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Abstract

We present the first application of the coordinate rotation method, within the time-dependent
Hartree-Fock framework, to calculation of positions and widths of metastable excited states. The
method is briefly outlined and results of its application to 'P excited states of Li~ are given.
Comparison of our results to those obtained using electron scattering methods by other workers is
also made.

1. Introduction

Here we report the first application of the complex coordinate rotation (CCRr)
technique [1] to the time-dependent Hartree~-Fock (TDHF) polarization propa-
gator [2]. This propagator gives approximate electronic excitation energies of
the systems for which it is calculated. The coordinate rotation technique permits
us to select those excitation energies which show resonance behavior and hence
correspond to metastable excited states of the system. In an ideal case, the
energies of bound excited states should not be affected by the rotation, whereas
the energies of unbound scattering and resonance states should show the kind
of behavior described in Ref. 1. Since the result of a propagator calculation
gives differences between a bound state (the so-called reference state which is
usually the ground state) and excited states (some of which are unbound), we
should see analogous behavior manifested in the excitation energies correspond-
ing to unbound excited states. Before presenting and discussing the results of
the first such applications of the complex coordinate rotation method, we review
the tools of propagator theory and we show how these tools are extended to
the complex rotation case.

2. Review of Propagator Theory
Normally the general propagator is defined [2] as follows:
(A(); B(£))=—io(t—t'{A()B(t'))
+i0(t' - 1)(B(tA(1)), a0y

where ¢ is the Heaviside function [8(f)=1 if t>0; 6(¢t)=0 if t<0] and A and
B are arbitrary Heisenberg-type operators in second quantization form. If A
and B are bosons (i.e., if they conserve electron number), one should use the
minus sign on the second term above; in the case of fermions, the plus sign is
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used. For the polarization propagator, operators A and B are both the electric
dipole operator, which is expanded in the (boson) form

Iop = Z (I‘)_,rS*.’, (2)
" where
W= j U* U, do. (3)

Here {U.} is a set of orthonormal spin orbitals, whose exact nature is discussed
below, and s” and r are the electron creation and annihilation operators corres-
ponding to orbitals U, and U,. The integral over do refers to integration over
space and spin coordinates. By taking ¢'=0, the above propagator can be
rewritten, for A and B equal to the dipole operator, as

(A(0); B) = —i6(t)XA(1)B)—i6(—t){BA(1)). 4)
Then using the fact that the Heisenberg operator A(¢) has the form
A(t)=exp (iHt)A exp (—iHY), (5)

and inserting a resolution of the identity between A and B, we can write the
following formally exact expression: :

(A(r); B) =2 {-i6(¢) exp [it(Eo— E,)XO0|A|n)n|B|0)

—i6(~1) exp [~it(Eo— E,)}0|Bln Xn|A[0)}, ©)
where |0) is the exact ground state and the set of functions {|n)} is assumed to

consist of the exact eigenstates of H. The Fourier transform {A4: BY)g of the
above propagator is defined as

(A; B)s j dt (A(r); BY exp (iE) exp (=nlt]), ™

which leads to

(OlAlnXn|Bl0) _ <OlBln><nIAl0>) .

: (4; B)z= nllrgh § (E—E,, +Eo+in E—-Ey+E,—in

where 7 originates from the convergency factor exp (—n|¢|) used in defining the
Fourier transform. The energy differences E, — E, appearing in the denominators
of {A; B)g give rise to poles corresponding to excitation energies.

The introduction of the rotated Hamiltonian [1, 3] H[ra exp (i8)]= H(£) (a
and @ are real parameters) gives rise to a modified polarization propagator.
Instead of using eigenstates of H in Eq. (6) one now has to use [3] eigenstates
of the rotated H (£), as a result of which the eigenvalues E,, E, become eigen-
values of H(£). For bound states, these eigenvalues will be the same as before
(although the eigenstates are different), while for unbound states they will be
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changed. The poles of the resulting propagator will then occur at the rotated
Henergy differences which will, in general, be complex.

The actual evaluation of the propagator is performed by using the super-
operator formalism described in Ref. 4, from which one obtains an equation of
the form

(A; B)e = (AIn)B|ET - H|k) ™ (h]B), ©
where the super operators H and [ are defined by
AX, =[H, X} X, = X; (10)
and the “binary product” by
(X;1X:) = (0|[X 7, X;]-|0). (11

In this formalism, the singularities of the matrix (h|Ef —H|h)™' correspond to
the poles of the propagator given in Eq. (8).

The introduction of the rotated H(¢) into the definition of the polanzat;on
propagator requires [3] that the reference state |0) used in the definition of the
super operator “binarry product” be an eigenstate of H(£), not of H. This follows
because we assumed that H (£)|0) = E,|0), and, although E| is unchanged relative
to its unrotated value, |0) is no longer the “unrotated” eigenfunction of H.
Hence, in Egs. (9)—(11), |0) refers to the “rotated” reference state and H refers
to H(£).

In the single-configuration formulation of the above outlined theory, one
introduces the following approximations:

(i) 10} is assumed to be a single determinant Hartree-Fock state |HF) consisting
of orbitals which have been coordinate rotated to make |HF) an approximate
eigenstate of H (£).

(ii) The operator space h is limited to smgle particle-hole and hole-particle
operators h, defined as h,={m'a;a'm}= {Gha; Gma), Where the Greek letters
refer to spin orbitals occupied in IHF) and the Roman letters to spin orbltals
unoccupied in |HF). These operators are collected into column vectors q and q
below in writing expressions for the matrix elements needed to compute the
polarization propagator. This choice of h means that we are only considering
single excitations relative to the reference state |HF) so we cannot expect to be
able to compute excitation energies which refer to doubly excited states of our
system. Using the above mentioned approximations, the matrix (M|Ef -H (&),
whose evaluation permits us to find the desired poles (and hence excitation
energies), becomes .

((q*isf—f?(f)iqv (q*lEf—-rfuf)Jq))
@EI-H(@®ld) @EI-H (¢l
(E1 -A -B )

-B -E1-A/’ 42
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where
A=(q'H(¢)q = @H¢)lg), 13)
=@'1H®le) = @H @), (14)
@'la")=(dla)=1; (qla)=0. (15)
Singularities in the inverse of this marix occur when: .
(5" _ema)l)-() a9

The solutions of this (non-Hermitian) eigenvalue problem can alternatively be
found by solving a smaller dimensional eigenvalue problem of the form [5]

(A+B)(A-B)X-Y)=E*(X-Y). (17)
By forming triplet and singlet components of the operators :
: @ha(S)=(V2) (mlas+mial),

18
D=2 it o mta), S

where m, a are orbital indices, and the subscripts label the m, components of
electron spin, we can separate the above eigenvalue proble into separate singlet
and triplet problems. By then using the second quantization expression [3] for
the complex rotated electronic Hamiltonian, it is possible to obtain explicit
formulas for the elements of the requisite A and B matrices for either (S or T)
spin case.

The rotated Hamiltonian, which is nothing but H (¢r), is written in second
quantized form

H(E) =3 (£ + £V 's

+§ Y (rs|ew)r's ut, (19)
where
e j U89 do, (20)
Z;
va©)=-[ Uz | . fl) U, do, 1)
(rs|tu) = I U, U, |U,U L do do. (22)

The spin orbitals {U,} can, at this stage of development, be any orthonormal set.
Shortly it will be argued that the {U,} should be the unrotated Hartree-Fock or
MC SCF spin orbitals when these approximations are used for the reference state
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|0}. For future convenience, it is also useful to define

hm(£)=j ( V-3 )U,da- (23)

7 r— R,£I
and
hys = h(1).

Upon substituting the above H(£) into Egs. (13) and (14), one can obtain
expressions for the A and B matrix elements in terms of the ¢, V., and (rs|tu)
integrals and the reference-state density matrices (0|r's|0) and (0|r's"tu|0). As
Donnelly and Simons have shown [3], one can develop a computatiopally
straightforward method for implementing this step by introducing a perturbation-
like expansion for the reference function |0). As mentioned earlier, |0) should
be the “rotated” ground state; that is, |0) should contain rotated orbitals.
However in the approach taken here from Ref. 3, H(£) is written on a zeroth
order part H® consisting of the Hartree—Fock Hamiltonian pertaining to the
unrotated problem plus a perturbation V(£) containing both the usual fluctuation
potential and the effects of “rotation” on H[ V(&)= H(&)—H°). In this case, it -
is most convenient to choose the unrotated Hartree-Fock orbitals as the set {U,}
used to express H(£) as in Eq. (19). The elements of the A and B matrices can
then be evaluated correct through first order in ‘V(g) to obtain the lowest order
correction to the unrotated TDHF propagator.

Alternatively, one could carry out a coordinate rotated sCF calculation to
obtain, in a nonperturbative manner, rotated orbitals to use as the {U,}. One
could then take |0) to be a Hartree-Fock determinant of these rotated orbitals.
Although this approach is more satisfactory than that taken here because it
avoids the perturbative treatment of the effects of rotation on |0), it is computa-
tionally much more demanding since it requires transformation of all one and
two electron integrals for every value of § and a. We feel that we have demon-
strated in Ref. 3 the commutational tractability of the perturbative approach
put forth here. The resultant first order perturbation based expressions for the
singlet (S = 0) and triplet (§ = 1) components of the rotated A matrix defined in
Eq. (12) are

A(s g = aas[fztmn +§an(§) +§(5mr;8m o hmn)]

~ 8unl € tpa + € Vipa () + £ (8apta — hsa)]éfmn|ﬁa)+2§(1 —8)(mal|nB),
(24)

where we have now chosen to express the complex scaling (§) as &=
(1/a) exp (—i@), which then gives rise, in the Hamiltonian, to

s (5) = fzrrs- (25)

The subscripts ma and n8 refer to the row and column indices of A, respectively.
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Formulas for the singlet and triplet components of the B matrix defined in
Eq. (11) are obtained in like manner:

Biae = E[(an|Bm)—2(1 - S)(am|Bn)]. (26)

In Egs. (25) and (26), the ¢,, are the energies of the unrotated Hartree-Fock
orbitals (coming from H°), and the other integrals appearing are defined in Eqs.
(20)-(23). These A and B matrix expressions reduce, for £ = 1, to the usual TDHF
matrix elements as given, for example, in Ref. 6.

If, instead of a single determinant reference state, one uses a multiconfigur-
ational reference state (MC-TDHF), the general features outlined above remain
the same, but the explicit equations for the A and B matrix elements change.
We still define the excitation operator space in terms of excitations from the
reference state

by = {m"a; a"m}={qma; Gma}

but the occupied and unoccupied orbital labels now refer to a dominant
determinant in the McC reference state. The orbitals themselves are, of course,
fully consistent Mc SCF orbitals for the unrotated problem. In general, a complete
operator space can be defined in this way, if we include all higher order (two-
particle two-hole, etc.) excitations (see Ref. 7). As in the single-configuration
case, we use a perturbative approach [3] to estimate the effects of rotation on
the Mc reference state. In this case the perturbation V(¢) is H(£)—H(1).

The Mc-TDHF version- of the above M can be expressed in the following
manner: :

R

-B  —-ES-A o s)/A\ - -E1-A/\ 0 82
(27)
where ;
S=(q'lgH#1, (28)
A=§T2pA8717, 29)
B'=8""°BS™'?, (30)

and A and B are defined in Eqs. (13) and (14). Thus in the MC-TDHF approxima-
tion, the search for singularities of M proceeds in the same fashion as before,
with the only difference being that A’ and B’ are substituted for A and B. :

To implement such an MC-TDHF treatment, we need to know the S, A, and
B matrices. In the expressions given below, the indices refer to spin orbitals
rather than to spatial orbitals. Of course, the proper singlet and triplet com-
ponents can easily be expressed in terms of orbitals using the definition in Eq.
(18). The relevant overlap matrix elements are

Smang = (Gmalqng) = Smnla'B) — 8ap(n'm), (31)
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where the notation (op) refers to (o|op|o), and |o) is the McC reference state.
Likewise, the A and B matrix elements become

A aing (€)= hun (€)' B) + hga (£)(n"m)
— 3 [Baghin (€)i"'m) + Smuhigi(€ ) ')]

+3 [l 1i"n " Im)+ (in|mi)i*a"18)

—(in[1a)i"I' mB)— (mi|Bi)a n"li)]
XZ [8as (in| i) <i'j Im)+ 8. GilBIN"")]  (32)

and

B () = han (€)M’ BY + hgnm(é)(n"a) + & ; [(im||B1)i"n"la)

+ (inllal)i"'m"IB) = (in|Im)(i" I"aB) — (ai|BI1)(m  n1i)]. .
(33)

In Egs. (32) and (33), the summation indices run over all occupied and unoccupied
orbitals.

4. Application to Excited States of Li” and Be

In the calculations discussed here, we are looking for excitation energies E.x
which, for some set of rotation parameters (@, and 60), become relatively

‘independent of « and §:
OEex =
00 lao- 06 o

=0. (34)

If both the ground and excited states are bound, we expect E., to be independent
of a and @ for all @, 6. In contrast, if the excited state is metastable, we expect
E., to be independent of # only for large enough @ (see Ref. 1). In calculations
using limited basis sets it will, in general, not be possible to find such a set of
parameters. Instead one usually finds that at some values of a and 6, E., becomes
significantly less dependent on « and 8. If one carries out calculations at constant
a and varying 6, the points where the “‘slowing down”’ occurs are often associated
with “kinks” in the graphs of the excitation energies (see, for example, Fig. 1).

In our calculations, the complex resonance energy E., is taken as the excita-
tion energy at which the maximum slowing down occurs. The real part of this
energy gives the energy of the resonance state while the imaginary part gives
half the width. In calculating E., = E* — E,, we are implicitly assuming that the
ground-state energy E, is fully independent of the rotation parameters & and
6. This is not rigorously the case, and to make it true we would have to perform
a rotated SCF or MCSCF calculation for each set of values of @ and 6 to obtain
the “rotated” reference state energy. This would, of course, greatly increase the
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Figure 1. Complex excitation energy for fixed a =1.656 with # varying from 1.0°
(right-hand side) to 10.0° in intervals of 1.0°. Shown here is resonance No. 1 for
basis set No. 5.

difficulty and cost of such calculations. Therefore, we have instead chosen to
assume that the reference state energy E, would, even in our finite basis sets,
be more 6 independent than the resonance excited state which we are interested
in studying.

All of the calculations reported here were performed using basis sets consist-
-ing of Gaussian-type orbitals (GTo). The first step in each calculation is to
perform a Hartree-Fock (SCF) or multiconfigurational Hartree-Fock (MC SCF)
calculation to generate a set of molecular orbitals associated with the above
mentioned operator space. The reference state is then taken to the converged
SCF or McC scF ground state obtained in this calculation.

Be('S-'S,'P)

In order to test our computer program and to provide estimates of the
accuracy to be expected of the method, we carried out a calculation of the '§>'S
and 'S - ' P excitations energies of Be in the absence of any coordinate rotation.
The basis set used consisted of 5s and 4p Gaussian-type orbitals (see Table I),
Hand the two configurations used in the mMcscF calculation were 1s*2s% and
15%2p>. The converged cI expansion coefficients obtained in the MCSCF pro-
cedure were 0.9515 and —0.1778, respectively.

In Table II we show several of the lowest singlet excitation energies obtained
from our calculation together with results of Yeager and Jgrgensen [8] and
experimental results from Ref. 9. Since our calculations were performed using
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TABLE 1. Basis set for Be calculation.

Contraction
Exponent coefficient
ls 1264.5857 .001945
189.9368 .014835
43,1590 072090
12,0987 .237154
3.8063 .469199
1.2729 .356520
2 s 7478 1.00000
3s .2200 1.00000
4 s .0823 1.00000
5s .0300 1.00000
L.p 3.1965 .055980
L7478 .261551
.2200 .793972
2 .0500 1.00000
3p L0125 1.00000
4p .0031 1.00000

Gaussian-type orbitals, where Jgrgensen and Yeager used Slater-type orbitals
(sTo), we cannot expect complete agreement. However, the results in Table II
- do show satisfactory agreement between the two sets of theoretical numbers.
Also, our agreement with the experimental data is good, although not as good
as that obtained with the considerably larger sTo basis used in Ref. 8. The rather

TaBLE II. Lowest singlet excitation energies for Be (in eV.)

Symmetry ‘experiment® MCTDHE® MCTDHF®
2p lp 5.28 5.89 6.09
3 1s 6.78 6.95 7.79
3p lp 7.46 7.69 7.80
4p 1p 8.33 8.53 8.50
4s g 8.09 8.26 17.66

* Experimental results from Ref. 9,

® Reference 8.

©This work uses basis set shown in Table [.
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large discrepancy for the fourth excitation of 'S symmetry is probably due to
our limited basis set which is not designed to yield highly accurate descriptions
of orbitals with high principal quantum number.

Li ('Ss->'P)
To look for possible excited states of Li~ which are metastable, we performed
a single determinant singlet TDHF calculation on 'S Li including in our operator
space single excitations {qf; q} of p symmetry and using five different basis sets.
Based upon the results of e+ Li scattering calculations carried out by Moores
_ and Norcross [10], we expect that a resonance state might appear near 0.0301 a.u.
(relative the *S ground state of Li) with a width approximately equal to the
resonance energy. In our preliminary calculations, we scanned the region of «
and @ space described by ae[1; 2] and 6¢[0; 30] deg, and we plotted the complex
-excitation energies as functions of 8 for different values of @. An example of
such a graph is shown in Figure 2. Most of the excitation energies plotted in
- this fashion did not show any stability “‘kink” behavior but were simply rotated
_into the fourth quadrant of the complex plane in a manner consistent with
‘scattering state behavior (see Ref. 11). In contrast, certain of the lower lying

~ excitation energies displayed, for specific values of e, trajectories which had a

' ""'\'rér"jf“glﬁiir' 6 dependence once 6 reached a critical value. A closer look at these

_ relatively stable trajectories in the neighborhood where the “‘slowing down”

occurs, revealed that for some value of « and 6 the rotated excitation energies

Real E(au)xI03

8__!-}15.2. Collection of theta trajectories for the second resonance with ranging

’m 1.40 to 1.60 in intervals of 0.02. As the alpha values increase, the trajectories are

‘-1",![‘.‘7'4 to the left. The theta values go from 0° to 20° in intervals of 1°. The calculation
: was performed with basis set No. 5.

60
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Figure 3. Close view of the *“‘slowing down” region of the second resonance shown
in Figure 2. a ranges from 1.46 to 1.50 in intervals of 0.02. The @ trajectories
start from the left at theta=9°, 8 increases in steps of 1.0°.

trajectory had the “kink” form shown in Figure 3. For values of @ less than the
critical value 6. (where the “kink” occurs), the behavior of this trajectory was
more or less continuumlike, but for larger 6 values it slowed down considerably.

The kind of behavior described here is characteristic of all of the results .
obtained using five different basis sets, although the values of @ and 8 at which
the kink occurred varied from basis to basis. As is shown in Figure 1, the
beginning of the “slowing down” occurs close to the tip of the kink. Therefore,
we took the value of this complex excitation energy (AE) at this stable point to
represent the desired complex resonance energy. The real part of AE was taken
as the energy of the resonance state (relative to the presumed stable ground
state) and the imaginary part as half the resonance width.

Within each of the five different basis sets used, we discovered two stable
resonance energies when following the above described computational pro-
cedure. In Table III we describe our basis sets, and in Table IV we give the real
and imaginary parts of the resultant complex resonance energies together with
the values of the @ and # parameters at which the resonances were determined
for each basis. In Table V we list the excitation energies obtained in the TDHF
calculations for each basis.

The scattering calculation on Li~ done by Moores and Norcross in Ref. 8
shows a broad feature near 0.029 a.u. (which they do not attribute to a resonance
state of Li") with a width of 0.029 a.u. In contrast, our calculations show two
resonance states lying in this energy range. A narrow resonance with an energy
near 0.03 a.u. and a width of 0.003 a.u. and another broader resonance with an
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TABLE III. Contracted GTO basis sets 1-5 for Li..

Exponent 8 contraction p contraction
coefficient coefficient

kS

Basis Set No. 1

1 s 642.41895 .00214
96.79849 .01621°
22.09109 - .07732
6.20107 L24579
1.93512 47019
.63674 L 34547
2sp 2.19146 .03509 .00894
.59613 .19123 . 14101
.07455 1.08399 94535
2 s'p’ 02867 1.00000 1.00060
3p i 12179 : .15559
.0283 .60768
.0092 39196

Basis No. 2 < Same as No. 1 with one p function added
4p . 30000 1.00000

Basis No. 3 - Same as No. 2 with one p function added
S5p .10000 1.00000

Basis ﬁo. 4 - Same as No. 3\with one p function added
6 p . 80000 1.00000

Basis No. 5 - Same as No. 4 with one p function added
7P .20000 1.00000

energy of approximately 0.057 a.u. and a width of 0.05 a.u. are found. It might
be possible to interpret the Moores and Norcross result as consisting of our two
“overlapping” states. The lowest one would, in our calculation, correspond to
an excitation from the 15?25 ground state to 1s5°2s2p state which then decays
by shape resonance tunneling to give 15225 Li and an electron in a p wave. The
broader higher energy resonance corresponds to another shape resonance
(132233p) of Li". In addition to the broad feature near 0.029 a.u., Moores and
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TABLE IV. Results of rotated TDHF calculation on Li~(*P).*

287

First Resonance

Second Resonance

Basis Ret
1 30.2
z 3.8
3 29.5
4 29.2
5 23.1

=ImE

.13
1.59
1.91
1.08
1.24

alpha

1.84
1.67
1.69
1.66
1.66

theta
. (degrees)

W oW o w !

ReE

61.4
61.6
57.3
56.1
56.8

-ImE

21.7
29.5
25.4
24.4
20.8

alpha

1.52
1.49
1.53
1.53
1.50

theta
{degrees)

14
15
14
14
12

* All energies are in units of 1072 a.u.

Norcross also studied the sharp “window resonance” which lies just below the
15%2p channel opening. This sharper (Feshbach) resonance, whose electronic
configuration is likely to be [11] 15°2p3s, could not be investigated in our
calculation because it corresponds to a doubly excited configuration relative to
our 1525 reference state. ;

TABLE V. Unrotated ' P excitation energies for Li~ for basis sets 1-5 (in a.u.).

Basis sets no.

1 2 3 4 5
.0296 .0294 .0219 .0208 .0206
.0982 .0944 .0889 .0848 .0834
.2047 .1993 .1996 " .1828 .1687

2.2367 .6398 .6120 .4261 .3822

2.3333 2,2211 1.1833 .9800 L7437

2.3976 2.3278 2.2208 2.2198 1.5050
2.3966 2.3205 2.3187 2.2192

2.7401 2.3931 2.3902 2.3187

- 2,739 2.4854 2.3840
3.2175 2.5981 2.5705

3.0659 2.8993

4.3986 3.0310

3.5891

4.9527
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In summary, we used a coordinate-rotated version of the TDHF and its
multiconfiguration extension to look for metastable excited states of Li~ which
are of 'P symmetry. We found two such resonances, one near 0.06 a.u. with a
width of 0.05 a.u. and a second near 0.03 a.u. having a width of 0.003 a.u. The
superposition of these two shape resonances could account for the broad structure
seen by Moores and Norcross in their e +Li scattering calculations.
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