Complex coordinate rotation of the electron propagator
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It is now widely appreciated. that the real poles of the electron propagator G(E) yield information on the
ionization potentials and electron affinities of the stationary states of an atom or molecule. It is herein shown
that application of the Aguilar—Balslev—Combes-Simon coordinate transformation, r—r exp(i®), to G(E)
yields an analytically continued complex propagator G(Z, 6) whose complex poles correspond to the
complex electron affinities associated with nonstationary, resonance states of an atomic or molecular anion.
As an initial application of the coordinate rotation technique we derive and discuss the working equations for
a coordinate rotated propagator which is correct to second order in the electron—electron interaction. This is
followed by use of the formalism in a model study of a 2P shape resonance in the Be atom. Our second-order
results for this system are then compared to those obtained by previous authors employing static exchange,

and static-exchange plus cutoff polarization methods.

l. INTRODUCTION

Electron—-atom and electron-molecule shape reso-
nances can be thought of as metastable anionic states
which decay by electron emission. The possibility of
shape resonance formation occurs when the effective
potential governing the interaction of an incident electron
and the target atom or molecule exhibits long-range
repulsion and short-range attraction; this gives rise to
a penetrable (usually centrifugal) barrier within which
the incident electron may be temporarily bound. Rela-
tive to their neutral parents, shape resonances have a
well-defined positive energy E and lifetime 7(r=7%/T,
where T is the resonance width) which typically lie on
the respective intervals (0-10) eV and (10%-10"13) sec.
Much of the experimental work on shape resonances was
reviewed by Schulz,! who pioneered the use of electron
transmission spectroscopy for studying these metastable
states.

Much of the difficulty encountered in previous theo-
retical treatments of shape resonances based either on
the use of the scattering matrix® or on the approximate
expansion of the scattering wave function in a set of
square-integrable basis functions® follows from two
fundamental facts. First, as the resonance energy be-
longs to the continuous spectrum of the (N +1)-electron
Hamiltonian H (the target is assumed to have N elec-
trons), there exists an inherent difficulty in identifying
which discrete positive eigenvalue of an approximate,
finite-rank representative of H corresponds most close~
ly to the metastable state of interest. Second, as the
resonance wave function is not square integrable, the
computational difficulties in treating such states are
potentially more severe than those encountered in the
treatment of ordinary bound states (for which highly ef-
ficient computer codes are widely available).

A method which eliminates many of these theoretical
difficulties follows from a series of theorems due to
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Aguilar, Balslev, Combes, and Simon (ABCS).* Essen-
tially, these authors consider the spectrum of a modi-
fied nonrelativistic Hamiltonian Hy which is obtained from
the true Hamiltonian H by application of a complex scal-
ing transformation. It follows from their analyses that
the mathematical description of a resonance can be fun-
damentally simplified in two respects. First, the spec-
trum of the transformed Hamiltonian contains, in addition
to the ordinary bound state eigenvalues of the untrans-
formed H, complex eigenvalues Z which are related to
the resonance energies E and widths I by Z =E - i['/2.
Second, application of the ABCS transformation makes
the resonance wave function square integrable. Thus,
this method appears to offer great promise for the de-
termination of accurate resonance energies in a compu-
tationally tractable form. In fact, this approach has
been successfully applied to atomic® and molecular®
shape resonances within frameworks which, respective-
ly, neglected or included electron correlation effects.
Application of the ABCS transformation to the one-elec-
tron propagator, which to our knowledge has not previ-
ously been realized, is the principal subject of this pa-
per. This approach yields an ab initio electron-mole-
cule effective potential (the self-energy or optical po-
tential) which can be systematically improved and which
includes electron—electron interactions in a proper man-
ner.

In Sec. II we outline the coordinate rotation technique
as applied to the Hamiltonian itseif. We there quote the
most relevant results of the ABCS theorems related to
the spectrum of the Hamiltonian following coordinate
rotation. Section III introduces the electron propagator
in the form of the superoperator resolvent introduced by
Goscinski and Lukman.” There we show how the ABCS
transformation can be used to obtain a rotated propagator
from which resonance information can be extracted in a
highly systematic and computationally tractable manner.
This is followed in Sec. III by a sketch of the derivation
and approximations which lead to a rotated propagator
which is correct to second order in the electron-elec-
tron interaction. Section IV contains the results of a
second order computation of the lowest 2p shape reso-
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nance in the Be anion. Our results are compared with
those recently obtained by more approximate ab initio
(static exchange) and model potential methods. 8 we
close with a few brief remarks concerning the direc-
tions for future research on this interesting problem.

Il. COORDINATE ROTATION AND THE RESOLVENT
(Z1-H)! '

Much of the motivation for the coordinate rotation
technique follows from the desire to treat resonances
as electronic states which—through possessing a finite
lifetime 7> 0—are nonetheless representable by square-
integrable solutions {at complex energy) of a modified
form of the Schr8dinger equation. The modified Hamil-
tonian describing such a state is necessarily non-Her-
mitian. The complex eigenvalue of the resonance is
then customarily written in the form Z=E -{I'/2 for E,
the energy, and I" =#%/7, the width. This decomposition
is consistent with the view that the time decay of a reso-
nance is approximately exponential, though it can be
shown that this decay cannot be strictly correct for
times which are either very short or very long.®

In fact, initial applications of the coordinate rotation
device involved letting the coordinates in the wave func-
tion!? assume complex values [»~ » exp(if}], followed by
solution of the Schrddinger equation. It is easy to see
that one might equivalently rotate the coordinates in the
Hamiltonian, but not those in the-trial wave function, and
attempt solution of the eigenvalue problem (Z — H,)¥,=0.
The operator H, is taken to be the coordinate rotated
form of the ordinary Hamiltonian H, as

1N01 N+l 1 Nl 1

H(F‘"Z V?-Zz—+z—, (1)
25 T TGy

Hy=Ty+Vy . (2)

Replacement of »; by r, exp(if) yields the coordinate ro-
tated Hamiltonian Hy =exp(- 2i6)T + exp(—i6)V,.

Detailed analyses of the conditions under which the
Hamiltonian Hy can be analytically continued to the com-
plex plane have been given by Aguilar, Balslev, Combes,
and Simon, * the collected work we shall call the ABCS
theorem. The result is a beautiful characterization of
the pole structure of the continued (N + 1)-electron re-
solvent (Z — H,)"'. Rather than prove these theorems
here, it is sufficient to quote their results on the spec-
trum of H;. This we do in the form of the following
theorem.*

Let the Hamiltonian for an (N + 1)~electron state be
defined by H, =e™%® T +e™** v;, a sum of kinetic (T) and
potential (V) parts, such that H, is analytic on 0<8
<7w/2. The eigenvalue spectrum o(6) of H, can be divided
into a discrete, point spectrum ¢,(6) and a continuous
spectrum 0,(8). Let Z(8) be the set of complex thresh-
olds of the (N +1)-electron system. (For 8 =0 these
correspond to energies of a neutral N-electron parent
Plus an added electron of arbitrary positive kinetic en-
ergy. In what follows it is profitable to think of the
thresholds as a series of half-lines beginning at the en-
ergy of some state of the parent.) The spectrum of H,
is composed of the following elements:
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(a) a set of real elements in 0, and T: these corre-
spond to the real bound states and thresholds of H,, and
are independent of 6;

(b) an essential spectrum ¢,(6) which consists of a
number of complex rays each making an angle — 26 to
the positive real axis: each ray begins at one of the
real thresholds of Hy and may be regarded as a rotating
branch cut; in addition to these, there also exists a set
of rays which begin at the complex thresholds in Z(9);
these later also make an angle — 20 to the positive real
axis;

(c) a set of nonreal eigenvalues in 6,(6) and Z(8):
these are defined to be resonances of the (N+1) elec~
tron system with Z =E - {I'/2; each resonance eigenval-
ue lies on a sector or sheet of the complex plane bounded
by two of the rays described in part (b); on a given
sheet, the resonance eigenvalue is independent of 6.

Thus, one has the following picture of the multi-
sheeted eigenvalue spectrum of H, (see Fig. 1). At
6 =0 the bound states and thresholds of H, appear on
the real line (H, is Hermitian). However, as the rota-
tion angle @ is increased, several features of the spec-
trum become apparent: (1) the bound states and thresh-
olds are invariant to the rotation and remain fixed; (2)
the esential spectrum of H, “fans out” in the complex
plane; each complex ray begins at a threshold and ro-
tates, making an angle - 20 to the positive real axis;
(3) one sees no isolated complex resonance eigenvalues
until 8 =6, at which point one appears to become de-
tached from a rotating branch cut. This eigenvalue is
then independent of 6> 6, until such time as it is passed
over by another rotating branch cut beginning at a higher
energy threshold. The resonance eigenvalue then “dis-
appears” as one is now on another sheet of the surface
defined by the rotating branch cuts.

Of course, the behavior of the eigenvalues which arise
in a finite basis (approximate) application of coordinate
rotation techniques shows some deviation from this
“ideal” behavior.!' In particular, we wish to take ac-
count of the fact that the resonance eigenvalue may de-
pend on a real scale factor a in addition to its depen-
dence on the rotation angle 8. Such a real scale factor
is introduced in order to permit convenient variation of
the radial “diffuseness” of our orbital basis, and to al-
low us to require that the state of interest satisfy a virial
theorem. Thus, we define the complex parameter
1 =a exp(— i6) for both a and 6 real and positive; the co-
ordinate rotated Hamiltonian H, is then, in second-quan-
tized rotation, given by

By= 2 ) cie;+ 13 Gk cteyeiey (3)
ik

whére, for an atom, the matrix dements &,;,(n) are sums
of kinetic and potential energy parts

ki) =n?t;;(n=1) +nv,,(n=1) (4)

and the (i kI) are two-electron repulsion integrals.

(For a molecule, the nuclear attraction matrix elements
scale according to (¢, ! r -Rnl !l ¢,) which is not homo-
geneous. )
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The coordinate rotated resolvent is then (ZI - H,)™.
It is analytic in 7 and also analytic in Z except its com-
plex poles. These latter, when referenced to the sepa-
rating~computed energy of the N-electron parent, give
a resonance energy and width which is stationary pro-
vided the parameter 7 is chosen to satisfy 8Z/an=0.
Equivalently, the optimum approximate resonance eigen-
value satisfies the system of equations below:

82 _1n 8Z _
ba  a a7 =0, (52)
8z . 97
ﬁ_-m 877 (5b)

These latter equations constitute a complex form of the
virial theorem.™ Their use in the approximate applica~
tion of the coordinate rotation method is essential, a
point to which we shall later return.

I1l. COORDINATE ROTATION OF THE
SUPEROPERATOR RESOLVENT (2/- H) !

It is by now widely appreciated!®= that the ionization
potentials and electron affinities of an N-electron sys-
tem can be obtained from the (real) poles of the one-
electron propagator, or reduced Green’s function G(E).
Let the exact ground state of the parent atom or mole-
cule be designated by |§) and C;(r) and C{(0) be fermion
annihilation and creation operators in the Heisenberg
representation for times 7 and 7=0, respectively. Then,
with the Heaviside step function 6(r), one defines!* the
electron propagator G (7) through the matrix elements in

Gy (M ==& |cin)cio) | 5

+i0(=T)&|C30Ci(M|¥y, i,i=1,2,...,P.
(6)

The Fourier transform G(E) of G(7) is then defined by
G(E)=1lim [ arexpli (€ £i0)T16(T) , (7)
6= 0% Y=o

in which the + sign on the positive infinitessimal § is
chosen to guarantee convergence of the right hand side.
Insertion of a complete set of (N 1)-electron states
|¥+1y in Eq. (6) followed by taking the Fourier trans-
form and the limit as - 0 yields the spectral represen-
tation of G(E):

Nlc Olﬂol N+1|000|N
Gu(E)=; (J_‘_?S“_ENT—J_(EL( Z_ “.;() 2

N Na=1\ /N=-1 N

The poles of G(E) thus occur at the energy differences
E=EY*'' - E%) and E = (E}y —E}*!), which are, respective-
ly, the negatives of the electron affinities and ionization
potentials of the N-electron parent.

This property of G is particularly relevant to the dis-
cussion of metastable anions, since the coordinate-
rotated propagator G(Z, 6) exhibits a complex electron
affinity at a resonance, i.e., the eigenvalue spectrum
of the coordinate-rotated propagator assumes the same
form as that given in Fig. 1, with the exception that the
eigenvalues correspond to energy differences between
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FIG. 1. Schematic view of the eigenvalue spectrum of Hy: (a)

bound states; (b) real thresholds; (c) resonance.

N and Nz 1 electron states. As 8 is increased above
zero, the bound target to bound ion energy differences
remain unaffected whereas complex eigenvalues located
in sectors between adjacent branches of the essential
spectrum can be uncovered at 8,,,. The resonance ei-
genvalue is then

=il /2
—iris/2 (9)

since the stable target has zero width. Scaling the
propagator, it follows that a computation performed on
the neutral parent yields information on the resonance
state of interest. Of course, Eq. (8) does not repre-
sent a computationally useful form of the propagator
since its use requires knowledge of all the (N+1)-elec-
tron eigenstates.

Z os=DE o
= (Elon

varmt)

The propagator can be put into a computationally
tractable form by writing it in the form of the superop-
erator resolvent introduced by Goscinski and Lukman.”
To achieve this, we introduce the superoperators T and
H which for an arbitrary operator X satisfy

Ix=x, (10a)
Ax =[x, H]. (10b)

We also introduce the binary product (A| B) defined with
respect to the reference wave function [¥) by

AlB=¢| 4%, BL1%) . (11)
By use of the identity
ot oAt = gmifit x , (12)

which is valid for all operators X and H, Eq. (6) may be
written in the following form:

Gyy(r)= = i8(r) (4| [ ¢, (0] C3(0) | %)

+i0(=7) & | C3(0)[ e FrC (0] |5 .

Finally, collection of the operators c; into a column
vector C and use of Eq. (12) allows the energy-depen-
dent propagator to be written compactly as

G(E)=(C| (ET -B)*|C) .

The coordinate rotated version of this propagator is
clearly

G(z,n)=(|(d -4,y'|C),

which is defined for the superoperator form of the Hamilto-

(13)

(14a)

(14b)
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nian in Eq. (3). These latter equations provide a conve-
nient starting point for an order-by-order analysis of
the propagator by perturbation and partitioning tech-
niques.!” This we now consider.

In formulating a set of equations in terms of which
G(Z,n) can be computed it is convenient to assume, as
in conventional Green’s function developments,**'** that
we have available as a basis the real Hartree-Fock (HF)
spin orbitals ¢; and orbital energies ¢;, as well as the
two-electron integrals (ijkl) of the target’s unrotated
HF Hamiltonian. The single configuration HF deter- -
minant of the (assumed closed shell) target is repre-
sented by the symbol { 0). The true target rotated wave
function |%) is assumed to be expressed as 1) =[10)
+1¥1]51/2 where § is the normalization constant and
l\Il‘) involves electron correlation and coordinate-rota-
tion effects. The coordinate-rotated Hamiltonian H, de-
fined in Eq. (3) is (for use in subsequent perturbation
analysis) expressed in the form H® (the HF target Hamil-
tonian) plus the remainder H). H! contains both the co-
ordinate rotation and correlation effects (V, -~ V) as
well as the difference between the rotated and unrotated
Hartree—Fock operators [ kyp(n) = hyg(n=1)]. We re-
mark at this point that we have no proof of the conver-
gence of this perturbation scheme though its merits are
discussed more fully below.

We use Greek indices o, 8,... to label the occupied
single-particle states in | 0) while p,q, ... label the un-
occupied levels p=N4+1, N+2,...,P. Further, we let
i, i, kB, and [ be index arbitrary (occupied or unoccu-
pied) levels. The normalized first-order wave function
arising from Rayleigh—Schrédinger perturbation theory
is then

I ‘g
l?,'>=S'”2[1+ T Hmptasn2 Y <€1’:1_+°é§>__1’?:!__£€%]|0>-
<q

(15)
The normalization coefficient S is

S= 1+Z (B2 (m)]% + n? [{pglap)i®

2
2% (o +€a — €, — €,)

(16)
and the complex coefficients %2%(n) are those determined
by first order Rayleigh—Schrédinger perturbation theory

€qp(M)
€.(1) -¢,(1) °

The quantity €,, (n) is an element of the complex sym-
metric “Fock matrix”

€apM =gy () +0 3 (oallop) ,

k% () (17)

(18)

and the €’'s in the denominator are the real elements of
the diagonal Fock matrix (n=1) in the absence of any
coordinate rotation. The coefficients k% (n) clearly
arise from the coordinate rotation alone. The other
two-electron integral terms in Eq. (15) enter as a re-
sult of both coordinate rotation and correlation effects.

Following the conventional operator-based derivation,®

one next introduces a complete set of ionization opera-
tors h={n,, kg, ks, ...} which satisfy the commutation
rules for fermions, and which act on an arbitrary ket
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to change its electron number by plus or minus one. A
typical element of k, is a single annihijlation operator
¢;, while a typical element of ks, is a product of 2j+1
such operators, e.g.,

cla<p<q}, (19a)
B ={ctcac, |r> B> 0} . {19b)

The operators in k{ act to the left, creating an (N + 1)-
electron state from an N-electron one; those in A o
erate to the right to create an (N — 1)-electron state
from an N-electron one. These operators can then be
collected into a set q, Schmidt orthogonalized with re-
spect to the binary product (Al B) defined earlier rela-
tive to the first order wave function of Eq. (15). The
resulting first order normalized operators q; and q; are

(1) {Ca cpe

a1=ic;|i=1,2,3,..., P}, (20a)
gV ={ct cyco -k M) co+ kLM ¢, | @<p<q}, (20b)
as* ={c; cp e —K5n) ¢, + KL () e > B>} (20c)
The desired, second order, propagator can be
shown'®15 to be expressible in the form
6lz,n=[z1-A-BM'¢c] , (21)

in which the matrices A, B, M, and € are defined as
follows:

A= Bylq) , (22a)
B=(g:|fylqs) , (22b)
M=(q,;| (2] -H,)|qs) , (22¢)
C=(q3|H,,|q1) . (22d)

The explicit form of the coordinate-rotated matrix ele-
ments as they were used in the calculations discussed

‘in the next section is given in the Appendix.

Alternately, one may think of the above expression for
G as being given in terms of the one-electron effective
Hamiltonian L(Z,7):

G-I(Z,TI)=ZI-L(Z,77) ’ (23)
in which
L(Z,n)=A+BM'C . (24)

The poles of this approximate & occur at the zeros of
G, and are thus (for fixed 7) the energy-dependent ei-
genvalues of the equation

L(Zg,n) @(Z,) =2, 8(Z,) ,- B=1,2,...,P (25)

In practice, this last equation is solved by iteration.
One begins with a guess Zj” of the resonance eigenval-
ue, constructs the matrix L(Zé”,‘q) and solves the de-

terminantal equation

det[Z1-L(Z,n)]= (26)
@)

for a new approximation Z¥’, and so on. Since Z;! is
complex, we choose Z§*V such that it is the eigenvalue
of L which lies closest to Z§ in the complex plane in
the sense that | Z;**?) — Z{"| =min. It has been our ex-
perience that convergence of the above sequence can be
obtained in three or four iterations with a tolerance 7
set at T=1x10" a.u. This value of T was used in all
calculations reported below.
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IV. APPLICATION TO ?*P Be~

As an illustrative test of the methods outlined above .
we chose to study the 2P shape resonance in the ground
state of the Be atom. The atom was chosen because our
Green’s function development is, thus far, restricted to
closed shell targets and because of the relatively small
size of this atom {which results in low compuiational ex-
pense). Shape resonances have been experimentally ob-
served!® in the group IIA metals and their transition
metal analogs Zn, Cd, and Hg. Thus, the simpler Be
atom may be expected to show such resonance behavior
at low energy. Moreover, although no experimental
measurements of possible resonance behavior have been
made for Be, this atom has been studied by a variety of
theoretical techniques.

The first calculation on the P state of Be™ which made
use of complex coordinate methods was carried out by
Rescigno, McCurdy, and Orel® with the results given in
Table II. These authors begin with a single Hartree-
Fock calculation on the neutral parent for which

V=A101,61, 62,2 -

They next form a square integrable approximation to the
(N + 1)-electron Hamiltonian by employing a basis of real
configurations T', defined by

= A [¢1., 513 Doy 52; ‘1’”]

and expanding H¥*! in terms of an approximate spectral
resolution,

¥ ; ‘r& (TLIH T, .

(27)

(28)

(28)

The orbitals ¢,, are formed by Schmidt orthogonalizing
a set of primitive Slater-type basis functions. The com-
plex resonance wave function is then expandéd in terms
of the set of antisymmetric functions x,(6):

XI(G)E“i[%s Brs Pas Pas ‘1’»(1""”)] . (30)

TABLE 1. Basis, ground-state energy, and ionization poten-
tial obtained for neutral Be parent.

Orbital E xponents/coefficients [5s, 7pl

1s 1264. 5857 189, 9368 43,1590 12,0987
3.8063 1.2729/
0.001945 1.014835 0. 072090 0.237154
0.469199 1. 356520

2s 0.7478 / 1

3s 0.2200 / 1

4s 0.0823 / 1

5s 0.0300 / 1.

1p 3.1965 0.7470 0.2200/
0. 05570 0.261551 0.793792

2p 0.0800 / 1 '

3p 0.05606 / 1

4p 0.0360 / 1

5p 0.0125 / 1

6p 0.0080 / 1,

p 0.0031 / 1,

Total energy (a.u.)=—-14,566812
Ionization potential (a.u.)
Present=0, 320
Doll and Reinhardt=0. 327
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FIG. 2. A collection of @ trajectories for the basis listed in
Table I. From left to right, the «=0.75, 0.80, 0.85, 0,90,

0.95, 1.0. The @ increment is 0. 01 rad, beginning at #=0.0
and ending at 6 =0, 35 rad.

Finally, the complex rotated Hamiltonian matrix Hy is
formed according to

(Holiy= 3 (O T (T [H| T (Tuf x,00) . (31)

Hy=SsHS; .

There are two differences between this procedure and
a full coordinate-rotation calculation. First, the above
authors rotate only the coordinates in the “active” p-
orbital space, and second, they approximate H with a
finite spectral representation. As a result, the com-
plex eigenvalues Z, of H defined in Eq. (31) depend on
the rotation angle through the complex overlap integrals
(x;8)1T,), while the matrix H is independent of 6.

In our work on Be, we begin by computing the zeroth
order Hartree-Fock wave function in the basis of

" Gaussian-type functions listed in Table I; the corre-

sponding ground-state energy of 'S Be and the first ion-
ization potential are also listed in Table I. Our method
for finding the value of the complex scale 7 at which
Egs. (5) are obeyed is as follows: As is common in the
literature on this subject, we refer to a “¢ trajectory”
as the locus points Z,(6) in the complex plane for fixed
a. Likewise, we refer to an “a trajectory” as the locus
of points Z,(a) for fixed 6. Then, for fixed a= &, there
exists at least one point at which Eq. (5b) will be satis-
fied provided the basis is adequate to represent the res-
onance. A family of 6 trajectories for the 2p Be™ reso-
nance is plotted in Fig. 2 for various values of the real
scale o.

Examination of the figure indeed confirms the strong
dependence of the resonance eigenvalue on both the ro-
tation angle 6 and real scale a@. In fact, for the choice
a=1.0 (i.e., using the original atomic orbital basis
chosen in a more or less arbitrary fashion), the reso-
nance eigenvalue exhibits the same behavior as a typi-
cal nonresonant root! Thus, in finite basis calculations
the precise location of the resonance root is critically
dependent on both the overall basis scale and on the ro-
tation angle. Following these trajectory calculations,
we then applied a complex Newton—Rhapson iteration to
the function Z’=8Z/8n in order better to locate its (com-
plex) zero. The derivatives Z’ and Z'’ were computed
analytically (this is permissible since L can easily be
differentiated with respect to 1), and the converged val-
ue of the resonance eigenvalue was found to be

J. Chem. Phys., Vol. 73, No. 6, 15 September 1980

Downloaded 23 May 2003 to 155.101.19.15. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



R. A. Donnelly and J. Simons: Rotation of the electron propagator

TABLE II. Resonance parameters computed for 2p Be.

E (eV) T (eV)
Rescigno, McCurdy, and Orel (Ref. 8) 0.76 1.11
Hunt and Moiseiwitsch (Ref. 8) 0.60 0,22
Kurtz and Ohrn (Ref. 8)
Static exchange 0.77 1.61
Static exchange plus polarization 0.20 0.28
Present 0.57 0.99

Z=(2.0968x107%, —1.8142x10% a.u.) at a =0.73822,
6=0.25031 rad. Here the first derivative had the value
Z'=(~1.8697x107, 2.7817x107®) with magnitude
3.3517%x10%°, Thus, the second-order Green’s function
estimate of the resonance parameters gives a stable
eigenvalue Z for which the energy and width are

E =0.57055 eV, I'=0.98732 eV.

Other, more approximate static exchange computations
of the resonance parameters of 2P Be™ have been carried
out by Kurtz and Ohrn, ® who used the Harris—Michels?®
method followed by analysis of the [ =1 phase shift. The
results of these computations are given in Table II,
from which it can be seen that the resonance energies
computed by this method are in good agreement with
the static exchange values obtained via the complex co-
ordinate calculation of Rescigno ef al.? The agreement
between the calculated widths, however, is less satis-
factory, which may be due to the broadness of the reso-
nance and the fitting procedures used by Kurtz and
Ohrn in determining the width from the phase shift.

Because the atoms of Group II are highly polarizable,
the inclusion of higher-order terms absent at the static-
exchange level should be important. Such computations
were carried out by Kurtz and 6hrn, and by Hunt and
Moiseiwitsch.® Both pairs of authors add to the static
exchange potential a polarization term which is dependent
on an arbitrary cutoff parameter; the resulting dramatic
shift in the resonance parameters can be seen in Table
II. The resonance widths computed by the two methods
are again in relatively poor agreement with one another.
One reason for this might be due to the fact that the
Kurtz-Ohrn polarization potential has a physically rea-
sonable long-range part which is not included in the po-
larization potential used by Hunt and Moisewitsch. Both
these methods are critically dependent on the cutoff pa-
rameter r,, which makes interpretation of the computed
resonance parameters difficult.

The second-order results obtained in the present work
are also listed in Table II, for the basis set listed in
Table I. As might be expected, the effects of correla-
tion and target polarization combine to reduce both the
energy and width of the %P Be™ resonance compared to
the static exchange values. Significantly, it would ap-
pear that the reduction in these parameters is greatly
exaggerated by the more approximate static exchange
plus polarization calculations, though again the depen-
dence of these last methods on the cutoff parameter r,
makes an assessment of the accuracy of the computed
values difficult. Based upon our experience with using

2863

second and third order Green’s functions to compute
electron affinities involving bound anions, we expect the
second order results to be in error by 0.3-0.6 eV.
Hence, we are in no position to claim that our calculated
E and T are more accurate than those of Kurtz and Ohrn.
An objective comparison must await the results of a high
order Green’s function study as well as an accurate ex-
perimental determination.

V. SUMMARY AND CONCLUSIONS

In the research presented here we have shown how
one can employ the coordinate rotation technique, which
has been used previously by others within a wave func-
tion framework, to obtain a modified one-electron prop-
agator G(Z,n) or effective one-electron Hamiltonian
L(Z,n). We have, for a closed-shell target, given ex-
pressions in terms of the target Hartree—Fock orbitals
and orbital energies, which permit L(Z,n) to be evalu-
ated through second order in the electron-electron in-
teraction. The complex poles Z, of G(Z,n) which are
stable over some range of rotation angles (6> 6,,,) give
the shape resonance energies and widths Z =E; — iTs/2
relative to the total energy of the target atom.

We have applied this second order coordinate rotated
Green’s function method to study the 2P shape resonance
of Be", obtaining E_,,=0.57 eV, I' ,=0.99 eV. These
values were compared to the results of the coordinate-
rotation wave function calculations which employed the
static exchange HF) electron-atom potential as well as
to those of phase shift calculations which used model
static-exchange plus cutoff polarization potentials.

Unfortunately, an experimental evaluation of the reso-
nance energy of Be~ is not yet available; thus, it is not
possible to give a more critical evaluation of the accu-
racy of the results obtained by the rotated Green’s func-
tion method. It is, however, quite clear that the Green’s
function approach as outlined and utilized above suffers
from (at least) the following drawbacks:

(1) The fact that G(Z,n) is obtained only through sec-
ond order in the electron interaction severely limits the
precision with which E and T" can be computed. This
judgement is based upon an experience with Green’s
function calculations of atomic and molecular electron
affinities. We are presently undertaking a full third or-
der treatment of G(Z,7n) to remedy this situation.

(2) Treatment of the effects of rotation on the target
wave function via perturbation theory may not be ade-
quate if a is greater than unity or if 8 is large. To
overcome this potential problem, one could employ as
a spin orbital basis (in terms of which the unperturbed
H' is defined) the rotated HF Hamiltonian. Then the
K* would vanish and L(Z,7n) would be given by the same
expressions which arise in the conventional (unrotated)
Green’s function, except that the HF orbitals and orbital
energies would be complex and n dependent. Thus, as
n is varied, the rotated HF problem would have to be
solved again, and construction of the HF -orbital two-
electron integrals (4! | k) needed to compute L would
involve a complex integral transformation; this could be
quite time consuming! Alternatively, if in the iterative
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search for a stable resonance root a becomes large, one
could simply scale all of the atomic basis orbitals by this
value of a, with =0, to obtain a new starting basis with
which to carry out a new HF calculation. The new HF
orbitals could then be used to begin a new search for a
stable resonance root.

(3) The assumption that the target in a closed-shell
species whose wave function is adequately approximated
as a HF configuration augmented by a first order Ray-
leigh-Schrédinger correction severely limits the systems
to which our tools can be applied. In fact, this assump-
tion is especially unsuited in the case of the highly cor-
related Be atom. The extension of our developments to
correlated targets, for which the perturbation-theory
wave function is not accurate, is under our active con-
sideration.

In spite of these obvious limitations in the Green’s
function method as it is presently constituted, we feel
that the use of the approach advocated here offers a com-
putationally tractable alternative to (N + 1)-electron wave
function methods. In fact, the Green’s function technique
seems to have potential advantages over wave function-
based approaches:

(1) The present framework offers a mechanism for
computing the coordinate rotated version of the true one-
electron effective Hamiltonian L(Z,7n) which can be sys-
tematically improved (by augmenting the g, space and
improving the quality of the target wave function) so that
it includes higher order electron interaction effects.
The ability to compute and analyze the structure of such
an energy-dependent, nonlocal effective potential sug-
gests the possibility of developing deeper physical in-
sight as well as new physical models for the electron—
target interaction process.

(2) Because the poles of the Green’s function yield di-
rectly the energy differences between (N+ 1)- and N-
electron states, it is likely that spurious effects arising
from rotating the target’s core electrons, which have
been observed to cause substantial numerical difficul -
ties in coordinate rotated wave function studies, are
eliminated or at least reduced. In fact, it was precise-
ly these difficulties which motivated Rescigno et al. 8 to
develop a model in which only the coordinate of the ac-
tive orbital is rotated. Of course, in a complete basis
description, the rotation of H should have no effect on
the bound states, and hence within the HF picture this
should not affect the target’s occupied HF orbital ener-
gies. However, the use of finite atomic orbital bases
gives rise to some (spurious) ¢ dependence of the oc-
cupied orbital energies, which shows up as a spurious
8 dependence of the total electronic energy of the targét-
plus-electron system as computed in a wave function ap-
proach. The Green’s function by analytically subtracting
the target’s energy, allows only the 6 dependence of the
resonance energy to be evaluated.

The energy dependent one-electron effective potential
defined by L(E, 1=1) could, following Rescigno,
McCurdy, and Orel,® be used to define a “semirotated”
optical potential whose matrix elements in the rotated
orbital basis {¢,(r exp(i6))} are defined by L,,(E)
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=T (0; (r exp(i6)) 1 ¢, () L,y (EX, (r)) ¢, (r exp @6)). In
this manner, the unrotated L(E) in the HF basis is used
and the only effect of rotation is contained in the over-
lap integrals just as is the case in the work of Rescigno
et al.® This approximation to the “correctly rotated”
L(Z,7n) is worthy of further study.

It is our feeling that the ab initio one-electron effec-
tive potential approach advocated here merits a great
deal of further consideration. We plan to explore the
applications of this method as it now stands to a wide
range of molecular targets. We also plan the inclusion
of higher order electronic interactions which will per-
mit the study of open-shell and highly correlated (multi-
configurational) targets.
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APPENDIX

Rather than give a complete expansion of the terms
in the matrices A, B, M, and C we focus on the means
by which all terms of second or lower order can be ob-
tained. (A treatment of the unrotated form of the prop-
agator correct to second order was first given by Doll
and Reinhardt.'®) The important element which must
be kept in mind here is that both the ground state wave
function lﬁ) and the operators g;, g; contain zeroth and
first order parts. Furthermore, failure to adequately
deal with this fact leads to a nonsymmetric contribution
BM™ € such as that considered by Nehrkorn, Purvis,
and Ohrn. #

To obtain all second (or lower) order contributions to
G6™! we expand each of the matrices in Eq. (21) in a sum,
appending a superscript whose value is the order of that
part of the total Hamiltonian operator whose expectation
value is being computed. We also append two subscripts
which indicate the order of the left and right wave func-
tion component with respect to which the expectation
value is to be computed. Note especially that since the
operators in ¢ contain both zeroth and first order parts,
the sum of the sub- and superscripts gives the minimum
order of a given contribution to the total matrix element.

The matrix A gives the sum of terms
A=(H g0+ (HYoy + (H 10+ (H),
+ (Hy = HO%o + (H = H)gy + (H, - H)}+0(3) .

This case is especially simple since the operators in ¢,
have only zeroth order parts. Thus, there is a cancel-
lation of terms which leads to the simple, second order
result

A =(<11|I}0|41)n+ (‘11|1?n|‘11)oo+ (41l1}n|41)o1+ (41|f1nl(11)(1o -)
A2

The subscripts again indicate the particular components
of the normalized wave function |3} =10)+ | ¥') with re-
spect to which a given term is to be computed.

(A1)
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A similar result holds for the matrix M, which needs
to be computed only in zeroth order, since the matrices
Band C themselves begin at first order, as is shown be-
low. Because all off-diagonal elements of M are at
least first order, it is consistent to retain only the di-
agonal elements. Thus, the correct matrix M is

M = diag{(h,| (2T - 8% hy)}

In a second order treatment of the resonance parame-
ters, the matrix M is hence independent of the coordi-
nate rotation n because only H® contributes. This leaves
the matrices B and €, which must be handled with some
care.

(A3)

The matrix B8, which need be computed only in first
order in this cae, is the sum

B =(H%) g0+ (H) gy + (H) o+ (H, = HO)}; .

Unlike the previous cases, there is only partial cancel-
lation of the first and last terms here. This follows
from the fact that the first term contains both zeroth
and first order terms (these latter come from the first
order part of ¢,) whereas the last term (H, - H°)' can be
consistently computed only by including just the zeroth
order part of g;. (This follows since the operator H,

- H°=H} is by definition first order.) Explicitly, one
obtains the first order result

B=1{q 1‘ ﬁol‘la)oo +(111|1}0’h3)01+ (<11|f10| h3)10+ (h1‘f17|h3)oo
= (| B ig)oo (A5)

which shows clearly the partial cancellation between the
first and last terms.

(A4)

Analysis of the matrix € is parallel to that given for
B. One thus has, for the second order rotated propaga-
tor in which the matrix M is approximated by its diago-
nal, the explicit expression

-1
Gon = Z By, ape M apc.an Capasn
alp<e

- Z By vis Myt v Crpuvn - (a6)

r>gu

The matrix elements appearing in Eq. (A6) are then ex-
plicitly given by

M-em(n)mz ) [Cam| pn) =(am | np)]

+n§ k4 m)[(pm| an) - (pm|na)] (A7)
By, ape = ~1[{pg| am) - (pg|ma)] , (A8)
By, s = ~n[{pBlrm) —(up|mnr)} , (A9)
Mahaipa =L Z + €44(1) - €,,(1) - €, (D] (A10)
Mg vm =[Z +€,,(1) —€g(1) - €, (1] (a11)
Capern = =1[{na|pg) —(nalgp)] , (A12)
Copu s =—n[(nr| Bu) = (nr| up)] (A13)

These lead to a formula for the rotated, second order
propagator which is identical in form to the second or-
der propagator previously given by Doll and Reinhardt. 1
To obtain our formula from theirs one simply multiplies
each two-electron integral by the complex scale factor
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7, followed by making the replacement of their AV;; by
our [€;,(n) - ¢;,(n=1)].

Quite recently, Winkler?? has attempted to formulate
a coordinate-rotated version of the one-particle Green’s
function, although he has not yet published any computa-
tional results. His expression for G appears to differ
from those presented here because they are expressed
in terms of (rotated) HF orbitals which obey
[-3 exp(- i20)V% - exp(=i6)(Z/7) + exp(= i0)},, (T o, — K, )]0,
=€;¢;. The fact that these orbitals and orbital energies
are 6 dependent means that the two-electron integrals
appearing in L involve complex orbitals, and hence a
complex two-electron integral transformation is required
for each 6 value. Moreover, the iterative solution of the
above rotated HF equations must be repeated for each 6.
These two facts make the construction of the Green’s
function a very expensive (computer time) venture. For
these reasons, we have chosen to formulate our G in
terms of an unperturbed Hamiltonian involving unrotated
HF orbitals. This choice then gives rise to a one-elec-
tron component to our perturbation (H, - H°) which there-
by introduces factors into our final expression for G
which are absent from the analogous unrotated Green’s
function equations.
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