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The present research is directed toward understanding the low-lying excited electronic states of atoms
and molecules. Such excited states play essential roles in atmospheric photochemistry, charge transfer
processes, and chemical reaction dynamics. The excitation energies and oscillator strengths between these
states and the ground state are the principal concerns of this investigation. A new theory, referred to as
the energy-shift theory, is put forth as a means of directly calculating molecular electronic excitation
spectra. Within this theory, four computationally tractable approximations are developed, two of which
allow the use of experimental data on higher states to aid the calculations. The method is shown to have
some advantages over other direct calculation schemes currently being used in this and other laboratories,
the primary advantage being the separation of low- and high-energy excitations which arises naturally in
the energy-shift formalism. The relation of this approach to Green’s function theory is discussed.

INTRODUCTION

The theoretical study of molecular electronic excita-
tion energies and oscillator strengths is important both
in interpreting experimentally observed spectra and in
predicting the photochemical behavior of molecules
which have not been thoroughly examined by experi-
ment. Until quite recently, the prediction of excitation
energies and oscillator strengths required the calcula-
tion of the wavefunctions and energies of the individual
states of interest. The excitation energy is then ob-
tained as the difference of the two calculated energies,
and the oscillator strength! is computed from the matrix
element of the electric dipole operator between the
wavefunctions of the two states. A serious disadvantage
of this approach is that it requires a separate variational
(or perturbation) calculation for each electronic state
of interest. Moreover, large cancellation errors are
likely to be introduced when the excitation energy is
calculated as a difference of two numbers which are
often quite similar. Finally, if one is interested only in
predicting the transition properties of the molecule,
e.g., oscillator strengths, dipole moment differences,
and excitation energies, then much of the information
contained in the individual wavefunctions is of no
interest and adds only to the expense and time involved
in the computation.

In hopes of overcoming some of the difficulties men-
tioned above, several chemists and physicists have
recently begun to use and extend theories which were
used previously by nuclear®™ and many-body®- 18
physicists to calculate transition properties of other
systems. Two notable examples are the many-body
Green’s function (GF) method which has been exploited
cleverly by Linderberg and Ohrn,'*-2! Reinhardt and
Doll,22 and Schneider, Taylor, and Yaris,”® and the
Equations of Motion (EOM) approach used by
McKoy* %and others.® % In both of the above theories,
complete knowledge of the properties of the individual
states, i.e., the wavefunctions, is sacrificed to make
possible the direct calculation of the transition prop-
erties, thus minimizing both the problems of cancella-
tion and the amount of calculated information which is

not of immediate interest. A major disadvantage of these
methods has to do with the celebrated N-represent-
ability problem®~%: once approximations are introduced
into the theory, how can one be certain that there exist
properly antisymmetric wavefunctions (even if ap-
proximate) which correspond to the calculated transi-
tion properties?

In addition to the problem of N-representability, the
physical content of the mathematical approximations
used in the theories discussed above is somewhat vague.
For example, the self-energy operator, which introduces
the effects of electron correlation into the equation
governing the one-particle GF, is usually expanded in a
divergent perturbation series. The resulting expansion
of the GF is also divergent, even in the Fredholm sense,
and the attachment of physical meaning to the terms in
this expansion is difficult, to say the least. In another
formulation of the GF theory, one is faced with the
problem of truncating or decoupling a hierarchy of
equations analogous to the BBGKY equations® of
statistical mechanics. This is usually done’*2 by ap-
proximating various two-electron operators as sums of
one-electron operators. The difficulties with this ap-
proach are twofold: there is no well-defined method
for improving on the first approximation and there is no
way to estimate the terms which have been neglected
in the decoupling process. The principal disadvantage
of the EOM approach is that it does not allow the in-
corporation of known facts concerning higher excited
states into the calculation of low-lying excitations,

The theoretical research presented here overcomes
one of the primary objections to both the GF and EOM
theories. It provides the chemist with a systematic
approach for calculating the excitation energies and
oscillator strengths of low-lying excited states, in which
experimental or theoretical knowledge of higher states
can be employed to aid the calculation. A sequence of
approximations can be defined in which the role of the
higher excited states in determining the low-lying
excitations is quite clear. The introduction of a pro-
jection operator onto the subspace of low-lying excited
states allows the clear separation of high- and low-

3787

Downloaded 23 Mar 2004 to 155.101.19.17. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3788

energy excitations in the proposed formalism. A new
energy-shift function, which contains the effects of the
higher excited states on the states of interest, can be
approximated by using experimentally measured
spectra.

THE ENERGY-SHIFT THEORY

In statistical mechanics one is often interested in
formulating the equations of motion of dynamical
properties in such a manner that a clear separation of
time scales is realized. For example, in hydrodynamic
theories® the number, momentum, and energy densities
vary on a (slow) macroscopic time scale. In developing
reasonable approximate hydrodynamic equations, it is
very advantageous if the exact equations governing the
time and spatial behavior of the hydrodynamic vari-
ables display a clear separation of slow varying and
rapidly varying terms. If this is the case, one can often
introduce rather simple approximations to the rapidly
varying terms without appreciably affecting the ac-
curacy of the resulting solutions.

In connection with this time-scale separation prob-
lem, Mori® has derived exact equations for the equilib-
rium-averaged time correlation functions {(A4;(¢)4;%)
of any set of operators {4.}. In these equations a
separation of time scales appears naturally. Choosing
the set of operators to be {C,*Cq, C.*C,}, and taking
the zero-temperature limit, we can use Mori’s results
to obtain new equations of motion for the following
matrix elements:

Xisu(l)={g| CHOC;(OCrC, | g), (1

where the index pairs 4, f and k, / are either® @, 7 or r, a.
Using the definition of the Heisenberg time-dependent
operators, it is easily shown that the poles and residues
of the one-sided Fourier transform of X ui(f) are
directly related to the excitation energies and oscillator
strengths between the exact excited electronic states and
the ground state | g).

The Mori equations® discussed above are written in
matrix form below

d 7 B _1 t - o
ZX(O+ 2X(0S 19+ﬁ/0 drX(r)S"M(1—1)=0, (2)
with#

Qijm=—{g| [H, CHC;]Ci*Ci | ), (3)

Siia={g ! CHCLCHC, | g)- 4)

The matrix M(?) is defined in terms of the projector P
onto the subspace of the operators {C,tC, and C,7C,}

PB(t)= 3 2 {g | BOCCr | ©)Sktmn'CutCry  (3)

k.lmmn

as follows:
Mumn(l) = (i/T) (g |
X {exp[ (i/%)t(1— P)H=](1— P)[H, Cx*tC/]}
X(1—-P)[H, C,*Cull g). (6)

JACK SIMONS

H= is used to represent the commutator with the

Hamiltonian
H*B=[H, B]. (7)

Denoting (1—P)[Cv*Cy, H] by fi; allows us to write
Eq. (6) more briefly as

My ma(8) = (/%) (g |
X {exp[(¢/R)t(1—P) H]fu} fam | g). (6')

- The content and properties of M(¢) can be seen by
inserting a complete set of eigenstates of H to the right
of the braces in Eq. (6'). Tt has been assumed thus far
that the low-lying excited states consist mainly of single
excitations (C,*C, | g) and C.*C,|g)) of the ground
state, whereas the higher excited states are composed
mainly of double and higher excitations. Analyzing the
result of inserting the complete set mentioned above,
one can see that single, double, and higher excitations
of | g) contribute only terms of high-frequency time
dependence to M (f). In addition, these terms are of small
magnitude unless | g) contains a great deal of configura-
tion interaction (CI) involving single, triple, and higher
excitations of the single-determinant approximation to
| £). The only remaining function in the complete set,
| g) itself, also contributes a term of high-frequency
time dependence to M(?). The magnitude of this term is
determined by the importance of doubly excited con-
figurations in the CI expansion of | g).

From these observations, it follows that the one-sided
Fourier transform of M(?)

M(E) = / exp (%’ tE)M(t)dt (8)
0
possesses only high-energy poles corresponding to
approximate higher excitation energies of the molecule.
As will be seen shortly, this important property of the
energy-shift matrix M(E) allows us to obtain reasonable
approximate equations governing the low-frequency
behavior of X(¢). Because the poles of the one-sided
Fourier transform of X(¢) correspond to electronic
excitation energies, this implies that Eq. (2), together
with a reasonable approximation to M(Z), can be used
to probe low-lying excited states of molecules.

Taking the one-sided Fourier transform of Eq. (2)
gives the fundamental equation of the energy-shift

. theory

X(E)[E1—51Q—S"'M(E) ]=1#S, 9)

where 1 is the unit matrix and X(E) is the transform
of X(#). The energy-shift matrix M(E), which possesses
only high-energy poles, is weakly dependent on E for
values of E much less than the higher excitation
energies. Because we are interested in only the low-
energy poles of X(E), the E-dependence of M(E) can
be treated in approximate fashion.

The lowest approximation which can be made is to
neglect the M(E) matrix. The resulting X(E) is given
in terms of the eigenvalues A; and eigenvectors* U, V;
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of the matrices $1Q and (S71Q)*

S1QU,=\1U,, (10)
(1) TV, = \,V,, (11)

as follows:
(12)

X(E) =ifis & (E—\) UV

In this approximation, the excitation energies are equal
to the A;, and the residues of X(E), which determine the
transition strengths, are equal to the elements of SU,V,*.
The physical content of Eq. (12) is most easily under-
stood by examining the matrix $7Q, whose eigenvalues
and eigenvectors determine X(E). By rewriting Eq. (3)
in the form

Qurmn= (g | CHC1(H—E)C¥Ca | ), (13)

it is clear that the eigenvalues and eigenvectors of
S51Q are identical to the energies and expansion co-
efficients which would arise in a linear variational
problem with Hamiltonian (H—E,) and nonorthogonal
basis functions Ca*Cn | £). Thus, the excitation energies
arrived at by neglecting the energy-shift matrix are the
same as the energy differences obtained in a CI calcula-
tion using the {C,tC, | g) and | g)} as basis functions.
The above remarks are only true if the function | g) is
the exact ground state. In the research presented here,
we have not yet discussed appropriate choices of | g).
In the application of the energy-shift theory to atomic
and molecular systems, one eventually is faced with the
problem of calculating various ground-state expectation
values, e.g., the first- and second-order density matrices
of | g). For practical calculations, we have in mind two
reasonable alternatives: if accurate configuration inter-
action approximations to | g) are available, they can be
used in our theory; otherwise, one will probably have
to use a single-determinant approximation for | g).
The latter choice would, of course, greatly reduce the
complexity of the computational problem. Clearly, a
complete subhierarchy of energy-shift theories can be
developed by making various approximations to | g).
Because we do not wish to unnecessarily complicate
matters in this introductory paper, we shall not discuss
the choice of | g} any further.

To make progress beyond the results presented above,
more reasonable approximations to the energy-shift
matrix must be constructed. Some especially promising
possibilities are now presented.

It follows from our earlier discussion of the E-
dependence of M(E) that the energy shift matrix can be
written in the following form:

M(E) = X (E—Ex%) M, (14)
where the E,’ are approximate higher excitation
energies of the molecule, and the M. are expansion
coefficients. We can make Eq. (14) practical by
employing a truncated expansion in which we use
experimentally determined excitation energies®® and
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theoretically calculated coefficients M. The method of
computation is derived and outlined below.

Expanding Eq. (14) asymptotically in powers of E*
gives

M(E)=E'3S. M, +EY EM,
+E? Y (E)Mat---. (15)

We can also use a theorem relating the expansion of
M(E) in powers of E7 to the Taylor series expansion of
M(¢) to write '

M(E)= > E-HDAGHD, (16)
=0
where
Apers ™= (1) " | {LU~P)H]HCC,)
X (1=P)HC*C, | g). (17)

For a given ground wavefunction, the matrices AC¢+)
can be calculated, although for higher I values, the
effort involved would probably be quite substantial.
For this reason, we have in mind truncations of Eq. (14)
involving only a few terms. By equating the coefficients
of E! appearing in Egs. (15) and (16), we obtain a set
of algebraic equations relating the unknown expansion
coefficients M, to the theoretically calculated A%+Y and
the E.* which are taken from experiment. For example,
if the expansion in Eq. (14) is limited to two terms,
Eqgs. (15) and (16) imply

A(1)=M1+M2, (183,)
A® = EMi+ E'Me, (18b)
which can easily be solved to give
Mi= (E’—E0) 1 (A® —~ ESAW), (19a)
and
Me= (E— E) 7 (ELAY — A®), (19b)

Once the M, have been computed, Eq. (14) gives an
expression for M(E) which can be used in Eq. (9) to
calculate X(E). The inclusion of more and more terms
in Eq. (14) thus provides a systematic series of approxi-
mation to M(E). In this scheme, the poles of X(E)
are located by searching (with the aid of a computer)
for values of E for which the elements of [E1—$1Q—
STM(E) T diverge. To expedite the calculation, the
eigenvalues of $1Q can be used as initial guesses in the
pole-searching process. The residue at the pole Eg,
which determines the transition strength to excited
state | k), is (AS[1+S712 . (Ex— E0) M I

The amount of numerical work involved in the above
searching procedure may become prohibitively large
for large molecules such as those commonly studied by
semiempirical molecular orbital methods. Therefore,
it is important to consider a further approximation of
the theory described ahove. As was implied earlier, the
energy-shift matrix is strongly dependent on E only
within neighborhoods of the poles E.°. Thus, in cal-
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culating the low-energy poles of X(E) it is reasonable
to neglect the E-dependence of Eq. (14) and write

M(E)=2—3 My/ES=M(0). (20)

The resulting X(E) is a generalization of that given in
Egs. (10-12), in which the matrix $7'Q is replaced by
S1Q4+5'M(0). Once the elements M, and E,° con-
stituting M(0) are determined, the excitation energies
and residues are easily obtained by solving two matrix
eigenvalue problems analogous to Egs. (10) and (11).
This is clearly a major computational advantage over
the preceding more general approximation.

In the event that the A% beyond A® are very
difficult to compute, a geometric approximation of
M(E), analogous to that used by Linderberg and Rat-
ner® for Green’s functions, may prove useful. This ap-
proximation is easily obtained by first rewriting Eq.
(16) as

M(E)=ETAO[14E1(AD)1A®
+E2(AD)TA® ... (21)
and then approximating the power series geometrically:
M(E)=2EA®[1— E-1(AD)A@ T

=AO[El — (A®)TA® L, (22)
Equation (22) provides a simple parameterization of
the energy shift involving only A® and A®, which can
be used in Eq. (9) to calculate X(E). This approxima-
tion is also useful when no information about higher
excitation energies is available. In this theory, the poles
of X(E) are determined by searching for values of E at
which elements of [E1—S1Q—S*M(E) ] diverge.
The residue of X(E) at the pole E; is

iHS{14+STTAO[EL] — (A®)TIAD -2},

Of course, if the pole-searching process proves to be too
costly for a specific molecule, one can further approxi-
mate M(E) by M(0) and proceed as was described in the
preceding paragraph.

This concludes our discussion of the approximations
to the energy-shift matrix. Although we have already
made considerable progress, future research efforts
must be directed toward making the above approxima-
tions as computationally useful as possible.

RELATION OF ENERGY-SHIFT THEORY TO
GREEN’S FUNCTIONS

The two-body, energy-dependent Green’s function
matrix is defined* in the following manner:

—1 (= i
Gij_kl(E)E —;I:_ [_w exp (f_i Et)

X(g | TCH(H)C;(8) CytCy | g)dt, (23)

JACK SIMONS

where T is the Wick time ordering operator. By using
the definition of T and the identity

(g l GHCCH () Ci(0) | g)
=g | GH(=)C(—=1)CHC; | g),

one can show that the Green’s function matrix is closely
related to X(E):

(24)

G (E) = Xiju(E)+ X ji(—E),  (25)
where E is considered to be a complex variable
E= ReFE+1s, (26)

whose (positive) imaginary part is allowed to approach
zero. X;;u(E) has poles along the lower side of the
positive real E axis at values of the electronic excitation
energies, and X, ;:(— E) has corresponding poles along
the upper side of the negative real E axis. Thus, it is
clear from Eq. (25) that G;;,n(E) possesses poles along
both the positive and negative real axes. This result is,
of course, well known in Green’s function theory.

The principal differences between the Green’s func-
tion approach and the energy-shift theory are contained
in the equations of motion used to calculate the G(E)
or X(E) matrices. In the Green’s function formalism,
the Heisenberg equation of motion

HdCH () Ci(1) /dt=[CHt)C;(1), H]  (27)
is used to obtain the following starting equation:
BGuyu(E) =bi(g | CAC1| g)—dalg] C*C; | g)

X %’ [ : exp (%’ Et) (¢ | TLCH()C;(0), H]

X CetCy| g)dt. (28)

To arrive at a closed equation for G(E), one can
(approximately) expand the commutator appearing in
Eq. (28) in terms of single excitations:

[CHOC;(), H]I= X AyuCet () Ci(8). (29)

At least two reasonable possibilities exist for the
choice of the expansion coefficients A:x. One can
approximate the exact commutator [Cit(¢)C;(¢), H]
by its projection onto the space of the operators
{Cat () C,(#) and C,*(£)Ca(t) }, which results in

A= 2 g | [CHCs, HICHCr | £)Smneit. (30)

Another criterion for determining A.; .« has been put
forth by Linderberg and Ohrn.”® They choose the ex-
pansion coefficients to minimize the sum of the norms of
the two functions

[CHCj H]| g)— X AsjuCitCi| g) (31)
kL
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and
[CHC;, HTY | g)— X Aya*CitCi| g). (32)
k,l

This procedure gives the following expression:
Agar= (g | [CHCj, HICHCit CHGLCHC;, H] | g).
(33)

Because Eqgs. (30) and (33) are not identical, we con-
clude that the Linderberg-Ohrn truncation scheme
neglects some components of [C;*C;, H] which lie in
the space of single excitations. Of course, this does not
imply that the truncation generated by Eq. (33) is
inaccurate. In fact, this truncation has been success-
fully applied to a wide range of molecular problems."-*
Tt should also be mentioned that Linderberg and Ohrn
have developed more sophisticated truncation schemes®
involving higher-order Green’s functions.

From the above discussion, it is clear that the ap-
proximation given in Eq. (29), when substituted into
Eq. (28), leads to a closed equation for the elements of
G(E), regardless of which expression for A is used.
The final equation governing G(E) is written below:

EGiju(E)=83{g| CHC1| g)—dulg| C*C;| g
+ Z Aij,mnGmn,kl(E) . (34)

In comparing Eq. (34) to Eq. (9), one notices that
Eq. (9) contains the additional E-dependent term
$~'M(E). Because the energy-shift matrix reflects,
through its high-energy poles, the presence of higher
excited states, we feel that the absence of an E-depend-
ent matrix in Eq. (34) is a disadvantage of the Green’s
function method.

The lowest approximation to the energy-shift theory,
which is obtained by neglecting M(E) in Eq. (9), can
be shown to be equivalent to Eq. (34) with the coeffi-
cients A ;.2 given by Eq. (30). Because the Linderberg-
Ohrn truncation [Eq. (33)] differs from Eq. (30), we
conclude that Eq. (33) neglects some of the terms
contained in $7'Q, while including, in an energy-
independent fashion, some contributions to S~'M(E)
from higher excited states. This observation points out
another potential advantage of our energy-shift method:
in our formalism, all effects of higher excited states are
isolated in M(E). Because M(E) has only high-energy
poles, it will, perhaps, permit rather simple approxima-
tions of its low-energy structure to be reasonably ac-
curate. Moreover, Eqs. (14)-(17) provide a well-
defined means of generating approximations to the
energy-shift matrix.

Finally, there exists the possibility of employing ex-
perimental knowledge about higher excitation energies
to aid the construction of the energy-shift matrix. This
can be especially advantageous for molecules whose
higher states have been thoroughly studied but whose
low-lying states are in question.
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TREATMENT OF DOUBLE EXCITATIONS IN
LOW-LYING EXCITED STATES

For some molecular systems, our assumption that
the space of low-lying excited states is spanned by single
excitations {C,tC.|g) and C,*C,|g)} may not be
valid. In this event, the energy-shift theory must be
extended to properly include the presence of double
excitations {C,*C.C,tCs|g) and C.*C,CstC,|g)} in
the excited states of interest. This extension of the
above theory is accomplished by decomposing the
energy-shift matrix in such a manner that the contribu-
tions of double excitations are isolated from the terms
arising from triple and higher excitations. The technique
for realizing this decomposition is now presented.

Because the electronic Hamiltonian H consists of
one- and two-particle operators, the fu

fu=(1—=P)[Cx*C,, H] (35)

contain only double excitations, the single excitations
having been annihilated by the operator (1—P).
Therefore the operator ' P, defined by

'PB= kzl Z (g l Bfkl+ | g>,Skl,mn—lfmm (36)
with
,Skl.mnE <g Ifklfmn+ [ g), (37)

is a projector onto a subspace of double excitations.

In his definitive works on statistical mechanical time
correlation functions, Mori developed a formalism
involving the projectors P and P which can be used to
obtain a closed equation for the energy-shift matrix
M(E). In this equation there exists a clear isolation of
those contributions to M(E) which arise from operators
lying within the double-excitation space spanned by the
{ fr}. The final matrix equation can be written in a
form which is analogous to that of Eq. (9) as follows:

M(E)[E1—'SVQ—'S"YM(E)]=1i#'S, - (38)
where

"Qijm=— (g | (A=P)[ fu, H} fui* | g).  (39)

The matrix element ‘M ;; 5:(E) is the one-sided Fourier
transform of

"M (t)=(i/%) (g |
X {exp[ (it/#) (1—P—'P)H*}(1—P—'P)[ f:;, H]}
X(1=P—'P)[ fut, H]| g). (40)

The presence of the projector (1—P—'P) in Eq. (40)
implies that neither the single excitations {C,*C., | g},
C.*C,| g)} nor the double excitations { fii|g)} con-
tribute to ‘M(E). Moreover, it is clear from Eq. (39)
and the above discussion both that the single excitations
do not appear in 'Q and that all contributions of the
( fa1) to M(E) are contained in 'Q.
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Because we are interested in probing low-lying
excited states which are assumed to be spanned by the
functions {C,*C,| g), CAColg), fur | g) and fra| g)}
we can hopefully obtain reasonable results for the
energy-shift matrix by employing rather simple ap-
proximations for ‘M(E) in Eq. (38). The lowest ap-
proximation which can be made is to neglect 'M(E).
This leads to an expression analogous to Eq. (12),
giving M(E) in terms of the eigenvalues ('A;) and
eigenvectors ('U;, 'V;) of ('S7VQ), and ('S7VQ)+:

M(E)=1#'S 3, (E—"\)~VU;/ V. (41)
7
‘This approximation for M(E), when substituted into
Eq. (9), yields a theory for X(E) which incorporates
the effects of double excitations ( fi;}g)) in the low-
lying excited states of interest.

The computational difficulty of the above scheme for
treating double excitations is determined by the amount
of effort needed to generate elements of the 'S and 'Q
matrices.® Because this effort will probably be sub-
stantial for all but very simple molecular systems, we
feel that more sophisticated approximations to ‘M(E)
are impractical at present.

In principle, we can develop a well-defined series of
approximations for ‘M(E) by proceeding in a fashion
analogous to that employed earlier in deriving approxi-
mate expressions for the energy-shift matrix. However,
due to the practical difficulties discussed above and the
inherent complexity of ‘M ;;::(t) as given in Eq. (40),
we shall not treat this matter further. Rather, we plan
to concentrate our efforts in the immediate future on
making the energy-shift theory presented here as
computationally useful as possible. This will, of course,
involve a considerable amount of calculational research
in which the approximations discussed in this paper are
tested on molecular systems whose low-lying excited
states are well understood. We believe that the theo-
retical framework described in this paper will enable us
to make significant advances in both interpreting and
predicting the electronic excitation energies and oscil-
lator strengths of low-lying excited states of molecules.
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Research Fund, administered by the American Chemical Society,
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#The C;* and C; are fermion creation and annihilation
operators, respectively. The indices « and g label single-particle
functions (spin orbitals) which are occupied in the single- or few-
determinant approximation to the ground state wavefunction.
Similarly, the indices  and s label unoccupied spin orbitals. The
true ground state wavefunction is designated as | g).

2 From now on, the index pairs 4, j; &, /; and m, n will be either
of type e, » or 7, . Terms involving a, 8 or 7, s will not occur.

4 The significance of the Q matrix is easily understood for
the following simple Hamiltonian H=Z;E;C;*C;. In this case
Qii=(E;j—E;) {g| CitC;C*Ci | g). Thus, & contains some
contributions to the excitation energies. The remaining contribu-
tions to the excitation energies are contained in the matrix M(?).
The presence of M(¢) in the equations of motion causes the
predicted excitation energies to be skifted from the values cal-
culated by neglecting M(¢). This alteration of the energy spectrum
is the origin of the name of the energy-shift theory. S is simply the
overlap or metric matrix for the space of functions {C;*Ci | g)}.

4 Because $71Q is not symmetric, we must introduce the
eigenvectors of S71Q and its Hermitian conjugate (57Q)*. The
row vector V;* is formed by taking the Hermitian conjugate of
the column vector V;.

4% We have in mind molecules for which some of the higher
excitation energies are known but for which uncertainty exists
concerning the ordering of the lower states.

4% Notice that the dimensions of the matrices appearing in
Eq. (38) are identical to those occurring in Eq. (9). Thus, the
extension of the energy-shift theory to include the effects of
double excitations does not alter the amount of effort needed
to carry out the matrix algebra in a practical calculation.
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