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Abstracts

Trial wave functions, written as the sum of a configuration interaction expansion and an
explicitly correlated term which is not antisymmetric, are proposed for use in calculating the
electronic properties of atoms and molecules. A variational principle, modified to allow
the use for such partially antisymmetric wave functions, is developed. It is shown that the
consequences of partial antisymmetry on calculated expectation values can be estimated.
The method avoids difficult three-electron integrals which arise in other theories.

On propose des fonctions d’onde d’essai, écrites comme la somme d’un développement
d’interaction de configurations et d’un terme correlé explicite, qui n’est pas antisymmét-
rique, pour le calcul des properiétés électroniques des atomes et des molécules. Un principe
de variation a été développé qui permet I’emploi de fonctions d’onde partiellement anti-
symmétriques. On démontre que les conséquences de cette antisymmétrie partielle pour
les valeurs moyennes calculées peuvent étre estimées. Avec la méthode développée ici
on évite les intégrales difficiles 4 trois électrons.

Es wird vorgeschlagen fiir die Berechnung der elektronischen Eigenschaften von
Atomen und Molekiilen Versuchsfunktionen zu verwenden, die als die Summe einer CI-
Entwicklung und eines explizit korrelierten Glieds geschriben werden kénnen. Dieses
Glied ist nicht antisymmetrisch. Ein Variationsprinzip wird beschrieben, das den Gebrauch
solcher teilweise antisymmetrischenFunktionen erlaubt. Es wird gezeigt, dass die Wirkungen
dieser partiellen Antisymmetrie auf die berechneten Erwartungswerte abgeschitzt werden
kénnen. Mit dieser Methode kénnen die schwierigen Dreielektronenintegrale vermieden
werden, '

1. Introduction

The success of explicitly.correlated wave functions} in predicting the electronic
properties of atoms containing a few electrons [1-6] has inspired considerable
research aimed at using wave functions in variational calculations on larger
atoms and molecules [7-9]. Many of the complications which arose in attempts

1 N.S.F. Postdoctoral Fellow (1970-1971). Present address: Department of Chemistry, The
University of Utah, Salt Lake City, Utah, USA.
$ Explicitly correlated wave functions depend explicitly on the interelectronic coordinates r;; .
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to incorporate relative coordinates (r;;) into a trial wave function (y) can be
traced to the requirement that y be antisymmetric under permutation of particle
coordinates (space and spin). For example, in the many-electron-theory of
Sinanoglu [7] the particle exchange operator P,;, whose presence is due to the
antisymmetry of y, introduces into the effective two-electron Hamiltonian difficult
three-electron integrals involving r,,, 7,3, and 7,3 . Even for simple molecular
systems, e.g., LiH, the necessary two-center, three-electron integrals containing
712 > T1a » and 7,5 cannot presently be easily evaluated [10].1

Because of the computational difficulties in using explicitly correlated wave
functions, the method of configuration interaction (c1) remains the most commonly
accepted technique for going beyond Hartree-Fock in predicting electronic
properties of atoms and molecules. The principal weakness of the cr method is the
rather slow convergence of such an expansion of y in Slater determinants.{ Pseudo-
natural orbitals [11] can be extracted from small cr calculations and then used to
form Slater determinants for a larger c1 expansion, but even in this optimum case
[12] convergence may be very slow. In some instances a small c1 expansion pro-
vides a significant improvement over the Hartree-Fock wave function (e.g., in the
Beryllium atom, where the configurations 152s* and 152p® are important), but
further increases in quality require the addition of many more Slater determinants.
Generally, the correlations between loosely-bound outer electrons, which arise
from the near degeneracy of the higher “occupied’’ Hartree-Fock orbitals with the
lower ‘“‘unoccupied” orbitals,§ are accurately described by these small cr ex-
pansions. However, the dynamical correlations,| which dominate the core-
electron interactions and which are also present to a lesser extant in intershell
correlations, can only be correctly described by an extensive c1 expansion or by
the use of r,; in the trial wave function.

To include both dynamical and non-dynamical correlations in  we consider
in Section 2 a mixed expansion in terms of both Slater determinants and explicitly
correlated functions. The difficulties which arise from the antisymmetry require-
ment are overcome by writing the trial wave function as the sum of a c1 expansion,
which is properly antisymmetric, and a correlated expansion which is not antisym-
metric. Although the resulting trial function is not necessarily antisymmetric
(this is the price of eliminating such problems as three-electron integrals), we show
in Section 3 that it can be used in variational calculations of the electronic energy
levels and that the consequences of this partial antisymmetry can be estimated.

1 Although three-electron, one-center integrals have been calculated, their presence is a
significant complication, cf. [10].

1 Using natural orbitals to form the Slater determinants leads to the most rapidly convergent
series, cf. [12].

§ By occupied (unoccupied) orbitals we mean those orbitals which do (do not) occur in the
Hartree-Fock wave function.

|| For a good discussion of the various types of correlation which appear in atoms, see the papers

in Bibliography [8].
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The approach taken here is closely related to that of Peat [13] and coworkers.
In Peat’s notation, we restrict our trial wave function to lie within the space
spanned by the symmetric eigenvectors of the Q-matrix having eigenvalues —1

N s : ;
and — ( o) - However, we do not expand the wave function in a basis consist-

ing of products of correlated geminals as Peat has done.

2. The Partially Antisymmetric Wave Function

We choose to expand the trial wave function (1, 2, 3, - - -, N) in the following
form:

v(l,2,-++, N) = X,0(1,2,:++, N)
(1) ¥ & xmon
+ 2 X XGOQ(.2, -, N)+Zz 0541, 2)D (3,4, -+, N)
<=1 r<g=N+1 i=lg<8

where @ is a Slater determinant{ composed of the N “occupied” Hartree-Fock
spin orbitals}

@) (1,2, -+ N) =sln[d:(1) - - pn(N)]

s is a double excitation§ function in which the *“‘occupied” ¢,|| and ¢, are
replaced by the “unoccupied” ¢, and ¢, respectively

©) D51, 2,- 0+, N) = y[Si(1) -+ $,(e) -+ - $(0) - - - (V)]

and @, is the (N — 2)-electron minor of ® formed by removing the first two rows
and the eth and 0th columns of ¢

(I)‘,(S, 4, Ny = (—'l)sﬂﬂﬂﬁﬁv—a

B X [AG) - ale + Donale +2) -~ $oa(O)Pora (6 + 1) - $u(N)]
The N-electron antisymmetrizcr & y is defined by
(5) Ay = (N)" 3 (-1)*P

PeSy

t The approach is easily generalized to treat a linear combination of Slater determinants in
case more than one determinant is required for symmetry reasons, e.g. to make y an eigenfunction
of ¥2,

1 It is notnecessary that Hartree-Fock orbitals be used ; if other functions are used then one would
probably want to add single—and higher—excitations to the expansion of y given in Equation (1).

§ The generalization to include single excitations is straightforward and is probably necessary
if the ¢; are not unrestricted Hartree~Fock spin orbitals. We will include only double excitations
because this is the most common case.

| Greek indices &, 0, «, and § are used to indicate “‘occupied” spin orbitals while r, 5, ¢, and v
are reserved for ‘‘unoccupied” spin orbitals.
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and is proportional the (idempotent) antisymmetric projection operator O,
(6) Ox = (N1)2al

The §; are explicitly correlated two-electron functions (spin geminals) which are
chosen before the calculation is begun. They are chosen so as to accurately
describe the dynamical correlations between various electron pairs in the system
of interest.f The only restrictions on the £, are the orthogonality conditions
given below:}

(7a) f EX(1, 2) 38.(1) $(2) dry dry = 0
(7b) f EX(1, 2)f 1. (1)8h,(2) dry dry = O
(7¢) [&0, 2:4,0)4,02) dry dry = 0
(7d) J 41, 2)8,(1, 2) dry dry = 8,

for e,0=1,2,---N; 4,j=1,2,-- - M; r,5=N+1:.+R In the above
expressions M is the number of correlated spin geminals which we choose to use in
the calculation, R—V is the number of “unoccupied’’ spin orbitals appearing in the
cr part of ,§ and N is the number of electrons.

The variational parameters X,, X};, X}, are to be determined in two steps. For
a specific system we first decide which of the coefficients X7; and X}, are to be
taken as non-zero. This choice is made according to which spin orbital pairs
(e, 8) interact (virtually) with which “unoccupied” spin orbital pairs (r,s) to
yield non-dynamical correlation, and which spin orbital pairs (e, 6) are best
described as dynamically correlated. For example in the Beryllium atom we
would certainly want X373 to be non-zero, whereas the dynamically correlated
1s? core would require at least one non-zero X, ,,. The intershell (152s) corre-
lation, which is usually quite small due to the localization of the two orbitals in
different regions of space, can probably be treated by including either non-zero

t Some experimentation is clearly needed to find a set of rules for constructing reasonable {£.}
for specific molecular problems. The experience of researchers who have used theories such as
Sinanoglu’s many-electron theory would undoubtedly be very valuable in these regards.

} These constraints force one to orthogonalize the chosen {&;} to one another and to the Slater
spin geminals &,[#,(1)¢$;(2)]. This can be done using any of the standard techniques (Schmidt
orthogonalization, symmetric orthogonalization, etc.). They are much weaker constraints than the
strong orthogonality which arises in Sinanoglu’s many-electron theory [7].

§ We have in mind a rather limited c1 expansion whose purpose is to include non-dynamical
correlations. Thus, R will probably be much less than the total number of Hartree—Fock spin
orbitals (occupied and unoccupied) which is determined by the size of the atomic-orbital basis set.
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X[;% or Xj, 5,. Once the above decisions have been made, the non-zero variational
parameters are chosen so as to minimize the energy functional defined in Section 3.
Because the trial wave function given in Equation (1) is not necessarily antisym-
metric, the usual definition of the energy as the expectation value of the N-electron
Hamiltonian is somewhat modified.

3. The Variational Problem

If the trial wave function y were totally antisymmetric, we could define the
electronic energy E in either of the following two equivalent ways (y is taken to be
normalized to unity):

@) E=[yL2, MHgw(,2, e, N dry o dry
or
(8b) E EJ‘?’*(I’ 2: P T NJK(I, 2)1‘}(1, 2’ t A N) drl e dTN

where the N-electron Hamiltonian Hy is assumed to consist of a symmetric sum of
one-electron operators f (i) and two-electron operators g(i, f)

i< jou

N N 3
© Hy=3 f(0) + 3 (i)

and the reduced Hamiltonian X is given by

(10) K(1,2) = (’2"){3(1, 2) + (N — I'[F(1) + £ @)1}

The equivalence of the above two definitions of E can easily be verified by using
the identity of the electrons and the antisymmetry of y.

However, the trial wave function given in Equation (l) is not necessarily
antisymmetric, and so the energies defined by Equations (8a) and (8b) are, in this
case, not identical. We arbitrarily choose to define an energy functional E by
Equation (8b). There are two principal reasons for this choice. Firstly, the energy
functional given in Equation (8b) is, as shown later, bounded from below by a
number which depends on how nearly antisymmetric our wave function is. The
existence of this lower bound is taken as justification for the variational calcu-
lation of the energy. Secondly, the problem of minimizing E to find the optimum
values of the variational parameters X,, X/, X} is computationally tractable;
only one- and two-electron integrals arise, there are no three-electron integrals
involved.

Before we proceed with the development of a variational method, we first
introduce the concept of a measure of antisymmetry u [14], defined as the square
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of the norm of the antisymmetric component of y

(11) U EJ.ON’P*(I, 2, N)Oyp(1,2,++, N) dry- - dry

Because 0 is a projection operator [see Equation (6)] u is bounded by 0 =
& =< 1, and the value y = | implies a totally antisymmetric wave function. For
the trial function in Equation (1) the calculation of u is easily performed by using
Equations (7a)—(7d) and the orthonormality of the spin orbitals {¢,}. The result is

2 < < 8|2 N_IM g iz
12) p=Ixf+ 3 3 g+ (3) 2 31X
e<0=1 r<s=N+1 i=leg<@=1
Because p is normalized to unity we also have
- N R M N i
(13) I=1X%"+ 3 3 IXG1°+3 3 Xl
£<0=1r<s=N+1 i=1g<6=1

Notice that a non-zero X}, contributes an amount |X}s|*> to the normalization
7\—1
constraint [Equation (13)] but only (g ) | X%|? to the value of u [Equation (12)];

clearly this must render u less than its maximum value of 1. The result 4 = 1 can
only be obtained if all of the X}y vanish; i.e., in the case of a pure c1 wave function
(not necessarily exact). -

Let us now consider the relationship between the energy functional defined by
Equation (8b) and the following expectation value of the N-electron Hamiltonian:

(14) E = |0yp*H\Ony d"'/J‘ONS"*ON'P dr

Because the function @y is totally antisymmetric, £ must be an upper bound to
the true ground-state energy of the system E,

(15) : ' E>E,

but it is not necessarily true that E = E,. Making use of the definitions of E, E,
and u, as well as the Schwarz and triangle inequalities, one can derivef the im-
portant inequality shown below}:

1/2
(16)  IE = E| S (1 = ) | Klnus + 2[00 = W [vera, 2y dr]

1 See pages 1039-1040 of Bibliography [14] for details.
1 Any other symmetric two-electron operator can be substituted for the Hamiltonian if an
appropriate reduced operator is defined.
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where |K|max is the eigenvalue of maximum absolute value associated with the
operator K(I,2) in the space spanned by the two-electron functions

{d2{¢i(l)¢f(2)]’ i’J = I’ 2! T 'R; ‘-ti(ls 2)’ i = 13 23 Sl M}

It should be noted that K?(1, 2) (= K(I, 2) K(1, 2)) is the square of a two-electron
operator, and thus is itself a two-electron operator. Therefore the integral appear-
ing in Equation (16) involves only one- and two-electron integrals.

The above inequality is easily rearranged to give the following lower bound to
the energy functional E:

a7 EZ E,— A

where A is defined as

1/2
(18) A= == DB+ (W= 1) [Kinus +2[ 67 = 1) [47R°1,2)p o

If the ground-state energy E, is negative, as is the case for bound systems, A is a
non-negative quantity which approaches zero as x4 approaches unity. Thus the
bound E = E, — A approaches the usual variational bound E Z E, as pu
approaches one.

The inequality of Equation (17) can now be seen to justify the use of the func-
tional E for variational calculations, in the following sense. If the parameters X,

s and X, are chosen so as to minimize E (call the minimum value E*), then
Equation (17), together with the definitions of u [Equation (12)] and A [Equation
(18)], tells us that E* can fall no more than A below the true ground-state energy
E,.t Thus, evaluating u and A at the optimum values of X,, XJ;, and X},
affords us a measure of the consequences of the partial antisymmetry of ».

The problem of minimizing E subject to the constraint that y remain norma-
lized is a linear variational problem. To obtain the optimum values of the varia-
tional parameters and the minimum value (E*) of E we must calculate the lowest
eigenvalue (and its associated eigenvector) of the matrix K whose entries are the
matrix elements of K(1,2) between pairs of the basis functions ®, @5, and
£D, . The evaluation of (®| K |®), (D| K |Df), and (P K |D3) can be

t Bounding [ y*K%p dr by |K|% ., and using 0 < u = |, we can generalize the right side of
Equation (16) so that |[E— uE| < A’, where A’ is independent of u. However, this is not necessary
for justifying the minimization of E. The philosophy of our medified variational approach is as
follows: the values of X, , XI§, and X7, which minimize E result in a value of u given by Equation
(12). If we judge u to be not sufficiently close to unity, then the calculation is fruitless; new spin
geminals {£;} must be chosen for a new calculation. However, if the resulting value of u is reasonably
close to one, then Equations (16)—(18) can be used to estimate the consequences of partial antisym-
metry. Thus, for a fixed set of spin geminals, we minimize E and then calculate u. The resulting
value of u, when substituted into Equation (17), allows us to state with confidence that the minimum
value of E(E*) has not fallen more than A below the true ground-state energy E; .
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accomplished by using the well-known rules for calculating matrix elements of the
Hamiltonian between Slater determinants [15]. Using Equations (7a)-(7d) and
the orthonormality of the {¢,} one can derive expressions for the remaining
elements of K:

~1/2
(1) @ KIED) = (3] [AulbDA@I*K( 261,2) dry dr,
—1/2
(9) (@51 KI60) = ubu(y)  [SlbDA@IK, 280, 2) dry dry

(19¢) (6@l K |£,Qpp) = 5«.5sz‘$?(1, 2)K(1,2)§,(1, 2) dry dry 1

The practical details of the method proposed here are clearly very similar to
those of the cr approach. One is faced with evaluating various one- and two-
electron integrals which are then used to construct the matrix K whose lowest
eigenvalue is E*. The eigenvector of K belonging to the eigenvalue E* then
gives the optimum values of X,, X7, and X, . The principal computational
difficulty of the method, beyond that occurring in a ci1 calculation, is the evaluation
of the two-electron integrals appearing in Equations (19a)-(19¢c). This added
complexity must be balanced against the advantages mentioned earlier (no need
for an extensive c1 expansion, explicit correlation, no three-electron integrals,
etc.) in deciding whether this approach represents a useful tool for calculating
electronic properties of molecules. Results of using such partially antisymmetric
wave functions in specific molecular calculations are, of course, also essential in
making this decision. We plan to carry out some calculations in the near future
which, hopefully, will shed some light on the value of the proposed method.

4. Concluding Remarks

In this paper we have proposed the use of explicitly correlated, partially
antisymmetric wave functions for calculating the electronic properties of atoms
and molecules. Such trial functions can simultaneously treat both dynamical and
non-dynamical correlations, while avoiding the difficult three-electron integrals
which arise in other theories. A modified variational method, based on minimiz-
ing the energy functional E of Equation (8b), was developed, and a bound was
placed on the amount E could fall below the true ground-state energy E,. The
measure of antisymmetry u, which determines this bound on E, also allows us to

1 These formulas can be used to calculate the expectation value of any two-electron operator
(by defining a corresponding reduced operator), once the optimum values of X, , X7§ , and X% are
known. That is, in calculating [ y*J(1, 2)y dr with y given by Equation (1), one need only know
the X, X7}, X% , those integrals involving the reduced operator J(1, 2) which are analogous to the
integrals in Equations (19a)-(19c), and the standard two-electron integrals {¢;b;| J |¢p$;) which
arise in c1 calculations.
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estimate the consequences of partial antisymmetry on other calculated expectation
values by using Equation (16).
The necessary steps in applying this method are as follows:

(1) Decide which of the X7s and X}, are to be non-zero (see page 442).

(2) Choose a set of explicitly correlated spin geminals and orthogonalize them
to one another and to the Slater geminals {&/,[¢,(1)$,,(2)]} to form the {£,}.

(3) Calculate the integrals in Equations (19a)-(19c) and the integrals needed
to form the c1 part of the K-matrix.

(4) Form the K-matrix.

(5) Find the lowest eigenvalue of K and its associated eigenvector. The
eigenvalue is E*; the eigenvector gives the optimum values of X, , X3 , and X, .

(6) Calculate the expectation values of any one- or two-electron operator(J)
of interest (f p*J(1, 2)y dr, see footnote, page 446).

(7) Use Equation (12) to evaluate the measure of antisymmetry u. If the
value of y calculated in step (7) is not reasonably close to unity, the resulting wave
function cannot be used with much confidence. In this case, the remaining four
steps need not even be carried out; one should choose new {£,} and return to step
(2).

(8) Calculate |K|y,qx of Equation (16) by finding the largest (in absolute value)
eigenvalue of K(1, 2) in the basis of the Slater geminals and the &,.

(9) Using the optimum variational parameters calculate | p*K?y dr.

(10) Evaluate A by using Equation (18).

(11) Use Equation (16) to estimate the consequences of partial antisymmetry
on the expectation values of any other one- or two-electron operators.

Although we have presented formal justification for using explicitly correlated,
partially antisymmetric wave functions in molecular calculations, the real test of
the theory lies in its application to particular problems. It might prove very
difficult to choose a set of correlated spin geminals {£,} which gives good anti-
symmetry (u =~ 1) and, at the same time, accurately describes the dynamical
correlations of electrons in the molecule. It may also be that spin geminals which
prove acceptable in describing correlation and yielding good antisymmetry lead to
very large values of |K|pax , S0 that the value of A given in Equation (18) is too
large. The results of Léwdin and Lim [16] indicate that the value of |K|ynax can be
expected to increase fairly rapidly as the number of electrons is increased. Thus,
for a given value of u, the bounding function A cannot be assumed to increase
slowly (if at all) with N. However, it is possible that the maximum relative error in
the energy A/E, does vary rather slowly as a function of N. Therefore, it may be
possible to maintain maximum errors of a few per cent over a wide range of V.
The data of Lowdin and Lim and the results of Peat and coworkers on Li, He, ,
and Li, (see Bibliography 13) seem to substantiate the slow variationf of A/E, for

t For example, Léwdin and Lim [16] find that | K|, ./E, changes from 1.0 to 2.2 as N is varied
from 0 to 8.
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N in the range 0 to 8. To evaluate more realistically the advantages and disad-
vantages of this theory, we plan to carry out more test calculations in the future.
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