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It is shown that the positions of atomic shape resonances may be identified by adding to the one-electron
Hamiltonian operator an artificial “shift potential” that differentiates between scattering and resonance
states by exploiting their different small-r and large-r behavior. We explored the use of shift potentials
which are either repulsive for large r or attractive for small r. In the first case, resonances correspond to
virtual orbitals that are relatively stable in energy. In the latter case the scattering states are stable in
energy, and the resonance orbitals are identified by their relatively strong response to the attractive shift
potential. The second method is found to be more sensitive and reliable in the application to ?P Be™ and
Mg~ presented here. Moreover, it is found that, although the rather simple methods developed here are not
capable of giving quantitatively correct resonance energies, they are useful in separating the resonance states

from the underlying continuum.

INTRODUCTION

Several calculational approaches exist for
studying electron-atom and electron-molecule
shape resonances. The stabilization method of
Hazi and Taylor!’? makes use of the fact that the
orbital energies or configuration interaction (CI)
matrix eigenvalues of bound and resonance states
are more stable with respect to changes in the
basis set than those corresponding to scattering
states. By the finite-difference boundary-value
method, Truhlar®-® successfully determined the
resonance state from its independence of the
boundary parameter. In their study of atomic
resonances, Hunt and Moiseiwitsch® used a one-
electron operator with a model potential containing
one parameter which was determined from a qua-
dratic extrapolation along an isoelectronic se-
quence. The Harris method7, which has recently
been applied by Kurtz and Ohrn,® uses a scat-
tering wave that is a linear combination of spher-
ical Bessel and Neuman functions and a set of
square-integrable functions (virtual Hartree-
Fock orbitals). Other successful methods that
have received much attention are the method of
complex scaling®!!, the Weyl theory,!?-!¢ and the
R-matrix theoryw. .

The present method is based on the fact that an
orbital or CI wave function representing a reso-
nance state should have a higher density in the
vicinity of the nucleus than those representing
scattering states. In this regard it is similar to
the first two methods mentioned above. *%3-% In
our approach we add to the electronic Hamiltonian
(in the applications presented later we use the
Hartree-Fock Hamiltonian) a potential term that
differentiates between the regions close to and

far away from the nucleus. If this potential has
large positive values in the far region, it will push
up the energy levels of the scattering states more
than the energy levels of resonance states; where-
as the addition of an attractive potential in the
interior region will affect the bound and reso-
nance orbitals more strongly than the orbitals

of the scattering states. Both these approaches
are tested in the present study. The former
method, like those of Hazi and Taylor, and of
Truhlar, relies on the stability of the energies

of the resonance states, and has shown promising
results when applied to a model potential. 8 How-
ever, when applied to electron scattering from
neutral Be and Mg atoms, for which the centri-
fugal barriers and the attractive potentials in the
radial differential equation are very small, we
experienced considerable difficulty in identifying
a definite resonance state. The alternative pro-
cedure of adding an attractive potential to the in-
terior region turns out to be far more sensitive
and reliable. In this approach, in contrast to
other stabilization methods, we look for the re-
sponse (energy lowering) from the resonance state
and the relative insensitivity of the scattering
states.

PROCEDURE

Our method adopts the analytic Hartree-Fock
scheme and hence, describes the shape reso-
nance in the static-exchange approximation. The
extension of the approach presented here to include
correlation by configuration-interaction or other
approaches should be straightforward. The elec-
tron density of the target system in an electron-
atom shape resonance is described by a basis
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set of Slater-type orbitals (STO) of double-zeta

or beta quality. To this set we add several STO
orbitals of the same symmetry as that of the shape
resonance under examination *P for Be" and

Mg~). Using this extended basis, a standard
Hartree-Fock (HF) calculation is performed for
the isolated target atom (1s?2s? for Be). In this
method the continuum states (either resonance

or scattering states) are described by the (square-
integrable) virtual HF orbitals with positive en-
ergy eigenvalues.

All one-electron orbitals are eigenfunctions of
the angular operator L?; for the subspace spanned
by the orbitals with eigenvalue I(I +1), we can
write the kinetic-energy operator in spherical
coordinates and atomic units as

o1 g +1)
T== TR W

The centrifugal barrier, arising from the second
term for >0, sharpens the distinction between
the resonance and scattering states.

We add to this Hamiltonian operator artifical
shift potentials which differentially affect the
scattering and resonance states and which leave
the bound states relatively unshifted. After
adding these new operators we repeat the SCF
Hartree-Fock calculations using the basis set
employed for the unperturbed problem. Upon
examination of the energy eigenvalues of the vir-
tual orbitals, we find that some are shifted much
more than others due to the addition of the extra
term to the Hamiltonian. With a shift potential
which is repulsive for large », the orbital en-
ergies of the scattering states are pushed upwards
more so than are those of the resonance states.
For a potential which is attractive in the interior
(small-») region, the resonance states have their
energies lowered and may even become bound
states, whereas the scattering states are rel-
atively unaffected (see the tables below).

The repulsive shift potentials which have been
tested are of either the exponential or power
type, i.e.,

Vexp (7) =ae’”, )

Vyow#) =ar™. @3)

Due to the inclusion of diffuse basis orbitals in the
HF calculations of the resonance states, con-
straints must be put on the parameter b in V., (7)
in order to ensure convergence of the integrals

of this operator over the atomic-orbital basis.
For the applications to electron-neutral-atom
scattering described below, these limitations
make the exponential shift potential so “flat” that
significant differentiation between resonance and
scattering states becomes very difficult. The

power potential is of the same kind as that used
by Liebman et al. ¥ In applying this method to
our problems, we found the optimal parameter
for the model potential used in Ref. 16 to be =38
with the coefficient @ in the range 10-18-10-?
(a.u.).

The scattering electron polarizes the target
electron density, giving rise to an additional
attractive potential which is not included in the
Hartree-Fock potential. The long-range nature
of this electron-atom potential is —a/27%, where
o is the static polarizability of the neutral atom.
In carrying out the calculation reported below,
we include this polarization effect by adding to the
Coulomb and exchange operators of the HF Ham-
iltonian the following cutoff polarization potential:

o
A T

Voo () = @)
Ay
ok Y<7p

in which the cutoff radius 7, can be treated as an
adjustable parameter. This same potential has
been used successfully by Truhlar et al.'" and by
Kurtz and Ohrn.® The cutoff parameter 7, has
been chosen as the distance at which the repulsive-
angular-momentum term and the attractive po-
larization potential cancel each other, ie.,

ro=[a/1@+1)]/2, (5)

In our applications of either of the two repulsive
shift potentials V,q,(#) and V,(r) + V. (#) we
found that by gradually increasing the parameter
a [Eq. (3)], the energies of the scattering states
increase such that one may, for a large enough
value of a, identify the lowest-lying virtual or-
bital (of this modified HF Hamiltonian) as a reso-
nance state.

We have also explored the possibility of adding
only the attractive shift potential V,(») to the
Hamiltonian. For a sufficiently small value of
79, this potential is attractive enough to bind one
or more of the (previously unbound) virtual or-
bitals. These virtual orbitals are identified as
corresponding to resonance states. The scat-
tering states, on the other hand, are found to be
rather stable in their energy under the application
of this shift potential. Hence, by carrying out
only two calculations, one with a small »; and one
with no artificial potential added (»; =), the
resonance orbital is easily identified. It can be
seen in Tables I and II and in the work of Kurtz
and Ohrn that polarization has a drastic influence
on the energy of the shape resonance. By per-
forming a third HF calculation in which the po-
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TABLE I. Virtual orbital energies (eV) for Be with V,; (#) added to the Hamiltonian. The parameter 7, is in atomic
units.

Virtual orbital number

% 1 2 3 4 5 6 7 8 9 10 11 12
4.0 —0.1469 0.0055 0.0230 0.0675 0.1720 0.4134 0.9709 2.2892 5.4121 12.809 34.762 117.12
4.2 —0.0172 0.0055 0.0236 0.0701 0.1791 0.4276 0.9997 2.3349 5.4843 12.958 34.933 117.25
4.23 -—0.0030 0.0056 0.0240 0.0709 0.1806 0.4300 1.0040 2.3412 5.4939 12.979 34.956 117.26
4.24 0.0012 0.0058 0.0243 0.0713 0.1812 0.4308 1.0055 2.3433 5.4970 12.986 34.963 117.27
4.25 0.0044 0.0066 0.0246 0.0717 0.1818 0.4316 1.0069 2.3454 5.5001 12.993 34.971 117.27
4.3 0.0054 0.0191 0.0307 0.0744 0.1850 0.4359 1.0142 -2.3557 5.5150 13.026 35.006 117.30
4.4 0.0054 0.0220 0.0516 0.0867 0.1933 0.4451 1.0286 2.3752 5.5426 13.090 35.070 117.34
4.6 0.0055 0.0224 0.0613 0.1190 0.2175 0.4656 1.0569 2.4106 5.5896 13.207 35.177 117.41
4.8 0.0055 0.0225 0.0630 0.1351 = 0.2444 0.4878 1.0837 2.4415 5.6278 13.308 35.262 117.47
5.0 0.0055 0.0226 0.0636  0.1424 0.2663 0.5098 1.1086 2.4683 5.6596 13.395 35.331 117.51
6.0 0.0055 0.0227 0.0645 0.1525 0.3146 0.5929 1.2005 2.5558 5.7723 13.656 35.537 117.63
7.0 0.0055 0.0227 0.0648 0.1550 0.3293 0.6364 1.2509 2.5948 5.8536 13.756 35.619 117.68
10.0 0.0055 0.0227 0.0651 0.1574 0.3442 0.6838 1.3026 2.6379 5.9515 13.844 35.682 117,72
© 0.0055 0.0228 0.0658 0.1609 0.3562 0.7051 1.3210 2.6669 _ 5.9795 13.866 35.697 117.73

larization potential V,  (v) is included but with the
more realistic value of the cutoff parameter 7,
given by the criterion® above, we can estimate

the position (energy) of the shape resonance. This
procedure we have found to be a reasonably reliable
and very straightforward way of identifying the
resonance orbital and energy.

is not computationally tractable for these cases.
The addition of Vo, (#) or V,.(7) + V, (#) to the
Hamiltonian has been found to have the desired
effect on the scattering states. As the parameter
a in V., (7) is increased the low-lying virtual or-
bitals representing scattering states move to
higher energy values. However, the orbitals cor-
responding to the resonance also show some in-
crease in their eigenvalues. Thus, as in Ref.

16, it was found convenient to consider the first-

RESULTS AND DISCUSSION

We applied the method described in the previous
section to a study of the 2P shape resonances of
Be™ and Mg~. The extended Hartree-Fock so-
lutions of Clementi'® constitute the basis for the
bound electrons in the neutral target atoms. To
describe the resonance we augment this basis
set on even-tempered STO basis containing twelve
2P orbitals for Be~ and ten 3P orbitals for Mg". *°

Due to the inclusion of very diffuse functions in .
the basis sets, modification of the electronic Ham-
iltonian by adding the exponential potential V,,,(r)

order correction in the eigenvalues, i.e.,
Et{:Ei"<¢i‘V!¢l>’ (6)

where V is the artifical potential added to the
Hamiltonian, and ¢; and E; are the eigenfunctions
and eigenvalues, respectively, of the Hartree-
Fock problem with V included. Ej thus has the
effect of removing the artificial potential V.

While this process of following orbital eigen-
values as a is varied allowed for an easy identifi-
cation of the resonance state in the model potential

TABLE II. Virtual orbital energies (eV) for Mg with V,;; () added to the Hamiltonian. The parameter 7, is defined in
Eq. (4) (a.u.).

Virtual orbital number

7 1 2 3 4 . 5 6 7 8 9 10
5.0 -1.07958 . 0.00044 0.00189 0.00616 0.01850 0.05457 0.16569  0.53043 1.89212  7.68107
5.2 —0.03177 0.00044 0.00189 0.00619 0.01880 0.05617  0.17301  0.54817 1.95466  7.77003
5.4  0.00044 0.00188 0.00603 0.01434  0.02378 0.06100 0.18354 0.56682 2.01195  7.84526
5.6 0.00044 0.00188  0.00612  0.01767  0.04254  0.07605 0.19777 0.58597 2.06356  7.90988
5.8 0.00044  0.00188  0.00613  0.01794 0.04757  0.09402 _ 0.21467 0.60519 2.10941  7.96609
6.0  0.00044 0.00188 0.00613 0.01803 0.04917 0.10647  0.23209 0.62410 2.14968  8.01546
6.5  0.00044 0.00189 0.00614 0.01812 0.05051 0.12191 _ 0.26899  0.66815  2.22863  8.11547
7.0 0.00044  0.00189  0.00614 0.01815 0.05097 0.12851 0.29434  0.70609  2.28291  8.18969
8 0.00044  0.00189  0.00616 0.01837  0.05278 0.14698 0.38478  0.87385  2.45338  8.39918
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FIG. 1. The radial density (arbitrary units) for 0< »< 30 a.u. for virtual orbitals of Be. The integrated norms to 30
a.u. are for 7y=4.2: orb. 1, 0.97; orb. 2, 0.00; orb. 3, 0.02; orb. 4, 0.11; 7,=4.25: ob.1, 0.45; orb. 2, 0.45; orb. 3,
0.08; orb. 4, 0.13; %=4.3; orb. 1, 0.01; orb. 2, 0.35; orb. 3, 0.56; orb. 4, 0.17; %;=4.4: orb. 2, 0.05; orb. 3, 0.56;
orb. 4, 0.44; orb. 5, 0.49;7,=4.6: orb. 2, 0.03;0rb. 3, 0.25; orb. 4, 0.65; orb. 5, 0.57; 7y)=4.8: orb. 3, 0.20; orb. 4,
0.61; orb. 5, 0.62; orb. 6, 0.71; 7;=«: orb. 5, 0.61; orb. 6, 0.85; orb. 7, 0.92; orb. 8, 0.95.
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FIG. 2. The radial density (arbitrary units) for 0< »< 30 a.u. for virtual orbitals of Mg. The integrated norms to 30
a.u. are for 7;=5.2: orb. 1, 0.98; 7,=5.4: orb. 3, 0.01; orb. 4, 0.41; orb. 5, 0.45; orb. 6, 0.16; 7%y=5.6: orb. 4, 0.04;
orb. 5, 0.43; orb. 6, 0.52; orb. 7, 0.61; 7,=6.5: orb. 5, 0.14; orb. 6, 0.66; orb. 7, 0.73; orb. 8, 0.83; 7y=%: orb.

6, 0.60; orb. 7, 0.76; orb. 8, 0.90; orb. 9, 0.95.

considered in Ref. 16, the situation is not so clear in the model potential case.

cut for Be” and Mg". Although the resonance or- The use of the attractive potential V, (») only
bital may be identified after several (~10) HF in identifying the desired root is demonstrated
calculations with different values of a, we consider in Tables I and II and Figs. 1 and 2. In the tables
this method to be less useful for applications we give the eigenvalues of the virtual p orbitals of
to the electron—neutral-atom scattering. This the Be and Mg atoms as a function of the cutoff
we claim is mainly due to the small centrifugal parameter 7, defined in Eq. (4). Comparing the
barrier in the radial differential equation for these top and bottom lines of Table I for beryllium
neutral atoms, which makes the separation into (with v9=4. 0 and 7,=, respectively), we see

resonance and scattering states less sharp than that orbitals 9—-12 are stable, and that orbitals
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2-6 in the first row have energies which are
nearly the same as those of orbitals 1-5 in the
bottom row. Orbitals 6 and 7 (for 7, = ») responded
most strongly to the attractive shift potential. We
can gradually follow the orbitals in the resonance-
energy range as the value of the parameter 7

is decreased from infinity to 4. 0. These are the
underlined orbitals in the two tables and can be
identified as the resonance-energy and orbital
region for that particular value of the polarization
potential.

In the figures, we plot the radial density
[#* [aQy™(F)$(F)] of four orbitals whose energies
are close to that of the resonance for a selected
set of values for the parameter 7»,. The small
“bumps” occurring for small » in the Mg case
originate from the orthogonality constraint with
the occupied 2p orbitals and are absent in Be,
which has no p orbital occupancy. The general
character of those scattering states with energies
less than the resonance is a flat and extremely
slow-rising radial density in the interior region,
as can be seen from the solid line in Figs. 1(c)-
1(g) and 2(b)-2(e). Those scattering states with
energies above the resonance show a regular
oscillatory behavior as the dashed lines in Figs.
1(d)-1(g) and 2(c)-2(e) indicate. The orbitals in
the resonance range display rather different struc-
ture from the two types of scattering states men-
‘tioned above which possess a regular behavior and
hence are easily distinguished.
The first two figures display the radial density

out to 30 a,u. In order to more clearly judge

the extensions of the orbitals, we have included

in the figure text the integrated norms within this
distance, i.e.,

30 a.u.
fo rar f aQp*E) (),
which, of course, are a fraction of unity for these
normalized orbitals. It is interesting to see that
orbitals 1 and 2 in Fig. 1(b) are very similar in
the range 0 s» <30 a.u. That they are indeed
orthogonal can be seen from Fig. 3, which dis-
plays them in the range 0 <7 <200 a.u. Orbital
1 in Fig. 1(a) has the form of a bound orbital, as
expected from the negative value of its orbital
energy. A negative orbital energy is, however,
not a necessity for this locallized form, since
this orbital is almost indistinguishable from or-
bital 1 for Be for 7y=4.24 a.u., which has a
positive orbital energy.

To estimate the energy range of the %P shape
resonances of Be™ and Mg~, we use the criterion
of Eq. (5) for estimating the correct »,. With a
value of @ =46 a.u. for the static polarizability
of Be, we compute »;=4.8 a.u., and with @ =84
a.u. for Mg, we compute vy=6.5 a.u. Withthese

D
T
1

p(r)

N
'

0 L
00 05 10 15 20

r(i0?)

FIG. 8. The radial density (arbitrary units) for 0< »
< 200 a.u. for virtual orbitals 1 and 2 for Be with the
value 4.25 for the cutoff parameter 7, in V,,(#). The
integrated norms are 0.99 and 0.98, respectively.

values we obtain energy ranges of 0.14-0.24 eV
for Be" and 0.12-0. 27 eV for Mg~. In the latter
case orbital 7 shows a mcuh more localized struc-
ture than orbital 6 [Fig. 2(d)], which indicates
that the center of the resonance is closer to 0.27
eV. Experimentally, the energy of the 2p shape
resonance for Mg has been determined to 0. 15

eV (Ref. 20). To our knowledge, no experimental
values have been obtained for beryllium. Al-
though it is obvious that these predictions are
rather approximate, it should be pointed out that
these simple calculations give results which are
in good agreement with those of calculations of

a much more sophisticated nature. 81

The predictions of resonance energies and or-
bitals we obtained are not artifacts of the basis
sets. Even though all virtual orbitals are found
to change their eigenvalues when the basis is
modified, the scheme of adding the attractive po-
tential V,(») to the Hamiltonian always gave the
same resonance-energy range.

The use of the repulsive shift potential V., (7)
Or V,ou(7) + V,0,(7) corresponds to raising the
scattering states with energies less than the res-
onance to levels above the resonance energy in
Table I for 7= and 4.8 a.u., respectively, and
in Table II for »y=« and 6.5 a.u., respectively.
Thus, when we successfully identify the resonance
orbital, we will be in agreement with the method
of using the attractive potential V4 () only. In
this way we realize that the two former schemes
are essentially included (special cases) of the
latter.

One of the most important differences between
the addition of the attractive potential V,,,(#) and
the repulsive potential V,,(7) is the qualitative
effects these potentials have on the boundary con-
ditions of the solutions to the Schrbdinger dif-
ferential equation. In the former case no change
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occurs, whereas for the repulsive potentials, the
problem has been turned into the solution of a
particle in a box, or more accurately a bowl. We
find it more appealing to leave the original structure
of the differential equation and its boundary con-
dition intact, and hence favor not using the power
repulsive potential.

Improvements to the above method involving
Vpo1(7) should be pursued by using a more realistic
polarization potential. We have used, for reasons
of computational simplicity, the long-range form
of the potential modified by a simple cutoff. Be-
cause the resonance orbital has substantial ampli-

tude in the vicinity of the target’s valence orbitals,
it is expected that improvements in the form of
the potential V,(») will be of significant impor-
tance.
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