Letters to the Editor

In the recoil energy spectrum of the '*»Te £S 119gp
decay the lower part thereof is estimated to be small
enough to retain the decaying atom in the original lattice
site. 3 This has been experimentally verified for the
sources Sn ®"Te and Sb,!'*"Te,, in which the majority
of '9Sb was found in the Te site.? Therefore, an ap-
preciable amount of '®Sb should have been found re-
maining in Sn site of the SnSb('!*"Te) sample, if a part
of 1'®" Te had been distributed in the Sn site on crystal-
lization. Accordingly, it is concluded from the exclu-
sive distribution of ''°Sb in Sb site of the sample that no
119mTe was stabilized in the Sn site on crystallization of
the SnSb melt.

The observations above on the distribution of '*Sb in
SnTe and ' Te in SnSb can be interpreted in a unified
manner considering the electronegativity of the three
elements involved. Dilute Sb atoms can take part in the
formation of SnTe lattice from a melt as both cationic
and anionic point defects occupying the Sn and Te sites,
supplying preferentially the deficient constituent in case
of nonstoichiometric samples, because they have an
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electronegativity value lying between those of Sn and Te.
On the other hand, Te is exclusively incorporated into
the anionic site of SnSb, since it is even more electro-
negative than the anionic component of the matrix.

The present work shows that Mossbauer emission
spectroscopy is a useful method for the site-distribu-
tion study of dilute atoms in binary compounds. It would
be interesting to apply this technique to other systems
in order to study how electronegativity competes with
other factors in determining the distribution of dilute
impurity atoms in solids.
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The stabilization method (SM) pioneered by Taylor and
co-workers® has proven to be a valuable tool for esti-
mating the energies of long-lived metastable states of
electron-atom, electron-molecule, and atom-diatom
complexes. In implementing the SM one searches for
eigenvalues ariging from a matrix representation of the
relevant Hamiltonian H which are “stable” as the basis
set used to construct H is varied.

To obtain lifetimes of metastable states, one can
choose from among a variety of techniquesz‘7 (e.g.,
phase shift analysis, Feshbach projection “golden rule”
formulas, Siegert methods, and complex coordinate
scaling methods), many of which use the stabilized
eigenvector as starting information. Here we demon-
strate that one can obtain an estimate of the desired life-
time directly from the stabilization graph in a manner
which makes a close connection with the complex coor-
dinate rotation method (CRM) for which a satisfactory
mathematical basis exists.

The starting point of our development is the observa-
tion that both the stable eigenvalue (E,) and the eigen-
value(s) (E,) which come from above and cross E, (see
Fig. 1 and Refs. 9-11 and 13) vary in a nearly linear
manner (with @) near their avoided crossing points.
This observation leads us to propose that the two eigen-
values arising in each such avoided crossing can be
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thought of as arising from two “uncoupled” states having
energies €,(a)=¢€¢+S,(a —a,) and € (a)=€ +§ (o —a,),
where S, and S, are the slopes of the linear parts of the
stable and “continuum” eigenvalues, respectively. o,
is the value of a at which these two straight lines would
intersect, and ¢ is their common value at @ =«,. This
modeling of €, and ¢, is simply based upon the observa-
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FIG. 1. Stabilization graph for the 4y shape resonance state of
LiH™ (Ref. 9).
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TABLE I. Stabilization graphs.

System/resonance T[Eq. (4))

type a, €(eV) 1S, 1 /18,1 VeV) (eV) Other results (eV)

H™('s), Feshbach 1.33 9,52 0.018-0. 035 0.27 0.14—0. 20 E=9.56-Li0.0482
E=9,56-}:0,057°

LiH- (*7), shape 1.6 0.02 0.10 9.6x107 0,012 E=0,02-}48.4x107%¢

A+BC J=0, 0.96 128 em™! 0.14 3.25 cm™! 4,86 cm™! E=(114-%i 2.1) cm™¢

Feshbach

He('s), Feshbach 1.92 21.2 9.0x10™ 0.87 0.10 E=21,2-4i0.13°

2Reference 8.
bReference 4.
°Reference 9.

tion that such approximately linear behavior occurs in
most stabilization plots in the neighborhood of each
avoided crossing. The matrix element V(a) which mixes
the uncoupled states (¢, €,) to produce E, and E, is as-
sumed to be localized near @ =, and to go to zero where
E, and E, are linear.

The 2X 2 secular problem whose elements are €, €,
and V gives rise to two eigenvalues E,:

E, =3[, +¢,+ Ve, ~€) +4V?] . (1)

To obtain V(ac), we evaluate the difference between E,
and E. at @ =¢, and assume that this difference is equal
to E, - E, at a,, which is easily read off the stabilization
graph (SG) E, —E_=21V(a ).

If we assume (to make the simplest reasonable model)
that V(a) is “peaked” at a, and varies slowly about o,
we can solve for the value of a at which E,=E_:

T g V@, @)

c IS, =S,

The relevance of this complex crossing point o to the
stable behavior demanded of resonant eigenvalues in the
CR theory can be seen by investigating the behavior of
E, and E. in the neighborhood of @. Let us parametrize
@ in this region as @ —a = (@ —a )(1 +2) =2ig(1l +2).
The two eigenvalues E, can be expressed as functions of
z using Eqgs. (1) and (2) and the fact that (S, -S )%
—0[0)2 +4v?=0:

E,=€-ig|S,+S,|(1 +2) £ |S,-S,|igV2z+2 .  (3)

Notice that real (imaginary) values of z correspond to
imaginary (real) variations in o. It turns out that real
variations in z affect most strongly the imaginary parts
of E,. Because we are interested in obtaining a reason-
able estimate of the resonance width, it is on these real
z variations that we focus our attention.

For positive x (Re z) the imaginary part of E_ de-
creases uniformly with x and the imaginary part of E,
varies with x as ig(iS, -§,1VX? +2X ~ IS, +S,|X)
-iglS,+S.|, which can pass through an extremum at
X==1+V1+[I8, =S, 1%2/(IS,+S,1* =18, =S, 19)] if

YReferences 10-12,
°Reference 13,

IS, +S,1>1S,-5.1. For negative x, neither E, has an
extremum for real x.

We see therefore that one of the branches (E,) may
have an extremum depending both on whether IS, +5, |
or IS,-S,l is larger and/or whether x is positive or
negative. At a stable point dE/dx vanishes. For values
of x beyond this stable point, the slope is no longer
zero: it gains magnitude but never exceeds its large x
limit of - IS, +S.1 + 1S, -S.|. Therefore, the range of
stability of that branch (E,) which has the extremum be-
havior is determined by IS, ~S.| ~ IS, +S_.!. This kind
of behavior is what one refers to as a stable trajectory
when applying the CR method to resonance states.

The value of E, at the stable point discussed above
can be obtained from Eqgs. (3) and the definition of g:

£ =e-2irdl IS TIST (@)

This is our approximation to the CR theory’s complex
eigenénergy E —=¢ —{I /2. We estimate the position of
the resonance as € (obtained as the crossing point of the
two uncoupled curves) and the full width I" as

41V(a,) IVIS,T1S,1/18, =S, 1.

By using Eq. (4) to demonstrate how results are ob-
tained in a “back of an envelope” fashion, we present in
Table I an analysis of the SG’s of Fig. 1 and those con-
tained in Refs. 9, 10, and 13, together with the results
of more accurate calculations on these same systems.
These cases include shape and Feshbach resonances in-
volving electronic and heavy particle states. The sta-
bilization graphs were chosen to be representative rather
than ideal (i.e., not all graphs have extremely linear
regions of E, and E_,, and on some of the graphs the es-
timation of S, and S, is difficult). The results obtained
via Eq. (4) seem to lie within a factor of 4 of the pre-
sumably accurate values reported in Table I. There-
fore, there is reason for optimism about the potential
utility of Eq. (4) as a means of estimating the resonance
lifetime. Clearly, when it is difficult to identify linear
regions of the SG or to evaluate the slopes (S, and S,),
its utility is to be questioned.
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Pulsed nozzle sources offer advantages in many kinds
of molecular beam experiments.1 Several designs uti-
lizing pulse durations of 10 us to 2 ms are now avail-
able.?® However, it has remained unclear what pulse
durations are required if a pulsed nozzle is to produce
a supersonic beam comparably “cold” to that obtained
from a continuous flow nozzle source.

The minimum time that the source valve is completely
open is denoted by At,,,. This is a sum? of three terms:
Aty, the “initiation” time required for the gas behind the
nozzle to be accelerated to the (sonic) exit velocity; Af,
the time required, assuming continuous flow conditions,
to establish a buffer zone containing sufficient mole-
cules to act as collision partners during the expansion;
and Af;, the time for which the pulse must be on to in-
sure that, in the region over which the expansion takes
place, the density in the buffer zone is not diminished by
the velocity dispersion at the pulse edges. For valve
open times longer than Afy,,, the terminal beam tem-
peratures are independent of pulse length.

Our calculation for At is based on the fact® that, in
a continuous expansion, the acceleration from rest to
the sonic velocity u; ® takes place within one nozzle di-
ameter D of the nozzle exit. Assuming a constant ac-
celeration, we obtain

Aty=2D/uy=2D/u)[ (v +1)/(y ~1)]/2 @)
where 7 is the specific heat ratio C,/C,, and u, (the
zero enthalpy limit of the flow velocity) is
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uo ={v/(r = DIV 2T o/m)"? , (2)
where T is the stagnation temperature.

Our calculations for Af, and A¢; employ the “sudden
freeze” model, =8 in which the local temperature T,
density n, and flow velocity « are assumed to be in ther-
modynamic equilibrium until some “freezing distance”
from the nozzle, denoted xp. At xp, free molecular
flow commences, and collisions beyond x, are so infre-
quent as to leave T(x) and u(x) essentially unchanged
from their values at x,, denoted T, and u,. The num-
ber of collisions that occur in the remaining expansion
beyond x, is denoted N,. This is an adjustable parame-
ter, but we expect Ny=1, e.g., a fit to measurements
of Anderson and Fenn® gives N »=0.8 for an argon ex-
pansion. The freezing distance is given by

2p = %ot (B(Y = 1)/77)! (4000 /D) (0 PoD)(R TN ) ]V7,  (3)

with P, the stagnation pressure, D the nozzle diameter,
70? the hard sphere collision cross section, and

x,e,=D[(7’—1)A2/2]'“2“"“ . (4)

Here A(y) is a function first defined by Ashkenas and
Sherman® and tabulated elsewhere®!% A(5/3)=3.26 and
A(7/5)=3. 65,

For expansions involving molecules with internal de-
grees of freedom, N3** and N 2° can be similarly de-
fined, e.g., N}’ is the number of collisions remaining
in the expansion after the vibrational temperature 7 **°
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