is absorbed whenever
hw = E{R) - Ey(R), is very relevant. In this picture,
absorption occurs at all molecular geometries; the energy
of the absorbed photon is determined from Aw = E; - E
and the intensity of the absorption is proportional to
uoe(R)]>. The probability density for finding the molecule
at R is [X°(R))%. This then leads to the image relationship
between the R dependence of |uod%X.%)? and the w depen-
dence of W.. For example, if Ey(R) were well represented
as a harmonic potential in one dimension (R), E, = !/,kR?,
and if E{R) were, in regions where | X°]? is large, accurately
represented by an inverted and shifted (in energy by A)
parabola, E¢ = A - !/,kR?, then the condition hw = E¢ -
E,leads to R.2 = 2(A - hw)/(k + k). If X is taken to be
of the form of the lowest energy harmonic oscillator
function along R, X = A exp(-aR?), then | X%%(R,) = A?
exp[-4a(hw - A)/(k + k)], which presents the above-
mentioned image relationship.

III. Relevance to Classical Trajectory Studies of
Time Evolution

In addition to the insight into the nature of electronic
transitions provided by the forced correspondence, we can
make other uses of eq 5 and 6. Moreover, the fully
quantum point of view and the classical point of view, both
of which were shown above to have their own advantages,
can be employed for more than understanding the ab-
sorption event. For example, we might wish to follow, by
classical or semiclassical trajectory methods, the time
development?® of the state which is prepared by the ab-
sorption of a photon of energy Aw. To do so would be
especially relevant if the state so prepared were subject
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to predissociation’ (either by tunneling or by intramolec-
ular energy transfer followed by bond rupture). We now
turn our attention to the relevance of the above analysis
of photon absorption intensities to such time evolution
studies.

A. Time-Domain and Frequency-Domain Experiments.
We first need to address how experimental measurements
in either time or frequency space give information about
the decay rates of molecules. Time-domain experiments
use pulsed light sources, whose pulse duration is less than
the lifetime 7 of the decaying state. In this manner, one
prepares the system in a nonstationary state which un-
dergoes decay. The rate of decay can be monitored, for
example, by monitoring the subsequent (after the initial
pulse) fluorescence (direct or laser induced) of the products
of the decay process. Such an approach forms the basis
of so-called pump and probe techniques. It should be kept
in mind that, in any such time-domain experiment, there
exists a finite limiting frequency resolution caused by the
Heisenberg uncertainty relation Aw At = 1. In experiments
with short time pulses (At ~ 10712 g), the corresponding
spread in photon frequency (Aw ~ 10'%2s!)e can be rather
large. To prepare the final state “before” it has time to
decay, one must use a light source having a pulse duration
less than the lifetime of the state. Hence the light source’s
frequency spread times A will be at least as large as the
Heisenberg uncertainty in the final state’s energy. The
implications of such low-frequency resolution were dis-
cussed in sections IL.LB and II.C.

Within the domain of frequency-resolved spectroscopy,
one can also infer these same decay rates. In producing
a visible or UV light source of high-frequency resolution
(Aw ~ 10° s71), one gives up the chance to use extremely
short light pulses (since a pulse duration of At ~ 107 s
is considerably larger than isolated-molecule vibrational
times). However, such light sources can still be used to
probe processes which occur on short (~107'% s) time
scales. A decay process which occurs in 7 s will cause a
broadening (uncertainty) in the energy of the decaying
state given by AE = k771, Thus, as the (precisely known)
frequency (w) of the light source is scanned in a neigh-
borhood (Aw ~ 771) of the decaying state, the state will
be populated and undergo subsequent decay (on a time
scale which may be much faster than the light source’s
duration). The decay rate of the final state can be inferred
by measuring the frequency range Aw (which can be done
because the light source’s frequency is precisely known)
over which absorption takes place. The lifetime is then
given by 7 = Aw™. Of course, this inference is only possible
in the case where the dominant contribution to the ab-
sorption line width is the above decay process or where
contributions from other sources can be removed.

B. Requirements of Classical Trajectory Investigations.
To employ classical or semiclassical dynamics techniques
to study such decaying states, one proceeds as follows:

(1) An ensemble of starting molecular geometries {R,}
and their corresponding momenta {P,} are chosen. The
ranges of R, and P, as well as the relative probabilities of

(7) If the state ¢, X! is predissociative, the energy splittings ¢f — ¢°
are not rigorously defined because the state ¢ X, has a finite lifetime
r,! which gives rise to a width (I'f = #/7.f) in its energy. However, for
reasonably long-lived states (i.e., where I'.f is less than the spacing be-
tween neighboring ¢ levels), the experimental absorption spectrum re-
tains sufficient structure to permit one to reasonably accurately estimate
&f -~ ¢° (and even If). If the state ¢, X,  is dissociative, then X.f will
involve, along one of the molecule’s internal degrees of freedom, an un-
bound or continuum wave function. The contribution to ¢, arising from
this degree of freedom will not be quantized. In such cases, it is probably
best to treat Aw as varying continuously, and to then use Aw = E{R) -
Ey(R) and eq 6 to find the “critical” geometries K, and their corresponding
(eq 6) intensities.
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each such starting condition are determined so as to rep-
licate the experimentally prepared state. More is said
below about how this is achieved.

(2) For each starting geometry and momentum, the
classical equations of motion (or their semiclassical gen-
eralizations) are integrated as functions of time.

(3) The eventual fate (e.g., dissociation into various in-
ternal states of the fragments) of each trajectory is re-
corded as is the time it takes the decay (e.g., dissociation)
to occur. After the ensemble of trajectories has been so
propagated, the distribution of decay times, product-
species internal-state populations, etc. can be used to
compute the averages of these properties. In this way, one
can compute the average decay rate of the ensemble which
is designed to replicate some experimentally prepared
system,

C. Choosing Starting Coordinates and Momenta. The
connection between our analysis of the photon-absorption
process and such trajectory studies can now be made
clearer. The distribution (range and probability) of
starting geometries for the dynamics study of the decaying
state is determined by the distribution of geometries at
which photons are absorbed. Within the partly classical
point of view outlined earlier, the R, values are the ap-
propriate starting geometries and |ued? X% is the proba-
bility weighting for each R Within the purely quantum
picture, |(¢:X f[&FloeX; °)|2|X {(R)|z gives the relative
probability of each R value; |(X, ol X 02 giving the
relative probability for arriving in X, fand | X f? giving the
probability of being at R given that the molecule is in X,

(1) The Quantum Picture. To utilize the fully quantum
state-resolved formula (eq 1) to determine starting mo-
menta, we need to know the discrete energy level differ-
ences ¢, — 0 as well as the excited-state vibration—rotation
wave functions X,f. The former (¢,f - ¢%) we can usually
estimate from the molecule’s ahsorption spectrum; the X,f
are, however, often very difficult to estimate. Of course,
in both the quantum and partly classical models, we need
to know the electronic transmon dipolet uof(R) Given a
value or range of values of ¢f — ¢? = hw, |X f|"’(R) then
determines the probability denmty governing the mole-
cule’s nuclear coordinates. The molecule’s momenta are
then constrained to obey® ¢,' — E{R) = T(R). This simply
states that the total energy ¢,f minus the potential energy
E¢(R) equals the nuclear kinetic energy T.(R). For situa-
tions where there is some range of w values absorbed, it
is more useful to express (using Aiw + ¢ = ¢ this result
as T, = hw + ¢° — E;. As w varies, this then gives the
corresponding range of T, values, Classical trajectories
which correspond to such initial R and T (R) values can
then be run and weighted by the probability
(X Jrod X 2)|?) for producing ¢¢X,{ times the probability
| X £(R)|* of observing an initial R value given that the
vibration-rotation wave function is Xf.

(2) The Partly Classical and Classical Perspectives. In
contrast, the partly classical treatment of the trajectory
problem requires knowledge of ¢, — ¢ (from which (eq 5)
possible B, values® can evaluated), | X 2(R/)[2 and, of course,
ot R In comparison with the full quantal treatment,

(8) The single constraint does not, of course, determine the molecule’s
nuclear momenta except when there is only one nuclear motion degree
of freedom (when ¢!~ E{R) = p?/ 2#) For a molecule with N internal
degrees of freedom, the condltlon e — E{R) = T, provides a constraint
that allows one to choose N - 1 internal momenta (as initial conditions)
from which the Nth momentum can be evaluated.

(9) For multldlmenslonal potential energy surfaces, the condition
EdR.) - Eo(R) = ¢,f - ¢° = hw can be obeyed at an infinite number of
R, values. Each of these B, values represents an acceptable initial con-
dltlon for use in a classwal trajectory calculation.
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knowledge of X,{(R) is replaced by knowledge of X°(R,).
This represents a potential computational advantage of
the partly classical approach because, as mentioned above,
the excited-state vibration-rotation functions X,f are often
difficult to approximate. Given the positions of the peaks
in a molecular absorption spectrum (i.e., values of ¢,f - ¢?),
classical trajectories can be propagated by first determining
the values® R, at which ¢f - €0 = E(R,) - Eo(R.). The
probability welghtmg factor for such an 1n1t1al R, value i 1s
taken 88 | X (B )Pluo R Noticing that ef Ef(R ) =¢?

O(Rc) = T, states that the classical kinetic energy re-
mains unchanged at these special ch} geometries, allows
one to constrain the initial momenta at R to obey® T, (Rc)
=¢d- Eo(Rc) If hw is uncertain, due to ﬁmte w resolution
or the pulse time of the light source or to lifetime width
in the ¢,f energy level, a range of (R} and {T, (Rc)Lvalues
results from allowing w to vary. Each R and T.(R,) rep-
resents a valid point for starting classical of semiclassical
trajectories.

The purely classical analysis goes through very much as
above except that hw is no longer restricted to equal ¢,f
- ¢%. Rather any photon energy is acceptable, ho = E;-
E, then determines the Rc, eq 6 gives the probability
weighting of this Rc, and T, = ¢° Eo(R ) constrains the
momenta.

(3) More on Starting Momenta The, conservatlon of
kinetic energy condition T, = ¢° — Ey(R,) = ¢, - E(R,)
which arises in the partly classxcal picture needs to be
clarified. For molecules with only one internal degree of
freedom (or only one active mode), the above identity is
enough to determine the momentum values corresponding
to R.. For example, if E4(R) is a one-dimensional diatomic
potential, T, = P.2/2u = ¢° — E4(R,) can be solved for the
two P, values P, = %[2u(¢” - Eo(R.))]"/2 which are con-
sistent with any R.. However, when Ey(R) depends upon
more than one internal degree of freedom, the situation
is more complicated.

If, in regions where | X%)? is significant, the “shape” of
Ey(R) is such that the molecule’s vibration-rotation motion
is mode separable, then ¢° reduces to a sum of energies for
each active mode: ¢? = 3",¢,,% Consistent with this sep-
arability is the local (where | X %) is large) separability of
Ey Ey(R) = X, Eq,(R,). In such cases, the molecule vi-
brates indeependently along each mode direction and
hence it is posmble to say that, along each mode direction
R, Tc,,(Rc,,) = ¢,0 - Eo,)(R,,) where R, is the coordinate
of R along this nth mode. Hence, we can actually de-
termme the momentum (to within a sign along each mode
(i.e., Pen?/ 2my, = &," ~ Eq,(R,,)) in this separable case. These
momenta can then be used, together with the R.,, as initial
values for trajectories.

For systems in which the modes are so strongly coupled
that such a separation is impossible, one has a more dif-
ficult task. It is possible, for a given total energy €2, to
follow a huge number of classical trajectories whose
starting spatial distribution is | X; °(R)|2 and to tabulate the
values of P (along all mternal coordmates) which occur at
geometries R, obeying ¢,f — ¢° Ef(Rc) EJ)(RC) In this
way, we could associate with any R a set of P values which
are consistent with the condition T (R ) = ¢ Eo(Rc)

Alternatively, one can compute the ngner phase space
function p(R,P) belonging to the spatial wave function
X R). This function gives the probability density for
observmg an initial coordinate B and an initial momentum
P, given that the system’s wave function is X°(8). Because
of the kinetic energy conservation condition discussed

(10) R. C. Brown and E. J. Heller, J. Chem. Phys., 75, 186, 1048 (1981).
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above, one can use these same Wigner momentum den-
sities together with the Wigner R space densities at the
critical R, values to describe initial conditions for propa-
gating trajectories on the excited surface.

To implement the Wigner distribution method for
computing probability weighting factors for initial mo-
menta, we could proceed as follows. Given a value of Aw
which obeys hw = ¢,f - ¢, one searches for geometries E,
at which Aw = E; - E;. At each such geometry I'(E,P)
gives the probability weighting to assign to R.,P. However,
not all of the momenta {P} are independent. They must
be constrained to obey the kinetic energy conservation
condition T(R,) = ¥, N(P?/2u;) = ¢° - Eo(R.). Hence,
in sampling the momentum space, one need only choose
N -1 initial momenta; the Nth momentum is determined.

For example, if one is dealing with a triatomic molecule
in which only the two stretching degrees of freedom (x,y)
are “active” the Wigner function I'(x,y,p,,p,) is (in a har-
monic approximation)

T=

(=1)vster 0 2p,0, 2 2pywy
+ 2 )7 o 24
(mh) 2 va h *2 /"'xwxhpx Lvy h Y

2

2 2 ) ex _#xwxxz_ pxz _“y""y 2 Dy
p.ywyhpy p h pwh  h Y

pyw h

Here u,,, w,,, and v, , are the reduced masses, vibrational
frequencies, and quantum numbers of the two degrees of
freedom. L0 is the uth Laguerre polynomial. The kinetic
energy conservation statement E? — E(R,) = p,?/2u, +
D,/ 2, allows either p, or p, to be eliminated. As a result,
I' depends only on R,_= x.y. and one of p, and p,. For
any choice of hw, E{R,) — Eo(K,) = hw then determines
a set of R, values, the weighting of each is being obtained
from I'. Choosing, for example, p,, determining p, from
the kinetic energy condition, and obtaining the weighting
of p,,p, from I' then completes the determination of the
initial conditions and the corresponding probabilities.
Operationally, there is a more efficient way to implement
the above outlined procedures. By first sampling (via a
grid chosen to span regions of x,y space where X %x,y) is
significant) values of x and y one can use E«(R) — Ey(R)
= hw to infer the value of w at which this geometry will
absorb light. Choosing, for example, p, and determining
p, from kinetic energy conservation allows one to assign
a probability weighting to this specific (x,y,p,,p,,w) starting
condition. Propagation of this trajectory leads to some
outcome (e.g., dissociation after some time 7). This out-
come (7) therfore can be associated with absorption of light
of energy hw determined as described above. If desired,
each such w value can be asssigned to a state-specific
quantum transition ¢, — ¢,/ by standard histogram
techniques (i.e., by assigning the lifetime 7 and frequency

Simons

w to the transition ¢,° — ¢,f for which hw = ¢,f — ¢,% is most
closely obeyed).

In utilizing the fully quantum approach!! for computing
initial coordinates and momenta, one is faced with a
somewhat more severe difficulty. As discussed above, the
[( X lued X 1) [? values give the relative probabilities of being
in the ¢:X,f states. |X,f|? then gives the R space probability
density for any f state ¢:X,!. The momenta are then
constrained to obey (for any R) T,(R) = ¢f— E{R). Even
if ¢,f and E((R) are mode separable (¢,f = 3 .¢,.f, E; =
Y +Ew(R,)), one has to know E; and X, for all regions of
R space where |X,f|? is substantial. Moreover, it is less
likely that E (and_thus ) will be mode separable for such
wide regions of R space. Of course, this discussion is
predicated upon the assumption that X;° is a low-energy
state of E, whereas the X,f span low-, intermediate-, and
high-energy states of E;. Such is, however, usually the case
in experiments which start in the stable molecule at room
temperature (for which X is a low-energy vibrational-
rotationl function) and produce an electronically excited
species. Although the quantum approach suffers from the
above difficulty, it has been successfully employed by
ourselves!? as a device for selecting starting coordinates
and momenta for use in classical trajectory computations.

IV. Summary

In this paper we attempted to explore relationships
among the quantum, classical, and partly classical views
of photon-induced electronic transitions in molecules. We
also discussed effects in the electronic absorption spectrum
caused by finite frequency or time resolution of the exciting
light source or by lifetime (intramolecular or predissocia-
tive) broadening of the molecule’s excited states. The
special relevance of the quantal and partly classical ap-
proaches to each of these situations was also explored.
Finally, we demonstrated the relevance of our analysis of
the photon absorption event to the problem of choosing
starting molecular coordinates and momenta for use in
classical trajectory studies of the molecule’s behavior after
photon absorption. Throughout the paper, emphasis was
placed on conceptual matters as well as those dealing with
the computational implementation of the working equa-
tions.
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(11) By fully quantum we do not, of course, refer to how the postab-
sorption dynamics is treated. We simply mean that quantum energies
¢,f and wave functions X, are used.
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